

VERIFICATION VALIDATION METHODS

Criticality Analysis - Application

9.4 | Identification and Analysis of Criticality Phenomena within the GIDAS database

Stefan Schoenawa, Christian Neurohr

Criticality Phenomena (CP)

- concrete influencing factors in a scenario
- associated with increased criticality
- represent abstract classes of danger

ID	Criticality Phenomenon	Absolute Fre- quency	Relative Fre- quency	Projected Fre- quency
#17	Intersecting Planned Trajectories of TPs	7156	55.1%	88305
#31	Non-Ego-TP violating Right of Way	2644	20.3%	32628
#131	Occlusion	2978	22.9%	36746

GIDAS Database

- largest German in-depth traffic accident database
- representative for the German accident statistic
- important data source for VVM criticality analysis
 - we considered <u>12997</u> accident cases with passenger car involvement in urban areas
 - analyzed regarding the presence of <u>166</u> CP

Fig 1: Distribution of number of CP per accident case (©2023 Babisch et al. [1])

CP-Associated Human Risk

• computed from database analysis as product of exposure, controllbabiliy, and severity

Analysis of Associations among CP

- pairwise computation of Phi-coefficient
- provides insights into CP concurrence or exclusion

Fig 3: Prop. Venn diagram and pairwise Phi-coefficients (©2023 Babisch et al. [1])

Analysis of Edge Cases

- accident cases with few or many CP provide interesting examples to study
- example below sketches a fatal case with 16 CP
 - Intersection, Pedestrian Crossing, Tram Rails
 - Degraded Road Quality, Degraded Lane Markings
 - Limited Global Light Source (Night), Rain

- operational domain (OD) urban areas in Germany
- quantified human risk can be used for
 - reference values in positive risk balance
 - relevance estimation of CP

Strong Braking Maneuver of TP							47
Intersection							457
Intersecting planned Trajec- tories of TPs Presence of							455
VRUs with Road Access						373	
Speed				258			
Reduced Friction on Road			203				
Road Weather			200				
Occlusion			189				
High Rela- tive Speed			179				
Non-Ego-TP violating Right of Way			168				
Presence of URUs with Road Access			167				
Degraded Road Quality		136					
Bad Road Surface		132					
Dark Cloth- ing of VRU		126					
Passing of Parking Vehicle		113					
Small Distance		108					
Small Dis- tance to TP		108					
Subject on Road		98					
Pedestrian on Road		96					
Overtaking	8	4					
0	50 1	00 150	200 2	50 30	0 350	400	450
	$Risk_{Hum}$	Lan(CP, Ac	cident, Sev	$verity \ge$	$1 \mid OD)$ i	$n \frac{\text{accident}}{10^9 \text{km}}$	<u>s</u>

Fig 2: Top 20 CP sorted according to human risk (©2023 Babisch et al. [1])

- Dark Clothing of VRU, Reduced Friction on Road
- Intersecting Trajectories of TPs
- Presence of VRU/URU with Road Access
- Pedestrian Crossing Road Directly
- Non-Ego TP Running a Red Traffic Light
- Non-Ego TP Violating Right of Way
- Strong Braking Maneuver of TP

Figure 4: Sketch of fatal accident with 16 CP (©2023 Babisch et al. [1])

References:

[1] Babisch et al., Leveraging the GIDAS Database for the Criticality Analysis of Automated Driving Systems, Journal of Advanced Transportation, 2023

Partners

For more information contact: stefan.schoenawa@volkswagen.de christian.neurohr@dlr.de

A project developed by the VDA Leitinitiative automated and connected driving

Federal Ministry for Economic Affairs and Climate Action on the basis of a decision by the German Bundestag

www.vvm-projekt.de

in VVM Project