Non-CO₂ MRV Support for establishing a monitoring, reporting and verification system

Liam Megill, DLR Institute of Atmospheric Physics

On behalf of the project consortium for DG CLIMA: To70, DLR & AerLabs

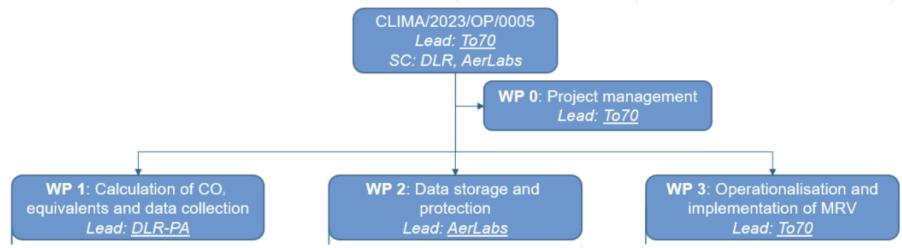
Workshop on Aviation Non-CO₂ Emissions, Brussels, 14/12/2023

Commission

AERLABS

Non-CO2 MRV | Liam Megill, DLR-PA / Workshop on Aviation Non-CO2 Emissions, Brussels, 14/12/2023

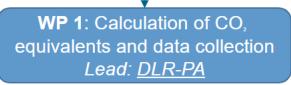
Non-CO₂ MRV | Agenda



- MRV project objectives
- Planning
- Overview of work packages
- Preliminary WP 1 results
- Summary

Objective & structure of the non-CO₂ MRV project

- The European Commission has been given a mandate to create a monitoring, reporting and verification framework for non-CO₂ aviation effects
- Objective of tender <u>CLIMA/2023/OP/0005</u> is to provide advice on data needs & develop an IT tool for data collection; provide an overview of models and metrics
- Project consortium: To70, DLR, AerLabs
 - Data advisory: Lufthansa, KLM, KNMI, DWD



Planning MR	V		(to To der Labs
Preliminary report Internal	Public meeting External	Intermediary report Internal	IT solution and Operationalization	Finalisation of project
Nov. 2023	Dec. 1st 2023 WP1	Jan. 2024	2024 → WP2, WP3	Dec. 2024
		Today: Workshop on Aviatior Non-CO ₂ Emissions	ר ער ער ער ער ער	

WP 1 – Overview

Scope of work:

- Analyse approaches, models and metrics to calculate CO₂-equivalent emissions on a per-flight basis
- Identify minimum and additional data to be monitored, reported and verified
- Consider data gaps and recommend default values in case of missing or partially collected data

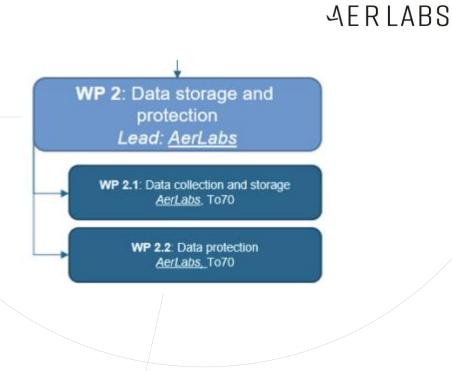
WP 1.1: CO₂ equivalents approaches and climate-response models <u>DLR-PA</u>, DLR-AT

> WP 1.2: Minimum data needs <u>DLR-PA</u>, DLR-LV, DLR-AT

WP 1.3: Additional data <u>DLR-LV</u>, DLR-PA, DLR-AT

WP 1.4: Data gaps and default values <u>To70</u>, DLR-PA, DLR-AT, DLR-LV

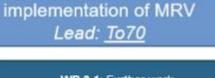
Preliminary report Internal	Public meeting External	Intermediary reportIT solution andInternalOperationalization		Finalisation of project
Nov. 2023	Dec. 1st 2023	Jan. 2024	2024 →	Dec. 2024
WP1			WP2, V	VP3



Scope of work:

WP 2 – Overview

 Develop the user-friendly and secure IT solution that ensures the collection and storage of the monitored data.


Non-CO2 MRV | Liam Megill, DLR-PA | Workshop on Aviation Non-CO2 Emissions, Brussels, 14/12/2023

Preliminary report
InternalPublic meeting
ExternalInternediary report
InternalIT solution and
OperationalizationFinalisation
of projectNov. 2023Dec. 1st 2023Jan. 20242024 →Dec. 2024WP1WP2, WP3WP2, WP3WP2, WP3

Non-CO2 MRV | Liam Megill, DLR-PA | Workshop on Aviation Non-CO2 Emissions, Brussels, 14/12/2023

Scope of work:

- Preparing for the operationalisation of the MRV
- Analysis of administrative and cost impact of implementation
- Workshop(s) / training for sector to review MRV and provide feedback on integration of MRV

WP 3: Operationalisation and

WP 3.1: Further work <u>DLR-LV</u>, DLR-PA, AerLabs, To70

WP 3.2: Support and stakeholder consultation <u>To70</u>, AerLabs, DLR-PA, DLR-LV

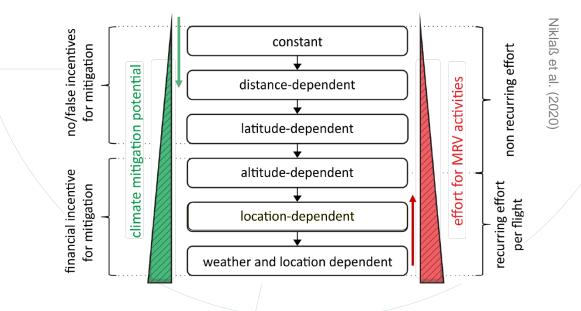
WP 3 – Overview

ABRIAIDE

PRELIMINARY RESULTS WP 1

Non-CO2 MRV | Lam Megill, DL K-PA | Workshop on Aviation Non-CO2 Emissions, Brussels, 14/12/2023

Calculating mission-based CO₂-eq emissions



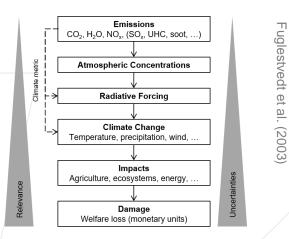
 Larger climate mitigation potential possible with greater MRV effort

We recommend two solutions:

1. Minimum effort: Climatological approach

- **PROs**: Low modelling and data effort
- CONs: Mitigation possibilities reduced to general options in operations and changes in aircraft & propulsion design, general SAF use
- Likely attractive for smaller airlines

- 2. Full potential: Weather-based approach
 - PROs: More incentive possibilities through flight routing options, targeted SAF use
 - **CONs**: Higher modelling and data effort
 - Suggested for airlines with more capacity


Climate Metrics

- Each climate metric has its own purpose and merits. The choice of climate metric is a compromise, but independent of the approach
- We find that integrated climate metrics with large time horizons (>70 yrs) are most appropriate, e.g. GWP₁₀₀ or ATR₁₀₀ (incl. efficacy)

The choice of climate metric does not have to be controversial!

Different time horizons possible, and we can understand the consequences of choosing a given metric.

Considerations	RF	GWP	GWP*	GTP	ATR/iGTP	
Transparent & simple	Low complexity	Less complex, but	High complexity,	Low complexity	Less complex	
		abstract concept	abstract concept			
Temporal stability	Generally stable	Stable	Highly unstable	Generally stable	Stable	
Compatibility with	Not compatible	Generally	Generally compatible,	Generally	Generally	
existing and future		compatible, does	does not include	compatible,	compatible,	
aircraft		not include efficacy	efficacy	includes efficacy	includes efficacy	
Dependence on	Strongly	Generally	Independent of	Dependent on	Independent of	
emission scenario	dependent on	independent of	scenario, but	scenario	scenario	
	scenario	scenario	sometimes surprising			
			results			
Dependence on time	Strong	Weak	Weak, but has a	Strong	Weak	
horizon			second time horizon			

Models

Each model has its own purpose and merits – the choice of model depends on the approach chosen.

• aCCFs – TU Delft & DLR

Calculates climate impact of all non-CO₂ effects on per-flight basis with weather dependence, direct implementation in NWP models

AirClim (& OpenAirClim) – DLR

Climate response model, estimates climate impact of all non-CO₂ effects on a yearly-mean climatological basis

CoCiP (& pycontrails – open-source & integrated with other models) – DLR, Breakthrough Energy

Lagrangian contrail life cycle model for the calculation of contrail climate impact of single flights & global air traffic

• FaIR – Oxford/Leeds Univ.

Reduced-complexity climate model, produces global temperature projections from emissions or forcing scenarios

LEEA – Cambridge/Reading Univ., Airbus

Simple response model for climate impact of aviation emissions

LinClim – MMU

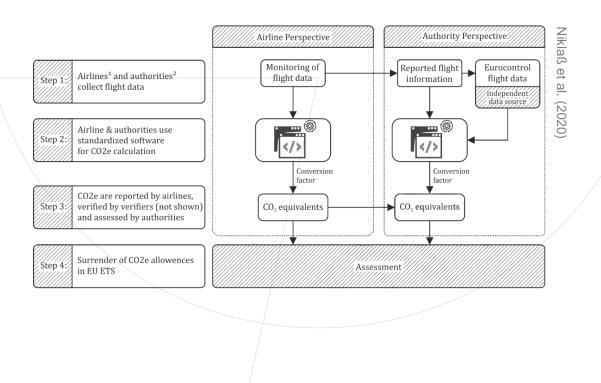
Climate response model predicting climatological response of aviation perturbation and monetary values of impacts

• OSCAR – IIASA, ONERA, LSCE

Compact Earth System Model to calculate the response of global aviation emissions

Model/ Requirement	(open) AirClim	CoCiP (pycont rails*)	aCCFs	LinClim	FAiR	OSCAR	LEEA
Scope of output	++	-	++	++	++	++	++
Weather dependency		++	++				
Location dependency	++	++	++				0
Availability of required	++	++	++	-	+	++	++
data							
Transparency	+	++	++	-	++	++	-
Computational effort	++	0	++	++	+	++	++
Administrative effort	to be eva	luated after	specific us	e-case vers	ions are ge	nerated	++
Fuel type	+	++	+	?			
consideration							
Engine/aircraft type	0	++	0	?			
consideration							

Minimum and additional data (WP 1.2 & WP 1.3)



Data required:

- Flight emissions/emission indices
- Meteorological data from weather services (for weather-based approach)
- Flight data from aircraft operators, authorities & services, e.g. EUROCONTROL

Considerations:

- Data needs should be kept to a minimum, while assuring required accuracy of results
- Two different storage systems with different data requirements may be required for monitoring and verification

Minimum and additional data (WP 1.2 & WP 1.3)

Meteorological data

- Needed for weather-based approach
- Should be obtained from external sources
 → no reporting needed
- NWP model and forecast time has to be agreed

Flight data

- Aircraft type, flight information and engine UID are required. Other flight data can optionally be used to improve accuracy of the models
- Flight trajectory data should be obtained from independent sources, e.g. EUROCONTROL, to limit MRV effort
- Additional data will be required to allow for certain incentives (e.g. engine efficiency, fuel composition)
- Some data can be estimated to some degree (e.g. fuel flow), otherwise must be conservatively assumed (→ WP 1.4)

Data gaps (WP 1.4)

Missing data must be filled with conservative values. These must not lead to lower CO_2 -eq emissions than if real values were used

Examples:

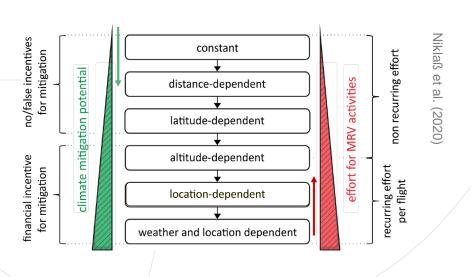
Fuel Flow

- 1. Recorded by the operator
- 2. Modelled by the operator during flight planning
- 3. Modelled using 3rd party models, (e.g. P3T3, DLR FFM)

Other data such as aircraft mass or TAS may be needed

Engine Type

- 1. Engine UID provided by operator
- 2. Most conservative default engine from list for specific aircraft (ICAO Engine Database)


Fuel Properties

- Fuel service provider or airport service (ReFuelEU)
- 2. Assume Jet-A1

4ERLABS

Summary

- We recommend **both** a minimum effort (climatological) and a full potential (weather-based) approach
 - The full potential approach requires larger modelling and data effort, but provides more possibilities for incentives through detailed flight routing options, e.g. contrail and NO_x avoidance
 - The suitability and accuracy of the model depends on the approach chosen and the data available
 - Data gaps need to be filled conservatively and are being inspected in further work
- Uncertainties are inherent and will remain, but should not prevent MRV implementation research can continue concurrently
- The MRV needs to be open for new scientific research and understanding

Liam Megill DLR Institute of Atmospheric Physics TU Delft Faculty of Aerospace Engineering

E: <u>liam.megill@dlr.de</u> / <u>w.a.megill@tudelft.nl</u> T: +49 8153 281 991

THANK YOU

to 70-

Maarten Tielrooij Marson Jesus Eneko Rodriguez Vincent de Haes

16

Volker GreweKatrin DahlmannRoland EichingerDennis PiontekLiam MegillMartin PlohrChristiane VoigtMalte NiklaßAlexander LauKatrin Dahlmann

AERLABS

Robert Koster Luis Natera Orozco Ian Brumby

Imprint

Topic:	Non-CO ₂ MRV Support for establishing a monitoring, reporting and verification system
	Workshop on Aviation Non-CO ₂ Emissions, Brussels, 13-14/12/2023
Date:	2023-12-14
Author:	Liam Megill
Institute:	Institute of Atmospheric Physics
Image credits:	All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated. Climate stripes CC-BY 4.0 Ed Hawkins (University of Reading)