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Modern causal inference approaches to inves-
tigate biodiversity-ecosystem functioning
relationships

Jakob Runge Check for updates

Detecting and quantifying the causal relations of
ecosystem functioning is a challenging endea-
vor. A global study on grasslands illustrates how
reasoning about underlying assumptions, from
confounding and nonlinearity to fundamental
questions of determinism, is key to unlocking
the potential of modern causal inference
approaches in ecology.

How does biodiversity effect ecosystem productivity? How much
diversity does an ecosystem need? Beyond their academic interest,
these questions are at the heart of understanding the consequences of
largely human-induced changes in biodiversity.

At its core, this is a causal question –predicting the effect of an
intervention in species richness on ecosystem functioning–, as
opposed to passively observing both: Some measure of correlation
would indeed partly measure the causal effect of richness on pro-
ductivity, but both are also caused bymany other factors, for instance,
precipitation, and such confounders would also contribute to their
correlation.

There are two approaches to answer causal questions: The first
one is to actually intervene via the experimental design, where one
would randomly select plots to manipulate them with different levels
of species richness and thenmeasure how productivity changes at the
treated versus the untreated plots. This reduces confounding by
generating plots that are comparable with respect to known and
unknown confounding factors. However, experiments are generally
costly, potentially unethical, and in this case a crucial question is how
to intervene: If the causal effectof richnessonproductivity dependson
the specific changes of species, experimental inferences may not
generalize to natural ecosystems1.

These challenges have led to the development of a second
approach in recent decades: To utilize domain assumptions about the
underlying system to infer causal effects from observational data
within the rich frameworks of causal inference. Twomain frameworks
are the graphical-causal-model framework2,3 and the potential-
outcome framework4,5. Both frameworks are equivalent from a theo-
retical point of view, but theydiffer in howassumptions are stated: The
potential outcome framework uses an algebra of counterfactuals,
while the graphical-causal-model framework uses, well, graphical
causal models. These are directed acyclic graphs where the nodes
indicate the relevant processes of the system and the arrows indicate
direct causal relations. For an introduction to causal inference on time
series data see6.

A typical observational causal study would start with building a
statistical model of species richness and ecosystem productivity, as
the naive correlation approach mentioned above, but then add quali-
tative domain knowledge, for example, in the formof a causal graph, to
readoff which confounding variables to include in themodel such that
these block confounding mechanisms (Fig. 1a). However, to fully
eliminate confounding effects, observational causal study designs in
ecology face the daunting task of identifying, measuring, and statisti-
cally controlling for a myriad of confounding variables, from local
weather to land-use history7.

This can be overcome if multiple time-series (or longitudinal)
datasets of the system, for example, at different sites, are available.
Then one can jointly leverage these to circumvent observed, as well as
unobserved confounding. Multiple datasets are often available in
social sciences,where they are calledpanel data, and the trick then is to
include dummy parameters in the statistical regressionmodel, termed
fixed-effects panel regression.

Fixed-effects panel regression was mostly developed within the
potential outcome framework4,5, but the graphical models framework
is catching up8,9. On the other hand, explicating assumptions in the
form a causal graph is arguably more intuitive than an algebra of
counterfactuals, but we will not enter the partially tense discussions
between the two factions here10.

Integrating causal graphs infixed-effects panel regression for
a global grassland study
Enter the new study by Dee et al.11, which aptly utilized both causal
graphs and panel regression to systematically study the effect of
richness on productivity from longitudinal data (2007-2017) of 151
unmanipulated plots in 43 grassland sites across 11 countries (Fig. 1a).
The authors’ goal was to quantify the causal effect of plant richness R
on biomass productivity P given panel time series data (indexed with
t) at different sites s and plots p. The fixed-effects regression model
then is

lnðPpstÞ=β � lnðRpstÞ+ δp +μst + ϵpst : ð1Þ

The ln-ln specification is used because the effect of richness on
productivity is assumed to be non-linear, but more on nonlinearity
later. The regression coefficient β now quantifies the causal effect of
interest, the expected percent change in productivity given a one
percent change in richness. β is assumed to be independent of time t,
sites s, and plots p, and the fixed-effects trick is to add the plot-dummy
parameter δp and the site and time-dummyparameter μst tomodel any
time- or plot or site-specific effect and apply the model on the pooled
data (all time series concatenated) to estimate β, δp, and μst. The plot-
dummy δp has a similar effect as de-meaning the plot time series and,
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hence, removing any time-invariant confounding effect specific to
each plot, while the site and time-dummy μst removes confounding in
the site and time-dimension. Any remaining variance is then captured
in the noise term ϵpst.

Contrary to expectations (see12,13), the authors find that higher
plot-level richness causes productivity to decline (that is, β < 0)
rather than increase. The authors attribute the differences to
observational studies to prior work not controlling for enough
confounding factors, and the difference to experimental studies to
the challenge that these had planted fewer rare and non-native
species than exist in nature (the challenge to design “natural"
interventions). While increases in native species enhance pro-
ductivity, increases in rare species reduce productivity, which
explains the difference.

Panel regression is not a silver bullet. Besides more technical
statistical assumptions5, the method only accounts for two types of
confounders: Those that are essentially invariant over the study per-
iod, in Dee et al.11, for example, topography or soil type, and those that
vary by both site and year, but are largely invariant over the different
plots at a site, such as the surrounding land-use change. This leaves
openpotential confounding effects due toprocesses that are plot-level
specific and time-varying.

To address this issue, Dee et al.11 went one step further and
investigated other model designs to see whether their conclusions are
robust, froman instrumental variable design andmediation analysis to
accounting for time-laggeddependencies. This is an important step for
transparent causal inference6: Rather than avoiding explicit causal
language, it encourages the researcher to explicitly lay out assump-
tions that enable more robust conclusions and to discuss conclusions
under alternative sets of assumptions. This explicit interpretability is
also one of the reasons why causal inference is now becoming a pillar
of modern AI10.

Alternative assumptions towards inferring causation in
ecology
The above discussionwas focused around overcoming confounding in
estimating a specific causal effect by utilizing qualitative assumptions
about how the cause and effect in the system are related to potential
confounding processes. In the graphical causal models framework
these assumptions are explicated in a causal graph whose nodes are
random variables of an underlying structural causal model. Each vari-
able’s next observation is determined by an assignment function (or
autonomous causal mechanism) of the node’s parents and an exoge-
neous noise term that subsumes the effects of all factors that are not
part of the model and unique to that node. Hence, these noise terms
are mutually independent, an assumption called the Causal Markov
Condition2.

This underlying systemic view then leads to the “intervention-
based” notion of causality, which assumes that, in principle, the causal
variable can be manipulated, either by humans or nature, by “repla-
cing" its causal mechanism by the intervention value (for example, a
certain plant species richness) leading to the causal do-calculus2.

But there is yet another framework of causality: the prediction-
oriented convergent-cross mapping (CCM) approach assumes an
underlying deterministic dynamical system14 (Fig. 1b). CCM is mainly
used for what is called causal discovery, also a hallmark of the causal
graphical model framework15, that is, to detect causation, rather than
assume it qualitatively exists and quantify it, as discussed above.
However,16 derived the empirical dynamicmodeling (EDM) framework
from CCM.

Both CCM and the graphical models (or potential outcome) fra-
mework have their distinct sets of assumptions and current capacities
of dealing with various challenges. In the original paper14, CCM was
contrasted against linear Granger causality17. CCM utilizes nonpara-
metric methods that make few assumptions about the underlying

Fig. 1 | Two perspectives on causal inference in ecology. a Graphical models
perspective, where a researcher would assume qualitative causal relationships in
the form of a directed acyclic graph among the variables of interest, in Dee et al.11

biodiversity richness R and ecosystem productivity P, as well as confounding
variables U. In the specific fixed-effects panel regression setting of Dee et al.11 the
causal effect of R on P can be estimated with a statistical model such as eq. (1) that
includes dummy variables to account for unobserved confounders. These can
either be time-invariant and only vary across plots (Up), or time- and site-varying,
but approximately the same for different plots (Ust). However, confounders that
vary across plots, sites, and time (Upst) can only be accounted for if they are

observed and explicitly included in the model (not used in eq. (1)). b Nonlinear
state-space perspective where the primary goal is to detect whether and in which
direction causation exists. A method like convergent cross-mapping (CCM)
assumes an underlying deterministic nonlinear systemwith attractorM that can be
reconstructed from the variables' state spaces (MR,MP) using time-lagged coordi-
nate embedding. CCM concludes on R→ P if points on MR can be predicted using
nearest neighbors in MP (orange ellipse) and the prediction improves the more
points on the attractor are sampled. Implicitly, CCM makes the assumption that a
successfully reconstructed state-space includes the influence of observed or
unobserved confounders U.
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functional dependencies and can well model highly nonlinear
dynamics. However, CCM also crucially assumes the existence of an
(ideally low-dimensional) attractor, exemplified on the Lorenz attrac-
tor in ref. 14, and the delicate task is then to reconstruct it using delay
embedding18. CCM makes the somewhat optimistic assumption that,
by successfully reconstructing the attractor, the whole state space,
including the influence of observed or unobserved confounders, is
implicitly reconstructed. If such a low-dimensional (and ideally not
very noisy) attractor is not reconstructable, then the CCM framework
cannotwell distinguish confounding from causation, as several studies
have shown19,20.

These findings illustrate that the theory of CCM on dealing with
confounding of the various forms treated in this article requires fur-
ther development. But there have been advances in integrating ideas
from causal inference into CCM. Extensions of CCM include dealing
with time-delayed causal interactions21, making it more robust22,
(partially) accounting for confounders23, but also handling multiple
datasets as in panel regression24. However, the spatial CCM variant for
the latter task cannot well handle heterogenous dynamics among sites
and relatively short time series.

While the causal graphical model and potential outcome frame-
works are, in principle, non-parametric and can be combined with
machine learning for nonlinear causal effect estimation25, the field,
starting out from social sciences, has yet to fully embrace the com-
plexity of nonlinear dynamical systems and time series6.

In summary, for method developers there is ample room and
opportunity to join ideas fromdifferent perspectives.Moreworkshops
and joint papers from scientists of the different communities could
pave the way to such integration. For those wishing to apply causal
inferencemethods to ecology, Dee et al.11 impressively demonstrate on
complex ecosystem interactions how to make assumptions transpar-
ent and integrate causal reasoning into data-driven science.

Jakob Runge 1,2

1Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für
Datenwissenschaften, Mälzerstr. 3-5, Jena 07745, Germany.
2Technische Universität Berlin, Institute of Computer Engineering and
Microelectronics, Straße des 17. Juni 135, Berlin 10623, Germany.

e-mail: jakob.runge@dlr.de

Received: 23 February 2023; Accepted: 17 March 2023;

References
1. Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-

random species loss. Ecol. Lett. 6, 509–517 (2003).
2. Pearl, J.Causality: Models, Reasoning, and Inference 2nd edn. (Cambridge University Press,

Cambridge, UK, 2009).
3. Spirtes, P., Glymour, C. & Scheines, R. Causation, Prediction, and Search (MIT Press,

Boston, 2000).
4. Angrist, J. D. & Pischke, J.-S. Mostly harmless econometrics: An empiricist’s companion

(Princeton university press, 2009).
5. Imbens, G. W. & Rubin, D. B. Causal inference in statistics, social, and biomedical sciences

(Cambridge University Press, 2015).
6. Runge, J., Gerhardus, A., Varando,G., Eyring, V. &Camps-Valls, G. Causal inference for time

series. Nat. Rev. Earth Environ. 10, 2553 (2023).

7. Ferraro, P. J., Sanchirico, J. N. & Smith, M. D. Causal inference in coupled human andnatural
systems. Proc. Natl. Acad. Sci. 116, 5311–5318 (2019).

8. Bareinboim, E. & Pearl, J. Causal inference and the data-fusion problem. Proc. Natl. Acad.
Sci. 113, 7345–7352 (2016).

9. Mooij, J. M., Magliacane, S. & Claassen, T. Joint causal inference from multiple contexts. J.
Mach. Learn. Res. 21, 1–108 (2020).

10. Pearl, J. &Mackenzie, D. TheBookofWhy: TheNewScienceofCauseandEffect (Basic books,
New York, 2018).

11. Dee, L. E. et al.Clarifying theeffect of biodiversity onproductivity in natural ecosystemswith
longitudinal data and methods for causal inference. Nat. Commun. 14, 2607 (2023).

12. Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant
species richness. Nature 529, 390–393 (2016).

13. Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current
knowledge. Ecol. Monogr. 75, 3–35 (2005).

14. Sugihara, G. et al. Detecting causality in complex ecosystems. Science 338,
496–500 (2012).

15. Runge, J. et al. Inferring causation from time series in earth system sciences.Nat. Commun.
10, 1–13 (2019).

16. Deyle, E. R., May, R. M., Munch, S. B. & Sugihara, G. Tracking and forecasting ecosystem
interactions in real time. Proc. Royal Soc. B: Biol. Sci 283, 20152258 (2016).

17. Granger, C. W. Investigating causal relations by econometric models and cross-spectral
methods. Econometr. J. Econometr. Soc. 37, 424–438 (1969).

18. Takens, F. Detecting Strange Attractors in Turbulence. In Rand, D. & Young, L.-S. (eds.)
Dynamical Systems and Turbulence, Warwick 1980, vol. 898 of Lecture Notes in Mathe-
matics, chap. 21, 366–381 (Springer, Berlin, 1981).

19. Krakovská, A. et al. Comparison of six methods for the detection of causality in a bivariate
time series. Phys. Rev. E 97, 042207 (2018).

20. Runge, J. Causal network reconstruction from time series: From theoretical assumptions to
practical estimation. Chaos: Int. J. Nonlinear Sci. 28, 075310 (2018).

21. Ye, H., Deyle, E. R., Gilarranz, L. J. & Sugihara, G. Distinguishing time-delayed causal inter-
actions using convergent cross mapping. Sci. Rep. 5, 1–9 (2015).

22. Diaz, E., Adsuara, J., Moreno-Martinez, A., Piles, M. & Camps-Valls, G. Inferring causal rela-
tions from observational long-term carbon and water fluxes records. Sci. Rep. 12,
1610 (2022).

23. Leng, S. et al. Partial crossmapping eliminates indirect causal influences.Nat. Commun. 11,
2632 (2020).

24. Clark, A. T. et al. Spatial convergent crossmapping todetect causal relationships fromshort
time series. Ecology 96, 1174–1181 (2015).

25. Chernozhukov, V. et al. Double/debiased machine learning for treatment and structural
parameters: Double/debiased machine learning. Econometr. J. 21, C1–C68 (2018).

Acknowledgements
J.R. has received funding from the European ResearchCouncil (ERC) Starting Grant CausalEarth
under the European Union’s Horizon 2020 research and innovation program (Grant Agreement
No. 948112).

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Jakob Runge.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in anymediumor
format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023

Comment

nature communications         (2023) 14:1917 | 3

http://orcid.org/0000-0002-0629-1772
http://orcid.org/0000-0002-0629-1772
http://orcid.org/0000-0002-0629-1772
http://orcid.org/0000-0002-0629-1772
http://orcid.org/0000-0002-0629-1772
mailto:jakob.runge@dlr.de
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships
	Integrating causal graphs in fixed-effects panel regression for a global grassland study
	Alternative assumptions towards inferring causation in ecology
	References
	Acknowledgements
	Competing interests
	Additional information




