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Integrating Domain Knowledge into Transformer-based Approaches to Vulnerability Detection

Abstract

The field of vulnerability detection in cybersecurity is critical for ensur-
ing the security and integrity of software systems. Traditional methods like
Static Application Security Testing (SAST) and Dynamic Application Secu-
rity Testing (DAST) have limitations. SAST, while effective in identifying
vulnerabilities early in the development cycle, often produces a high rate of
false positives and struggles to understand the runtime context. DAST, on the
other hand, can detect vulnerabilities in a running application but is limited
by its inability to access the source code and its late detection in the software
lifecycle. In contrast, the landscape of vulnerability detection has evolved
significantly, embracing advanced machine learning models. Initially, the fo-
cus was on Recurrent Neural Network (RNN)-based models such as LSTM,
BiLSTM, and BiGRU, along with their variants in Convolutional Neural Net-
work (CNN)-based methodologies. However, the field has recently shifted to-
wards transformer-based models, noted for their exceptional performance in
natural language processing tasks and their proficiency in interpreting pro-
gramming languages. This study leverages the strengths of transformer-based
models, particularly those tailored for programming languages, to enhance vul-
nerability detection. By integrating domain knowledge, specifically the Com-
mon Weakness Enumeration (CWE) hierarchy, into programming language-
specific Transformer-based models. In this study, we investigate the efficacy of
transformer-based models through two distinct classification approaches: stan-
dard classification and hierarchical classification using a deep classifier. Our
primary objective is to assess the impact of integrating domain knowledge, par-
ticularly in the context of hierarchical methods, on model performance. This
exploration aims to delineate how such integration influences outcomes com-
pared to traditional classification methods, thereby providing insights into the
potential advantages of domain-specific enhancements in transformer-based
models by adding a novel dimension to the semantic and syntactic analysis
of source code. Our hierarchical approach using various loss weights outper-
formed the standard classification with Focal Loss in multiclass classification.
Also, these approaches showed high performances in binary classification even
though the models were fine-tuned for multiclass classification task and not
for binary classification task. This represents our approaches enable broader
learning of semantic and synthetic knowledge in vulnerability detection tasks
using transformer-based models and suggests promising direction for future
research and application in the field.
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1 Introduction

In an era where digital technologies permeate every aspect of our lives, the security
of software systems has become paramount. Cybersecurity, particularly vulnerability
detection, is crucial in safeguarding against the increasing sophistication of cyber-
attacks. Traditional methods like Static Application Security Testing (SAST) and
Dynamic Application Security Testing (DAST) have played pivotal roles but face
inherent limitations. SAST, effective in early-stage vulnerability identification, often
yields high false positives rates and lacks runtime context understanding. DAST,
adept at detecting vulnerabilities in operational applications, is constrained by its
inability to access source code and its late intervention in the software lifecycle
(Schmitt, 2023).

This backdrop of evolving cyber threats and the inadequacies of conventional meth-
ods have catalyzed the shift towards advanced machine learning models in vulnera-
bility detection. The adoption and evolution of various deep learning models have
marked the progression of our research approach to vulnerability detection. Early
stages focused on models utilizing Convolutional Neural Networks (CNNs) and Long
Short-Term Memory (LSTM) networks, as demonstrated in studies like Wu et al.
(2017), which employed CNN and LSTM for binary classification in vulnerability de-
tection. Subsequent advancements were made with Bidirectional LSTM (BiLSTM)
models, as seen in the works of Li et al. (2018) and Zou et al. (2019). These studies
effectively applied BiLSTM-based models for binary and multiclass vulnerability de-
tection, showcasing their versatility. The exploration then extended to Graph Neural
Networks (GNNs), with studies such as Zhou et al. (2019) and Fu and Tantithamtha-
vorn (2022) employing GNN-based models like gated graph neural networks, Graph
Convolutional Networks (GCN), and Graph Attention Networks (GAT) for binary
classification tasks. In more recent developments, the research has incorporated
Transformer-based models. Fu et al. (2022) utilized a T5-based model for multi-
class classification. In contrast, Fu et al. (2023) combined TextCNN with advanced
models like CodeBERT and GraphCodeBERT, demonstrating a novel integration
of CNN-based and Transformer-based methodologies in vulnerability detection. As
this trajectory shows the field’s recently pivoted towards transformer-based models,
acclaimed for their exceptional prowess in natural language processing. These mod-
els’ ability to adeptly interpret programming languages has opened new vistas in
vulnerability detection.

Our research stands at the forefront of this evolution, leveraging the strengths of
transformer-based models tailored for programming languages. We integrate do-
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main knowledge, particularly the Common Weakness Enumeration (CWE) hierar-
chy, into these models to enhance their analytical depth. Our research employs
state-of-the-art transformer-based models to explore the efficacy of incorporating
domain knowledge into vulnerability detection. Specifically, we conduct a compar-
ative analysis between hierarchical classification techniques and an alternative class
weight-based approach for imbalanced datasets, known as focal loss. This compari-
son involves standard and hierarchical classification methods with a deep classifier,
as detailed in Brust and Denzler (2020). The primary goal of this study is to eval-
uate the influence of integrating domain-specific knowledge, with a particular focus
on hierarchical methodologies, on the performance of these models. This exploration
aims to delineate how such integration influences outcomes compared to traditional
classification methods, thereby providing insights into the potential advantages of
domain-specific enhancements in transformer-based models by adding a novel di-
mension to the semantic and syntactic analysis of source code. This study addresses
crucial research questions such as the feasibility of integrating domain knowledge
into transformer-based models, the resultant impact on model performance, and the
advanced approach to mitigating extreme class imbalance and efficiently fine-tuning
the models for vulnerability detection tasks.

This thesis is structured methodically, beginning with a literature review that pro-
vides a comprehensive background on vulnerability detection, existing methodolo-
gies, and the role of deep learning models in this domain. Following this, we present
our materials and methodology, detailing the data collection, preprocessing tech-
niques, development of transformer-based models, and integrating domain knowl-
edge. Subsequent chapters discuss the results of our experiments, offering a compar-
ative analysis of model performance with and without domain knowledge integration.
The discussion chapter delves into the implications of our findings, examining their
significance, limitations, and potential avenues for future research. The thesis culmi-
nates with a conclusion that synthesizes our research findings and outlines directions
for further exploration in this evolving field of cybersecurity.
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2 Vulnerability Detection in Language Models

This chapter delves into the foundational understanding of vulnerability detection,
examining its definition, existing methodologies, and the emergence of deep learn-
ing as a necessary approach in light of the limitations inherent in current practices.
It further investigates the essential aspects of language model applications, rang-
ing from fundamental principles to intricate transformer-based architectures such as
BERT (Devlin et al., 2019) and its adaptations for dual-modality in both Natural
and Programming Languages. The discussion progresses to trace the evolution from
conventional models like Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTMs) (Hochreiter and Schmidhuber, 1997) to the advanced transformer-
based architectures, which are employed for complex adaptations in software vulner-
ability detection. This is done while referencing pivotal studies in the field.

2.1 Definition of Weakness and Vulnerability

To navigate the complexities of software security, it is essential to understand the
specific lexicon that defines its threats. The terms vulnerability and weakness are
central to this discourse, each signifying distinct but interrelated concepts. A vulner-
ability denotes an explicit flaw within a software system—be it in the code, design,
or implementation—that can be exploited by threat actors to compromise system
security or integrity. Such vulnerabilities vary in origin, ranging from simple coding
mistakes to complex configuration errors, and are each identified by a unique Com-
mon Vulnerabilities and Exposures (CVE) identifier for global reference and analysis.
CVE (Common Vulnerabilities and Exposures) is a system for naming and listing
cybersecurity vulnerabilities and exposures. It was created in 1999 to solve the prob-
lem of different security tools having their own systems for naming vulnerabilities,
which made it hard to coordinate and protect against security threats effectively.
CVE provides a standardized way to identify vulnerabilities, making it easier for
different cybersecurity tools and services to communicate with each other, share in-
formation, and improve security coverage. How CVE Works The process of creating
a CVE Identifier begins with discovering and reporting a potential security vulnera-
bility. Managed by The MITRE Corporation, CVE is widely used globally in various
cybersecurity products and services (Introduction to CVE, n.d.).

While vulnerability refers to the immediately exploitable defects, a weakness indi-
cates a more generalized condition within the software that may give rise to one
or more vulnerabilities. Weaknesses might originate from inadequate coding prac-
tices, architectural flaws, or failure to adhere to security protocols and are categorized
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within the Common Weakness Enumeration (CWE) system. CWE (Common Weak-
ness Enumeration) is a community-developed list of common software and hardware
weakness types that have implications for security. Established to provide a stan-
dardized language for identifying and describing these weaknesses, CWE aims to
educate software and hardware developers, architects, designers, and acquirers on
how to eliminate common mistakes before product delivery, thereby preventing vul-
nerabilities at their source. The CWE List, first released in 2006 and expanded over
time to include hardware weaknesses, serves as a foundation for understanding and
addressing security flaws in both software and hardware domains. It supports de-
velopers and security practitioners in describing weaknesses in a shared language,
checking for weaknesses in products, evaluating tool coverage, and leveraging a base-
line for weakness identification, mitigation, and prevention. CWE, managed by The
MITRE Corporation and endorsed by the international CWE community, is instru-
mental in shaping security standards and practices across the industry (MITRE,
2023).

The nuanced distinction between a CVE and a CWE is foundational for professionals
in the field. A CVE ID is allocated to a specific vulnerability instance, a weakness
that has materialized and is susceptible to exploitation. In contrast, a CWE ID clas-
sifies the broader type of weakness, potentially leading to such vulnerabilities. This
systematic classification not only aids in the precise identification and remediation
of software vulnerabilities but also in the proactive strengthening of software against
potential security threats.

2.2 Vulnerability detection

Software and system vulnerabilities are found, examined, and mitigated as part of
vulnerability detection, an essential component of cybersecurity. Asset identification,
vulnerability scanning, weakness detection, risk assessment, patch management, and
continuous monitoring are all included in this multi-stage procedure. The CVE
database records thousands of new vulnerabilities annually, highlighting the volume
and increasing complexity of cyber threats. These numbers show the shortcomings of
conventional approaches and the need for more advanced solutions. As Comparitech
(2023) represents, recent data indicates that there were over 8,000 vulnerabilities
identified in just the first quarter of 2022, which is a 25% increase from the same
period the previous year. This pattern emphasizes how difficult cybersecurity is
becoming and how important proactive detection techniques are.
One key aspect of vulnerability detection is the distinction between detecting Com-
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mon Vulnerabilities and Exposures (CVE) identifiers and Common Weakness Enu-
meration (CWE) identifiers. While a CVE ID represents a cataloged vulnerabil-
ity known to be exploitable, a CWE ID signifies a broader category of potential
weaknesses in software design or implementation that could lead to vulnerabilities.
Detecting weakness/vulnerability within programming code is particularly vital, as
it identifies systemic issues that could manifest as multiple, possibly undiscovered,
vulnerabilities (CVEs). This early detection of weaknesses enables developers and
security professionals to address fundamental flaws before they can be exploited.
Detecting CWE identifiers can be especially beneficial when integrated into auto-
mated vulnerability detection systems. Integrating such knowledge allows these
models to detect known vulnerabilities and predict and locate potential weaknesses
that have not yet been exploited or documented as CVEs.
Traditional approaches to vulnerability detection rely on manual analysis and expert
knowledge. However, this approach is time-consuming, error-prone, and not scalable,
particularly with the increasing complexity of software and the variety of security
threats. Advanced deep learning methods, particularly transformer-based models,
have emerged in response to these challenges. They have shown promising results in
automating the process of vulnerability detection. These models excel in interpreting
complex programming languages and integrating domain knowledge like the CWE
hierarchy, enhancing vulnerability detection by predicting and identifying potential
weaknesses. This represents a significant advancement in cybersecurity, moving from
a reactive to a more proactive, efficient, and tailored approach to vulnerability de-
tection.

2.3 Existing Approaches to Vulnerability Detection

The following seven typical techniques for detecting vulnerabilities, described in Ap-
tori (2023), exist at present: Overall, each approach has its strengths and weaknesses,
and a combination of approaches is often used to provide comprehensive coverage of
the software system under test.

1. Static Application Security Testing (SAST): SAST, also called white-
box testing, inspects the application’s source code for potential vulnerabilities
early in development. Tools like SonarQube are used for SAST. Pros include
early detection of issues and detailed insights into the codebase, while cons
involve potential high false positives and negatives and difficulty in identifying
runtime-specific vulnerabilities.
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2. Dynamic Application Security Testing (DAST): DAST, also called black-
box testing, tests applications in their operational state, identifying vulnera-
bilities exploitable by attackers, such as cross-site scripting and SQL injection.
Tools like OWASP ZAP are used for DAST. Its advantages include finding
runtime-specific vulnerabilities potentially ignored by SAST and not requir-
ing source code access. However, it can be slow and provides less detailed
information about vulnerabilities than SAST.

3. Interactive Application Security Testing (IAST): IAST integrates ele-
ments of both SAST and DAST, employing agents within the application to
monitor data flow and accurately identify vulnerabilities during runtime. Tools
like Veracode are utilized for IAST. It offers precise runtime information and
works well with custom code, but some infeasible application instrumentation
might impact application performance.

4. Software Composition Analysis (SCA): The main objective of SCA is to
find security holes in third-party libraries and open-source components used
in an application. These elements are frequently used extensively in modern
software development, and each can potentially generate vulnerabilities. Tools
like OWASP Dependency Check are used for SCA. It’s effective in identifying
vulnerabilities in external components and managing risks but might not cover
all components and relies on databases that may not be fully updated.

5. Penetration Testing (Pen Testing): Penetration testing (in short, Pen
testing) involves simulated cyberattacks to find potential exploits in systems,
using tools like Metasploit. It reveals real-world vulnerabilities and complex
exploits but can be expensive and time-consuming, requiring skilled testers.

6. Fuzz Testing (Fuzzing): Fuzzing is an automated method that inputs ran-
dom data into software to find vulnerabilities, using tools like Aptori. It’s effec-
tive in discovering edge case vulnerabilities and big-size codes but can produce
a high volume of non-exploitable results and requires careful management.

7. Runtime Application Self-Protection (RASP): RASP integrates into an
application to protect against real-time attacks by analyzing behavior and con-
text during operation. It offers real-time protection and detailed attack data
but can impact performance and might not suit all applications.

6



Integrating Domain Knowledge into Transformer-based Approaches to Vulnerability Detection

2.4 Deep-learning based Vulnerability Detection

This cutting-edge method uses deep learning algorithms to find vulnerabilities in
software automatically. By examining enormous code datasets, these algorithms
can learn to identify intricate patterns and anomalies that might point to security
vulnerabilities. This technique can eventually adjust to new threats and is especially
good at identifying vulnerabilities that more conventional approaches might overlook.
However, training requires a lot of computer power and huge, labeled datasets. The
results can also be difficult to interpret, requiring professional analysis to comprehend
and apply the conclusions.

1. Recurrent Neural Network (RNN)-based: An example of an RNN-based
approach for vulnerability detection is ”VulDeePecker” (Li et al., 2018), a deep
learning-based system that uses a BiLSTM (Bidirectional Long Short-Term
Memory) model to detect vulnerabilities from source code.

2. Convolutional Neural Network (CNN)-based: An example of a CNN-
based vulnerability detection system is the work done by Zhou et al. (2019),
using 1D-convolution CNNs and a dense layer on a string of tokens to detect
vulnerabilities.

3. Graph Neural Network (GNN)-based: An example of a GNN-based
method is a method by Russell et al. (2018), where they use Graph Neural
Networks to learn from the code’s abstract syntax tree (AST) to detect vul-
nerabilities and use Random Forest as a classifier.

4. Transformer-based: Hanif and Maffeis (2022) uses a transformer-based model
called RoBERTa, introduced in Liu et al. (2019), to create program embed-
dings that can effectively identify vulnerabilities in software, demonstrating
the adaptability and effectiveness of transformer architectures in understand-
ing complex software structures for security purposes. Further, they connect
it to multi-layer perception (MLP) and convolutional neural networks (CNN)
to fine-tune vulnerability detection models.

Overall, deep learning-based approaches to vulnerability detection have shown promis-
ing results and have the potential to improve the accuracy and efficiency of vulner-
ability detection compared to traditional approaches. However, there are still chal-
lenges to overcome, such as the limited availability of labeled data and the difficulty
of interpreting and explaining the decisions made by deep learning models.
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2.5 Pre-trained Models for Programming and Natural Lan-
guages

This section explores the significant advances in language model development, fo-
cusing on their application in programming contexts. Starting with an overview of
the evolution of language models, we trace their progression from early statistical
models to the sophisticated Transformer architecture. We then delve into BERT, a
groundbreaking model in natural language understanding, and extend our focus to
CodeBERT and GraphCodeBERT, which represent specialized adaptations of the
Transformer model for the realm of programming languages.

2.5.1 Understanding Pretraining in Machine Learning

Pretraining is a cornerstone concept in modern machine learning, especially within
the realm of deep learning. Essentially, it refers to the process of training a neural
network model on a vast dataset prior to its application on specific tasks. This initial
phase typically involves self-supervised learning, where the model learns to predict
or reconstruct parts of the input data, thereby gaining a broad and fundamental
understanding of the data patterns. For example, in language models, pretraining
might include tasks like predicting the next word in a sentence. This approach is
particularly powerful as it allows the model to learn a rich data representation, mak-
ing it more versatile and effective when later fine-tuned for specific tasks. Pretrained
models, particularly in later iterations, have demonstrated remarkable effectiveness
across various domains, underlining the significance of this training methodology.

2.5.2 The Evolutionary Development of Language Models

The journey of language models began in the 1950s, marking the dawn of using
computers for natural language processing (Turing, 1950). The 1980s saw the rise of
statistical language models, revolutionizing the field.
One of the earliest notable statistical language models (SLMs) was the n-gram model,
described in Jurafsky and Martin (2023), which was developed in the 1960s and uses
a probabilistic approach to predict the likelihood of a word based on the previous n-1
words in a sequence. The limit of n-gram models is that as the value of n increases,
the size of the n-gram model also increases exponentially. This leads to the ”curse of
dimensionality”, where the model becomes increasingly sparse, making it difficult to
estimate probabilities accurately. Additionally, n-gram models cannot capture long-
term dependencies and context that may be necessary for some natural language
processing tasks (Weizenbaum, 1966).
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The 1990s introduced neural language models, starting with feedforward neural net-
work language models and progressing to more advanced architectures like recurrent
neural networks (RNNs) and long short-term memory (LSTM) networks. These mod-
els, capable of processing sequential information and retaining context over longer
sequences, offered significant improvements over traditional n-gram models. How-
ever, they faced challenges like computational intensity, parallelization difficulty, and
issues like the vanishing gradient problem (Jelinek, 1992).
Recurrent Neural Networks (RNNs) process input sequences one element at a time
while maintaining an internal state that encodes information from previous elements.
The formula of Recurrent Neural Network (RNN) is defined as,

ht = σ(Whhht−1 +Wxhxt + bh)

yt = softmax(Whyht + by)

Where ht is the hidden state at time step t, σ is the activation function (usually the
hyperbolic tangent or the sigmoid), Whh is the weight matrix for the hidden state,
Wxh is the weight matrix for the input xt, bh is the bias vector for the hidden state,
yt is the output at time step t, Why is the weight matrix for the output, and by is
the bias vector for the output.

2.5.3 Transformers

Introduced in Vaswani et al. (2023), the transformer architecture marked another
significant NLP development. Among the drawbacks of RNN and LSTM models
were bottleneck problems brought on by sequential processing, which was costly and
time-consuming computationally, and the problem of vanishing gradients, making
capturing long-term dependencies challenging. However, the transformer may use
attention to tackle these RNN and LSTM problems. When a transformer generates
an output sequence, attention serves as a method to let the model preferentially
focus on the most relevant parts of the input sequence. The attention mechanism
works by computing a weighted sum of the encoder outputs, where the weights are
learned based on the similarity between the decoder’s hidden state and each encoder
output.
The attention mechanism in transformers can be mathematically represented as fol-
lows:
Given a sequence of input vectors x1, x2, ..., xn and a query vector q, the attention
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mechanism computes a weighted sum of the input vectors as:

Attention(q, {xi}ni=1) =
n∑

i=1

αixi,

where the weights αi are computed as:

αi =
exp(ei)∑n
j=1 exp(ej)

,

And ei is a score assigned to each input vector based on its similarity to the query
vector:

ei = score(q, xi).

The score function can take different forms, such as dot product, scaled dot product,
or multi-layer perceptron (MLP). The choice of score function depends on the specific
application and the desired properties of the attention mechanism.
Various attention mechanisms have been developed based on the original attention
mechanism, including self-attention, cross-attention, and multi-head attention. Self-
attention and cross-attention are distinguished based on whether they define the key
and query from the same input sequence or not. Multi-head attention operates in
parallel multiple times. As a result, each type has a distinct formula.

1. Self-attention:

Self-attention is a type of attention where the input sequence is mapped to
queries, keys, and values, which are then used to compute a weighted sum of
the values. The weights are determined by the similarity between the queries
and keys. Self-attention is used in the encoder layers of the transformer model
to capture dependencies within the input sequence.

Self-Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Where Q, K, and V are the query, key, and value matrices. dk is the dimen-
sionality of the key vectors.

2. Cross-attention:

Cross-attention is a type of attention used in the decoder layers of the trans-
former model. It computes a weighted sum of the values based on the similarity
between the queries and the keys obtained from a different input sequence. For
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example, the queries are the decoder’s hidden states in machine translation,
and the keys and values are the encoder outputs.

Cross-Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Where Q is the query matrix, K and V are the key and value matrices obtained
from a different input sequence, and dk is the dimensionality of the key vectors.

3. Multi-head attention:

Multi-head attention is a variation of self-attention that allows the model to
jointly attend to information from different representation subspaces. The
query, key, and value matrices are projected into h subspaces using learnable
linear transformations in multi-head attention. The self-attention operation is
then performed on each of these projected subspaces in parallel, and the results
are concatenated and projected again to produce the final output.

Multi-Head(Q,K, V ) = Concat(head1, head2, ..., headh)W
O

Where headi = Attention(QWQ
i , KWK

i , V W V
i ) is the output of the i-th atten-

tion head, WQ
i , WK

i , and W V
i are learnable linear transformations, and WO

is a learnable linear transformation applied to the concatenated outputs of all
the attention heads.
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Figure 1: Architecture of Transformer (Vaswani et al., 2023)

The Transformer model is a complex neural network for processing sequences, with
an encoder-decoder structure enabling parallelization and capturing long-range de-
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pendencies. Figure 1 shows the basic architecture of the Transformer model, with
the encoder on the left and the decoder on the right. The encoder maps input se-
quences (represented as a matrix of token embeddings) to a sequence of encoded
representations via self-attention, adding positional encodings to maintain sequence
order. Each encoder layer consists of multi-head attention and feed-forward networks
with residual connections for gradient flow. Residual connections allow the gradients
to flow more easily through the network during training. The decoder, mirroring
the encoder’s structure, also integrates masked multi-head attention for sequential
prediction, using output from the encoder for context. The decoder takes a target
sequence (also represented as a matrix of embeddings) and produces a sequence of
output tokens. Finally, a softmax layer outputs probabilities for the next token in
the sequence, with the entire model being trained end-to-end for tasks like machine
translation.
To elaborate further and offer a more comprehensive explanation, the input to the
transformer model is a sequence of tokens, which are typically represented as one-hot
vectors or embeddings. Depending on the specific task and dataset, these tokens can
represent words, subwords, or characters.
Before feeding the input sequence into the transformer encoder, positional encodings
are added to each token embedding to provide information about the relative position
of each token in the sequence. This is because the transformer model does not have a
built-in notion of order or position and thus requires explicit positional information
to be added. The positional encoding is a fixed-length vector added to the input
embedding of each token, representing the token’s position in the sequence.
The transformer encoder takes in the input sequence with positional embeddings
and processes it through a series of self-attention and feedforward layers. In the self-
attention layer, the encoder computes a weighted sum of the input sequence, with
the weights for each token computed based on their similarity to all other tokens
in the sequence. The output of the self-attention layer is then passed through a
feedforward neural network to generate the final encoded representation of the input
sequence.
The encoder output is then fed into the decoder, along with a target sequence for
the task being performed. Like the encoder, the decoder has a series of self-attention
and feedforward layers. In addition, the decoder has an additional cross-attention
layer that attends to the output of the encoder to help generate the final output
sequence.
During decoding, the model generates the output sequence one token at a time,
with each token generated based on the previous tokens in the output sequence, the
encoder output, and the previously generated decoder output. At each decoding
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step, the model applies self-attention and cross-attention mechanisms to compute
attention weights, which are then used to weight the input and encoder output
representations. The resulting weighted sum is passed through a feedforward neural
network to generate the next output token. This process is repeated until the entire
output sequence is generated.
The transformer model is a powerful sequence-to-sequence model capable of gener-
ating high-quality outputs for various natural language processing tasks. Therefore,
the latest powerful pre-trained language models are all built on the Transformer
architecture and have evolved into different variants.

2.5.4 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a transforma-
tive model in natural language processing introduced by Devlin et al. (2019). It rep-
resents a significant shift in how language models understand context, employing a
deep learning technique based on the Transformer architecture. Unlike previous mod-
els that processed text in one direction (either left-to-right or right-to-left), BERT
reads text bi-directionally, enabling a more comprehensive understanding of context.
This bidirectional nature allows BERT to perform state-of-the-art language tasks,
including question-answering, sentiment analysis, and language inference, making it
a foundational model in modern NLP applications.

Regarding the dataset used for the pre-training BERT model, it was conducted on
a large corpus of unlabeled text (like Wikipedia and BookCorpus). The Wikipedia
dataset contains the entire English Wikipedia, which is a comprehensive and diverse
source of general knowledge and provides a vast range of vocabulary and topics.
BookCorpus is a collection of books. BookCorpus offers a rich source of narrative
text that differs in style and structure fromWikipedia. These datasets, encompassing
a wide array of topics and writing styles, are crucial for BERT’s ability to understand
and process complex language structures and contexts. This extensive pre-training
enables BERT to develop a deep and nuanced understanding of language, contribut-
ing significantly to its performance on various downstream tasks.

The BERT input representation combines three types of embeddings:

1. Token Embeddings: These are the vector representations of the individ-
ual tokens (words or subwords) obtained from the input text. Each word is
transformed into a vector that encapsulates its semantic meaning in a high-
dimensional space.
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Figure 2: BERT Input Representation (Devlin et al., 2019)

Figure 3: BERT Overview (Devlin et al., 2019)

2. Segment Embeddings: BERT can handle pairs of sequences for certain tasks,
like question answering. Segment embeddings are used to differentiate between
these two sequences. Each token of the first sequence receives a segment em-
bedding EA and the second sequence EB.

3. Position Embeddings: BERT employs position embeddings to encode the
order of tokens in the sequence. Each token position is associated with a
unique position embedding, indicating its sequential position. They are learned
vectors that capture the position of tokens within the input sequence. These
embeddings are crucial as they allow BERT, which processes tokens in parallel,
to maintain word order information.
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All three embedding types are combined element-wise to create the final input rep-
resentation for each token, providing the model with comprehensive contextual in-
formation. The values of these embeddings are learned during pre-training.

Pre-training was conducted using two tasks: Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP).
Masked Language Modeling (MLM) is a self-supervised modeling objective in-
troduced to couple self-attention and deep bidirectionality without violating causal-
ity. In MLM, it generates the samples by taking among 15% of token samples, and it
replaces 80% of them by [MASK], 10% by random token, and leaves 10% unchanged.
It predicts randomly masked tokens in a sentence. [MASK] token is only used in
pre-training, not fine-tuning.
In Next Sentence Prediction (NSP) predicts if one sentence logically follows
another. It generates samples by randomly sample * negative examples (cf. word2vec
(Mikolov et al., 2013)). Half of the second sentence is the next sentence, and the rest
is a randomly sampled sentence. It can be seen as self-supervised learning.
In Figure 3, BERT takes a sequence of tokens (words or subwords) as input, adding
special tokens like [CLS] for classification tasks and [SEP] to separate segments. The
[CLS] token is sequence representation for classification, and the [SEP] token is for
separation of the two input sequences since the BERT model can take two sequences
as input. Its output depends on the task, ranging from token-level predictions for
tasks like named entity recognition to sequence-level outputs for classification. De-
pending on the downstream task, for a classification task, simply the [CLS] token
can be used since it contains the representation of token embeddings by each class.
Otherwise, the other tokens can be utilized.

2.5.5 CodeBERT

CodeBERT, introduced by Feng et al. (2020), is an extension of the transformer-
based neural architecture used in BERT. It introduces a pioneering approach as the
first large-scale pre-trained model for multiple programming languages intertwined
with natural language. Its fundamental objective is to capture the intricate seman-
tic connections existing between natural language and programming language. By
doing so, CodeBERT acquires general-purpose representations that support various
downstream NL-PL applications, including natural-language code search and code
documentation generation.

CodeBERT demonstrates state-of-the-art performance in the aforementioned down-
stream tasks through fine-tuning, consistently surpassing the RoBERTa model. The
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model leverages a multi-modal pre-training approach, incorporating both bimodal
NL-PL data and unimodal PL/NL data. The dataset encompasses six program-
ming languages: Python, Java, JavaScript, PHP, Ruby, and Go. The unimodal
data is sourced from GitHub repositories, ensuring uniform training across the dif-
ferent languages. Bimodal data points consist of pairs comprising code snippets and
function-level natural language documentation. The training process aligns with the
approach employed in multilingual BERT.

CodeBERT adopts a hybrid-objective function for training, encompassing two dis-
tinct pre-training tasks. The first task resembles Masked Language Modeling
(MLM) employed in BERT, where masked words are predicted based on contextual
information. The second task, Replaced Token Detection (RTD), introduces
a novel learning objective that distinguishes CodeBERT from BERT. RTD involves
detecting plausible alternatives sampled from generators. The training commences
with MLM on natural and programming language data, followed by the RTD task.
The connection between these pre-training tasks lies in the role of MLM in improv-
ing the generator by utilizing its output, which serves as the training result from the
unimodal ML and PL data, as input for the RTD task that utilizes bimodal NL-PL
pairs.

Figure 4: CodeBERT Pre-training (Feng et al., 2020)

The architecture of CodeBERT aligns with the design principles of BERT and
RoBERTa (Liu et al., 2019), employing a multi-layer bidirectional Transformer.
With a total parameter count of 125 million, CodeBERT shares the same archi-
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tectural foundation as RoBERTa. The input format of the model consists of tokens
structured as [CLS] w1, w2, [SEP] c1, c2, [EOS]. The [SEP] token acts as a special
separator, concatenating the natural language and programming language text seg-
ments. The [CLS] token, positioned at the front, is another special token commonly
used for classification or ranking tasks. Its final hidden representation constitutes an
aggregated sequence representation, which is one of the model’s outputs. The [EOS]
token signifies the end of the segments. The model’s output encompasses represen-
tations of the two segments along with the [CLS] token. The first represents the
contextual vector representation of the natural language and programming language
(code) tokens, while the second represents the aggregated sequence representation of
the [CLS] token.

CodeBERT has demonstrated state-of-the-art performance in various downstream
NL-PL tasks and has made significant contributions to the field of code understand-
ing, enabling more advanced code analysis, search, and generation capabilities.

2.5.6 GraphCodeBERT

GraphCodeBERT is an advanced pre-trained model specifically designed for pro-
gramming languages, taking into consideration the intrinsic structure of code. Unlike
traditional approaches that rely on syntactic-level structures such as abstract syntax
trees (ASTs), GraphCodeBERT exploits the semantic-level information known as
data flow during its pre-training phase.

The data flow representation captures the relationships between variables, where
nodes represent variables and edges indicate the connections or ”origins” of values
between variables. Compared to ASTs, data flow graphs are less complex and avoid
unnecessary deep hierarchies, enhancing efficiency. Since the data flow remains con-
sistent regardless of the abstract grammar employed in different programming lan-
guages when considering the same source code, this code structure holds vital code
semantic information that is indispensable for comprehending and interpreting the
code accurately.

Regarding the model architecture, the model backbone is based on BERT, utilizing
the multi-layer bidirectional Transformer Devlin et al. (2019). In contrast to solely
employing source code, it incorporates paired comments in the pre-training process
to enhance the model’s ability to handle code-related tasks involving natural lan-
guages, such as natural language code search. Additionally, the included data flow,
represented as a graph, is part of the input to the model.
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Figure 5: GraphCodeBERT Pre-training (Guo et al., 2021)

Regarding the input of the model, it is given a source code C = {c1, c2, ..., cn}
and its corresponding comment W = {w1, w2, ..., wm}, the corresponding data flow
G(C) = (V,E). Here, V = {v1, v2, ..., vk} represents the set of variables, and E =
{ε1, ε2, ..., εl} represents the set of directed edges that indicate the source of each
variable’s value. The sequence input X = {[CLS],W, [SEP], C, [SEP], V } is formed by
concatenating the comment, source code, and variables, where [CLS] is a special token
denoting the beginning, and [SEP] is a special symbol used to differentiate different
data types.

GraphCodeBERT takes this sequence input X and converts it into input vectors H0.
Each token’s input vector is constructed by adding the respective token and position
embeddings. A specific position embedding is assigned to all variables to indicate that
they represent nodes in the data flow. The model applies N transformer layers over
the input vectors to generate contextual representations Hn = transformern(Hn−1),
where n ∈ [1, N ]. Each transformer layer consists of an identical transformer archi-
tecture that performs a multi-headed self-attention operation (Vaswani et al., 2017)
followed by a feedforward layer applied to the input Hn−1 in the n-th layer.

The output Ĝn of the multi-headed self-attention operation for the n-th transformer
layer is calculated as follows:

Qi = Hn−1WQi
, Ki = Hn−1WKi

, Vi = Hn−1WVi
,
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headi = softmax

(
QiK

T
i√

dk
+M

)
Vi ,

Ĝn = [head1; ...; headu]WOn ,

where Hn−1 ∈ R|X|×dhid represents the linear projection of the previous layer’s output
to a set of queries, keys, and values using model parameters WQi

, WKi
, and WVi

,
respectively.

A graph-guided masked attention mechanism integrates the graph structure into
the Transformer model, enabling selective attention to relevant information. This
attention mechanism prevents a query qj from attending to a key ki by assigning
an infinitely negative value to the attention score qTj ki, effectively eliminating the
attention weight through a subsequent softmax operation.

To capture the dependency relationships between variables, it allows a node query
qvi to attend to a node key kvj only if there exists a direct edge from node vj to node
vi (i.e., vj, vi ∈ E) or if they refer to the same node (i.e., i = j). Otherwise, the
attention is masked by assigning an infinitely negative value to the attention score.

To represent the relationship between source code tokens and nodes in the data flow,
a set E is defined, where vi, cj/cj, vi ∈ E indicates that variable vi is identified from
the source code token cj. Based on this definition, it allows the node query qvi and
code key kcj to attend to each other only if vi, cj/cj, vi ∈ E.

Formally, a graph-guided masked attention matrix as the mask matrixM in Equation
(4), where Mij = 0 if either qi is one of [CLS] or [SEP], or if qi, kj belong to sets
W ∪ C or E ∪ E. Otherwise, the value is set to −∞ to mask the attention.

The model employs two key components: edge prediction, which learns representa-
tions from the code structure, and variable alignment, which aligns representations
between the source code and data flow. A guided mask attention function is also
utilized to consolidate the code structure.

In summary, GraphCodeBERT’s pre-training encompasses three principal tasks to
augment its code understanding capabilities:

1. Masked Language Modeling (MLM) task: Adapted from BERT, lever-
ages context from source code and comments to predict masked code tokens,
promoting an integrated understanding of natural and programming languages.
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2. Edge Prediction task: Designed to comprehend data flow within code by
predicting data flow graph edges, which enriches the model’s code representa-
tion learning.

3. Node Alignment task: Aims to align the representation between source code
tokens and data flow, enabling the model to accurately identify where variables
in the data flow are defined or used in the source code.

These tasks synergistically enhance GraphCodeBERT’s grasp of code’s structural
and logical intricacies.

To train GraphCodeBERT, the CodeSearchNet dataset, comprising 2.3 million code
snippets from six programming languages paired with natural language documents, is
employed. The model’s performance is evaluated on four downstream tasks: natural
language code search, duplicate detection, code translation, and code improvement.
Experimental results demonstrate that GraphCodeBERT achieves state-of-the-art
performance across all four tasks. Furthermore, its integration of code structure
and the introduced pre-training tasks contribute to its consistent prioritization of
attending to data flows.

2.5.7 Model Comparisons

In this study, two models were utilized, both of which are based on BERT: Code-
BERT and GraphCodeBERT. Given that the vulnerability detection task in this
research is framed as a multiclass classification problem, we opted for encoder-based
models within the realm of transformer-based models. BERT-based models, Code-
BERT and GraphCodeBERT were chosen for their proven performance in many
tasks, achieving state-of-the-art (SOTA) results and demonstrating high performance
in various downstream tasks, particularly those based on classification.
Additionally, considering that the data in this study is text-based on program-
ming languages (PL), CodeBERT, trained in an NL-PL multi-modality manner,
was deemed more appropriate. This is due to its Natural Language and Program-
ming Language training, offering potentially better alignment with the study’s data
characteristics.
Lastly, programming code is a type of textual data characterized by sequences and
patterns. Unlike linear natural language text, programming code often exhibits in-
tricate relationships between variables and tokens, including those spanning across
different code segments. This prompted the inclusion of GraphCodeBERT, a model
trained on CodeBERT base with additional graph information, to evaluate the im-
pact of such graph relationships on learning and performance. This comparison
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aimed to discern how graph information influences learning outcomes and perfor-
mance metrics. Thus, these BERT-based models were selected to suit the specific
requirements of this study’s dataset and the classification task, ensuring a more
appropriate and fair comparison.

Table 1: Comparison of NLP Models for Code Understanding

Aspect BERT (General) CodeBERT GraphCodeBERT

Data Size 13GB 180 GB 180GB

Data Source BookCorpus,
Eng. Wikipedia

BookCorpus,
Eng. Wikipedia,
CC-News,
OpenWebText,
Stories,
CodeSearchNet

BookCorpus,
Eng. Wikipedia,
CC-News,
OpenWebText,
Stories,
CodeSearchNet

Base Model BERT RoBERTa RoBERTa

Pre-training
Objectives

Lask Language
Modeling (MLM),
Next Sentence
Prediction (NSP)

MLM,
Replaced Token
Detection (RTD)

MLM,
Edge Prediction,
Node Alignment

Tokenization WordPiece Byte-Pair Encoding
(BPE)

Byte-Pair Encoding
(BPE)

Parameters 110M 125M 125M

Attention
Heads

12 12 12

Layers 12 12 12

Hidden
Dimension

768 768 768

Vocab Size 30522 50265 50265

22



Integrating Domain Knowledge into Transformer-based Approaches to Vulnerability Detection

2.6 Related Work

The domain of Software Vulnerability Classification (SVC) has evolved, with deep
learning techniques increasingly being applied to predict and classify vulnerabilities
more accurately. Recent advancements have seen a pivot from recurrent and con-
volutional neural networks to Transformer-based models, which capitalize on the
hierarchical nature of vulnerabilities and incorporate domain-specific knowledge for
enhanced detection.

Multiclass Classification for Vulnerability Detection

Recent studies have broadened the scope from binary to multiclass classification to
provide a more nuanced categorization of software vulnerabilities. This evolution
reflects the need to classify beyond a simple vulnerable/non-vulnerable dichotomy,
addressing the complex spectrum of vulnerabilities identified by CWE IDs. In the
work by Contreras et al. (2023), a multiclass classification system was developed,
integrating with the VSCode IDE to enhance developer experience. This system ex-
tends upon the binary classification framework introduced by Fu and Tantithamtha-
vorn (2022), which distinguishes between vulnerable and non-vulnerable code seg-
ments. Further developments in this area include the ALBugHunter program (Con-
treras et al., 2023), which not only classifies code as non-vulnerable but also assigns
CWE IDs and CWE types and calculates the Common Vulnerability Scoring Sys-
tem (CVSS) scores for a more detailed analysis. Concurrently, the VulRepair tool,
as cited in Fu et al. (2022), takes non-vulnerable code inputs and suggests poten-
tial repair paths, illustrating the growing trend towards automated remediation in
software security. A key resource for these studies has been the ’Big-vul’ dataset,
consisting of a significant corpus of C/C++ language vulnerabilities sourced from
GitHub repositories. This dataset has facilitated the exploration of various machine
learning models, including CodeBERT, which utilizes Byte-Pair Encoding (BPE)
for effective tokenization and classification of CWE IDs and types. ALBugHunter
focuses on a Multi-Objective Optimization (MOO) approach, which encompasses a
combined Cross Entropy Loss Function and reflects the evolving complexity of vul-
nerability classification tasks. In another work Ziems and Wu (2021), a noteworthy
study utilized the Software Assurance Reference Dataset (SARD), equally splited
between vulnerable and non-vulnerable data. In a departure from previous research,
this approach included non-vulnerable data as a distinct class, resulting in a classifi-
cation scheme encompassing 124 unique labels, including 123 different CWE IDs and
one additional class for non-vulnerable data. A distinct feature of the preprocessing
stage in this study was the simplification of function names within the dataset, trans-
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forming labels such as cve vulnerability function “good”/“bad” variables into a unified
identifier like func1. This research did not employ pre-trained models but instead
investigated five different model configurations: LSTM, BERT, and combinations
thereof, including LSTM, BiLSTM, BERT, BERT+LSTM, and BERT+BiLSTM.
These models were designed to address the limitation of BERT’s maximum token
limit of 512, which could lead to the potential omission of contextual information
when dealing with long sequences. By integrating an LSTM-based model after
BERT, the study aimed to mitigate this issue, with the BERT+BiLSTM configura-
tion, in particular, demonstrating significant improvements over the vanilla BERT
model. This work underscores the potential of hybrid models to compensate for the
limitations of individual models while synergistically enhancing performance.

Hierarchical Classification and High-Class Imbalance

The application of Transformer-based models has particularly excelled in leveraging
the inherent hierarchy within CWE IDs, presenting an opportunity to enrich SVC
with a more structured and informative approach to vulnerability classification. A
novel approach, as explored in Fu et al. (2023), used a model distillation approach
and addressed the prevalent class imbalance issue in real-world vulnerability data,
specifically concerning CWE IDs. This study identified the severe class imbalance,
often manifesting as a long-tailed label distribution, which can impede the learn-
ing process in deep learning models. The research offers a novel perspective on
CWE ID classification by utilizing transformer-based hierarchical distillation. Such
imbalances could lead transformer-based models to overfit certain prevalent CWE
IDs while significantly underperforming on less common ones. Recognizing that
techniques like Focal Loss and Logit Adjustment, typically employed in computer
vision, could be adapted for textual data, this study used textCNN as a teacher
model and transformer-based architectures such as CodeBERT, GraphCodeBERT,
and CodeGPT as student models. This approach, termed hierarchical distillation,
sought to mitigate class imbalances by grouping similar CWE IDs based on CWE
abstract types into sub-distributions. They trained TextCNN teachers on individual
simplified distributions, where they performed well only within their specific groups.
Using a hierarchical knowledge distillation framework, they created a transformer
student model to broaden their effectiveness in generalizing the TextCNN teach-
ers’ performance. A key innovation of this paper was maintaining compatibility
with existing architectures by adding a special distillation token to the input, al-
lowing such a hierarchical approach to be implemented without major architectural
changes. While differing from the direct CWE ID classification in the current study,
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this approach shares the objective of addressing class imbalances and learning the
inherent hierarchy within the data. Furthermore, knowledge distillation provides an
alternate perspective on integrating hierarchical structures instead of employing deep
classifiers (Brust and Denzler, 2020), as in the current research.
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3 Material & Methodology

3.1 Data Collection and Preprocessing

This sector outlines the process of data collection and the subsequent preprocessing
steps undertaken to ensure the suitability and reliability of the chosen datasets. In
line with our goal, we focus on gathering datasets that include various programming
languages and a broad range of Common Weakness Enumeration Identifiers (CWE
IDs). This strategy seeks to harness the layered structure of the CWE, pivoting
towards a nuanced vulnerability detection. This section provides insights into the
strategies employed to identify and process suitable datasets, contributing to the
overall rigor and credibility of the research findings. For the data preprocessing
phase, two datasets were employed for training purposes. To efficiently utilize CWE-
IDs, the ’CWE-’ prefix was stripped, retaining only the integer ID. Instances labeled
as ’non-vulnerable’ were reclassified as 0. The CWE hierarchy was transformed into a
Directed Acyclic Graph (DAG) to integrate domain expertise. The label 0 represents
a synthetic CWE ID and is absent from the genuine CWE hierarchy, so alterations
were necessary. The foundational node of the CWE hierarchy is labeled 1000. To
streamline the application of hierarchical deep classifiers for hierarchical classifica-
tion, it became imperative that the ’non-vulnerable’ classification, denoted as 0, also
form a part of the CWE Hierarchy. As a solution, we synthetically introduced a new
class node, 10000, designating it as the novel root of the CWE hierarchy.
Subsequent preprocessing measures included the excision of duplicate entries and
NaN values, rectification of labels, and omission of datasets that exhibited inconsis-
tencies. We identified certain anomalies, such as non-vulnerable instances associated
with CWE-IDs and vulnerable instances devoid of CWE-ID information. All data
points maintaining these anomalies were discarded in the datasets. Additionally,
datasets deviating from the CWE-ID hierarchical structure were excluded to main-
tain consistency. The specifics of preprocessing slightly varied depending on the
datasets. Following preprocessing, it was transcribed into a CSV format and re-
labeled using only the integer ID of CWE-ID. The Big-Vul dataset, used extensively
in Mining Software Repositories research and comprising 3,693 real-world code vul-
nerability instances from GitHub (including 886 vulnerable and 2,807 non-vulnerable
instances across 91 CWE types and 348 projects), was originally a text file. It under-
went preprocessing steps such as re-labeling and conversion into a CSV format for
easier analysis. Similarly, the CVEfixes Dataset (v1.0.7), a substantial cybersecurity
research resource updated until August 27, 2022, contains 7,798 vulnerability-fixing
commits from 2,487 open-source projects. This dataset, detailing 7,637 CVEs and
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209 CWE types and extensive documentation of source code changes in 29,309 files
and 98,250 functions, was initially stored in an SQLite3 database. It was processed
to extract relevant data through specific queries, and entries not meeting the desig-
nated CWE-ID criteria were excluded. Referring to the described database Tables 9,
different queries, in Table 2, were used for the non-vulnerable and vulnerable datasets
since the vulnerable datasets were related to the code before changing the method
(changing the code to resolve vulnerable codes).

non_vul_query = """

SELECT cc.cwe_id, mc.code, cc.cve_id

FROM file_change f, fixes fx, cve cv, cwe_classification cc,

method_change mc

WHERE f.hash = fx.hash

AND fx.cve_id = cv.cve_id

AND cv.cve_id = cc.cve_id

AND f.file_change_id = mc.file_change_id

AND mc.before_change = 'False'

"""

vul_query = """

SELECT cc.cwe_id, mc.code, cc.cve_id

FROM file_change f, fixes fx, cve cv, cwe_classification cc,

method_change mc

WHERE f.hash = fx.hash

AND fx.cve_id = cv.cve_id

AND cv.cve_id = cc.cve_id

AND f.file_change_id = mc.file_change_id

AND mc.before_change = 'True'

AND cc.cwe_id IS NOT NULL

"""

Table 2: SQL Queries for Non-Vulnerable and Vulnerable Cases

A column named vul, signifying the binary classification, was appended. After these
steps, the dataset was archived in CSV format. Conclusively, the columns across
the two preprocessed datasets were merged, leading to a unified dataset featuring
columns such as code (depicting the program code in a specific language), vul (in-
dicating the binary classification), and cwe id (representing the CWE-ID, stripped
down to its integer part, and serving as the label for multiclass classification). This
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meticulous preprocessing regimen ensured the datasets were primed for ensuing anal-
yses and the development of vulnerability detection algorithms.

3.1.1 Balancing and Reassigning CWE IDs

Before splitting the dataset for vulnerability detection, a critical preprocessing step
involved reassigning Common Weakness Enumeration (CWE) IDs. The dataset orig-
inally contained 171 unique CWE IDs, which served as target classes, excluding the
broader nodes in the CWE hierarchy that could extend beyond 200 nodes, repre-
sented in Figure 17. However, the dataset exhibited significant class imbalance, a
prevalent challenge in data-driven analyses. This imbalance was primarily evidenced
by the disproportionate frequency of certain classes. Notably, the most frequent
class was labeled ’non-vulnerable’, indexed as 0, constituting around 59,109 (32.3%)
of the total 183,113 rows (Big-Vul dataset with 123,155 rows and CVEfixes dataset
with 60,967 rows). This observation highlights a substantial imbalance in the data,
revealing a ”long tail” of classes with few instances, which starkly contrasts with the
high frequency of this specific class.
Further compounding this imbalance, a subset of CWE ID categories was character-
ized by very few samples, with counts as minimal as 1 or 2. Such instances include
CWE ID 23, 27, 80, and 98. The presence of these sparsely populated categories am-
plified the observed class imbalance, suggesting substantial underrepresentation. On
the other hand, categories like CWE ID 20 (23,049 instances), 119 (27,331 instances),
and 89 (7,111 instances) exhibited moderate representation. While these figures were
more substantial than the sparse categories, compared to the most dominant class.
A strategic approach was employed to address this pronounced class imbalance and
reduce data confusion. CWE IDs with less than 1,000 occurrences were reassigned to
a CWE-ID higher in the hierarchy to ensure a minimum 5% class ratio for each CWE
ID. The reassignment algorithm involved initially setting the root as the reassigned
CWE ID for all entries and iteratively descending through each layer of the hierarchy
if there are more than two child nodes with more occurrences than the cutoff (i.e.,
1000). Otherwise, descendants’ nodes would be summed up to the parent nodes,
and their CWE ID would be assigned to the parent’s CWE ID. Reassigning samples
with classes with less than 1000 samples had the effect of removing the corresponding
CWE nodes. When the iteration is done, minor nodes less than the cutoff are removed
because these nodes are unchangeable and remain less than 100. To prevent these
very few nodes from violating the model performance similar to outliers could effect.
This process allowed for consolidating minor CWE ID nodes into higher hierarchy
levels without altering the hierarchy information. As a result, the total number of
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target CWE IDs was reduced from 171 to 21 while preserving 96.9% of the data,
with only about 3% being removed shown in its hierarchy structure in Figure 8.

Figure 6: CWE ID Distribution in Before CWE Reassignment in Combined Dataset

Figure 7: CWE ID Distribution in before CWE Reassignment in Combined Dataset

This CWE reassigning methodology ensures a more equitable representation of all
classes within the dataset. Consequently, the robustness and generalizability of the
analytical outcomes were significantly enhanced. The preprocessed CWE IDs were
added to the dataset under the column assignedcwe, preceding the grouped strat-
ified splitting method used for dividing the data into training, validation, and test
sets.
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3.1.2 Grouped Stratified Splitting

Effective data preprocessing is key for machine learning models in vulnerability de-
tection in cybersecurity. This involves understanding Common Vulnerabilities and
Exposures (CVE) and Common Weakness Enumeration (CWE) identifiers. A CVE
ID is a unique identifier for a specific software or hardware vulnerability, detailing
an individual security flaw. In contrast, a CWE ID represents a broader category of
software weaknesses, describing types of vulnerabilities rather than specific instances.
The distinction between these two identifiers is crucial: while a CVE ID points to a
unique vulnerability, a CWE ID categorizes the general nature of the vulnerability.
Our dataset preparation begins with grouping by CVE IDs, ensuring each unique
vulnerability is contained within only one dataset subset (training, validation, or
test), preventing data leakage, and guaranteeing the model is tested on completely
unseen data. This is followed by stratification by CWE IDs, which ensures a bal-
anced representation of various types of vulnerabilities across the datasets. This
methodology prevents model bias towards certain vulnerability types and enhances
its capability to generalize and detect a broad spectrum of cybersecurity threats.
In summary, the preprocessing phase was earmarked by:

• Integration and relabeling of CWE-IDs: By removing the ’CWE-’ prefix and
using the integer ID.

• Duplicate and NaN value elimination: Ensuring the quality and uniqueness of
data entries.

• Conversion to pertinent labels: Ensuring that all data entries conform to a
standardized labeling system.

• Omission of datasets displaying inconsistencies, Such as non-vulnerable in-
stances having associated CWE-IDs or vulnerable instances lacking CWE-ID
information.

• Adherence to the CWE-ID hierarchy: Excluding datasets that deviated from
the stipulated hierarchical structure of CWE-IDs.

• Adding artificial nodes 0 and 10000 enables the integration of vulnerable and
non-vulnerable categories within the same framework.

• Reassignment CWE-IDs to a high level of Hierarchy with certain criteria
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Figure 8: Directed Acyclic Graph of CWE Hierarchy after CWE Reassignment

After these preprocessing steps, each dataset underwent further tailored preprocess-
ing. The MVD dataset, which was originally in a text format, was adapted to prevent
any ambiguities that could hinder model performance. The MSR dataset and the
CVEfixes dataset also underwent specific preprocessing activities. The result was a
unified dataset with columns ’code’, ’vul’, and ’cwe id’, primed for subsequent anal-
yses and model training. The culmination of preprocessing yielded a unified dataset
optimized for ensuing analysis and training sessions.

3.2 Dataset Descriptions

In this study’s preliminary phase of dataset selection, a key criterion was including
a substantial number of Common Weakness Enumeration (CWE) identifiers. The
threshold set for this parameter was a minimum of 30 CWE IDs per dataset. The
primary objective of the research drove this requirement: to explore the influence of
incorporating CWE hierarchical information on the performance of models in vul-
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nerability detection tasks. Given the fundamental nature of this task as a multiclass
classification, it is imperative to encompass a broad spectrum of hierarchical rela-
tionships within the CWE system.
Two datasets were chosen to fulfill this objective and maximize the potential for
capturing the impact of these hierarchical relationships: the Big-Vul dataset and the
CVEfixes dataset. The big-Vul dataset comprises 91 unique CWE IDs, whereas the
CVEfixes dataset contains 209 CWE IDs. A thorough deduplication process was
undertaken, eliminating overlapping CWE IDs across both datasets, culminating in
a total of 171 unique CWE IDs for this research.
An additional advantage of both selected datasets is their accessibility. Sourced
from open-source platforms, they are readily available for download from respective
open-source repositories. This accessibility facilitates the replication of this study
and promotes transparency and collaborative research within the field. By leveraging
these comprehensive and publicly available datasets, the study aims to provide robust
insights into the efficacy of using hierarchical information in CWE for enhancing
vulnerability detection models.

3.2.1 Big-Vul Dataset (MSR)

The dataset often referred to in Mining Software Repositories (MSR) and known
as the Big-Vul dataset Fan et al. (2020) represents an aggregation of real-world
code vulnerabilities from open-source GitHub projects. It encompasses 3,754 code
vulnerabilities, highlighting 91 distinct CWE types, all of which are sourced from
348 individual GitHub projects. After removing instances lacking CWE data, the
dataset comprises 3,693 instances, including 886 vulnerable and 2,807 non-vulnerable
instances. The Big-Vul dataset is crucial for in-depth analysis of code vulnerabilities,
supporting various research directions. Its accompanying documentation offers de-
tailed insights, and its GitHub repository provides open access for research purposes.

3.2.2 CVEfixes Dataset

The CVEfixes Dataset (version CVEfixes v1.0.7), as described in Bhandari et al.
(2021), represents a significant advancement in the field of cybersecurity research,
particularly in the analysis of vulnerabilities and their resolutions within open-source
software ecosystems. This dataset, updated until August 27, 2022, is a modern
and comprehensive resource for examining software vulnerabilities. It is intricately
sourced from the National Vulnerability Database (NVD) and many public Git repos-
itories, constituting a relational database of considerable breadth and depth.
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The dataset encompasses an impressive array of 7,798 vulnerability-fixing commits
drawn from a wide array of 2,487 distinct open-source projects. This extensive
compilation covers 7,637 Common Vulnerabilities and Exposures (CVEs), spanning
an array of 209 unique Common Weakness Enumeration (CWE) types. One of the
standout features of the CVEfixes Dataset is its meticulous documentation of source
code changes. It includes pre- and post-amendment versions of the source code,
covering 29,309 files and 98,250 functions.

Figure 9: Entity Relation Diagram of CVEfixes Database (Bhandari et al., 2021)

In contrast to the Bigvul dataset, which is stored in a more straightforward format,
as Figure 9 describes, this dataset is housed within a complex database comprising
numerous tables and columns specifically designed to store code data. This structure
necessitates meticulous querying to accurately extract the required dataset, particu-
larly when considering the critical columns such as code before and code after. These
columns represent code segments recorded before and after a method change. The
distinction between these two states is crucial, as it directly impacts the dataset’s
relevance to the research question at hand.
When querying this dataset, it is imperative to exercise precision, as any inaccuracies
in data extraction could result in the retrieval of an incorrect dataset. This, in turn,
could have severe repercussions when the data is used as input for a machine learning
model, particularly in the context of multiclass classification tasks. The model’s
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performance could be catastrophically affected if the input data does not accurately
reflect the intended code changes or the nature of the programming language (PL)
code-based texts.
The inherent characteristics of vulnerabilities in program codes further complicate
this matter. Even minor modifications, which may seem negligible from a model’s
perspective, can significantly change program behavior and vulnerability type. As
a result, datasets labeled as ’vulnerable’ and ’non-vulnerable’ must be carefully cu-
rated through distinct queries. These queries should account for the nuances in
code differences precipitated by method changes. After this careful selection and ex-
traction process, the datasets should be combined, following thorough cleaning and
preprocessing steps. This rigorous approach is essential to ensure the integrity and
applicability of the data for subsequent analysis and model training.

3.3 Domain Knowledge into Probabilistic Model

Detecting vulnerabilities in program source codes is paramount for ensuring security
in both software and hardware systems. This study leverages domain knowledge,
Common Weakness Enumeration (CWE) hierarchy, a structured framework that
classifies prevalent software weaknesses. Common Weakness Enumeration (CWE)
stands at the forefront of this effort. Developed as a categorization mechanism, CWE
classifies software and hardware flaws. CWE aims to deepen the understanding of
vulnerabilities through a community-driven project, paving the way for automated
identification, rectification, and prevention tools. The inherent hierarchical structure
of CWE, a significant domain knowledge in data security, offers potential advance-
ments for vulnerability detection models. By weaving the CWE hierarchy into the
research, the study draws upon the context and inter-relationships between CWE
IDs. Therefore, this research aims to leverage the Common Weakness Enumeration
(CWE) hierarchy to determine the effect of enhancing the accuracy and depth of
vulnerability detection algorithms.
This section describes a methodology for how domain knowledge can be integrated
and utilized for vulnerability detection. Through the contents below, you can learn
how certain domain knowledge can be modeled, how to express this domain knowl-
edge integration as a probability model, and more specifically, it describes in de-
tail how domain knowledge is integrated and converted into a probabilistic model
through the special label encoding and corresponding loss function that the proba-
bilistic model utilizes.
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3.3.1 CWE Hierarchy

The Common Weakness Enumeration (CWE) hierarchy is fundamental to this study.
It is represented mathematically as a graph W = (S, h), where S represents a set of
potential object categories (nodes), and h signifies the hyponymy relations (edges)
between these categories. The Relations such as hyponymy(is-a), antonymy(is-not),
troponymy(is-a-way-of), and meronymy(is-part-of) are encoded in a graph structure,
but this method uses hyponymy(is-a) relation, which is transitive in general. The
set S often includes a wider range of categories than those directly observed in the
dataset, denoted as C ⊆ S. This wider range allows for the inclusion of broader,
overarching categories. For example, as represented in reassigned CWE hierarchy
DAG Figure 8, the category CWE-707 serves as a precursor to both CWE-74 and
CWE-20, even if it is not explicitly present in the dataset.
The hyponymy relation h ∈ S × S is a key feature of this hierarchy, representing
the directed connections in the graph. In simple terms, if (s1, s2) ∈ h, it indicates
that s1 is a broader category than s2 or that s2 is a specific instance within the
category s1. This hierarchy effectively captures the immediate class relationships
and various levels of abstraction as graphical connections. It is important to note
that this relationship is one-directional and non-repetitive, and the entire structure
is assumed to be a directed acyclic graph (DAG), which is central to our analysis.
Within the CWE hierarchy, some nodes, such as the root node 10000 and its successor
node 0, are artificially added for structural completeness. These nodes, especially
node 10000, are designed to incorporate the non-vulnerable category (node 0) into
the CWE framework. The actual CWE hierarchy begins with the root node 1000.
Adding nodes 0 and 10000 enables the integration of vulnerable and non-vulnerable
categories within the same framework. This approach is adopted to align with the
labeling methodology used in Brust and Denzler (2020), facilitating the application
of specialized label encoding, loss calculation, and classification techniques in deep
learning models.
Integrating the CWE hierarchy into our models involves transforming this struc-
tured knowledge into a probabilistic framework. This process includes special label
encoding and the application of corresponding loss functions. Such adaptations are
crucial for effectively applying the complex relationships within the CWE hierarchy
to machine learning models. By utilizing deep learning techniques, this study aims
to leverage the layered and interconnected nature of CWE IDs, translating them into
a robust and sophisticated vulnerability detection system.
Incorporating the rich domain-specific expertise embedded within the CWE into vul-
nerability classification paradigms and observing the effect on model performance is
the core part to watch in this research. To this end, publicly accessible datasets
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Figure 10: Directed Acyclic Graph of The Original CWE Hierarchy in the Datasets

were curated, encompassing a diverse array of programming languages and a stag-
gering 21 distinct CWE IDs along with non-vulnerable synthetic CWE IDs. The
structured paradigm provided by the CWE hierarchy facilitates an in-depth anal-
ysis of software vulnerabilities. Infusing this hierarchy into vulnerability detection
mechanisms augments algorithmic efficiency by leveraging contextual relationships
among CWE IDs. The aim is to bolster the accuracy and interpretability of vul-
nerability detection, thereby enhancing software vulnerability remediation measures.
The meticulous data curation and preprocessing stages in this endeavor aim to har-
ness the intricate hierarchical intricacies of CWE, with the ultimate goal of refining
vulnerability detection accuracy.

3.3.2 Probabilistic Model

The method used to implement hierarchical classification using the CWE hierarchy
structure, which is assumed to be supplied, was taken from Brust and Denzler (2020).
This paper aims to integrate additional domain knowledge with classification using
existing class hierarchies. It encodes properties such as class hierarchy into a proba-
bilistic model. The derived novel label encoding and corresponding loss function can
be used in a machine-learning environment.
Unlike the existing non-hierarchical methods, this probabilistic model utilizes the
hierarchical structure, meaning that it uses all nodes in the hierarchy, not only the
target label nodes. This method employs the hyponymy(is-a) relation to inform
a class hierarchy. Given the hierarchical nature, a node cannot always be mutually
exclusive. Therefore, instead of simply viewing the class label as a categorical random
variable in this method, they consider each node as multiple independent Bernoulli
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variables. This implies that a given example data x can independently have multiple
labels. Let S = {s1, s2, . . . , sc} be a set of all classes in the hierarchy. Since the
model considers the probability of any class s occurring independently, it allows for
even multi-label scenarios. For a given example x:

P (Ys = 1|X = x), (1)

in a more compact form,

P (Y +
S |X). (2)

In this approach, the model considers a hierarchical decomposition of classes, al-
lowing for the possibility of co-occurring multiple independent parent classes. The
assumptions are similar to those behind a one-hot encoding. Nevertheless, the model
is restricted by additional properties based on the standard hierarchy definition.
Hierarchical Decomposition A class s can have a number of separate parent
classes, which they denote as S ′ = s′1, . . . , s

′
n. We use Y +

S′ to represent when we
observe at least one of these parent classes and Y −

S′ when none of the parent classes
are observed:

Y +
S′ ⇔ Y +

s′1
∨ . . . ∨ Y +

s′n
⇔ Ys′1

= 1 ∨ . . . ∨ Ys′n = 1, (3)

Y −
S′ ⇔ Y −

s′1
∧ . . . ∧ Y −

s′n
⇔ Ys′1

= 0 ∧ . . . ∧ Ys′n = 0. (4)

They make use of the hierarchical structure inherent to the data by assuming a
marginalization of the conditional part of the model over the parents Y ′

s :

P (Y +
S |X) = P (Y +

S |X, Y +
S )P (Y +

S |X) + P (Y +
S |X, Y −

S )P (Y −
S |X). (5)

Simplification To refine the model and incorporate assumptions that more accu-
rately mirror the hierarchical challenge, they constrain the model and put on as-
sumptions. If none of the parent classes S ′ = s′1, . . . , s

′
n of a given class s are present,

it is posited that the likelihood of observing s in any example should be negligible:

P (Y +
s |X, Y −

S′ ) = P (Y +
s′ |Y

−
S ) = 0. (6)

Leading to a simpler model, discarding the latter part of Equation 5 by setting it to
zero:

P (Y +
s |X) = P (Y +

s |X, Y +
S′ )P (Y +

S′ |X). (7)
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Parental Independence For recursive utility in the model, they envisage the ran-
dom variables Ys′1

, . . . , Ys′n to be mutually uninfluenced in a simplistic manner. Since
each parent independently occurs to each other, we can use the product for simple
calculations. By invoking the definition of Y +

S′ :

P (Y +
S′ |X) = 1−

|S′|∏
i=1

[1− P (Y +
s′i
|X)]. (8)

Parentlessness Within a DAG that is not void, they anticipate at least a single
node without incoming edges, a class without parents. For instance, the ’10000’
node in our case. For a class s with no observed parents, they postulate:

P (Y +
s |X,S ′ = ∅) = 1. (9)

It’s critical to note that this is not universally applicable across all hierarchical clas-
sification scenarios. Specifically, even though there is only one root, if a hierarchy
is constituted by numerous disjoint subsets, P (Ys|X,S ′ = ∅) should be explicitly
defined.

3.3.3 Inference

In the previous section on the probabilistic model, we began by outlining how hier-
archical information can be incorporated into a model. We explained the reasoning
and methodically developed formulas to determine the conditional probabilities of
all nodes within the hierarchy.

This section provides a concise overview of the model’s inference methodology. In
the inference process, the model filters out non-target labels, ensuring that the in-
ferred labels are indeed the target labels. This is done by calculating the conditional
probabilities for each node and using these probabilities to identify the most likely
target label in the dataset. The node with the highest probability is then chosen for
classification. This procedure uses a specific label encoding and a corresponding loss
function within the probabilistic model.

Specific label encoding and a corresponding loss function are crucial to the model
inference. Specific label encoding gives the correct labels regarding the corresponding
example target in the model’s hierarchy. The loss function is designed to calculate
the loss based on all the nodes in the hierarchy but leverages a loss mask, which
masks unrelated nodes in the hierarchy. In this way, the model can only focus on
relevant nodes in the hierarchy and prevent confusion from all nodes, which might
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overwhelm the model depending on the size of the hierarchy. The predictions made
through this inference are then connected to subsequent learning processes, bridging
the gap between theoretical understanding and practical application.

In certain scenarios, the model’s output can be limited to the classes C present
in the data instead of considering every class S modeled, including their parent
classes. This approach is based on having a predefined set of classes during testing,
rather than addressing a problem with an undefined class set. It refers to this
scenario as mandatory labeled node prediction (MLNP), contrasting with the more
flexible arbitrary node prediction (ANP). For predicting a specific class s from a given
example x, the process involves identifying the class with a high likelihood of two
concurrent factors: (i) the occurrence of the class (Y +

s ) and (ii) the non-occurrence
of any child class (Y −

S′′).

Inference is conducted by extending the method similar to what was defined in
Equation 8. The selection of class s(x) from a sample x is done by maximizing the
product of the probability of observing a parent class and the probability of not
observing any child class, formalized as:

s(x) = argmax
s∈S⊆CS

P (Y +
s |X)

|S′′|∏
i=1

1− P (Y +
s′′i
|X, Y +

s ). (10)

Adopting the assumption of pairwise independence among the children, inference in
the manner outlined below:

s(x) = argmax
s∈CS

P (Y +
s |X)

|S′|∏
i=1

1− P (Y +
s′′ |X, Y +

s ). (11)

Acknowledging the ability to decompose P (Y +
s |X) as performed in Equation 5 and

displayed as a product in Equation 8:

s(x) = argmax
s∈CS

P (Y +
s |X, Y +

S′ ) · (1−
|S′|∏
i=1

1− P (Ys′i
|X)) ·

|S′|∏
i=1

1− P (Y +
s′′ |X, Y +

s ). (12)
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3.3.4 Label Encoding and Loss Function

Moving on to the training phase, applying our model within a machine learning
context focuses on estimating the conditional probabilities rather than modeling
P (Y +

s |X) for each class directly. This slight shift in approach refines the task of
the learning algorithm, narrowing it down to discrimination among siblings in the
hierarchy and facilitating the use of the hierarchical recursive inference as described
previously.

Figure 11: Encoding(left) and Loss Mask(right) for Reassigned CWE Hierarchy (cri-
teria: CWE-691)

Label Encoding

Key elements of the approach include a method for label encoding e : S → {0, 1}|S|
and a specific type of loss function. In Figure 11, this approach encodes a label y ∈ S
by utilizing the hyponymy relationship h ∈ S × S, particularly its transitive closure
T (h), with the encoding defined as follows:

e(y)s =

{
1 if y = s or (y, s) ∈ T (h),

0 otherwise.
(11)

However, we need an appropriate loss function that maintains the conditional struc-
ture of each estimator. This means if we have a label y, we should only train a
component s if one of its related parents s′ is also related to y through T (h), or if y
is a parent itself. We fulfill this with a loss mask m : S → {0, 1}|S|, described as:
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Loss Mask

A specific loss function with a loss mask is introduced to facilitate model training
with the prescribed label encoding. In Figure 11, the loss mask m(s) is a function
that identifies the relevant classes for calculating the loss during the training of a
hierarchical classification model. In this way, the loss mask m(s) ensures that a
component s should only be trained if its corresponding label y is present in the
hierarchy relative to s. It is defined as:

m(s) =

{
1 if y = s or ∃(s, s′) ∈ h : y = s′ or (y, s′) ∈ T (h),

0 otherwise.
(13)

where s is a predicted class, y is the true class label, and T (h) represents the transitive
closure of the hyponymy relation h defining the class hierarchy. It filters the relevant
labels according to the hierarchy by setting component s as one if it is relevant to
the current prediction, its descendants, and its transitive closure. The mask ensures
that the loss is computed only for the correct class during training, facilitating the
learning of hierarchical relationships. That is, the loss mask m(s) directs the focus
of the model’s training process by highlighting relevant class labels.
The intuition behind the loss mask is to penalize the model for incorrect predictions
in a way sensitive to the classes’ hierarchical structure. For example, as represented
in Figure 11, if the true label is CWE-691, which is a subclass of CWE-1000, the
model should not be penalized as much for predicting CWE-284 (another subclass of
CWE-1000) as it would be for predicting a completely different class, e.g., CWE-0 or
CWE-732, etc. Using the loss mask ensures that the model’s mistakes are evaluated
in the context of the hierarchy, encouraging it to learn the structure of the classes
rather than treating all mistakes equally.

Loss Function

An objective function f(x)s is formulated to approximate the conditional probabil-
ities P (Y +

s |X, Y +
S′ ). The estimator function, f : X → [0, 1]|S|, is employed together

with the encoding and loss mask to calculate the loss for a particular data point
(x, y). The objective function L is expressed as:

L(y, f) = m(y)T (e(y)− f(x)2). (14)

The minimization of this objective function facilitates the learning algorithm’s ability
to estimate conditional probabilities while respecting the hierarchical structure of the
data.
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3.3.5 Comparing Four Loss Weight Methods in Hierarchical Classifica-
tion

This subsection outlines our approach to comparing four distinct loss weight methods
in hierarchical classification by varying the focus on different hierarchical character-
istics. In our hierarchical classification approach, we implement four distinct loss
weight methods: default, equalize, descendants, and reachable leaf nodes re-
ferring to Brust and Denzler (2020). Each of these methods assigns different weights
to the nodes in the hierarchy, influencing how the model learns and interprets the
semantic knowledge within the hierarchical structure.

Inversed Class Frequency in Hierarchical Setup: A critical step in our method
involves calculating the inversed class frequency for all nodes in the hierarchy, includ-
ing the target nodes. This frequency measures how often each node is ’affected’ in
the hierarchy, whether as a target node, an ancestor of a target node, or a successor
of an ancestor. This calculation forms the basis for initializing the loss weights in
equalize, descendants, and reachable leaf nodes methods.

Differentiating the Four Loss Weight Methods

1. Default Loss Weight: Assigns a uniform class weight of 1 to all classes, treat-
ing each node equally regardless of its position or frequency in the hierarchy.

2. Equalize Loss Weight: The loss weight for each node is initialized to its
inversed class frequency. This method balances the influence of frequently and
infrequently occurring nodes in the hierarchy.

3. Descendants Loss Weight: Each node’s loss weight is adjusted by multi-
plying it by the number of its descendants and then adding one. This method
emphasizes nodes with more descendants, potentially reflecting their broader
impact in the hierarchy.

4. Reachable Leaf Nodes Loss Weight: Modifies each node’s loss weight by
multiplying it by the number of reachable target nodes (nodes present in the
target labels and thus predictable). Considering their hierarchical position,
this approach focuses on the nodes’ direct relevance to the target labels.

3.3.6 Expected Outcomes and Rationale of the Method

This hierarchical approach with Deep Classifier (Brust and Denzler, 2020) is selected
to effectively tackle challenges that need to be resolved, increasing the research task’s
difficulty and complexity.

42



Integrating Domain Knowledge into Transformer-based Approaches to Vulnerability Detection

Our research involves multiclass classification of CWE IDs using real-world datasets
with detailed CWE hierarchy structures and long-tailed distribution, as explained
in Sections 3.1 and 3.2. This complexity required a method capable of addressing
significant class imbalances and effectively learning semantic knowledge represen-
tation. Since CWE IDs have a hierarchical structure, using this information with
a deep classifier in hierarchical classification seemed promising. We expected that
integrating this hierarchical label data, instead of just using it for straightforward
classification, would improve model performance.
Unlike conventional classification methods that directly utilize a pre-trained language
model’s output for target label prediction, hierarchical classification processes this
output through a deep classifier, applying it across the entire hierarchy. This tech-
nique enables a more nuanced focus on the nodes’ interconnectedness and hierarchical
relationships, facilitating a more in-depth semantic and contextual analysis.
As mentioned in Section 3.3.5, our experiment involves testing four different loss
weight methods: equalize, descendants, and reachable leaf nodes. We aim to de-
termine how these methods impact the model’s performance, particularly assessing
the benefits of hierarchical information in the default loss weight method against
traditional methods like cross-entropy loss. Furthermore, we plan to evaluate the
effectiveness of class-weight-based methods like Focal Loss compared to standard
classification approaches.
The anticipated outcome of integrating hierarchical methods into our research is
higher classification results performance than non-hierarchical methods. We hy-
pothesize that the more complex the hierarchy information, the better the perfor-
mance yielded by the model based on hierarchical methods. When combined with
transformer-based models, particularly those pre-trained on programming codes like
CodeBERT and GraphCodeBERT, the effectiveness in classifying CWE IDs in com-
plex dataset settings is expected to be significantly enhanced. The ability to use
different loss weights could be expected to prove beneficial in addressing class imbal-
ances, thereby helping to mitigate the challenges encountered in our research.
In summary, we anticipate that the hierarchical classification method, especially
when integrated with advanced transformer models and tailored loss weight strate-
gies, will lead to superior performance in our complex multiclass classification task.
This approach is expected to effectively harness the nuanced hierarchy of CWE IDs
and help the unique challenges of our research.
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3.4 Evaluation Metrics

Binary Classification

In binary classification, outcomes are categorized into two classes: positive and nega-
tive, with True Positives (TP), False Positives (FP), True Negatives (TN), and False
Negatives (FN).

• Accuracy – Proportion of correct predictions (TP and TN) among total cases.
It is useful overall but can be misleading in imbalanced datasets.

Accuracy =
TP + TN

TP + TN + FP + FN

• Balanced Accuracy – Average of recall for each class. Suitable for imbal-
anced datasets.

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
• Precision – Proportion of correctly identified positives. Crucial when false
positives are costly.

Precision =
TP

TP + FP

• Recall (Sensitivity) – Proportion of actual positives correctly identified. Key
when false negatives are costly.

Recall =
TP

TP + FN

• F1 Score – Harmonic mean of precision and recall. Useful for balancing the
two.

F1 Score = 2× Precision× Recall

Precision + Recall
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Multiclass Classification

Multiclass classification deals with more than two classes, evaluating each class in a
“one versus all” manner.

• Accuracy – Proportion of true results among total cases. It can be misleading
in imbalanced datasets.

Accuracy =

∑
Correct Predictions∑
Total Predictions

• Balanced Accuracy – Average recall for each class, i, where N is the number
of classes. Important in imbalanced scenarios.

Balanced Accuracy =
1

N

N∑
i=1

TPi

TPi + FNi

• Precision and Recall – Calculated and averaged for each class, i.

Precisioni =
TPi

TPi + FPi

Recalli =
TPi

TPi + FNi

• Weighted F1 Score – This is the average of the F1 scores for each class,
weighted by the number of true instances for each class. It’s a more informative
metric in the context of imbalanced datasets.

Weighted F1 Score =
n∑

i=1

wi × F1 Scorei

where wi is the proportion of true instances for class i in the dataset

• Macro-average F1 Score – Arithmetic mean of F1 Scores of all classes, i,
where N is the number of classes. Robust against class imbalance.

Macro-average F1 Score =
1

N

N∑
i=1

F1i
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4 Experiments & Results

This chapter details the experimental setup and results aimed at assessing the ef-
fectiveness of deep learning models in vulnerability detection within code. Utiliz-
ing CodeBERT and GraphCodeBERT as base pre-trained models from Microsoft,
this study focuses on fine-tuning these models for a vulnerability detection down-
stream task. The loss function for the hierarchical model is based on binary cross-
entropy (BCE), which is applied to each node within the CWE hierarchy. Four
options for loss weighting are explored: default, equalize, descendants, and
reachable leaf nodes. Each option assigns varying weights to nodes within the
hierarchy, with default providing no additional weighting. In contrast, the stan-
dard multiclass classification employs Cross-Entropy and Focal Loss, with Focal Loss
being particularly relevant for addressing class imbalances analogous to the hierarchi-
cal model’s weighting schemes. The core of the experimentation involves a multiclass
classification task, predicting specific CWE IDs (Common Weakness Enumeration
identifiers) representing various vulnerabilities in code. The subsequent sections will
present the detailed methodology of each experiment, followed by the results and
a comprehensive analysis comparing the performance of the hierarchical and non-
hierarchical approaches in vulnerability classification.

4.1 Dataset and Models

For this experiment, two Programming Language(PL)-based Transformer-based mod-
els, CodeBERT and GraphCodeBERT, are used. Both models are BERT-based
models and implemented by Microsoft. The models are fine-tuned using a combined
dataset comprising MSR (Mining Software Repositories) and CVEfixes datasets.
This diverse dataset provides a robust foundation for assessing the models’ capa-
bilities in identifying various vulnerabilities. The dataset partitioned into training,
validation, and test subsets, underwent stratification to maintain a uniform distribu-
tion of Common Weakness Enumeration (CWE) IDs. Instances with the same CVE
ID were assigned to the same set to prevent redundancy.

4.1.1 Transformer-based Model Architectures

Transformer-based pre-trained models form the backbone of our approach. This
model is designed for binary classification. In multiclass classification, the models
are designed to identify one of the 21 unique CWE tags, including an artificial class
0, representing ’non-vulnerable.’ While non-hierarchical models adapt pre-trained
architectures with specific loss functions, hierarchical models necessitate a custom
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approach with a deep hierarchical classifier to manage the complex structure of the
CWE hierarchy.

4.2 Research Questions

1. Impact of Domain Knowledge Integration: How does integrating domain-
specific knowledge, particularly the Common Weakness Enumeration (CWE)
hierarchy, affect the performance of deep learning models in vulnerability de-
tection tasks?

2. Effectiveness of Loss Functions and Weighting Schemes: How do dif-
ferent loss functions and their associated weights influence the outcomes of
hierarchical versus non-hierarchical classification models?

3. Comparative Analysis of Classification Approaches: How does the hier-
archical multiclass classification strategy, employing various loss weights (default,
equalize, descendants, reachable leaf nodes), compare with the standard
multiclass classification in terms of predicting CWE IDs in code? How do these
methods address the challenge of class imbalance and model performance con-
sistency?

4.3 Objectives of the Experiments

The primary objective of this study is multifaceted, aiming to delve into the nuances
of vulnerability detection using Transformer-based language models and to assess
the impact of integrating domain-specific knowledge into these models. Key areas of
focus include:

1. Evaluating Hierarchical versus Standard Classification Approaches:
This involves a comparative analysis of hierarchical and standard classification
methodologies to determine their respective efficacies in vulnerability detec-
tion tasks. The intent is to discern each approach’s potential advantages and
drawbacks, particularly in dealing with the complexities inherent in software
vulnerability detection.

2. Impact of Domain Knowledge Integration: This research investigates
how the incorporation of domain knowledge, specifically the Common Weak-
ness Enumeration (CWE) hierarchy, affects the performance of deep learning
methods in classification tasks. This exploration aims to highlight the value of
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domain knowledge in refining the predictive capabilities of transformer-based
models.

3. Addressing Class Imbalance: Given that class imbalance is a prevalent
issue in vulnerability detection datasets, the experiments are designed to eval-
uate how effectively this imbalance can be mitigated. By exploring various
methodologies, the study seeks to contribute to developing more balanced and
equitable deep learning models in cybersecurity.

Through these objectives, the research aims to advance the understanding of
transformer-based models in vulnerability detection, emphasizing the integration of
domain knowledge as a pivotal element for enhancing model accuracy and effective-
ness.

4.4 Fine-tuning

The experimental framework involves fine-tuning two preeminent pre-trained mod-
els, CodeBERT and GraphCodeBERT, utilizing a comprehensive dataset from MSR
and CVEfixes. The primary goal is to employ these models in a multiclass clas-
sification setting, focusing on accurately predicting specific CWE IDs indicative of
vulnerabilities in software code.
The combination for the experiments was designed to be 12 in total. The number of
experiments can be calculated by the number of models and number of loss methods,
which is 6, including two loss functions for standard classification and four loss weight
options for hierarchical classification.

4.4.1 Classification Tasks with Various Loss Methods

Our experiments compared the standard and hierarchical classifications with different
model configurations.

• Standard Multiclass Classification:

– Utilizing Cross Entropy Loss to establish a baseline performance.

– Implementing Focal Loss, a class weight-based loss function, to address
class imbalances.

• Hierarchical Multiclass Classification (Deep Classifier Method):

– Utilizing a unique classifier layer with an embedding function and a loss
function tailored to the hierarchical nature of the CWE IDs.
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– Applying a range of loss weighting schemes to evaluate their impact on
model performance:

∗ Default: No additional weighting, serving as a control setup.

∗ Equalize: Aiming to equal weighting for all node classes by inversed
class frequency from base class weight, inversed class frequency.

∗ Descendants: Focusing on hierarchical descendant classes.

∗ Reachable Leaf Nodes: Targeting the reachable leaf node in target
label classes from base class weight, inversed class frequency.

Each classification approach is designed to assess the models’ efficacy in vulnerability
detection and evaluate how different methodologies impact the mitigation of class
imbalance and the overall consistency and bias in model performance.
The experiments involve fine-tuning two base pre-trained models, CodeBERT and
GraphCodeBERT, with a combined dataset (MSR+CVEfixes) for a multiclass clas-
sification task. The task aims to predict specific CWE IDs (vulnerabilities) in code.

4.4.2 Model Configurations

Model Loss Function Loss Weights Classification
Type

CodeBERT Cross Entropy,
Focal Loss

Default,
Class Weights

Non-
Hierarchical

GraphCodeBERT Cross Entropy,
Focal Loss

Default,
Class Weights

Non-
Hierarchical

CodeBERT with
Hierarchical
Classifier

BCE (per node) Default,
Equalize,
Descendants,
Reachable Leaf
Nodes

Hierarchical

GraphCodeBERT
with Hierarchi-
cal Classifier

BCE (per node) Default,
Equalize,
Descendants,
Reachable Leaf
Nodes

Hierarchical
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4.4.3 Loss Function Details

• Binary Cross-Entropy (BCE) Loss: They are applied to each node in the
CWE hierarchy for hierarchical classification. Different weight options will be
tested. Binary Cross-Entropy Loss is used in binary classification tasks. It
calculates the Loss for each class separately and then averages them.

Binary Cross-Entropy Loss = − 1

N

N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)]

Where N is the number of observations, yi is the true label, and pi is the
predicted probability for the ith observation.

• Cross Entropy Loss: Used for non-hierarchical classification to be compared
with the default loss weight option, equivalent to no specific weighting in
hierarchical classification. Cross Entropy Loss measures the performance of a
classification model whose output is a probability between 0 and 1. It increases
as the predicted probability diverges from the actual label.

Cross Entropy Loss = −
M∑
c=1

yo,c log(po,c)

Here, yo,c is a binary indicator for whether class label c is the correct classifi-
cation for observation o, and po,c is the predicted probability of word o being
of class c.

• Focal Loss: Utilized for addressing class imbalance. Compatible with the
equalize, descendants, and reachable leaf nodes weight options in hier-
archical models. Focal Loss addresses class imbalance by focusing on hard-
to-classify examples. It modifies the cross-entropy criterion to focus more on
difficult cases.

Focal Loss = −αt

M∑
c=1

(1− pt,c)
γyt,c log(pt,c)

Here, αt is a weighting factor for class t, pt,c is the predicted probability of the
true class c for the tth observation, yt,c is the true label, and γ is the focusing
parameter, typically greater than 0.

The distinction between Hierarchical and Non-Hierarchical classification lies in uti-
lizing all nodes in the CWE hierarchy versus targeting specific nodes. This design
aims to assess the impact of domain knowledge integration on the effectiveness of
deep learning classification methods.

50



Integrating Domain Knowledge into Transformer-based Approaches to Vulnerability Detection

4.4.4 Hyperparameter Optimization (HPO)

In this investigation, Hyperparameter Optimization (HPO) entails the meticulous
adjustment of four pivotal hyperparameters integral to enhancing the efficacy of the
utilized classification model. The HPO framework employed is Optuna , a sophis-
ticated tool for hyperparameter tuning. The models’ hyperparameter optimization
was conducted with 4 GPU resources with 100GB of memory (Tesla V100-SXM2-
32GB, NVIDIA A100-SXM4-40GB) and 24 CPUs per task. The hyperparameters
subjected to optimization are:

1. Classifier Learning Rate: This parameter governs the magnitude of updates
to the classifier’s parameters, influencing the progression of gradient descent.
A range of [10−5, 10−1] is explored with logarithmic scaling to ensure a com-
prehensive examination of its impact.

2. Classifier Factor: Distinct learning rates for the base model and the classifier
are established through this parameter. Its utility maintains a lower learning
rate for the base model relative to the classifier. The classifier factor defines
the base learning rate as a function of the classifier learning rate.

3. Gradient Accumulation Steps: Constrained by GPU memory, the max-
imum batch size was capped at 32. To circumvent this, gradient accumula-
tion was employed, aggregating gradients over multiple sub-batches to simulate
larger batch sizes. This parameter was sampled within the range of [1e1, 1e3].

4. Weight Decay: A regularization parameter, weight decay, modulates the
extent of penalty applied to the model’s parameters during training. It was
sampled similarly with logarithmic scaling within the range [10−5, 10−1].

For efficient HPO, a Pruner and Parallelism method was implemented. The Pruner,
particularly the HyperbandPruner, offers advantages in multiclass classification due
to its ability to eliminate less promising hyperparameter configurations rapidly. Par-
allelism in Optuna leverages a database to store all experiment data, allowing models
to share information and accelerating the HPO process. The Pruner also accesses
this database to determine the feasibility of continuing the current study.
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(a) Macro F1-Score for
hCodeBERT-descendants

(b) Evaluation Loss for
hCodeBERT-descendants

Figure 12: Evaluating hCodeBERT-Descendants: Macro F1-Score and Loss Metrics

(a) Macro F1-Score for
GraphCodeBERT-FL

(b) Evaluation Loss for
GraphCodeBERT-FL

Figure 13: Evaluating GraphCodeBERT-FL(Focal Loss): Macro F1-Score and Loss
Metrics

Figure 14: Hyperparameter Optimization History Plots of Two Best Models (left:
GraphCodeBERT-FL, right: hCodeBERT-descendants)
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In Figures 12 and 13 show the HPO results of evaluation loss and macro f1-score of
the two best-performed models, hCodeBERT-descendants and GraphCodeBERT-FL.
The macro f1-score is used as an evaluation metric for HPO. As shown in figure 12a
and 13a, the Focal Loss-based models, GraphCodeBERT-FL, slowly converged, so
it had relatively long training steps(25k) compared to another loss-based models in
HPO runs, e.g. hCodeBERT-descendants took 2.5k steps. The evaluation loss plots
in figure 12b and 13b for both models show they were overfitting, so they had to do
the early stopping. Especially for hierarchical method-based models that link so fast
that they had to stop early, the final models were selected by the best macro f1-score
result. The best hyperparameters from HPO results are listed in Table 3.
In Figure 14, the hyperparameter optimization history plots of two best-performed
models, GraphCodeBERT-FL and hCodeBERT-descendants, represent the read point
is the best macro f1-score value and both best objective value points increased slowly
over trials. This indicates that HPO went as it was supposed to. More plots for all
CodeBERT and GraphCodeBERT models are shown in Figures 19 and 20. In Figures
21 and 22, the hyperparameter slice plots for CodeBERT and GraphCodeBERT
models can help to set better hyperparameter range by reading their tendencies.

4.4.5 Advanced Methods in Model Fine-Tuning

In machine learning, addressing challenges such as memory limitations and ensuring
efficient and practical training of complex models, such as transformer-based archi-
tectures, necessitates advanced Hyperparameter Optimization (HPO) techniques and
fine-tuning strategies.

• On-the-fly Tokenization This method dynamically adapts to new data, en-
hancing flexibility and memory efficiency by eliminating the need for storing
preprocessed tokens. Ideal for real-time applications like live translation, it
allows tailored preprocessing and improves model generalization by exposing it
to a diverse linguistic range, thereby enhancing performance on varied datasets.

• Gradient Accumulation A technique to train large-scale neural networks
within memory constraints by accumulating gradients across smaller mini-
batches before updating model weights. Facilitates training with larger batch
sizes without a proportional increase in memory requirement, which is benefi-
cial for large models.

• Tree-structured Parzen Estimator (TPE) Sampler A Bayesian optimiza-
tion approach that predicts promising hyperparameter configurations based on
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historical data. Efficient in high-dimensional spaces and faster in finding opti-
mal hyperparameters than traditional search methods.

• HyperbandPruner Utilizes the multi-armed bandit principle to dynamically
allocate resources to hyperparameter configurations, focusing on the most promis-
ing ones. Reduces computational expenses in hyperparameter tuning, particu-
larly in scenarios with numerous hyperparameters.

• Adaptive Learning Rate Strategy It involves using distinct learning rates
for pre-trained models and classifiers, with a mechanism to keep the pre-trained
model’s learning rate lower. It prevents catastrophic forgetting in pre-trained
models while allowing classifiers to be flexible and adaptable.

• Parallelism Utilizes parallelism to speed up hyperparameter optimization by
distributing the evaluation of different hyperparameter sets across multiple
processors or machines. Instead of testing configurations sequentially, Optuna
tests them concurrently, reducing the time needed to find the most effective
hyperparameters for a machine-learning model. This approach parallelizes the
hyperparameter search process, not the training of individual models.

These methods collectively enhance the Hyperparameter optimization and fine-tuning
process, ensuring optimal model performance while navigating the constraints of
hardware resources and the complexity of model architectures.

4.5 Evaluations

The foundational models employed are CodeBERT and GraphCodeBERT, with ’h’
prefixed models indicating the incorporation of a hierarchical classifier. The study
conducted experiments across twelve distinct model configurations. For binary classi-
fication, evaluation metrics included accuracy, precision, recall, and F1-score. Multi-
class classification assessments utilized accuracy, balanced accuracy, macro F1-score,
and weighted F1-score to gauge model performance.

4.5.1 Binary Classification

First, since the model is initially fine-tuned for multiclass classification tasks, the
model focuses on improving model performance in predicting class as balanced as
possible. Therefore, the validation set was balanced, and the evaluation metric was
the macro F1-score, the average F1-score per class. The model did not focus on
predicting the 0 type as accurately as possible but tried to predict other classes
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more. This can significantly decrease the binary classification performance. Hence,
the binary classification performance is not as good as related research, which shows
a high vulnerability detection performance in binary classification tasks. This fact
should be taken into account as an essential fact for analysis.

As per the aforementioned fine-tuning objective, the models are not fine-tuned for
binary classification problems, so the binary prediction results are transformed into
binary labels with multiclass prediction labels. All prediction results were changed
in a way that converted all non-zero labels to 1 and left the 0 label as it was.

Model Accuracy Precision Recall F1-Score
CodeBERT-CE 26.08 0.00 0.00 0.00
GraphCodeBERT-CE 26.08 0.00 0.00 0.00
CodeBERT-FL 73.36 75.92 93.67 83.87
GraphCodeBERT-FL 73.81 76.54 93.10 84.01
hCodeBERT-default 69.62 80.00 78.52 79.26
hGraphCodeBERT-default 71.74 78.18 85.68 81.76
hCodeBERT-equalize 70.39 78.17 83.17 80.59
hGraphCodeBERT-
equalize

69.01 78.11 80.70 79.38

hCodeBERT-descendants 70.26 79.93 79.81 79.87
hGraphCodeBERT-
descendants

70.16 79.20 80.87 80.03

hCodeBERT-
reachable leaf nodes

73.79 80.43 85.30 82.79

hGraphCodeBERT-
reachable leaf nodes

69.14 79.22 78.96 79.09
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Figure 15: Model Performance Plot for Binaryclass Classifiation
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4.5.2 Multiclass Classification

As previously mentioned in the binary classification results, this study has been fine-
tuned to address a multiclass classification problem, with training focused on enabling
the model to predict across classes as evenly as possible, considering the severe class
imbalance in the data. In such scenarios, simple metrics like accuracy or F1-score may
not be ideal for evaluation because the prevalence of majority classes can skew them.
To counter this, the study employed a balanced validation set for Hyperparameter
Optimization (HPO) and used the macro F1-score, a balanced measure, as the eval-
uation metric. This research includes models like CodeBERT and GraphCodeBERT
and their hierarchical counterparts, hCodeBERT and hGraphCodeBERT, which are
trained considering domain knowledge such as the CWE hierarchy. The analysis will
use the given metric results to examine the impact of integrating domain knowledge
on model performance.

Model Accuracy Balanced
Accuracy

Macro
F1-Score

Weighted
F1-Score

CodeBERT-CE 26.08 4.76 1.97 10.79
GraphCodeBERT-CE 26.08 4.76 1.97 10.79
CodeBERT-FL 15.80 13.38 11.31 18.39
GraphCodeBERT-FL 18.33 16.36 13.36 20.53
hCodeBERT-default 20.85 11.10 11.44 20.86
hGraphCodeBERT-default 18.91 8.47 9.59 20.07
hCodeBERT-equalize 20.02 12.19 11.76 19.86
hGraphCodeBERT-
equalize

18.37 8.50 7.51 18.05

hCodeBERT-descendants 25.34 15.05 13.84 23.54
hGraphCodeBERT-
descendants

20.86 10.01 10.33 20.87

hCodeBERT-
reachable leaf nodes

22.14 12.60 12.45 23.10

hGraphCodeBERT-
reachable leaf nodes

21.22 12.14 11.64 20.84
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Figure 16: Model Performance Plot for Multiclass Classifiation
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5 Discussion

In binary classification results, shown in Table 4.5.1 and Figure 15, CodeBERT and
GraphCodeBERT models with Cross-entropy Loss show the Lowest Performance:
Both models exhibit deficient performance in the CE configuration with zero preci-
sion, recall, and F1-score. This indicates that these models cannot effectively classify
binary classes, especially positive ones, in this specific setting. Neither model can
classify positive classes or negative classes for all data points. In this experiment,
only a negative class was predicted.

Both CodeBERT-FL and GraphCodeBERT-FL perform significantly better than the
CE configuration. We use cross-entropy Loss and focal Loss for standard classifica-
tion. This suggests that the FL configuration is more suitable for binary classification
tasks for these models since focal Loss uses weight for each class, which is the inverse
class frequency and is effective in class imbalance problems.

The reachable leaf nodes configuration performs well for both model types, with
CodeBERT slightly outperforming GraphCodeBERT. Since the other hierarchical
loss weight methods, default, equalize, and descendants, did not show slightly
good or even similar performance. Still, since this reachable leaf nodes loss weight
is the closest to the focal loss setting, it might reveal a similar version to a model
with focal loss performance. The reachable leaf nodes method and Focal Loss
have in common that both focus on giving weight to actual prediction targets. Focal
Loss is not a hierarchical method, so it only provides class weight to an existing
class. reachable leaf nodes start with inverse class frequency for all nodes in the
hierarchy, but it gives more weight to reachable target nodes. This indicates the
effectiveness of giving class weight to target classes for binary classification.
In multiclass classification results, represented in Table 4.5.2 and Figure 16, the pro-
vided numbers of percentage points show that CodeBERT-CE and GraphCodeBERT-
CE have identical performance across all metrics, with an accuracy of 26.08, balanced
accuracy of 4.76, macro F1-score of 1.97, and weighted F1-score of 10.79. Compared
to the high accuracy, which is the highest among all other models, other balanced ac-
curacy, macro f1-score, and weighted f1-score show the poorest values. These indicate
that cross-entropy-based models are completely overfitting, so they only predict a few
major classes, which gives high accuracy but poor balanced accuracy; macro f1-score
and weighted f1-score, on the other hand—especially in terms of balanced accuracy
and macro F1-score, suggesting difficulties in classifying less frequent classes.

This study explores the performance differences in multilabel classification mod-
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els trained with non-class-weighted, cross-entropy Loss to capture pure hierarchical
classifier impact on classification tasks. The Cross-Entropy loss is selected for
normal classification to compare the pure effect of leveraging the hierarchical infor-
mation without weighing the class. As a counterpart, default loss weight for hier-
archical classification could be compared. As the results show, cross-entropy-based
models completely lost the ability to learn. However, the hCodeBERT-default and
hGraphCodeBERT-default models show slightly better and lower than 20% accuracy,
which still shows comparable accuracy.

The hierarchical models, hCodeBERT-default and hGraphCodeBERT-default, showed
big improvements compared to CodeBERT-CE and GraphCodeBERT-CE in all eval-
uation metrics. The balanced accuracy shows 6.34 and 3.71 percentage points im-
provement for CodeBERT and GraphCodeBERT, respectively. Moreover, the perfor-
mance increased for Macro-F1 scores of 9.47 and 7.62 percentage points and for the
weighted-f1 scores of 10.07 and 9.28 percentage points. This indicates the model us-
ing hierarchical information could classify more class labels than counterpart models
in multiclass classification tasks. This indicates integrating the hierarchical informa-
tion would positively affect the model performance.

Furthermore, it leverages various hierarchical node-based loss weights to capture the
influence of hierarchical information on classification tasks. Focal Loss, also class
weight-based loss, known for its effectiveness in class imbalance problems, is a coun-
terpart for comparison. The research examines the impact of three hierarchical loss
weight methods—equalize, descendants, and reachable leaf nodes—on model
performance, contrasting them with a model performance with focal Loss. The in-
vestigation aims to determine how applying different class weights influences model
performance in standard and hierarchical multiclass classification tasks.

As shown in Tables 4.5.2 and Figures 16, overall, hCodeBERT-descendants performs
best for all evaluation metrics, except for cross-entropy-based models, which do
not have exact values that can be considered in practice. The highest accuracy
is 25.34%, which is an overwhelmingly high value compared to other models, and
this is not only accuracy, but all other metrics, macro f1-score and weighted f1-
score, except that balanced accuracy is low by about 1.31%. Shows the highest
value. When compared to the counterpart focal loss-based models, CodeBERT-
FL and GraphCodeBERT-FL, hCodeBERT-descendants shows better overall values.
Next, hCodeBERT-reachable leaf nodes performed well in Accuracy and Weighted-
F1 score. Suppose we were to compare equalized loss weight and Focal Loss, which
use the same inverse class frequency as weight per class because they have something
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in common. In that case, they are surprisingly equalize-based models, which used
all layer information and gave weights in the same way as focal Loss for all layers;
macro f1-score of both hCodeBERT-equalize and hGraphCodeBERT-equalize were
almost similar or dropped to 0.45 and -6.15 percentage points, respectively, based on
the FL-model counterpart. Model performance may vary depending on the model,
hyperparameters, learning environment, etc. Still, even if there is a common feature
of using the inverse class frequency as a class weight if the class weight is set on all
nodes, it is relatively complex to predict the target class that should be expected.
Instead, the weight value may be distributed to other nodes, affecting or decreasing
its weight. To calculate the class weight used in hierarchical classification, the occur-
rence of each class counts how many times each node in a graph is ”affected” (either
as a target node, an ancestor of a target node, or a successor of an ancestor of a
target node). Therefore, unlike Focal Loss, which directly obtains class weights only
from classes predicted from all target labels, this hierarchical method may perform
poorly because the hierarchy structure greatly affects the class weight value.

All three loss weights of equalize, descendants, and reachable leaf nodes de-
pend on which node the model focuses on based on the inversed class frequency cal-
culated by Equalize. The class weight varies depending on the class. Equalize uses
the inversed class frequency as is, Descendants adds weight to the class corresponding
to the node’s descendants, and reachable leaf nodes adds weight to predictable
class nodes reachable from the node. Therefore, unlike equalize, descendants,
and reachable leaf nodes are loss weights that focus more on predictable classes.
Therefore, looking at the evaluation metric value, equalize has balanced accuracy
and balanced measure more than descendants, and reachable leaf nodes because
its purpose is to balance all classes equally. The Macro F1-score is higher, and on the
contrary, overall, the more actual predictable targets are hit, the higher the accuracy
and the lower the weighted f1-score. descendants, and reachable leaf nodes have
something in common: more weight is given to predictable classes, so generally, sim-
ilar results can be seen in all metrics. Depending on the complexity of the hierarchy,
the deviation between the two may vary.

The results demonstrate that embedding domain knowledge like the CWE hierarchy
significantly bolsters the models’ capability to identify and classify vulnerabilities.
Hierarchical models, especially those utilizing Focal Loss to address class imbalances,
show marked improvements in binary classification tasks. This underscores the im-
portance of selecting appropriate loss functions and weighting schemes for effective
class imbalance management. In terms of the methodology, the study employed
various loss weight strategies to compare the effectiveness of different classification
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models.

In multiclass classification scenarios, hierarchical models, particularly those employ-
ing descendants and reachable leaf nodes loss weighting schemes, outperform
non-hierarchical models, showcasing their efficiency in handling the complexities of
the CWE hierarchy. The findings reveal that hierarchical models with specialized
loss weights generally surpass the performance of the standard cross-entropy (CE)
method.

A thorough analysis indicates that high-performing models share the strategy of
assigning variable weights to classes, concentrating on predictable targets. This ap-
proach correlates higher weight allocation to actual labels with enhanced performance
metrics. The equalize strategy, by distributing weights uniformly across hierarchy
levels, tends to yield more balanced outcomes than other weighting schemes. Both
descendants and reachable leaf nodes show similar results in metrics like hier-
archy depth and class distribution, varying their effectiveness based on the specific
hierarchy structure.

It is important to contextualize the performance results of this study. Despite having
lower performance metrics than related studies, our research dealt with higher task
complexity. It utilized real-world data from GitHub repositories, as opposed to syn-
thetic data. The data’s fine-grained hierarchical nature adds to this complexity, mak-
ing direct comparisons with other studies, which often use less detailed data, inappro-
priate. For example, as described in Chakraborty et al. (2020), the Zou et al. (2019)
study, using the less complex synthetic dataset, Multiclass Vulnerability Dataset
(MVD) for multiclass classification, showed poor performance on real-world datasets.
Although it was re-trained with a real-world dataset(ReVEAL(Chakraborty et al.,
2020)) and tested on binary classification, but it showed 15.7% in weighted f1-score.
Furthermore, our study’s models, though not trained on binary classification, demon-
strate significant performance (ranging from 79.09% to 84.1% in weighted f1-score)
on even more complex real-world datasets. This indicates that despite appearing
modest, our results are realistic and reflect the study’s intricate nature and the chal-
lenging data it handles.
Lastly, this study has the limitation that learning quickly overfits. The negative class
with the largest data size is 59,109, and the number of data point of the smallest
positive class is 1. Overall, because of this class imbalance with long tail distribution,
despite the reassignment, the cutoff was 1000, so the class imbalance was alleviated,
but it still exists. To make the most of hierarchical information, we did not use a
larger cutoff, but if we do use it, there is a trade-off in class imbalance. Considering
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an environment where there is absolutely as much vulnerability-free code as possible
in a program, it is difficult to avoid serious class imbalance. Even when going for
multi-label classification instead of binary, there is still an absolutely small amount
of data for vulnerabilities that are not easily discovered in the code. In addition,
when learning with a synthetic dataset to secure minor vulnerability data, serious
performance degradation occurs on the real word dataset. If a method to more
effectively resolve class imbalance can be applied by considering these factors, further
improved performance can be expected in the future. Additionally, if there is a way
to assign loss weight to the target label more effectively by adding weight factors,
etc., as variables, performance may also be affected.
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6 Conclusion

This research focuses on improving vulnerability detection by integrating domain-
specific knowledge into transformer-based models such as CodeBERT and Graph-
CodeBERT. It contributes to understanding how this domain knowledge integration
can enhance the models’ ability to detect vulnerabilities in code. A distinctive feature
of this study was the incorporation of the Common Weakness Enumeration (CWE)
hierarchy into these models, enhancing their ability to classify vulnerabilities accu-
rately. The study initially faced a significant challenge due to the severe class imbal-
ance in the combined Big-Vul and CVEfixes datasets, having fine-grained CWE hi-
erarchy. To address this issue, we approached reassigning CWE IDs, adding artificial
roots, and using Loss weight-based Loss and HPO with a balanced validation set and
evaluation measures, such as macro f1-score and balanced accuracy. This approach
differed from traditional evaluation metrics to better compare the performance of
hierarchical methods. In the HPO process with the Optuna, on-the-fly tokenization,
adaptive learning rate strategy, gradient accumulation, and parallelism proved essen-
tial in overcoming computational limitations and enhancing the training process. We
compared standard classification with Focal and CE Loss to hierarchical classification
using a deep classifier with varied loss weights in experiments. The results demon-
strated that hierarchical models outperformed non-hierarchical models, especially
those utilizing the descendants and reachable leaf nodes loss weighting schemes.
More in detail about the results, the comprehensive experiments have highlighted
the limitations of standard cross-entropy Loss, particularly under class imbalance
conditions, and underscored the efficacy of hierarchical models with specialized loss
weights, such as Focal Loss and hierarchical loss weight methods. Hierarchical models
employing the, default, equalize, did not perform as well as default, equalize or
Focal Loss models; however, descendants and reachable leaf nodes loss weight-
ing schemes have shown better performance, aligning with the study’s objective to
harness the full potential of hierarchical data structures. The findings suggest that
the weight on predictable target nodes in the loss function plays a pivotal role in
model performance. This underlines the effectiveness of our approach in managing
the complexities of the CWE hierarchy and the challenges posed by class imbalance.
In conclusion, this study addresses the technical challenges of class imbalance and
data complexity. The detailed results are in Section 4. It contributes significantly to
understanding how domain-specific hierarchical information can enhance the perfor-
mance of machine learning models in the context of code vulnerability detection.
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A Appendix

A.1 CWE Hierarchy

A.1.1 CWE Hierarchy before CWE Reassignment

Figure 17: CWE Hierarchy before CWE Reassignment

A.1.2 CWE ID Distribution in After CWE Reassignment in Dataset

Figure 18: CWE Hierarchy after CWE Reassignment
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A.2 Hyperparameter Optimization (HPO)

A.2.1 Hyperparameter Optimization History Plot for CodeBERT

Figure 19: Hyperparameter Optimization History Plot for CodeBERT (Objective
Value: Macro F1-Score)
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A.2.2 Hyperparameter Optimization History Plot for GraphCodeBERT

Figure 20: Hyperparameter Optimization History Plot for GraphCodeBERT (Ob-
jective Value: Macro F1-Score)
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A.2.3 HPO Slice Plot for CodeBERT

Figure 21: HPO Slice Plot for CodeBERT (Objective Value: Macro F1-Score)
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A.2.4 HPO Slice Plot for GraphCodeBERT

Figure 22: HPO Slice Plot for GraphCodeBERT (Objective Value: Macro F1-Score)
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A.2.5 Fine-Tuning Results of CodeBERT-CE

Figure 23: HPO Slice Plot for CodeBERT-CE (Objective Value: Macro F1-Score)

A.2.6 Fine-Tuning Results of GraphCodeBERT-CE

Figure 24: HPO Slice Plot for GraphCodeBERT-CE (Objective Value: Macro F1-
Score)
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A.2.7 Fine-Tuning Results of GraphCodeBERT-FL

Figure 25: HPO Slice Plot for GraphCodeBERT-FL (Objective Value: Macro F1-
Score)

A.2.8 Fine-Tuning Results of hCodeBERT-descendants

Figure 26: HPO Slice Plot for hCodeBert (Objective Value: Macro F1-Score)

XI



Integrating Domain Knowledge into Transformer-based Approaches to Vulnerability Detection

A.2.9 Best Parameters in HPO

Model Classifier
Learning
Rate

Classifier
Factor

Gradient
Accu-
mulation
Steps

Weight
Decay

CodeBERT-CE 0.00179 34.94 3 6.45e-06
GraphCodeBERT-CE 0.02353 2882.76 12 0.00012
CodeBERT-FL 0.00155 2280.82 11 2.22e-05
GraphCodeBERT-FL 0.00021 336.09 14 0.00125
hCodeBERT-default 0.02200 266.17 15 0.00363
hGraphCodeBERT-default 0.04375 178.04 9 0.00401
hCodeBERT-
descendants

0.00438 54.76 5 8.28e-07

hGraphCodeBERT-
descendants

0.00241 18.73 8 9.98e-06

hCodeBERT-equalize 0.00555 97.60 6 2.52e-06
hGraphCodeBERT-
equalize

0.01469 98.33 5 0.00307

hCodeBERT-
reachable leaf nodes

0.00072 10.81 6 0.00436

hGraphCodeBERT-
reachable leaf nodes

0.00192 10.52 6 5.23e-07

Table 3: Best Hyperparameters in HPO (Two Best Models: GraphCodeBERT-FL
and hCodeBERT-descendants)
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