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MOTIVATION AND AIM

• Many models are available for each process in a battery cell:

• intercalation,

• SEI growth,

• cracking, …

• Selection from many combinations leads to a vast zoo of
possible models to describe a particular battery cell.

• Bayesian methods are best suited to perform honest 
parameterization and selection in the face of uncertainty.

• Aim: a model selection algorithm that is both flexible and 
stable enough to handle the variety in battery models.

BAYES' THEOREM 
• P(parameter | data) ∝ P(data | parameter) ⋅ P(parameter)
• Read: „The Likelihood of the model parameters matching the

data updates the Prior knowledge to Posterior knowledge.“ 

BAYESIAN MACHINE LEARNING

Learn a function describing uncertainty

• The target to learn from will be
||model(parameter) – data||.

• Active Learning: leverage the
included uncertainty to decide
on the most informative next
parameter sample.

• Choice of fit function: Gaussian Process [2].

BAYESIAN OPTIMIZATION (LFI)

Substitute Likelihood with ML function

• Likelihood is often intractable.

• Approximation: integral of
ML fit function below a
certain threshold.

• Optimal threshold can be
calculated from ML fit
function automatically [2].

BAYESIAN QUADRATURE

Evidence calculation for model selection

• Bayes' Theorem hides a normalizing factor, the so-called
Evidence: ∫ P(data | parameter) ⋅ P(parameter) d(parameter).

• The Evidence is a reliable measure for the question
„Could this data have originated from this model?“ [1].

• BQ can efficiently calculate the Evidence.

BQ ISSUE: SENSITIVITY TO RANDOM 
INITIALIZATION

• The randomly chosen initial 
samples greatly affect BQ 
convergence.

• There is no “best” design of 
experiment to counteract this.

• While parameterization 
consistency is acceptable, model 
selection consistency is not.

Predictive posterior
visualization after failed
parameterization

BO PRECONDITIONING OF BQ

• Preemptively ended Bayesian 
Optimization gives a Posterior 
that is not much narrower, but 
greatly increases BQ success 
rate if used as a 
“preconditioned” Prior.

• Tests with a simply narrower 
Prior did not improve results.

MODEL SELECTION
• With data from R-RC-RC, Evidence

is computed once for R-RC-RC-RC.

• Without BO preconditioning, only
1 out of 6 times the Evidence for
the correct R-RC-RC is higher.

• With BO preconditioning, 6 out of
6 times R-RC-RC scores higher.

SUMMARY
We suggest that Bayesian Quadrature as a model selection
algorithm synergizes perfectly with Bayesian Optimization to
reliably deliver automated model selection in complex scenarios.
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AUTOMATED BATTERY MODEL SELECTION WITH 
BAYESIAN QUADRATURE AND BAYESIAN OPTIMIZATION

EXAMPLE APPLICATION: ECM

The simplest ECM to model
arbitrarily many time constants is a 
chain of RC pairs (to infinity: DRT). 

• Question: how many time 
constants / RC pairs are visible in 
any given impedance spectrum?

• High amount of noise makes
classical optimization inaccurate
[1].

• Overlapping time constants
further complicate the task.

Impedance spectrum of a 
R-RC-RC-RC circuit with one 
RC element “hidden” in the 
noise at high frequency

Correlation matrix
computed by EP-BOLFI [2]; 
variances barely changed

Predictive posterior
visualization after successful
parameterization
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