Demonstration of a Model Predictive Control for a Cluster of Solar Chemical Batch Reactors

ASME ES 2023 | 17th International Conference on Energy Sustainability Washington, DC | July 10-12, 2023

Dr.-Ing. Johannes Grobbel, DLR Institute of Future Fuels, Jülich

Solar Thermochemical Hydrogen Production State of the Art: Batch Reactors with Fixed, Porous Monoliths of Redox Material

Source: Plataforma Solar de Almeria (Owned by the Spanish research centre CIEMAT)

Source: DLR

Source: IMDEA / SUN-to-LIQUID project

Thermochemical Redox Cycle for Hydrogen Generation

Hydrosol/ASTOR Batch Reactor Concept

Solar Batch Reactor (window removed)

Scaled Plant with Multiple Reactors

 $\dot{Q}_{solar}(t)$

750 kW Hydrosol Plant (3 reactors)

_Receiver with several reactors i:

Overall Hydrogen Production: $n_{\rm H_2} =$

 $\int_{\text{day}} \sum_{i}^{n_{\text{react}}} \dot{n}_{\text{H}_2,i}^{\text{out}}(t) \, \mathrm{d}t$

Control Tasks:

- maximize overall hydrogen production
- safe operation within the material limits of the reactors

Manipulated Variables:

- irradiation to each reactor $\dot{Q}_{\text{solar},i}(t)$ by setting the heliostat aim points
- the inlet gas flows of each reactor (having only limited temperature control capability)

Project SolarFuelNow Model Predictive Controller (MPC) with DNI Nowcasting

Project SolarFuelNow Model Predictive Controller (MPC) with DNI Nowcasting

Project SolarFuelNow Model Predictive Controller (MPC) with DNI Nowcasting

Reactor Model

Absorber:

- 1-D finite volume method
- Coupled fluid & solid phases
- Reduction & oxidation included
- Spectral view factor model
- Gas preheating included
- Validated

MPC: Working Principle and Cost Function

Constant \dot{Q}_{avail} and 5 Reactors

Fabel et al., Solar Nowcasting Systems Using AI Techniques, 25th Cologne Solar Colloquium, 22nd of June 2022, Jülich [3] Fabel, Yann, et al., doi: 10.5194/amt-15-797-2022 [4] Nouri, Bijan, et al., doi: 10.1016/j.solener.2018.10.079 [5] Nouri, Bijan, et al., doi: 10.1016/j.solener.2019.02.004

Implementation at Solar Tower Jülich: System Overview

 monitors variables and ensures safe operation

Implementation at Solar Tower Jülich: System Overview

has access to all system data from PLC • uses physical model of reactor in state space form • plans which reactors will be operated in the next 15-20 minutes decides when to start the reduction or oxidation in each reactor nowcasts with probability information. • DNI predicted for next 20 minutes Model Predictive Controller (MPC) max $n_{\rm H_2}$ $\dot{Q}, \dot{n}_{\rm N2}, \dot{n}_{\rm H2O}$ sets fluxes and WobaS sensor data, nowcast information gases for reactors (nowcasting) aim point optimization possible Programmable STRAL reactor STRAL set fluxes Logic Controller irradiations (raytracer) to reactors (raytracer) South-North (PLC) DNI (W/m²) actuator User Interface sensor heliostat field 50 HeliOS set points data control software -150 -150 safety 1 Real Solar West-East (m) 4 Reactor defocus Reactor Mock-Ups acts as OPC UA Server • Heliostat Field collects, distributes and stores data • Only one real reactor monitors variables and ensures Replacement of other reactors by cheap reactor mockups • safe operation Sufficient to test the control approach

Reactor Mockups

→Same I/O signals as for real reactor

Demonstration of MPC at Solar Tower Jülich

reactor mock-ups with radiometers

- First tests with reactor mockups ongoing
- Real reactor currently being installed
- Full system test in autumn this year

Images: DLR

Summary

- Solar chemical processes have special characteristics
 - requirements for control differ from the ones for CSP plants
 - time-varying non-uniform flux density profile required at receiver
- A Model-predictive control for batch reactors has been developed
 - captures interdependency between reactors through coupling with heliostat field control
 - considers material constraints
 - incorporates probabilistic nowcasting information
 - most sophisticated control approach for these batch reactors so far
- The automatization of solar chemical processes is necessary to realize plants in larger scale

Outlook

- Further demonstration at Jülich Solar Tower with one real reactor and 4 reactor mockups
- Control behavior strongly dependent on switching heuristics \rightarrow should be improved (i.e. by long-term target selector)

Acknowledgements

- Funding for the SolarFuelNow project (grant no. 03EE5042A) by the federal republic of Germany is greatly appreciated
- Thanks to: Rudolf Popp, David Zanger, Ante Giljanovic, Thomas Fend, Gregor Piesche, Bijan Nouri, Yann Fabel, Birk Kraas, Laurin Oberkirsch, Stefan Schmitz, Dennis Thomey, **Christian Sattler**

Supported by:

for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Imprint

- Topic:Demonstration of a Model Predictive Control for a Cluster of
Solar Chemical Batch Reactors
- Date: 10.07.2023
- Autor: Johannes Grobbel
- Institute: DLR Institut für Future Fuels
- Images: DLR, RWTH Aachen, Plataforma Solar de Almeria, IMDEA

BACKUP

First Approach: Cascade Control in Project H2Loop

Oberkirsch et al., Solar Energy 243 (2022): 483-493. https://doi.org/10.1016/j.solener.2022.08.007