AUTOMATED BATTERY MODEL SELECTION WITH BAYESIAN QUADRATURE AND BAYESIAN OPTIMIZATION

Electrochemical Energy Storage

Yannick Kuhn^{a,b} (yannick.kuhn@dlr.de), Birger Horstmann^{a,b,c}, Arnulf Latz^{a,b,c} a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany b Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm, Germany c Institute of Electrochemistry, University of Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany

MOTIVATION AND AIM

- Many models are available for each process in a battery cell:
 - intercalation, \bullet
 - SEI growth,

EXAMPLE APPLICATION: ECM

The simplest ECM to model arbitrarily many time constants is a chain of RC pairs (to infinity: DRT).

- cracking, ...
- Selection from many combinations leads to a vast zoo of possible models to describe a particular battery cell.
- Bayesian methods are best suited to perform honest parameterization and selection in the face of uncertainty.
- Aim: a model selection algorithm that is both flexible and stable enough to handle the variety in battery models.

BAYES' THEOREM

- P(parameter | data) \propto P(data | parameter) \cdot P(parameter)
- Read: "The Likelihood of the model parameters matching the \bullet data updates the Prior knowledge to Posterior knowledge."

BAYESIAN MACHINE LEARNING

Learn a function describing uncertainty

• The target to learn from will be ||model(parameter) – data||.

- Question: how many time constants / RC pairs are visible in any given impedance spectrum?
- High amount of noise makes classical optimization inaccurate [1].
- Overlapping time constants further complicate the task.

Impedance spectrum of a **R-RC-RC-RC circuit** with one RC element "hidden" in the noise at high frequency

BQ ISSUE: SENSITIVITY TO RANDOM INITIALIZATION

- The randomly chosen initial samples greatly affect BQ convergence.
- There is no "best" design of experiment to counteract this.
- While parameterization consistency is acceptable, model selection consistency is not.

Predictive posterior visualization after failed parameterization

- Active Learning: leverage the included uncertainty to decide on the most informative next parameter sample.

Model parameter θ

Choice of fit function: Gaussian Process [2].

BAYESIAN OPTIMIZATION (LFI)

Substitute Likelihood with ML function

- Likelihood is often intractable.
- Approximation: integral of ML fit function below a certain threshold.
- Optimal threshold can be calculated from ML fit function automatically [2].

BO PRECONDITIONING OF BQ

- Preemptively ended Bayesian **Optimization gives a Posterior** that is not much narrower, but greatly increases BQ success rate if used as a "preconditioned" Prior.
- Tests with a simply narrower Prior did not improve results.

Correlation matrix computed by EP-BOLFI [2]; variances barely changed

MODEL SELECTION

- With data from R-RC-RC, Evidence is computed once for R-RC-RC-RC.
- Without BO preconditioning, only 1 out of 6 times the Evidence for the correct R-RC-RC is higher.
- With BO preconditioning, 6 out of

Predictive posterior

BAYESIAN QUADRATURE

Evidence calculation for model selection

- Bayes' Theorem hides a normalizing factor, the so-called Evidence: $\int P(data \mid parameter) \cdot P(parameter) d(parameter).$
- The Evidence is a reliable measure for the question "Could this data have originated from this model?" [1].
- BQ can efficiently calculate the Evidence.

6 times R-RC-RC scores higher.

visualization after successful parameterization

SUMMARY

We suggest that Bayesian Quadrature as a model selection algorithm synergizes perfectly with Bayesian Optimization to reliably deliver automated model selection in complex scenarios.

tsches Zentrum für Luft- und Raumfahrt German Aerospace Center

HIU – Joint research institute of KIT and Ulm University with associated partners DLR and ZSW KIT – The Research University in the Helmholtz Association