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Solar Thermochemical Hydrogen Production
State of the Art: Batch Reactors with Fixed, Porous Monoliths of Redox Material
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Source: Plataforma Solar de Almeria

(Owned by the Spanish research

centre CIEMAT)

Source: DLR
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Scaled Plant with Multiple Reactors
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750 kW Hydrosol Plant (3 reactors)
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Control Tasks:

• maximize overall hydrogen production

• safe operation within the material limits of the reactors

Manipulated Variables:

• irradiation to each reactor ሶ𝑄solar,𝑖 𝑡 by setting the 

heliostat aim points 

• the inlet gas flows of each reactor 

(having only limited temperature control capability)
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Model Predictive Controller (MPC) with DNI Nowcasting



Project SolarFuelNow
Model Predictive Controller (MPC) with DNI Nowcasting
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Project SolarFuelNow
Model Predictive Controller (MPC) with DNI Nowcasting
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Reactor Model

▪ Absorber:

▪ 1-D finite volume method 

▪ Coupled fluid & solid phases

▪ Reduction & oxidation included

▪ Spectral view factor model 

▪ Gas preheating included

▪ Validated
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MPC: Working Principle and Cost Function
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Constant ሶ𝑸𝐚𝐯𝐚𝐢𝐥 and 5 Reactors
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0

temperature limit

ሶ𝑄avail = 300 kW

Simplifications:

• gas flows constant during 

reduction and oxidation 

phase 

• switching between states 

mostly based on heuristics

• i.e. from reduction to 

oxidation when
ሶ𝑄𝑖 < 0.2 ሶ𝑄avail & 𝑇 > 1300 𝐾



All Sky Imager-Based Nowcasting
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Cloud detection [3] 
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Cloud modelling [4] Cloud Tracking [5]

Cloud shadow projection & 

analyze radiative effect [5]

Fabel et al., Solar Nowcasting Systems Using AI Techniques, 25th Cologne Solar Colloquium, 22nd of June 2022, Jülich

[3] Fabel, Yann, et al., doi: 10.5194/amt-15-797-2022 [4] Nouri, Bijan, et al., doi: 10.1016/j.solener.2018.10.079 [5] Nouri, Bijan, et al., doi: 10.1016/j.solener.2019.02.004



Implementation at Solar Tower Jülich: System Overview
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Implementation at Solar Tower Jülich: System Overview
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Mock-Ups

1 Real Solar 
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• Only one real reactor

• Replacement of other reactors by cheap reactor mockups

• Sufficient to test the control approach



Reactor Mockups
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reactor mock-ups with radiometers

real reactor (not installed yet)aluminum sheet with 

white coating

hole for radiometer

water-
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body
camera

in heliostat 

field
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…at the same probe 

locations like in real reactor

→Same I/O signals as for real reactor



Demonstration of MPC at Solar Tower Jülich
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▪ First tests with reactor mockups ongoing

▪ Real reactor currently being installed

▪ Full system test in autumn this year

Images: DLR

reactor mock-ups with radiometers

real reactor (not installed yet)

reactor mock-ups with radiometers

void for real reactor



Summary

▪ Solar chemical processes have special characteristics

▪ requirements for control differ from the ones for CSP plants

▪ time-varying non-uniform flux density profile required at receiver

▪ A Model-predictive control for batch reactors has been developed

▪ captures interdependency between reactors through coupling with heliostat field control

▪ considers material constraints

▪ incorporates probabilistic nowcasting information

▪ most sophisticated control approach for these batch reactors so far

▪ The automatization of solar chemical processes is necessary to realize 

plants in larger scale 

1
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Outlook

▪ Further demonstration at Jülich Solar Tower with one real reactor and 4 

reactor mockups

▪ Control behavior strongly dependent on switching heuristics 

→ should be improved (i.e. by long-term target selector)
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Data

Trained LSTM

First Approach: Cascade Control in Project H2Loop
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Oberkirsch et al., Solar Energy 243 (2022): 483-493. https://doi.org/10.1016/j.solener.2022.08.007
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