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Solar Thermochemical Hydrogen Production
State of the Art: Batch Reactors with Fixed, Porous Monoliths of Redox Material DLR
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Scaled Plant with Multiple Reactors ,_#7
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Control Tasks:
* maximize overall hydrogen production
« safe operation within the material limits of the reactors

Manipulated Variables:

- irradiation to each reactor Q1. (t) by setting the
heliostat aim points

« the inlet gas flows of each reactor
(having only limited temperature control capability)




Project SolarFuelNow
Model Predictive Controller (MPC) with DNI Nowcasting
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Project SolarFuelNow ,_#7
Model Predictive Controller (MPC) with DNI Nowcasting DLR
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Project SolarFuelNow ,_#7
Model Predictive Controller (MPC) with DNI Nowcasting DLR
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Reactor Model ‘_‘
Preheated Gas DLR
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MPC: Working Principle and Cost Function
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Constant Q.y.;; and 5 Reactors
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Simplifications:

« gas flows constant during
reduction and oxidation
phase

« switching between states
mostly based on heuristics

* |.e. from reduction to

oxidation when
0; < 0.2 0.0a11 &T > 1300 K



All Sky Imager-Based Nowcasting
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Implementation at Solar Tower Julich: System Overview 4#7
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* has access to all system data from PLC

» uses physical model of reactor in state space form

» plans which reactors will be operated in the next 15-20 minutes
« nowcasts with probability information « decides when to start the reduction or oxidation in each reactor
* DNI predicted for next 20 minutes Model Predictive Controller (MPC)
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Reactor Mockups
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Demonstration of MPC at Solar Tower Julich ,_#7
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= First tests with reactor mockups ongoing
» Real reactor currently being installed
= Full system test in autumn this year
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Summary 4#7
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= Solar chemical processes have special characteristics
= requirements for control differ from the ones for CSP plants
» time-varying non-uniform flux density profile required at receiver

= A Model-predictive control for batch reactors has been developed
= captures interdependency between reactors through coupling with heliostat field control
= considers material constraints
* incorporates probabilistic nowcasting information
» most sophisticated control approach for these batch reactors so far

* The automatization of solar chemical processes is necessary to realize
plants in larger scale



Outlook 4#7
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= Further demonstration at Julich Solar Tower with one real reactor and 4
reactor mockups

= Control behavior strongly dependent on switching heuristics
—> should be improved (i.e. by long-term target selector)
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First Approach: Cascade Control in Project H2Loop
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Data-Driven Reactor Model » Cascade Control
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