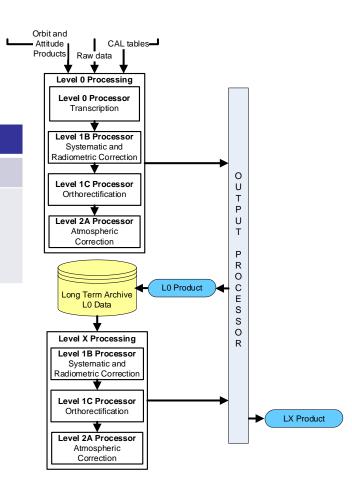

SYSTEM

P. Schwind, M. Pato, M. Schneider, R. de los Reyes, M. Langheinrich, M. Bachmann, B. Gerasch

What is the EnMAP processing chain?

- EnMAP data is not directly usable:
 - It has to be unpacked, uncompressed, tiled, screened and radiometrically corrected.
 - Optionally it should also be corrected geometrically and atmospherically
- These processing steps are performed by the EnMAP processing chain before delivering the data to the users
- For details (ATBD, product specification), see also: <u>https://www.enmap.org/data_access</u>

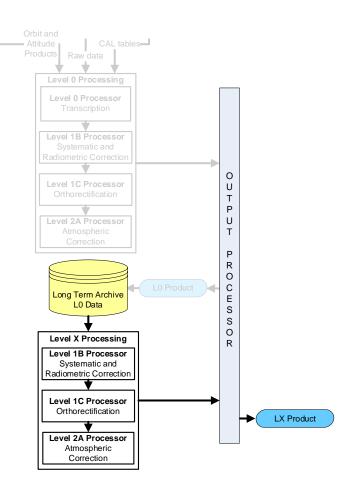


Processing overview

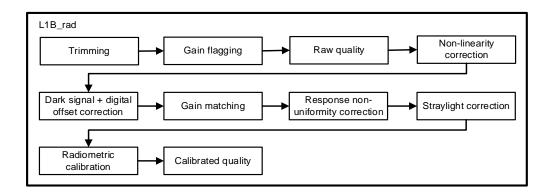
- The processing chain consists of 5 processors:
 - L0, L1B, L1C, L2A, OP
- The chain can produce 4 different outputs:

Processing	Purpose
Transcription	For archiving
Radiometric	
Geometric	For scientists
Atmospheric	
	Transcription Radiometric Geometric

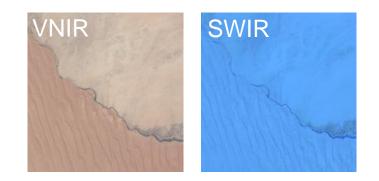
- Only L0 is archived, higher levels (LX) are processed on demand.
 - Delivered data is always based on latest processor version and CAL tables
 - LX processing taking into account userdefined processing options



L1B processing overview

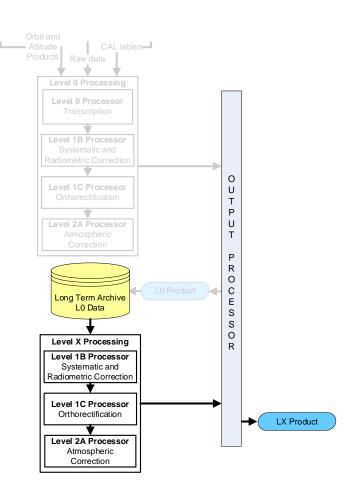

- Inputs: L0 tiles, CAL tables
- Processing steps: L1B, L1C, L2A, OP
- Output: Radiometrically corrected image at-sensorradiance

L1B processing


- For details, see L1B ATBD on https://www.enmap.org/data_access
- Processing options
 - Product Format: GeoTIFF, JPEG2000, BSQ, BIL, BIP

L1B product

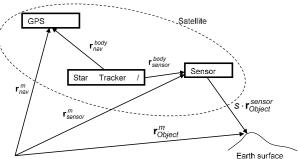
- Spectral images
 - Units: W/m²/sr/nm (at sensor radiance)
 - Two data cubes for SWIR/VNIR in sensor geometry. SWIR/VNIR data is not aligned (~20 lines offset).
- Metadata
 - Also contains information of levels L1C and L2A.
 - RPC in metadata can be used to perform geometric correction. Attitude and orbit data is also available.
- Masks/Quicklooks in sensor geometry





L1C processing overview

- Inputs: L0 tiles, CAL tables
- Processing steps: L1B, L1C, L2A, OP
- Output: Radiometrically and geometrically corrected image at-sensor-radiance
- Processing options
 - Product Format: Geotiff, JPEG2000, BSQ, BIL, BIP
 - Map Projection: UTM(+/-1 Zone), Geographic, European LAEA
 - Image Resampling: Bilinear, Bicubic, Nearest Neighbour



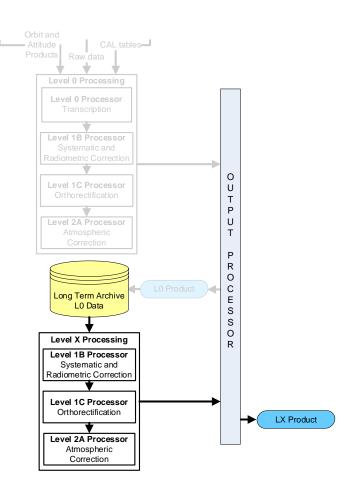
L1C processing

- Orthorectification
 - Direct georeferencing using detailed sensor model

- Accuracy improved using GCPs (extracted from S2 reference in L0 before tiling the datatake)
- Used DEM: Copernicus DEM with up to 30 m resolution (COP-DEM GLO-30)
- SWIR/VNIR data is aligned
 - SWIR/VNIR data cubes are merged to one image, with the bands ordered by increasing wavelength
 - Sensor to band mapping can be derived from metadata entry expectedChannelsList

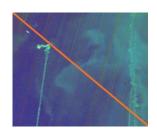
L1C product

- Spectral image
 - Units: W/m²/sr/nm (at sensor radiance)
 - One data cube in ortho geometry containing all SWIR/VNIR bands
 - Tiles contain 10 lines from the neighboring tiles, to avoid problems when mosaicking.
- Metadata Also contains information of levels L1B and L2A.
- Masks/Quicklooks in ortho geometry



L2A processing overview

- Inputs: L0 tiles, CAL tables
- Processing steps: L1B, L1C, L2A, OP
- Output: Radiometrically, geometrically and atmospherically corrected reflectances
- For more details, see this talk: The EnMAP Ground-Segment L2A Processor -Products and Specifics



Notable processor updates


- V01.02.00 (07.03.2023)
 - Destriping in across-track direction implemented in L1B
 - Improvements in co-registration accuracy
- V01.03.00 (02.05.2023)
 - Absolute geometric accuracy improved
 => All EnMAP data before v01.03.00 is being reprocessed
- V01.03.02 (13.06.2023)
 - Changes to support band swap: SWIR bands with wavelengths 1939, 1949 and 1958 nm replaced by 1450, 1767 and 1782 nm on 05.07.2023
- V01.04.00 (15.09.2023)
 - Re-activated adjacency correction in atmospheric correction over water

See <u>https://www.enmap.org</u> for news on important updates.

Processors Verification, Validation & Quality Control

- Products produced by the processing chain must fulfill strict mission requirements, for example concerning radiometric and geometric accuracy.
- These requirements were/are reviewed and validated (internally and externally) extensively during the development, commissioning and routine phases.
- Continuous Quality Control of processing chain and its products, see quarterly reports on website:

https://www.enmap.org/mission/

(also see talk Operational data quality control and instrument monitoring for the spectral, radiometric and geometric data properties within the EnMAP Ground Segment)

