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Abstract

Methods to identify cause-effect relationships currently
mostly assume the variables to be scalar random variables.
However, in many fields the objects of interest are vectors
or groups of scalar variables. We present a new constraint-
based non-parametric approach for inferring the causal rela-
tionship between two vector-valued random variables from
observational data. Our method employs sparsity estimates of
directed and undirected graphs and is based on two new prin-
ciples for groupwise causal reasoning that we justify theoret-
ically in Pearl’s graphical model-based causality framework.
Our theoretical considerations are complemented by two new
causal discovery algorithms for causal interactions between
two random vectors which find the correct causal direction
reliably in simulations even if interactions are nonlinear. We
evaluate our methods empirically and compare them to other
state-of-the-art techniques.

Introduction
In recent years, many methods have been developed in order
to infer cause-effect relationships between random variables
from observational data, see e.g. Pearl (2009); Spirtes, Gly-
mour, and Scheines (2000); Shimizu et al. (2006); Peters,
Janzing, and Schölkopf (2017); Runge et al. (2015). Most
often these random variables are assumed to be scalar; an
assumption which covers many but by no means all ques-
tions of interest in science. For instance, neuroscience re-
searchers are often interested in the causal interactions be-
tween different brain regions each of which are represented
by a multitude of measurement locations in fMRI data. Sim-
ilarly, in the Earth sciences, researchers would like to un-
derstand causal relationship between variables (such as sea
surface temperature, air pressure or wind speed) that have
each been measured at a number of grid locations in pre-
defined areas on the planet. To make inferences in such a
setup, standard approaches often proceed to drastically re-
duce the number of measurement variables, for instance by
computing average values across each region of interest or
by applying statistical dimension reduction techniques such
as principal component analysis. However, aggregating data
in such a way might lead to faulty causal conclusions: For
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Figure 1: Two components in the vector-valued variable X
have effects on Y that are of opposing signs, such that ag-
gregation of X and Y leads to a dilution or cancellation of
dependence.

instance, conditional independencies X |= Y|Z between vec-
tors might not be visible in their mean values (Spirtes, Gly-
mour, and Scheines 2000). Opposing causal effects from dif-
ferent parts of a region might average to zero, and causally
relevant information might be diluted or lost when consider-
ing aggregate variables, see Figure 1. Furthermore, methods
that rely on the non-Gaussianity of noise to make inferences
about the causal direction, such as LinGaM (Shimizu et al.
2006), are rendered weak by the averaging due to the central
limit theorem driving the average noise closer to a Gaussian.

In this work, we aim to develop new techniques to infer
the causal relationship between two groups of variables, rep-
resented as random vectors, without a dimension reduction
step. Assuming that the causal arrows go from one group to
the other only, the most straightforward way to do so is to
run a standard causal discovery algorithm, e.g. the PC al-
gorithm, on all microvariables (i.e. all entries of both vec-
tors), and then choose the cause group as the one that has
the most edges pointing to the other group. When groups
become large, this approach, henceforth called Vanilla-PC,
has disadvantages: since it needs to determine the full causal
‘microstructure’, it has to run many conditional indepen-
dence tests and due to the sequential error propagation of the
PC algorithm becomes unreliable quickly at small sample
size (see Subsection 12 in the Supplement for an empirical
illustration of this). In essence, Vanilla-PC computes more
structure than is needed to answer the causal query at hand
and therefore uses the data inefficiently. We therefore take
a different road and combine the constraint-based approach
for causal discovery with sparsity measures of the internal
(causal) structure of the groups. Our methods are based on
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the following two principles for causal interaction between
groups of random variables:
(P1) generically, conditioning on the cause group does not

create new conditional dependencies within the effect
group;

(P2) generically, conditioning on the effect group does
not delete conditional dependencies within the cause
group.

Here, the term generically is to be understood as in other as-
sumptions for causal inference such as the causal Markov
property, Faithfulness and the principle of independent
cause and mechanism (ICM), see e.g. Peters, Janzing, and
Schölkopf (2017). That is to say, (P1) and (P2) can only be
violated if the causal mechanism is in some way fine-tuned
to the exogenous noise variables of the model.
We justify these principles more thoroughly by considering
the setting where the scalar microvariables are modelled by a
causal graphical model over a directed acyclic graph (DAG).
In this setup, (P1) and (P2) turn out to be implied by the
causal Markov property and Faithfulness. Based on these
principles, we prove that, in this purely causal setup, the cor-
rect causal direction is identifiable under weak assumptions
(Theorem 1). Moreover, we provide an algorithm for distin-
guishing cause from effect called 2G-VecCI.PC (two group
vector causal inference, PC method) which is based on den-
sity estimation of each group through the PC algorithm and
which is sound and complete under said assumptions. To our
knowledge, our method is the first non-parametric method to
infer causal directionality between two groups of variables
(other than Vanilla-PC).
In addition to the purely causal setting, we consider the setup
where cause and effect group are related through a structural
causal model of the form

X := ηX,

Y := f(X, ηY), ηX |= ηY.

Importantly, we do not assume that the individual compo-
nents of the noise vector ηX (respectively ηY) are pair-
wise independent. Such a model can be reasonable when
the internal interactions within a variable group do not ad-
mit a straightforward causal interpretation while the inter-
actions between groups do. One might therefore consider
such a model semi-causal. For instance, if X describes a
field of surface temperature measurements on different grid
locations, stating that the measurement at location i causes
the measurement at location j might be inappropriate. For
such a semi-causal SCM, it is much harder to prove theo-
retical guarantees for the validity of (P1) and (P2), and we
only demonstrate what violations of these principles would
entail in a toy example. Nevertheless a second version of
our inference algorithm dubbed 2G-VecCI.Full (two group
vector causal inference, full conditioning method) is able
to find the correct causal direction in many cases in simu-
lated data. In both the causal and the semi-causal setting,
our algorithms make inferences by estimating the sparsity
of graphs that encode conditional dependence or causal re-
lationships within a variable group before and after condi-
tioning on the other variable group. At present our methods

assume that samples are i.i.d., and that the sample size is
larger than the total size of the vector-valued variables. Both
methods are based purely on conditional (in)dependence re-
lationships and, with appropriately chosen tests, work even
if causal interactions are nonlinear.

We will present our theoretical identifiability results and
the necessary assumptions in Section 3. After that, we de-
scribe two different versions of our algorithm for causal dis-
covery between variable groups in Section 4. In Section 5,
we analyse the empirical performance of these algorithms
in experiments with synthetic data and compare it to that of
other approaches (Vanilla-PC and the Trace Method (Janz-
ing et al. 2009; Zscheischler, Janzing, and Zhang 2012)).
We also consider a real world climate science example of
surface temperatures in the El Niño Southern Oscillation
(ENSO 3.4) region in the pacific and in British Columbia
to test our algorithms. We conclude with a discussion and
outlook in Section 6.

Related Work
Although the majority of causal discovery results focus on
scalar variables, the idea to study causal interactions be-
tween groups of random variables is not new. On the theo-
retical side, Rubenstein* et al. (2017), Chalupka, Eberhardt,
and Perona (2016), Chalupka et al. (2016) and Chalupka,
Eberhardt, and Perona (2017) discuss to which extent mi-
cro variables can be aggregated to macro variables with-
out losing causal information. Parviainen and Kaski (2017)
discuss theoretical assumptions of multi-group causal dis-
covery in connection to the PC-algorithm (as opposed to
the two group identifiability problem discussed here). For
two linearly interacting groups, Janzing et al. (2009) intro-
duce a causal discovery algorithm called the Trace method,
see also Zscheischler, Janzing, and Zhang (2012). In Entner
and Hoyer (2012), scalar causal discovery techniques based
on non-Gaussianity assumptions such as LiNGaM (Shimizu
et al. 2006) are generalized to the vector-valued setting. We
summarize the existing approaches, as well as their assump-
tions, strengths and weaknesses in Table 7 in the supple-
ment.

Identifiability Results
Theoretical Setup We will consider scalar random vari-
ables X1, . . . , Xn, Y1, . . . , Ym that are grouped into two
vectors X = {X1, . . . , Xn},Y = {Y1, . . . , Ym}. We as-
sume that the data is generated by a causal process X→ Y
as outlined below, and our goal is to infer the correct causal
direction from the observational distribution PX,Y. We will
operate under different sets of assumptions that relate PX,Y

to causal representations (see Model 1 and 2 below). We
refer to the mathematical appendix for a quick overview
on directed and undirected graphs, d-separation, the causal
Markov property, Faithfulness and causal sufficiency. We
will always assume that a statistical association X ̸ |= Y
is present in the data.

Model 1 (Unidirectional Causal Vector Model) The
scalar variables X1, . . . , Xn, Y1, . . . , Ym are represented as
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the nodes of a directed acyclic graph (DAG) G. In addition,
we assume that
(A1) The joint distribution PX,Y fulfills the causal Markov

property and is faithful to G. In other words, d-
separation in G completely characterizes the condi-
tional independencies present in PX,Y. This implies
that the model is causally sufficient, i.e. no hidden
confounders are present.

(A2) Arrows between groups only point in one direction,
i.e., without loss of generality, the X→ Y-direction.
In other words, there can be no arrow Xk ← Yℓ for
any Xk ∈ X, Yℓ ∈ Y.

We will now justify principles (P1) and (P2) in this scenario.
The main result of this section will be summarized in The-
orem 1. Proofs of the following results will be given in the
technical appendix.
Lemma 1. Assume that the assumptions of Model 1 are sat-
isfied. Then principle (P1) holds in the sense that there is no
subset S ⊂ Y of the effect group and nodes Yk, Yℓ ∈ Y
such that

Yk |= Yℓ | S and Yk ̸ |= Yℓ | S,X.

Next, we say that a causal vector model X → Y satisfies
condition
(C1) if there is a subset S ⊂ X and scalar variables

Xi, Xj ∈ X such that
Xi |= Xj | S and Xi ̸ |= Xj | S,Y.

In the appendix, we will characterize (C1) graphically
and depict some motivational examples. For instance, Con-
dition (1) is satisfied only if there exists a cross-regional v-
structure Xi → Yk ← Xj . We can now deduce the follow-
ing result for cause-effect identification. It states that when-
ever conditioning on a group creates dependencies within
the other group, by (P1) the former must be the effect and
the latter must be the cause.
Corollary 1. Assume that the assumptions of Model 1 as
well as (C1) are satisfied. Then, the causal direction X→ Y
can be inferred from the observational distribution PX,Y.
Next, we justify principle (P2).
Lemma 2. Assume that the assumptions of Model 1 are sat-
isfied. Then principle (P2) holds, in the sense that there is
no subset S ⊂ X of the cause group and nodes Xi, Xj ∈ X
such that

Xi ̸ |= Xj | S and Xi |= Xj | S,Y.

Again, we need to ensure that conditioning on the cause vec-
tor does delete dependencies within the effect vector. We
therefore say that a causal vector model X→ Y satisfies
(C2) if there is a subset S ⊂ Y and scalar variables

Yk, Yℓ ∈ Y such that
Yk ̸ |= Yℓ | S and Yk |= Yℓ | S,X.

For example, condition (C2) is satisfied if Yk, Yℓ can be d-
separated by S ⊂ Y in the subgraph over Y and there is
a common confounder Yk ← Xi → Yℓ. Again, we will
provide a full graphical characterization of (C2) and some
examples in the appendix.

Corollary 2. Assume that the assumptions of Model 1 as
well as (C2) are satisfied. Then, the causal direction X→ Y
can be inferred from the observational distribution PX,Y.
We summarize the results above in the following theorem.
Theorem 1. Assume that the assumptions of Model 1 are
satisfied and that at least one of the conditions (C1) or (C2)
holds. Then. the causal direction X → Y can be inferred
from the observational distribution PX,Y.

Model 2 (Unidirectional Semi-Causal Vector Model)
Model 2 assumes that the variables X1, . . . , Xn, Y1, . . . , Ym

are generated by the semi-causal structural causal model

X := ηX,

Y := f(X, ηY), ηX |= ηY,

where as mentioned before, we do not assume that the com-
ponents within the noise terms ηX, ηY are pairwise indepen-
dent. We can encode the conditional independencies within
the X-group graphically by drawing an undirected edge
Xi −Xj if and only if

Xi ̸ |= Xj |X\{Xi Xj}
and similarly within the Y-group by drawing an undirected
edge Yk − Yℓ if and only if

ηk ̸ |= ηℓ | η\{ηk, ηℓ}.
The undirected graphs obtained in this way will be denoted
by G′X,G′Y respectively.

In this way, we have encoded the distributions of X,Y as
Markov random fields over undirected graphs. Markov ran-
dom fields of this kind are sometimes employed to model
spatial or spatio-temporal measurements on grids (Song,
Fuentes, and Ghosh 2008) such as for instance surface tem-
perature measurements (Vaccaro et al. 2021).

In this setup, it is harder to find exact conditions that for-
mally imply principles (P1), (P2). We lack a non-finetuning
statement that is as general as faithfulness in the causal set-
ting and quantifying such a statement would probably re-
quire additional assumptions on the functional form of the
model or the noise distribution.

Let us illustrate why it is nevertheless reasonable to accept
(P1) and (P2) with the following toy example:
Example 1. Consider the model(

Y1

Y2

)
=

(
bX1 + η1
cX2 + η2

)
,

where (X1, X2) are jointly normal with mean E[X] = 0,
Var(X1) = Var(X2) = 1 and Cov(X1, X2) = a. The
error terms (η1, η2) are jointly normal with mean E[η] =
0,Var(η1) = Var(η2) = 1 and Cov(η1, η2) = d. The
only way conditioning on X could create a dependency in
Y would be if Y1 |= Y2 in the first place, which is equiva-
lent to abc = −d. Thus conditioning on the cause can only
create dependencies out of independencies that arose from
a finetuning of the coefficients of the mechanism b, c to the
coefficients of the noise terms a, d.

Similarly, for (P2) to be violated in this example, condi-
tioning on Y would have to delete the dependency of X1
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and X2. This would entail another (more involved) alge-
braic equation that the coefficients would have to satisfy.
Thus coefficients describing the causal mechanism could not
be chosen independently of the noise terms.

Graph edge density criterion for identifying causal direc-
tion A practical way to make use of Theorem 1 is to com-
pare the edge densities of the internal graphs of one group
before and after conditioning on the other group. Say we are
interested in these internal graphs of the vector X in Model 1
where internal graphs are formalized as DAGs. In this case
we then compare the number of edges in the (skeleton of
the) CPDAG GX that is the output of the PC-algorithm run
on the scalar variables in X to the number of edges in the
CPDAG GX|Y that is the output of the PC-algorithm over X
in which Y is added as a conditioning set to every indepen-
dence test. We normalize these edge counts by the maximal
possible number of edges edgeMax = n(n− 1)/2 to obtain
edge densities

edgeDens(GX) =
number of edges of GX

edgeMax

edgeDens(GX|Y) =
number of edges of GX|Y

edgeMax
.

The edge densities edgeDens(GY), edgeDens(GY|X) are
defined analogously. Presuming that the PC-algorithm is run
with perfect oracle independence tests, Conditions (C1) and
(C2) then have the following implications.
Theorem 2. As before we assume the causal direction to be
X → Y and that the assumptions of Model 1 are satisfied.
If moreover condition (C1) holds, then
d(X|Y) := edgeDens(GX|Y)− edgeDens(GX) > 0. (1)

If condition (C2) holds, then
d(Y|X) := edgeDens(GY|X)− edgeDens(GY) < 0. (2)

In either case, we have d(X|Y) > d(Y|X) and the causal
direction can thus be inferred from the sign of d(X|Y) −
d(Y|X).

As a consequence, when the causal direction is unknown,
we can infer it from the observational distribution by com-
puting d(X|Y) and d(Y|X) and choosing X as the cause if
the former is larger and Y if the latter is larger. Note that this
approach also works when X and Y have different internal
edge densities.
In Model 2 we have to replace GX by the undirected condi-
tional independence graph G′X and GX|Y by the graph G′X|Y
that has edges Xi −Xj iff

Xi ̸ |= Xj |X\{Xi, Xj},Y.

If we now replace d(X|Y), d(Y|X) by

d′(X|Y) := edgeDens(G′X|Y)− edgeDens(G′X), (3)

and
d′(Y|X) := edgeDens(G′Y|X)− edgeDens(G′Y), (4)

we still observe empirically (see below) that the sign of
d′(X|Y)−d′(Y|X) is able to read the causal direction from
the observational distribution quite efficiently.

Algorithms for Cause-Effect Identification
We now present two algorithms for cause-effect identifi-
cation that are tailored to the two different models. 2G-
VecCI.PC is particularly useful if the user believes the
assumption of Model 1 to be valid. Recall that the PC-
algorithm is an algorithm for causal discovery on scalar vari-
ables that consists of a skeleton phase to identify the skele-
ton of the causal graph and an orientation phase to determine
causal directions. For the computation of edge densities, 2G-
VecCI.PC will use the PC-algorithm’s skeleton phase.

Algorithm 1: 2G-VecCI.PC
Data: two arrays containing samples of X and Y,

parameter α ∈ [0, 1].
Result: variable with values ’X is the cause of Y’, or

’Y is the cause of X’, or ’Causal direction
cannot be determined’.

1 Run skeleton phase on the components of X;
2 Compute

̂edgeDens(GX) = number of edges found in skeleton phase
edgeMax ;

3 Run skeleton phase on the components of X with Y
added to the conditioning set of every independence
test;

4 Compute ̂edgeDens(GX|Y) and
̂d(X|Y) = ̂edgeDens(GX|Y)− ̂edgeDens(GX);

5 Repeat (1) to (4) with exchanged roles of X,Y to get
̂d(Y|X);

6 Compute Crit = ̂d(X|Y)− ̂d(Y|X);
7 if |Crit| < α then return
8 ’Causal direction cannot be determined’;
9 if Crit > α then return ’X is the cause of Y’;

10 if Crit < −α then return ’Y is the cause of X’;

The parameter α ∈ [0, 1] is a sensitivity parameter that
controls the algorithm’s agnosticism. If α is chosen large,
then it will return a definite result only in clear cut cases.

If 2G-VecCI.PC is run with a consistent independence
test, i.e. with one that recovers conditional independence re-
lations perfectly in the infinite sample limit, it consistently
estimates d(X|Y) and d(Y|X). Note that this also applies to
nonlinear relations, our approach does not rely on functional
assumptions. Therefore, the algorithms consistency follows
directly from Theorem 2.

Corollary 3. If the assumptions of Model 1 are satisfied and
if at least one of (C1) or (C2) holds, then 2G-VecCI.PC run
with a consistent CI test returns the correct causal direction
in the infinite sample limit.

The above result is fully non-parametric, but in practice,
under appropriate assumptions, one way to include Y as
a conditioning set for independence tests within X for
computing d(X|Y), is to regress Y on X and run skeleton
phase on the residuals of this regression, and vice-versa for
d(Y|X). In particular, if the relationship between groups
is assumed linear, this is our method of choice. As an
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alternative to 2G-VecCI.PC, it is also possible to run a ’one
sided’ version that only computes ̂d(X|Y) (or ̂d(Y|X))
and decides solely based on its sign. This version of the
algorithm is computationally less costly but we have found
it to be more frail to statistical errors than the full version in
practice.

Our second algorithm 2G-VecCI.Full differs from 2G-
VecCI.PC in that skeleton phase of the PC algorithm is re-
placed by independence tests

Xi |= Xj |X\{Xi, Xj},
Xi |= Xj |X\{Xi, Xj},Y, ∀i, j,

to compute edge densities for d′(X|Y) since we are inter-
ested in the (conditional) dependence graph. Again, it is rea-
sonable to regress X on Y in many practical settings and
to perform independence tests on the residuals. We proceed
analogously with X and Y exchanged to compute d′(Y|X).
Another remark of practical importance is that 2G-
VecCI.Full is also applicable in the context of Model 1,
although it measures the edge densities of the moralized
graph of the causal DAGs, rather than the edge densities of
the DAGs itself (see the appendix for the definition of the
moralized graph). In this sense, 2G-VecCI.Full is more gen-
eral than 2G-VecCI.PC. However, if the causal DAG over
a group differs dramatically from its moralized graph, 2G-
VecCI.PC should be preferred. As an extreme example, con-
sider the case where there is Xi ∈ X that is a common child
of all other elements of X and similarly Yj ∈ Y that is a
common child of all other elements of Y. In this situation,
the moralized graph over each group would be fully con-
nected (with or without conditioning) and 2G-VecCI.Full
would not be suitable.

Experimental Results
Simulated Data
We depict several results for 2G-VecCI.PC and 2G-
VecCI.Full for linear and nonlinear (quadratic) models in the
main text. For linear models we generate the empirical distri-
butions of X and ηY by linear SCMs with randomly chosen
coefficients and Gaussian noises with randomized variances
in the range [0.5, 2.0]. We then generate a random n × m
interaction matrix A and set Y = AX + ηY. Models vary
along the following parameters:

• sample size (between 50 and 500);
• group sizes n and m (between 3 and 100);
• edge densities within X and ηY (between 1% and 90%

of all possible edges);
• density of the interaction matrix A (between 1% and 90%

of all possible entries non-zero);
• effect size, i.e. size of the entries in A (uniformly ran-

domly drawn from different intervals).

For each parameter choice, 100 random models are gen-
erated. In both algorithms, we test for conditional inde-
pendencies using the partial correlation test at significance
level α̃ = 0.01. We choose the sensitivity parameter to be

Algorithm 2: 2G-VecCI.Full
Data: two arrays containing samples of X and Y,

parameter α ∈ [0, 1].
Result: variable with values ’X is the cause of Y’, or

’Y is the cause of X’, or ’Causal direction
cannot be determined’.

1 for Xi ̸= Xj ∈ X do
2 test Xi |= Xj |X\{Xi, Xj} ;

3 if dependent then ̂edgeCount(G′X)+ = 1;
4 test Xi |= Xj |X\{Xi, Xj},Y ;

5 if dependent then ̂edgeCount(G′X|Y)+ = 1;
6 end

7 Compute ̂edgeDens(G′X) =
̂edgeCount(G′

X)

edgeMax ;

8 Compute ̂edgeDens(G′X|Y) =
̂edgeCount(G′

X|Y)

edgeMax ;
9 Compute

̂d′(X|Y) = ̂edgeDens(G′X|Y)− ̂edgeDens(G′X);

10 Repeat 1-9 with X,Y exchanged to get ̂d′(Y|X);

11 Compute Crit = ̂d′(X|Y)− ̂d′(Y|X);
12 Repeat steps 7-10 of 2G-VecCI.PC.

α = 0.01 if not specified differently. We also compare our
algorithms to existing approaches, see below. Computations
were done on BullSequana XH2000 with AMD 7763 CPUs.
We observe the following:

• Generally speaking, 2G-VecCI.Full outperforms 2G-
VecCI.PC on our simulated data even though the data is
generated by a causal model.

• Performance increases with increasing effect size and in-
creasing interaction density and decreases with increas-
ing edge densities within variable groups.

• More precisely, both algorithms perform best when de-
pendencies within both variable groups are sparse to
medium sparse (< 10% of all possible edges). Neverthe-
less, for high sample sizes (e.g. 500), the correct causal
direction is still inferred reliably for large groups (100
variables per group) even if variable groups are quite
dense (30% of all possible edges).

• For the algorithms to perform well, the interaction matrix
should not be too sparse (i.e. < 10% of non-zero entries)
and effect sizes should not be too small < 0.1.This type
of ’weak mechanism problem’ is typical for constraint-
based causal inference algorithms in general as one op-
erates close to the non-faithful regime.

All code is available at https://github.com/JonasChoice/
2GVecCI.

Complexity of 2G-VecCI.PC and 2G-VecCI.Full As in
other PC-based methods, the number of CI tests run by 2G-
VecCI.PC is data dependent and may increase exponentially
in the worst case, i.e. for high group and interaction densi-
ties where separating sets need to be large. 2G-VecCI.Full
on the other hand runs 2(n2 +m2) CI tests where n,m are
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the group sizes, independent of the specifics of the data (but
with large conditioning sets). Therefore, if groups and in-
teractions are assumed very sparse, 2G-VecCI.PC may be
less costly than 2G-VecCI.Full while 2G-VecCI.Full should
be preferred over 2G-VecCI.PC when groups are assumed to
be reasonably dense and in practice, we have typically found
2G-VecCI.Full to perform significantly faster. For an in-
depth discussion on computational cost of the PC-algorithm,
we refer the reader to Kalisch and Bühlmann (2007) and Le
et al. (2019).

To test our methods for nonlinear interactions, ground
truth data is generated as in the linear case except that we
use the model Y = AX2 + ηY, where X2 is shorthand for
the vector of squared entries of X.

Here, our methods are affected more strongly by in-
creasing group sizes as nonlinear CI-tests tend to be much
slower than tests for partial correlation. Nevertheless, 2G-
VecCI.Full run with the Gaussian Process distance correla-
tion independence test still finds the correct causal direction
significantly better than a random choice would for groups
of size 15 (with 100 samples) and 25 (with 200 samples), see
Figure 4. At present, we did not implement non-linear in-
teractions for 2G-VecCI.PC. For large groups, performance
could potentially be sped up by reducing dimensions lo-
cally. For instance, if the data is structured spatially, small
subregions could be averaged to scalar variables to obtain
a coarser variable group. The approach of Chalupka, Eber-
hardt, and Perona (2017) might be helpful here and combin-
ing it with our work might be an avenue for future research.

Comparison to Other Methods
Two established methods for inferring causal relations be-
tween variable groups are multivariate LiNGaM (Shimizu
et al. 2006) (Entner and Hoyer 2012) and the Trace Method
(Janzing et al. 2009) (Zscheischler, Janzing, and Zhang
2012). In contrast to our methods, both of these techniques
assume interactions to be linear and LiNGaM additionally
requires non-Gaussian noise to be applicable. In simula-
tions with linearly interacting groups and Gaussian noise,
the trace method and both versions of 2G-VecCI perform
comparably well, see Figures 2, 3 and 10, although the
trace method is significantly faster. We also analysed the
performance of our method against a baseline PC algo-
rithm (Vanilla-PC) by treating each component in the vector-
valued variables as a separate node and counting the arrow
directions from (nodes belonging to) one group to the other.
In general our methods outperform Vanilla PC except when
groups are small and the interaction matrix is sparse, see
Figures 2 and 3 as well as Section 12 and Figures 8, 9 in the
supplement available at https://arxiv.org/abs/2209.14283.

A Real-World Example
In order to test our algorithms in a typical causal discov-
ery setting in Earth sciences, we consider surface tempera-
tures over the ENSO 3.4 region and over British Columbia
(denoted by BCT) from 1948-2021. We consider this exam-
ple because a causal effect of temperatures in the tropical
pacific on those in North America is established in climate

science. Additionally, Runge et al. (2019) used this exam-
ple to test the PCMCI algorithm and found a causal link
Ninot−2 → BCTt, i.e. at a time-lag of two months.

The data is first de-seasonalized and any long-term trend
is removed from the raw time series with a Gaussian ker-
nel smoothing mean with a bandwidth of σ = 120 months
as in Runge et al. (2019). Furthermore, in order to mitigate
auto-correlation in time, we consider means of ENSO tem-
perature anomalies from October to December and means
of BCT anomalies from January to March, leading to 73
samples each for the two groups X and Y. To get more ro-
bust results, we consider different coarse grainings of the
two regions, for instance every second grid-box for ENSO
and every third grid-box for BCT anomalies. This has the
additional effect of reducing group sizes in comparison to
the sample size. We moreover reject coarse grainings that
correspond to a difference of more than 10 grid-boxes be-
tween the two groups, in order to avoid a bias due to region
sizes. Algorithm 2G-VecCI.Full with the partial correlation
CI-test then computes Crit = ̂d′(X|Y)− ̂d′(Y|X), see (3)
and (4). We find the mean and the standard deviation of the
Crit values to be µ = 0.031 and σ = 0.063, respectively,
indicating a causal effect of ENSO on BCT. If the sensitivity
parameter α is chosen to be 0.01, then the fraction of cor-
rect inferences is 0.59 and the fraction of wrong inferences
is 0.27. Thus 2G-VecCI.Full deduces the correct casual di-
rection Nino→ BCT with high probability. Algorithm 2G-
VecCI.PC with partial correlation and α = 0.01 on the other
hand yields µ = 0.001 and σ = 0.019, respectively and is
thus indecisive. We attribute the low detection power of 2G-
VecCI.PC to the reduced effect size arising from unobserved
confounders and insufficiently mitigated auto-correlation in
this simplified study. NCEP-NCAR Reanalysis 1 data was
provided by NOAA PSL, Boulder, Colorado, USA, from
their website at https://psl.noaa.gov, see Kalnay et al. (1996).

Discussion and Outlook
We have introduced two new algorithms to infer causal di-
rection between two potentially high-dimensional groups of
variables and provided a theoretical analysis of groupwise
causal inference in the DAG-based causality framework.

The main strengths of our work are that it contains a
novel identifiability result for the unidirectional causal vec-
tor model and practical implementations using density esti-
mates of the vector-valued variables. It is comparable to the
trace method in the high sample regime when interactions
are linear and better when the group sizes are large and in-
teractions are sparse. Moreover our methods are also able to
deal with non-linear interactions. Currently, the main weak-
nesses are that we work with an i.i.d. assumption on the data
samples and that unobserved confounding variables are not
addressed. Furthermore, our algorithms have slower runtime
than the trace method or dimension reduction techniques.

In future work, we plan to extend this work to the setting
of multiple variable groups similar to Parviainen and Kaski
(2017) as well as to use partial dimension reduction tech-
niques. We also plan to relax the i.i.d. assumption to better
deal with autocorrelations following Runge et al. (2019).
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(a) 2G-VecCI.PC (b) 2G-VecCI.Full (c) Vanilla-PC (d) Trace Method

Figure 2: Performance of 2G-VecCI.PC, 2G-VecCI.Full, Vanilla-PC and the trace method for groups of size 30 with 100
available samples and linear interactions. Performance is shown along increasing density of the interaction matrix A, and
percentages are averaged across different parameters for internal group densities (1%, 5%, 10%, 30% of all possible edges
present). Non-zero entries of A are drawn uniformly randomly from [−0.7, 0.7] and 100 random models are run per parameter
combination. All approaches except Vanilla PC recover the correct causal direction well. Vanilla-PC is challenged by dense
interaction matrices as this increases the overall density of the causal graph over all microvariables. We set the sensitivity
parameter of Vanilla-PC to 10−4 to ensure that the lack of performance is not due to an overly conservative choice.

(a) 2G-VecCI.PC (b) 2G-VecCI.Full (c) Vanilla-PC (d) Trace Method

Figure 3: Performance of 2G-VecCI.PC, 2G-VecCI.Full, Vanilla-PC and the Trace Method for groups different sizes and low
densities (10%). The density of the interaction matrix A are set to 50%. Non-zero entries of A are drawn uniformly randomly
from [−0.7, 0.7] and 100 random models are run per parameter combination with 100 samples each. We set the sensitivity pa-
rameter of both 2G-VecCI.PC and Vanilla-PC to 10−4. Vanilla PC performs well for small groups but decreases in performance
as group sizes grow.

(a) Nonlinear, group size 15 (b) Nonlinear, group size 25

Figure 4: Performance of 2G-VecCI.Full for quadratic interactions of size 15 (left) and 25 (right) with 200 samples. Perfor-
mance is shown along increasing density of the interaction matrix A. Non-zero entries of A are drawn uniformly randomly
from [−0.7, 0.7], groups are assumed medium dense on the left (≈ 5 connections per variable) and sparse on the right (≈ 3
connections per variable). 50 random models are run per choice of parameters. In both cases 2G-VecCI.Full finds the correct
causal direction better than chance would except when A is extremely sparse.
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