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Abstract
Learning from successful applications of methods originating in statistical mechanics, com-
plex systems science, or information theory in one scientific field (e.g., atmospheric physics
or climatology) can provide important insights or conceptual ideas for other areas (e.g.,
space sciences) or even stimulate new research questions and approaches. For instance,
quantification and attribution of dynamical complexity in output time series of nonlinear
dynamical systems is a key challenge across scientific disciplines. Especially in the field of
space physics, an early and accurate detection of characteristic dissimilarity between nor-
mal and abnormal states (e.g., pre-storm activity vs. magnetic storms) has the potential to
vastly improve space weather diagnosis and, consequently, the mitigation of space weather
hazards.

This review provides a systematic overview on existing nonlinear dynamical systems-
based methodologies along with key results of their previous applications in a space physics
context, which particularly illustrates how complementary modern complex systems ap-
proaches have recently shaped our understanding of nonlinear magnetospheric variability.
The rising number of corresponding studies demonstrates that the multiplicity of nonlin-
ear time series analysis methods developed during the last decades offers great potentials
for uncovering relevant yet complex processes interlinking different geospace subsystems,
variables and spatiotemporal scales.

Keywords Solar wind – magnetosphere – ionosphere coupling · Magnetic storms ·
Magnetospheric substorms · Space weather · Nonlinear dynamics · Complex systems

1 Introduction

Solar coronal mass ejections (CMEs) colliding at high speeds of up to 3000 km/s with the
Earth’s magnetosphere can cause extremely intense magnetic storms and sudden magnetic
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field changes (and electric field pulses) both in the magnetosphere and at the Earth’s surface.
Tsurutani and Lakhina (2014) found that a “perfect” interplanetary CME (ICME) could cre-
ate a magnetic storm with intensity up to the saturation limit, with the disturbance storm-time
index (Dst) ∼ −2500 nT, a value greater than the one estimated for the famous Carrington
storm. The interplanetary shock would arrive at Earth within ∼12 h with a magnetosonic
Mach number ∼45, comparable to astrophysical shocks. Moreover, the associated magne-
tospheric electric field would form a new relativistic electron radiation belt. Eventually, the
dayside and nightside shock-related auroral events might cause geomagnetically induced
currents (GICs) at the surface of the Earth, which in turn could lead to the collapse of power
systems over large geographical areas. Recently, Welling et al. (2021) used the estimates
provided by Tsurutani and Lakhina (2014) to drive a coupled magnetohydrodynamic-ring
current-ionosphere model of geospace to obtain more physically accurate estimates of the
geospace response to such an event. The new result regarding GIC levels exceeds values ob-
served during historic extreme events, including the March 1989 event that brought down the
Hydro-Québec power grid in eastern Canada. Such an extreme space weather scenario illus-
trates, on the one hand, the need for reliable operational space weather prediction schemes
but also, on the other hand, the necessity to understand the underlying physical mechanisms
that correspond to an open spatially extended nonequilibrium (input-output) dynamical sys-
tem, as is the Earth’s magnetosphere (Consolini et al. 2008; Balasis et al. 2009).

The solar wind-magnetosphere system has been shown to be nonlinear (e.g., Tsuru-
tani et al. 1990; Johnson and Wing 2005; Reeves et al. 2011; Wing et al. 2016 and refer-
ences therein). Indeed, since the early 1990s it was shown how the dynamics of the Earth’s
magnetosphere-ionosphere system in response to the changes of the interplanetary medium
and to the solar wind displays a nonlinear, chaotic and near-criticality (avalanche) dynamics
especially during magnetospheric substorms (e.g., Chang 1992, 1998, 1999; Klimas et al.
1996; Consolini et al. 1996; Consolini 1997; Uritsky and Pudovkin 1998; Lui et al. 2000;
Uritsky et al. 2002). In particular, in Consolini et al. (1996) evidenced that the character
of the magnetospheric dynamics as monitored by the auroral electrojet (AE) index cannot
be simply assumed to be low-dimensional, showing, indeed, multifractal features similar
to intermittent turbulence. Later, analyses on the busty-dynamics and on the self-similarity
features of geomagnetic indices and auroral images (Consolini 1997; Uritsky and Pudovkin
1998; Chapman et al. 1998; Lui et al. 2000; Klimas et al. 2000; Uritsky et al. 2002) suggested
that the magnetospheric dynamics display features similar to those of a non-equilibrium
system near a critical point of the dynamics (see also, Chang 1999; Consolini 2002). In
this framework, the magnetospheric substorms, which are among the main manifestations
of the solar wind-magnetosphere-ionosphere coupling, were associated with the occurrence
of non-equilibrium dynamical phase transitions, mainly involving the plasma confined in
the central plasma sheet (CPS) region of the near-Earth magnetotail (Sitnov et al. 2000,
2001; Sharma et al. 2001) – a region which is characterized by turbulence and a complex
dynamics (Borovsky et al. 1997; Borovsky and Funsten 2003). Nowadays, the dynamics of
the Earth’s magnetosphere is regarded as an open spatially extended non-equilibrium sys-
tem displaying dynamical complexity and self-organization (Klimas et al. 2000; Consolini
et al. 2008; Borovsky and Valdivia 2018). The term dynamical complexity refers to a spe-
cific quantifiable physical property and has not to be read as a jargon to refer to fascinating
complicated phenomena. According to Chang et al. (2006) dynamical complexity is a phe-
nomenon deeply rooted in the nature that emerges in nonlinear interacting systems, when a
multitude of structures/subsystems at different spatio-temporal scales are formed and inter-
act generating a pseudo-stochastic dynamics. Furthermore, a peculiar feature of dynamical
complexity is that the evolution laws of the global system cannot be directly surmised from
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the elemental laws that regulate the dynamics of the single parts. In this framework, the
Earth’s magnetosphere-ionosphere system, which consists of several nonlinearly interacting
plasma regions and, inside of each of these regions, of different physical structures at differ-
ent spatio-temporal scales, can display dynamical complexity in response to solar wind and
interplanetary medium changes.

Dynamical complexity detection for output time series of complex systems is one of
the foremost problems in many fields of science. Especially in geomagnetism and mag-
netospheric physics, accurate detection of the dissimilarity between normal and abnormal
states (e.g., pre-storm activity and magnetic storms) has the potential to vastly improve space
weather diagnosis and, consequently, support the mitigation of space weather hazards. Sev-
eral studies have reported advances in this context by applying complex systems tools like
scaling exponents, entropies, functional network analysis, or recurrence analysis to different
types of observational data including geomagnetic indices, space and ground magnetometers
(Balasis et al. 2006, 2008, 2009, 2011a, 2013, 2018, 2020; Consolini et al. 2021; De Miche-
lis and Consolini 2015; De Michelis et al. 2016, 2017a, 2020, 2021; Dods et al. 2015, 2017;
Donner and Balasis 2013; Donner et al. 2018, 2019; Papadimitriou et al. 2020; Tindale and
Chapman 2016; Wing et al. 2022).

Herein we present specific aspects of geomagnetic variability (in both time and space)
that have already been successfully addressed with complex systems methods. By utilizing
a variety of complementary modern complex systems-based approaches, an entirely novel
view on nonlinear magnetospheric variability is obtained. For example, nonlinear measures
based on the analysis of recurrences of previous states (Marwan et al. 2007; Donner et al.
2011a, 2011b) have been successfully applied to studying low-latitude geomagnetic indices
Dst and SYM-H along with characteristic variables of the solar wind (Donner et al. 2018,
2019; Alberti et al. 2020b). Specifically, the time-dependent coupling between the solar wind
and the magnetosphere along with the relationship between magnetic storms and magneto-
spheric substorms is of paramount importance for space weather processes. However, the
storm/substorm relationship is one of the most controversial aspects of magnetospheric dy-
namics (Gonzalez et al. 1994; Kamide et al. 1998; Sharma et al. 2003; Daglis et al. 2003). In
order to further disentangle this relationship and the role of relevant solar wind variables as
drivers and mediators, multivariate causality measures employing the concept of graphical
models constitute one particularly promising tool (Runge et al. 2015, 2019a). Toward this
goal, in a recent article Runge et al. (2018) highlighted the significant potential of combining
a causal discovery algorithm with a conditional independence test based on conditional mu-
tual information for tackling contemporary research questions in magnetospheric physics,
such as the storm-substorm relationship. Accounting for possible interactions between pro-
cesses at different temporal scales, the aforementioned approaches can be combined with
a recently developed framework for studying cross-scale interdependencies in complex dy-
namics (Paluš 2014).

Taken together, the multiplicity of recently developed approaches in the field of nonlinear
time series analysis offers great potential for uncovering relevant yet complex processes in-
terlinking different geospace subsystems, variables and spatio-temporal scales. Nowadays,
information science and dynamical systems theory play a fundamental role in understanding
and predicting the behaviour of the coupled solar-terrestrial system (Baker 2020). There-
fore, this review provides a first-time systematic overview of relevant complex systems-
based techniques and their applicability in the context of geomagnetic variability. Section 2
presents some particularly valuable concepts of dynamical systems theory, while Sects. 3
and 4 concentrate on substorm and storm research, respectively. Section 5 deals with the
solar wind driving of radiation belt dynamics, while Sect. 6 provides a perspective on how
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systems science methodology can be further used to advance physical understanding of the
near-Earth electromagnetic environment. The review concludes with an outlook.

2 Dynamical Systems Theory: Core Concepts and Their Practical
Application

2.1 Dynamical Systems Theory, Statistical Physics and Chaos

Dynamical Systems Theory originated in Newtonian mechanics and has emerged as a uni-
versal approach to investigate the time evolution of a vast range of systems in physics,
chemistry, biology, engineering and economy (Strogatz 2018; Contopoulos 2002), to name
just a few. In general, a set of variables, each denoting a particular property, characterizes
the instantaneous behaviour of the system. For example, a simple pendulum can be fully
described by two parameters, its angular position and angular velocity. This set of variables
represents the state of the system and the total number of such variables is called the number
of degrees of freedom. All possible states of a system construct the state space, the dimen-
sion of which is equal to the number of degrees of freedom. In fact, at every time step, each
state is represented by a point in the state space and its temporal evolution can be viewed as
a sequence of states in this space, called the system trajectory. In many cases, the trajectory
brings the system into a particular state or a set of states (a region in the state space) in
long time, known as the attractor of the system. An attractor can be a fixed point, in which
the system reaches an equilibrium state, or a limit cycle indicating a final stable oscillatory
situation. However, sometimes the system can also end in a non-oscillatory motion within a
complex-shaped set in the state space known as a strange attractor. Such systems are locally
unstable yet globally stable.

The most common way to describe how the system state evolves is a set of continuous
or discrete differential equations (also distinguished by the nomenclature of differential and
difference equations, respectively), based on the governing laws among system variables.
This also requires knowing the initial conditions (state) of the system. In principle, given
the initial conditions (present state), one can predict the long-time behaviour (future states)
of the system, deterministically. However, this may only be feasible for low-dimensional
cases, i.e., systems with small numbers of degrees of freedom. In fact, in high dimensional
systems with large numbers of degrees of freedom, like almost all real-world systems, one
cannot solve such high dimensional equations of motions in practice.

One of the most successful theoretical frameworks of physics that deals with such high
dimensional cases is statistical mechanics. Indeed, due to the incomplete knowledge of the
microscopic world there should be some uncertainty in the system behaviour, thus bringing
probability theory and statistics as well as entropy as a generic concept to quantify this
uncertainty to the front. As a consequence, one can describe the (average) macroscopic
behaviour of the system in terms of microscopic properties. In this approach, instead of
working with a single state, one deals with a large number of copies of the system in its
different possible states, referred to as a statistical ensemble of the system. This probabilistic
point of view has helped us to investigate and understand a multitude of phenomena in
nature, from the behaviour of elementary particles (Kardar 2007) to Earth and space sciences
(Consolini et al. 2008; Balasis et al. 2013; Livadiotis 2018) and beyond.

Note that many concepts introduced in statistical physics are only applicable in equilib-
rium situations, in which the statistical ensembles are time independent. However, almost all
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real-world systems are changing over time, and exchanging mass and energy with their envi-
ronment, i.e., they are open systems. Although non-equilibrium statistical physics can deal
with many non-equilibrium systems, still many natural systems are far beyond the domain
of non-equilibrium statistical physics. The seminal works of Einstein (Einstein 1905) and
Langevin (Langevin 1908) on Brownian Motion introduced another probabilistic approach
to overcome the high dimensionality of the system, especially in non-equilibrium situations.
In this methodology, one focuses only on a few relevant and useful variables, and considers
the effect of all other unknown dynamical variables as a noise, i.e. a stochastic term, and im-
plements this into differential equations among those small number of variables. These types
of equations are called stochastic differential equations and have found their applications in
many research fields including physics, engineering, economics and finance, biology and
medicine (Mao 2007). Such a stochastic point of view implies that any prediction about the
system’s future evolution is also probabilistic.

The main problem here is that we usually do not know the noise term and hence need
to make some assumptions about the nature of the noise. The validity of our assumptions
usually can be verified by the comparison between our predictions and the experimental
observations. Another possible source of stochasticity is the noise that arises from inaccu-
rate measurements. In such cases, we can also implement the role of such observational
noises into the corresponding dynamical equations, as mentioned above. Note that, instead
of solving the stochastic dynamical equations between different system parameters, one
can study the evolution of the probability density function of those parameters, by solv-
ing a deterministic differential equation, called Fokker-Planck equation (Kadanoff 2000) or,
more generally, the Chapman-Kolmogorov equation (Kolmogorov 1938). This means that,
the stochasticity aspect of the dynamics is inherited in the probability density that can give
us remarkable information about the system dynamics, though in most nonlinear problems
solving the Chapman-Kolmogorov or Fokker-Planck equation is almost impossible and one
can only approximate the probability density, at best. This kind of stochastic approach has
already found application in a broad range of research areas, such as climate modeling (Has-
selmann 1976) and space physics (Subbotin et al. 2010; Noble and Wheatland 2012).

On the other hand, the lack of precise knowledge about the initial conditions can be an-
other source of (apparent) stochasticity in the system’s behaviour, and thus be the source of
unpredictability even in low-dimensional deterministic systems. This arises from the high
sensitivity of the system dynamics to its initial conditions, in which a small uncertainty
in the initial states, such as those due to errors in measurements or rounding errors in nu-
merical calculations, often grow exponentially with time. This divergence of initially close
trajectories in long time can be characterized by a quantity called Lyapunov exponent that
measures the rate of this separation. This divergence means that the long-time behaviour of
the system is unpredictable in general without the presence of any stochastic elements in
its dynamics. Such behaviour is characteristic of nonlinear dynamical systems and classi-
fied as chaotic behaviour in which the system eventually reaches a strange attractor. Many
physical, social, biological and economic systems are examples of such chaotic behaviour
(Tsonis 1992), with many applications in climate and space sciences (Chen and Palmadesso
1986; Crosson and Binder 2009). Although many systems have been identified as examples
of low-dimensional deterministic chaos, using various methods which estimate chaos-based
parameters like dimension, number of degrees of freedom and Lyapunov exponents from ex-
perimental time series (Nicolis and Nicolis 1984; Fraedrich 1986; Tsonis and Elsner 1988),
however, many of these findings were challenged. For instance, it has been shown in at-
mospheric dynamics that the reliability of such chaos-identification algorithms is limited
and the observed low-dimensional weather or climate attractors have been considered as
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spurious results (Grassberger 1986; Lorenz 1991; Paluš and Novotná 1994). It asserts that
the application of chaos-based measures like fractal dimensions or Lyapunov exponent can
be unreliable in high dimensional or stochastic processes. After the critical re-evaluation
of concepts based on purely deterministic systems, various types of information-theoretic
measures have been proposed.

In the following, we will detail some fundamental concepts of dynamical systems the-
ory and nonlinear time series analysis that have recently proven useful for gaining deeper
insights into the nonlinear dynamical characteristics of the near-Earth electromagnetic envi-
ronment.

2.2 Stochastic Time Series Properties: Long-Range Dependence, Fractals and
Multi-Fractals

Long-range dependence is a wide-spread feature of real-world dynamical systems. By defi-
nition, it is associated with a linear time series analysis concept, the characteristic behaviour
of a signal’s autocorrelation function (exhibiting power-law decay for many real-world geo-
physical systems) or, equivalently, the associated power spectral density (also displaying a
characteristic power-law scaling), both of which are intimately related via a simple Fourier
transform. While the scaling behaviour of the autocorrelation function is generally hard to
identify for time series of limited length, the corresponding behaviour of the spectral density
provides an easy and robust means to estimating a characteristic quantity, the power spectral
exponent β . This exponent is intimately related to another classical measure of long-range
dependence, the celebrated Hurst exponent H originally introduced by the British hydrol-
ogist E.E. Hurst in the 1950s, via β = 2H + 1. In the context of river discharges, it has
been argued that long-range dependence is naturally generated when superimposing various
“microscopic” (stochastic) processes with heterogeneous parameters, or, alternatively, by
performing a fractional-order integration of an input signal as a kind of nonlinear filter. Be-
sides the power spectral density, various types of other nonlinear scaling characteristics have
been suggested for estimating H , including rescaled-range and detrended fluctuation anal-
ysis as two widely employed examples. A systematic inter-comparison between the three
aforementioned techniques can be found in Witt and Malamud (2013).

The observation of long-range dependence in stochastic processes is related to a sta-
tistical self-similarity property of the time series graph, which is characterized by another
scaling exponent measuring the roughness of this object in two-dimensional space as the
scale of resolution is successively varied. Estimators of this scaling exponent quantify a
fractal dimension D from a univariate stochastic process perspective, since their definition
relies on fundamental concepts from fractal geometry. In the case of self-similar time se-
ries and the absence of heavy-tailed probability distribution functions, one finds another
straightforward relationship between fractal dimension and Hurst exponent as D + H = 2.
There exist various approaches for estimating D from a univariate time series, including
box-counting approaches, the Higuchi fractal dimension (Higuchi 1988), and Katz fractal
dimension (Katz 1988), to mention only a few common examples. It should be noted, how-
ever, that the concept of a fractal dimension of the time series graphs, although rooted in
fractal geometry, is intimately related with the linear time series property of power spec-
tral density, and hence may not necessarily provide further insights into the studied signal
beyond the latter. In essence, estimates of the Hurst exponent and the fractal dimension of
the time series graph can be used interchangeably as long as there are no further complica-
tions like heavy-tailed probability distributions as commonly associated to intermittency. By
contrast, in case of intermittent signals often encountered in space physics, both concepts
actually provide complementary information.
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2.3 Phase Space Based Methods

The aforementioned concepts of univariate time series analysis consider an observational
time series as a unique source of information whose statistical properties exhaustively char-
acterize the system under study, which however will typically be characterized by far more
degrees of freedom than just one variable. In order to account for this fact, the concept
of attractor reconstruction by embedding has become a core approach in dynamical sys-
tem theory. Rooted in deep mathematical arguments, embedding theorems imply that under
relatively general conditions, the action of unobserved variables of deterministic dynami-
cal systems can be qualitatively reconstructed by deriving independent coordinates from a
univariate time series, which are most commonly provided in terms of so-called delay co-
ordinates, i.e. exact time-shifted replications of the original data sequence (Takens 1981).
Accordingly, an m-dimensional state vector X can be reconstructed from scalar time series
x(t) as X(t) = [x(t), x(t − η), . . . , x(t − (m − 1)η)], where η is the backward time-lag that
can, for example, be estimated from the first minimum of the mutual information (Fraser
and Swinney 1986). In general, this time shift (embedding delay) and the number of shifts
(embedding dimension m) should be chosen such that the individual coordinates are suffi-
ciently independent and their entirety spans a multi-dimensional vector space in which the
information contained by the original time series is completely unfolded among the different
dimensions.

Utilizing the multivariate time series originated from time delay embedding, we can char-
acterize the geometric properties of the system under study in the reconstructed phase space.
There exist multiple complementary approaches to obtain useful information from this geo-
metric perspective.

In the 1980s, in the field of dynamical systems, and in parallel also in the framework of
fluid turbulence, different measures of complexity and scale-invariant features of physical
systems have been introduced. They are mainly based on the concept of scaling, recalling
the definition of a fractal, i.e., a geometric object displaying self-similarity and fine struc-
ture at small scales. These measures, usually called fractal dimensions, account for how the
details change with the scale we are looking for. From a mathematical point of view, fractals
are described via the scaling properties of a partition function based on a coarse-grained in-
variant measure in the probability space. Specifically, if we have a support Ω and we define
a positive measure μ (usually the probability of finding a portion of the state space filled by
points), the partition function Γ (�) is defined as

Γ (�) =
∫

Ω

μ
(
Bx(�)

)−1
dμ(x) (2.1)

that, in the limit of � → 0 displays a scaling-law behavior as

Γ (� → 0) ∼ �−D (2.2)

with D being the so-called fractal or box-counting dimension and Bx(�) a box of size �

centered at x. The latter formalism be generalized to any statistical order q such that

Γq(�) =
∫

Ω

μ
(
Bx(�)

)q−1
dμ(x) ∼ �(q−1)Dq , (2.3)

where the Dq are called generalized fractal dimensions, accounting for the correlation in-
tegrals of q-tuplets of points in the state space. In detail, D0 is the fractal (capacity or
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box-counting) dimensions, D1 is the information dimension, while D2 is the correlation
dimension, accounting for the minimum number of system variables required to reconstruct
the full dynamics of the system in its phase space. The box dimension D0 informs us on
the geometrical features of the phase-space, indicating the minimum number of indepen-
dent directions to be taken into account for confining the phase-space in a given geometrical
shape. In the case of self-similar signals it relates to the Hausdorff dimension and to the
Hurst exponent, informing us on the persistence/anti-persistence nature of the system. The
information dimension D1 is a measure of the randomness of the distribution of points in
the phase-space, strictly linked to the concept of loss of information, i.e., for how long the
system can be accurately predicted. The correlation dimension D2 instead is a measure of
the minimum number of variables (i.e., degrees of freedom) needed to properly describe the
system.

If all Dq take the same values, we call the system under study mono-fractal, otherwise
multifractal. Multifractal dynamics often co-occurs with intermittency phenomena, which
are rather typical in space physics (e.g. the solar wind).

Another way to exploit the geometric properties of the multidimensional trajectory in the
reconstructed phase space is studying the recurrence patterns of previously visited states in
time. Here, recurrence refers to the close encounter of a previous state x, typically defined
as two states on the trajectory having a spatial distance smaller than some predefined thresh-
old ε. This concept of recurrence defines a binary relation between pairs of state vectors that
can be visualized in terms of a so-called recurrence plot (Eckmann et al. 1987), where the
morphology and statistics of patterns consisting of recurrent pairs can be used for defining a
variety of complexity measures that can serve as proxies for predictability, determinism or
laminarity, to mention only a few (Marwan et al. 2007). The density of recurrent pairs in de-
pendence of ε corresponds to the aforementioned correlation integral, and its characteristic
scaling exponent provides an estimator for the correlation dimension D2. In addition, it has
been shown that characterizing the geometry of recurrent state pairs in the multidimensional
phase space in terms of the topological characteristics of the resulting random geometric
graph (Donner et al. 2011b; Donges et al. 2012) results in additional useful measures of
complexity, which have been successfully employed in past studies to differentiate between
the nonlinear fluctuation characteristics of geomagnetic indices during magnetic storms and
quiescent periods (Donner et al. 2018, 2019).

While previous fractal dimension estimates have been based on the concept of scaling
in phase space, in recent years, based on the concept of recurrences, Lucarini et al. (2012)
introduced two dynamical systems metrics. One is the instantaneous dimension d , account-
ing for the active number of degrees of freedom, and the other is the inverse persistence
θ , measuring the short-term stability of the state space trajectory. Let us assume to have a
trajectory in the state space x(t) and x(t∗) to be a reference state of the system, i.e., a given
configuration of the near-Earth electromagnetic environment (as an example, the quiet mag-
netosphere). If we define g(t∗) as the Euclidean distance between x(t) and the reference
state x(t∗), the probability of logarithmic returns in a sphere centered at t∗ and of radius r is
a generalized Pareto-like distribution whose parameters are directly linked with d and θ . In
the context of near-Earth electromagnetic environment studies these metrics have been em-
ployed by Alberti et al. (2022) to investigate the recurrence statistics of the AL and SYM-H
indices. The main result is the clear dependence of the number of active degrees of free-
dom on the geomagnetic activity. In particular, during substorms the number of degrees of
freedom increases at high latitudes; conversely, during a geomagnetic storm low-latitude
exploits a reduced number of degrees of freedom. These two opposite behaviors can be re-
lated to the fast relaxation processes occurring in the magnetotail and the solar wind driving
effect.
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2.4 Information-Theoretic Approaches

Usually, temporal recordings of some system observables are our only asset to study the sys-
tem of interest. Such time series may be univariate in the scalar case or multivariate when we
deal with more than one observable. The aim is to understand the underlying dynamics of the
system by analysing such deterministic or stochastic time series and extracting information
from them. To quantify their inherent information content, a wide range of information-
theoretic measures have been introduced. Univariate measures usually try to characterize
the complexity of the dynamics like Shannon entropy (Shannon 1948) that shares the for-
malism with the Boltzmann-Gibbs entropic form, Renyi entropy (Rényi 1961), nonextensive
entropy (Havrda and Charvát 1967; Daróczy 1970; Cressie and Read 1984; Tsallis 1988),
Fisher information, Approximate entropy, Sample entropy and Fuzzy entropy (Balasis et al.
2013). However, in multivariate time series, one can ask whether different dynamical vari-
ables evolve independently or are mutually dependent, or whether one variable can influence
other variables of the system. Studying such dependencies between different variables is also
an important area of research, and can be related to questions of correlation and causality.

2.4.1 Entropies and Measures of Complexity

In spite of the immense success of many nonlinear time series analysis approaches with
their broad range of applications, they often suffer from the domain of their applicability
and their necessary assumptions, such as equilibrium-nonequilibrium, stability-instability,
linearity-nonlinearity conditions, etc. As we mentioned before, entropy as a measure of the
amount of uncertainty in statistical physics, has proved itself as significant in understanding
various systems. In 1948, Shannon introduced a similar statistical concept to investigate the
information size of a transmitted message (Shannon 1948), called information or Shannon
entropy. For a discrete random variable X with a set of values Ξ , the Shannon entropy H(X)

is defined as

H(X) = −
∑
x∈Ξ

p(x) logp(x), (2.4)

where p(x) = Pr{X = x}, x ∈ Ξ is the probability distribution function of X. Since this in-
formation entropy is not constrained by the aforementioned particular assumptions needed
to study the underlying dynamics of a system, it opened new paths of research and played
a significant role in the introduction of new statistical techniques (Kullback 1997). In the
late 1950s, Kolmogorov and Sinai demonstrated that using the information theory of Shan-
non, a nonlinear dynamical process can be characterized by an entropy measure called the
Kolmogorov-Sinai entropy (KSE). This entropy is suitable for classification of dynamical
systems and is related to the sum of the positive Lyapunov exponents of the system and
indicates that a nonlinear dynamical system can be represented as an information source
(Billingsley 1965). Thus, information-theoretic measures may help to better understand dy-
namical processes. Indeed, as information can be representative of any physical quantities,
the language of information theory proves to be powerful in investigating different complex
dynamical systems (Brillouin 2013).

Renyi entropy (Rényi 1961) is a generalization of the Shannon entropy, defined as

Hq(X) = 1

q − 1
log

∑
x∈Ξ

p(x)q, (2.5)
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where q is a real parameter characterizing the weights of rare and frequent events, allowing
for scaling analysis of the system. Note that the Shannon entropy is a special case of Hq

for q → 1. For example, Von Bloh et al. (2005) investigated the long-term predictability
of global mean daily temperature data using the spatial patterns of the second order Renyi
entropy H2.

The most generalized and physically constistent nonextensive entropy follows the for-
mulation of Havrda and Charvát (1967), Daróczy (1970) and Tsallis (1988), which may be
found as nonextensive, Tsallis, q-, or kappa entropy, can be considered as a generalization
of the Boltzmann-Gibbs entropy in statistical physics, and is defined as follows:

Sq(X) = k

q − 1

[
1 −

∑
x∈Ξ

p(x)q

]
, (2.6)

where k is a positive constant that includes the Boltzmann’s constant, and q is a real pa-
rameter that characterizes the degree of non-extensivity. For q → 1 one can recover the
Boltzmann-Gibbs entropy, which is a thermodynamic analogy of the Shannon entropy. Tsal-
lis entropy has been widely applied in various fields of research (Tsallis 2009). For example,
Balasis et al. have applied nonextensive entropy to quantify dynamical complexity of mag-
netic storms and solar flares (Balasis et al. 2011b) and of time series of the disturbance storm
time index (Balasis et al. 2008).

In 1925, Fisher introduced a measure of the amount of information that can be obtained
from a set of measurements (Fisher 1925), called Fisher information. One can write the
Fisher information in the discrete form as

F =
N−1∑
n=1

[p(xn+1) − p(xn)]2

p(xn)
, (2.7)

where xn is the random variable X at time n, p(xn) is its probability and N is the total num-
ber of time steps. Fisher information has proved itself as a powerful method to study various
non-stationary and nonlinear time series (Martin et al. 1999). For example, it has been used
to detect dynamical complexity changes associated with geomagnetic jerks (Balasis et al.
2016).

To compare deterministic and stochastic systems, Pincus introduced a new statistic for
experimental time series, called approximate entropy, which is a parameter that measures
correlation or persistence, i.e., low values of approximate entropy indicates that the system
is very persistent, repetitive and predictive, while high values represent high randomness
(Pincus 1991). Sample entropy is a modification of the approximate entropy, proposed in
Richman and Moorman (2000). Both approximate and sample entropy have been used in
various fields. For example, they have been applied in Balasis et al. (2013) to extract the
complexity dissimilarity between different states of the magnetosphere.

Fuzzy entropy is a non-probabilistic concept that quantifies unpredictability of a time
series. Fuzzy entropy is a measure of fuzzy information of a fuzzy system which is quite
different from the Shannon entropy which is based on probability. Indeed, the uncertainty
in fuzzy entropy arises from fuzziness, in contrast to the Shannon entropy where the uncer-
tainty comes from the randomness (Al-Sharhan et al. 2001). Fuzzy entropy can be written
as

S = −
∑

i

[μi logμi + (1 − μi) log(1 − μi)], (2.8)
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where μi is the i-th Fuzzy membership function. Similar to approximate and sample en-
tropies, Balasis et al. also successfully applied Fuzzy entropy to extract the complexity
dissimilarity among different magnetosphere states (Chen et al. 2007, 2009; Balasis et al.
2013).

If applied to simple state discretizations of a univariate time series, the aforementioned
entropy concepts characterize merely higher-order distributional properties. This changes
distinctively if state definitions are taken into account that explicitly include some type of
dynamical perspective, e.g. by studying blocks of discretized states (Ebeling and Nicolis
1992) or their ordinalpatterns (Bandt and Pompe 2002). From the scaling of entropic char-
acteristics with increasingpattern length, it is possible to distinguish complex determinis-
tic from stochastic dynamics. Moreover, there exists a vast range of statistical complexity
measures that can be defined using entropy concepts. Combining entropy and associated
complexity characteristics in a two-dimensional plain (e.g. the complexity-entropy causal-
ity plain or the Shannon-Fisher plain) provides an effective means to distinguish chaos from
stochastic motion (Rosso et al. 2007, Ribeiro et al. 2017).

2.4.2 Information Theoretic Measures of Statistical Association

The classical cross-correlation function provides a standard way to measure the similarity
between the time series of two variables x(t) and y(t). We first define the time series δx(t) =
x(t) − x as the deviation from the time average (indicated by the horizontal bar; similarly

for y(t)). Also the standard deviation of x(t) is given by σX =
√

(δx)2. Then the correlation
function is

CX,Y (τ ) = δx(t) · δy(t + τ)

σXσY

. (2.9)

Note that the correlation is a function of the lag τ of time series y(t) in reference to time
series x(t). While this fundamental measure is restricted to linear dependencies between
the two variables, several information-theoretic measures have been developed to provide
thorough generalizations, including mutual information, conditional mutual information and
transfer entropy.

The average amount of common information, contained in two random variables X and
Y , is quantified by the mutual information I (X;Y ), defined as

I (X;Y ) = H(X) + H(Y ) − H(X,Y ), (2.10)

where H(X,Y ) = −∑
x∈Ξ

∑
y∈ϒ logp(x, y) logp(x, y) is the joint entropy and p(x, y) is

the joint probability density function of X and Y . Thus, by substituting the definitions of
H(X) and H(X,Y ) in I (X;Y ), one gets

I (X;Y ) =
∑
x∈Ξ

∑
y∈ϒ

logp(x, y) log
p(x, y)

p(x)p(y)
, (2.11)

which is an average over log p(x,y)

p(x)p(y)
. This indicates that if two variables X and Y are in-

dependent, i.e., p(x, y) = p(x)p(y) then the mutual information I (X;Y ) tends to zero. In
other words, if X and Y are dependent, then I (X;Y ) > 0. In fact, I (X;Y ) can be considered
as a generalized measure of (cross) correlation between two variables X and Y since, un-
like the common correlation measures that are only able to detect linear dependency, mutual
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information is capable of capturing the general dependency among variables, including non-
linear statistical associations. Note that I (X;Y ) is a symmetric measure under the exchange
of X and Y and thus cannot be used as an appropriate causality measure straight away.

Paluš (1996) introduced an information theoretic measure for classification of complex
time series based on auto-mutual information, characterizing the decay of I [x(t);x(t + τ)],
called coarse-grained entropy rates. This measure quantifies the mutual information between
time series x at time t and its time-lagged version, i.e., x at time t + τ for a time lag τ > 0.
This measure can be considered as a relative measure of regularity and predictability and
also is related to Kolmogorov-Sinai entropy for dynamical systems processes. For instance,
it has been used to classify some physiological signals like electroencephalography (EEG)
and tremor (Paluš 1996).

By investigating the entropy rate of a Gaussian process, Paluš (1997) developed a mea-
sure capable of distinguishing and characterizing different states of chaotic dynamical sys-
tems, called Gaussian process entropy rate. This is indeed a power-spectrum based entropy-
like functional and is related to the Kolmogorov-Sinai entropy of a dynamical system. Such
an entropy rate has been applied in meteorological time series to extract the system com-
plexity (Paluš et al. 2011), for example.

2.4.3 Causality Among Time Series

A popular information-theoretic functional used for inferring causality under appropriate
assumptions is the conditional mutual information (CMI) I (X;Y ∨ Z) of the variables X

and Y given the variable Z, defined as

I (X;Y ∨ Z) = H(X ∨ Z) + H(Y ∨ Z) − H(X,Y ∨ Z). (2.12)

If Z is independent of X and Y , then I (X;Y ∨ Z) = I (X;Y ), demonstrating that I (X;Y ∨
Z) extracts the net shared information between X and Y beyond the information of an-
other variable Z. In order to extract the possible time-delayed relationships among different
variables, one should work with time delayed versions of the abovementioned measures.
For example, if there is a time delay τ between the two variables X and Y , one can de-
fine a time-delayed mutual information as I [X(t);Y (t + τ)], which measures the average
amount of information contained in the process X about the τ -future of the process Y . How-
ever, there is also information about the τ -future of Y contained in Y itself, if X and Y are
not independent. In this respect, the net information about the τ -future of the process Y

which is contained in the process X can be obtained by the conditional mutual information
I [X(t);Y (t + τ) ∨ Y (t)] (Paluš et al. 2001). This measure can extract the coupling direc-
tion in bivariate dynamical systems and indeed is a nonlinear generalization of the Granger
causality (Granger 1969). Schreiber (2000) introduced a measure using the idea of finite-
order Markov processes known as the transfer entropy, which is an equivalent expression
for the time-delayed conditional mutual information defined above.

Note that in empirical experiments usually only one possible dimension of the phase
space is observed for each system. In such situation, by drawing upon phase space recon-
struction by means of time delay embedding, the time-delayed CMI defined above can be
reformulated as

I
(
X(t);Y (t + τ) ∨ Y (t)

)
= I

([
x(t), x(t − η), . . . , x

(
t − (m − 1)η

)];
y(t + τ) ∨ [

y(t), y(t − ρ), . . . , y
(
t − (n − 1)ρ

)])
,

(2.13)
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where η and ρ are time-lags used for the embedding of variables X(t) and Y (t), respec-
tively. Note that here only the information about a single component of y(t + τ) in the
τ -future of the system Y is used for simplicity. Further extensive numerical analysis (Paluš
and Vejmelka 2007) suggest that often a CMI in the form

I
(
x(t);y(t + τ) ∨ y(t), y(t − ρ), . . . , y

(
t − (n − 1)ρ

))
(2.14)

is sufficient to extract the direction of coupling among X(t) and Y (t), i.e., the dimension-
ality of the condition must contain full information about the state of Y (t), while single
components x(t) and y(t + τ) are able to provide information about the coupling direction
from X to Y , denoted as X → Y . Simply, one can obtain the causal link Y → X as

I
(
y(t);x(t + τ) ∨ x(t), x(t − η), . . . , x

(
t − (m − 1)η

))
. (2.15)

However, Paluš (2014) criticized that, in general, the prediction horizon τ in such equations
cannot well demonstrate a time-delayed coupling. Wibral et al. (2013) proposed a solution
by a simple reformulation as

I
(
x(t);y(t + τ) ∨ y(t + τ − 1),

y(t + τ − 1 − ρ), . . . , y
(
t + τ − 1 − (n − 1)ρ

))
.

(2.16)

Under certain assumptions (Runge et al. 2019a) these measures can detect the presence of
causal relationships. In Runge et al. (2019b) a systematic causal discovery algorithm for
time series has been presented that can be used together with conditional mutual informa-
tion. This algorithm was generalized in Runge (2020) to also detect instantaneous causal
relations, and in Gerhardus and Runge (2020) to also account for hidden common causes.
These methods have great potential for further studies of causal relations among geomag-
netic processes.

As an example, the conditional mutual information has been applied to investigate the
causal information transfer between solar wind parameters and geomagnetic indices (Man-
shour et al. 2021). Specifically, in order to find the causality directions as well as the presence
of any information transfer delay between the solar wind and the geomagnetic indices, the
conditional mutual information was estimated between the vertical component of the inter-
planetary magnetic field Bz as a solar wind parameter and two well-known geomagnetic
indices representing the auroral electrojet (AE), a substorm index, and the SYM-H, a storm
index, using ρ = 5 samples (25 min) and n = 3 as the embedding parameters. In order to
compute the statistical significance of those calculations, the circular time-shifted surrogates
test was applied by comparing the empirical results with the average values of a set of 100
different realizations of the surrogates (Manshour et al. 2021).

Figure 1(a) demonstrates that a strong causal link exists from Bz to AE and also the
information transfer takes two sample time steps (10 min). However, Fig. 1(b) indicates that
there is no causal relationship from AE to Bz. Similarly, we plotted CMI for the time series of
Bz and SYM-H in Fig. 1(c) and (d). Figure 1(c) indicates that a causal relationship also exists
from Bz to SYM-H; and the information transfer takes six sample time steps (30 min). Also,
there is no causality in the reverse direction, as represented in Fig. 1(d). Our findings confirm
that the interplanetary magnetic field component Bz drives both geomagnetic storms and
substorms with different delays. The response time for the magnetic storms is longer than
the time delay among the solar wind energy input and the energy release in the magnetotail
during a substorm (Maggiolo et al. 2017) since it takes a considerably long time to inject
particles into the ring current region (Daglis et al. 1999).
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Fig. 1 (Fig. 3 from Manshour et al. 2021) The coupling directions of (a) Bz → AE, (b) AE → Bz,
(c) Bz → SYM − H , (d) SYM − H → Bz, (e) AE → SYM − H , and (f) SYM − H → AE. (g) and
(h) are the coupling directions similar to (e) and (f), by taking Bz as the common driver. Also (i) and (j) are
the coupling directions similar to (c) and (d), by taking AE as the common driver. The red lines and error bars
present mean and ±2 standard deviations of CMI for a set of 100 circular time-shifted surrogates

The presence of any possible causal relationship between substorms and storms has been
an open and challenging debate in space weather studies. Here, to analyze the presence of
information flow between the geomagnetic indices, we further plotted in Fig. 1(e) and (f)
the CMI of AE and SYM-H. Figure 1(e) shows that there is a strong flow from AE to SYM-
H; which means that geomagnetic storms are driven by substorms without any delay. No
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information flow is detected from storms to substorms, as can be seen in Fig. 1(f). This
result is indeed in line with some previous studies (Stumpo et al. 2020; Ganushkina et al.
2005). However, we demonstrate that the observed causality in Fig. 1(e) is not a direct causal
link, and it indeed arises according to the presence of the common driver Bz. To show this,
we consider the effects of this common driver in CMI calculations. We can simply include
Bz as the third variable into the condition, as

I
(
AE(t);SYMH(t + τ) ∨ SYMH(t + τ − 1),Bz(t + τ − 6),Bz(t + τ − 11)

)
. (2.17)

Figure 1(g) and (h) represent this CMI, and interestingly we discover that there is no infor-
mation flow between AE and SYM-H when eliminating the role of the common driver Bz.
Furthermore, we also check the possible role of AE on the observed information flow among
Bz and SYM-H, by interchanging the variables of Bz and AE. Figure 1(i) and (j) asserts that
the information flow of Bz into SYM-H is independent of the AE index. Briefly, our re-
sults suggest that the observed information flow from geomagnetic substorms into storms
is induced by the common solar wind driver Bz and in fact, there is no causal relationship
between substorms and storms, which is in agreement with some previous studies (Gonzalez
et al. 1994; Kamide et al. 1998; Runge et al. 2018). Runge et al. (2018) identified Bz and
other confounders of AE and SYM-H by applying a systematic information-theoretic causal
discovery algorithm. However, it should be noted here that in-situ observations have shown
that the contribution of ion injections to the ring current energy gain is substantial, despite
the fact that our results for the specific time scales considered and datasets examined do
not favor the role of substorms in the enhancement of the storm-time ring current through
accumulative ion injections during consecutive substorms (see also the references in Runge
et al. 2018). Moreover, in contrast to our results, substorm bursty-bulk flows (BBFs) accom-
panied by strong convection may penetrate the inner magnetosphere and contribute to the
ring current.

2.5 Time Series Decomposition

Physical systems and natural processes are usually characterized by a chaotic and unpre-
dictable behaviour, typically displaying multiscale interacting components. This is mani-
fested in the existence of some scaling-law behaviour, reflecting their (multi)fractal nature.
Moreover, they are also characterized by bifurcations between different states, strange at-
tractors, and invariant manifolds, reflecting the different dynamical regimes of the system.
Thus, a first step towards characterizing these features relies on decomposition methods.
These methods are usually classified into adaptive and non-adaptive/fixed-basis concepts:
the latter presents a strong mathematical background, while the former detects structures
embedded with no a priori assumptions.

2.5.1 Wavelet Analysis

Fourier transform (FT), a cornerstone of time series analysis, is a commonly used technique
to convert a signal in time domain into a frequency domain representation by decompos-
ing it in terms of sinusoidal components (basis functions) spanning the whole spectrum. FT
captures only global frequency information, averaged over the entire time period of obser-
vations. Thus, if frequency components of a time series vary over time, FT cannot identify
those localized features of the series. In order to capture the frequency information localized
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in time, one can find a sequence of FT of a windowed signal, known as short time Fourier
transform (STFT). However, it still suffers from some limitations such as using a window of
constant shape and size as well as non-localized sinusoidal basis functions, so that it cannot
capture the characteristics of sharp events or those with different durations. On the other
hand, due to the Heisenberg’s uncertainty principle, STFT cannot generate features with
both time and frequency instantaneous localization.

Wavelet Transform (WT) tries to overcome the STFT shortcomings and is a powerful
technique for analyzing localized variations of power within a time series (Addison 2017).
Similar to STFT, WT is a method to convert a one-dimensional time domain signal into
a two-dimensional time-frequency domain signal, but in contrast to STFT, the wavelet al-
gorithm uses basis functions with transient nature, called mother wavelets, which are not
restricted to a single family of functions (like sinusoidal functions in STFT) and have a
wave-like nature that is localized in time, capable of locating the occurrence of a sharp
event in the time domain. The wavelet functions can be obtained as a linear combination of
scaled and shifted mother wavelets.

In general, a wavelet transform can be either continuous or discrete. At first, we briefly
describe the continuous wavelet transform (CWT) algorithm. The function � can be a
mother wavelet if it satisfies two conditions. It must have zero-mean

∫ +∞

−∞
�(t)dt = 0 (2.18)

and finite energy (or, equivalently, must be square integrable), i.e.,

∫ +∞

−∞

∣∣�(t)
∣∣2

dt < ∞. (2.19)

As we mentioned above, a wavelet is constructed from a scaled and shifted mother wavelet
� as

ψθ,s(t) = 1√
s
�

(
t − θ

s

)
, (2.20)

where θ and s are shift and scale parameters, respectively. In fact, θ indicates the location
of the wavelet in time and if s > 1 the wavelet is stretched along the time axis, whereas if
0 < s < 1, the wavelet is contracted. The CWT of a time series x(t) in a given location and
scale can be obtained by projecting x(t) onto the corresponding wavelet as:

CWT θ,s
x =

∫ +∞

−∞
x(t)ψ∗

θ,s (t)dt, (2.21)

where (∗) indicates the complex conjugate. In fact, CWT provides the local similarity (or
correlation) of a particular section of a signal and the corresponding wavelet, thus by chang-
ing the shift and scale parameters one can construct a two-dimensional picture representing
the amplitude of any features versus the scale (or frequency) as well as the time resolution
of this amplitude. If the mother wavelet also satisfies the admissibility condition of

C ≡
∫ +∞

−∞

|�̃(ω)|2
|ω| dω < ∞, (2.22)
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where �̃(ω) denotes the Fourier transform of �(t), one can reconstruct the original time
series by using the inverse wavelet transform as

x(t) = 1

C

∫ +∞

−∞

∫ +∞

−∞

1

|s|2 CWT θ,s
x ψθ,s(t)dθds. (2.23)

Another form of wavelet analysis is the discrete wavelet transform (DWT), in which the
scale and shift parameters are discrete. For example, in the dyadic DWT the scale takes
values of the form s = 2k where k is an integer and at a given scale s, the shift parameter
takes values of the form μ = 2kl where l is also an integer number. Accordingly, discrete
wavelets are defined as

φl,k(t) = 2− k
2 �

(
2−kt − l

)
. (2.24)

The DWT of a signal x(t) is

DWT l,k
x =

∫ +∞

−∞
x(t)φ∗

l,k(t)dt. (2.25)

The original signal x(t) can also be reconstructed using the inverse wavelet transform as

x(t) =
∑
l,k

2−kDWT l,k
x φl,k(t), (2.26)

if the discrete wavelets form an orthogonal basis, i.e.,

∫ +∞

−∞
φl,k(t)φ

∗
l′,k′(t)dt = δll′δkk′ , (2.27)

where δlk denotes the Kronecker’s delta function. Due to the discrete nature of the param-
eters in the DWT, localization of transient features or characterization of oscillatory be-
haviours is much harder than in the CWT. On the other hand, only a restricted number of
admissible wavelets are available in DWT when compared with CWT. However, the algo-
rithm of DWT is simple and computationally more efficient than CWT.

Wavelet transform has widely been applied in science, engineering, medicine and fi-
nance (Addison 2017), and it has already proved itself as a powerful tool in geophysical
research, including geospace disturbances (Katsavrias et al. 2022 and references therein),
synchronization between wavelet modes of North Atlantic Oscillation index, the time se-
ries of sunspot numbers, the geomagnetic activity aa index and near surface air temperature
(Paluš and Novotná 2009), the magnetic storm activity (Xu et al. 2008; Mendes et al. 2005;
Wei et al. 2004), self-affine properties of geomagnetic perturbations (Zaourar et al. 2013),
external source field in geomagnetic signals (Kunagu et al. 2013), seasonal variations in
the Ap index (Lou et al. 2003), the effects of the interplanetary magnetic field polarities on
geomagnetic indices (El-Taher and Thabet 2021), the interrelationship between solar wind
coupling functions and the geomagnetic indices Dst and AL (Andriyas and Andriyas 2017),
variation of relativistic electrons in the outer radiation belt (Katsavrias et al. 2021), and the
causal relations between the magnetosheath pressure and the waves observed in the magne-
tosphere (Archer et al. 2013).
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2.5.2 Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a nonparametric and data-adaptive method that ad-
dresses a variety of problems in time series analysis including forecasting, imputation of
missing values, and reducing the dimensionality by decomposing a time series into a small
number of interpretable components such as trends, oscillatory behaviours and noise (El-
sner and Tsonis 1996; Golyandina et al. 2001). SSA contains elements of signal processing,
linear algebra, nonlinear dynamical systems, ordinary differential equations, and functional
analysis (Golyandina et al. 2001). As a powerful tool for time series analysis, it has fre-
quently been applied in a broad variety of fields such as oceanology (Colebrook 1978),
meteorology and climatology (Ghil and Vautard 1991; Keppenne and Ghil 1992; Yiou et al.
1994; Allen and Smith 1994; Ghil et al. 2002), nonlinear physics and signal processing
(Broomhead and King 1986), economy (Hassani and Zhigljavsky 2009), and social sciences
(Golyandina et al. 2001) among others.

The fundamental step in SSA is an orthogonal decomposition of a covariance matrix of
the studied time series into its spectrum of eigenvalues as well as its orthogonal eigenvec-
tors. One obtains linearly independent individual data components (modes) by projecting
original data onto these orthogonal eigenvectors. In fact, the basic univariate SSA steps
can be described as follows: Let a univariate time series yi , i = 1, . . . ,N0, be a realiza-
tion of a stationary and ergodic stochastic process {Yi}. We map the original time series yi

into a sequence of d-dimensional lagged vectors of xi with components xk
i = yi+k−1 where

k = 1, . . . , d and i = 1, . . . ,N = N0 − d + 1. The sequence of the vectors xi is usually re-
ferred to as the N × d trajectory matrix X = {xk

i }, which contains the complete record of
patterns that have occurred within a window of size d (embedding dimension). Suppose that
the original time series yi results from a linear combination of m < d different dynamical
modes. Then, ideally, the trajectory matrix X has rank m, and can be transformed into a
matrix with only m nontrivial linearly independent components. Instead of the N × d ma-
trix X, it is more appropriate to decompose the symmetric d × d lagged-covariance matrix
C = XT X, since X and C have the same rank. If the components {xk

i } have zero mean, then
the elements of the covariance matrix C can be written as

ckl = 1

N

N∑
i=1

xk
i x

l
i , (2.28)

where 1/N is a normalization factor. The symmetric matrix C can be decomposed as

C = V �V T , (2.29)

where V = {vij } is an d × d orthogonal matrix and � is a diagonal matrix of elements
σ1, σ2, . . . , σd . The elements σk , k = 1, . . . , d are the non-negative eigenvalues of C by con-
vention given in descending order σ1 ≥ σ2 ≥ · · · ≥ σd . The square roots of the eigenvalues,
σ

1/2
k , and the set of {σ 1/2

k } are called singular values and singular spectrum, respectively, and
give SSA its name. Simply, one can calculate the modes as ξk

i = ∑d

l=1 vlkx
l
i . If the rank of

C is m < d , then σ1 ≥ · · · ≥ σm > σm+1 = · · · = σd = 0. In the presence of noise, however,
all eigenvalues are positive and we have σ1 ≥ · · · ≥ σm � σm+1 ≥ · · · ≥ σd > 0 (Broomhead
and King 1986). In fact, if we plot the eigenvalues, σk , one can often observe an initial steep
decline for k = 1, . . . ,m and a nearly flat line for k = m + 1, . . . , d , thus the corresponding
modes, ξk

i , are considered as the signal part and the noise part, for the former and the latter
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case, respectively. In this respect, the signal modes can be used to reconstruct the denoised
signal x̃k

i as

x̃k
i =

m∑
l=1

vklξ
l
i . (2.30)

Analogously, the original time series xk
i can be reconstructed back from the modes as

xk
i =

d∑
l=1

vklξ
l
i . (2.31)

The modes ξk
i can also be considered as time-dependent coefficients and the orthogonal

vectors {vk
l } as basis functions, also known as the empirical orthogonal functions.

As mentioned above, distinguishing the signal components from noise is based on finding
a threshold to a noise floor. This approach might be problematic if the noise present in the
data is not white but colored or the signal-to-noise ratio is not large enough. For example,
in the presence of red noise of 1/f type power spectra, which is ubiquitous in geophysical
processes, one cannot reliably detect a nontrivial signal only by comparing the eigenvalues,
since the eigenvalues related to the slow modes are much larger than those of the fast modes.
Hence, the eigenvalues of the slow modes might incorrectly be interpreted as a nontrivial
signal, or, on the other hand, a nontrivial signal embedded in a red noise might be neglected
if its eigenvalues are smaller than the slow-mode eigenvalues of the background noise.

To correctly distinguish a signal from red noise, a statistical approach called Monte Carlo
SSA (MCSSA) has been proposed that utilizes the Monte Carlo simulation techniques to
test the eigenvalues of the SSA modes against a red noise null-hypothesis (Allen and Smith
1996). Surrogate data complying with this null-hypothesis are constructed as realizations of
an autoregressive process of order 1, reflecting the 1/f character of the analyzed data spec-
trum. For each realization, a covariance matrix Cr is computed and then projected onto the
eigenvector basis of the original data. The statistical distribution of the diagonal elements of
the resulting matrix, obtained from the ensemble of Monte Carlo simulations, gives confi-
dence intervals outside which a time series mode can be considered significantly different
from a generic red-noise process. An extension of MCSSA has been proposed by Paluš and
Novotna (2004) to evaluate and test regularity of dynamics of the SSAmodes against the
colored noise null hypothesis, in addition to the test based on eigenvalues. This enhanced
MCSSA has successfully been applied in detection of oscillatory modes in records of the
monthly North Atlantic Oscillation index, the time series of sunspot numbers, the geomag-
netic activity aa index and near surface air temperature from several mid-latitude European
locations (Paluš and Novotná 2008, 2009).

The SSA algorithm has also been extended in order to analyse multivariate time series in
the presence of noisy and/or missing data (Allen and Robertson 1996). Similar to the uni-
variate SSA, decomposition and reconstruction are two main ingredients in multi-channel
singular spectrum analysis (mSSA). Accordingly, the multivariate trajectory matrix D is
constructed as D = (X1, . . . ,XL) where L is the number of time series and Xi represents
the trajectory matrix of the i-th time series. Then, the grand lagged covariance matrix is
obtained as CG = DT D. After finding the corresponding eigenvalues and eigenvectors of
the decomposed CG, one can compute the reconstructed components of the original time
series similar to the basic SSA algorithm described above. mSSA is an effective statistical
data analysis method and has been applied to various fields including oceanography, geo-
science, meteorology, among others (Vautard and Ghil 1989; Wang et al. 2016; Shen et al.
2017; Zotov et al. 2016; Zhou et al. 2018).
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2.5.3 Empirical Mode Decomposition

Recently, a wide range of adaptive methods have been proposed (Chatfield 2016) and also
applied in the field of geospace research (e.g., Balasis and Egbert 2006; Alberti et al. 2017,
and references therein). Among them, particular attention has been paid to the Empirical
Mode Decomposition (EMD) (Huang et al. 1998; Huang and Wu 2008). EMD is an adaptive
method based on an iterative process known as sifting that exploits the local properties of
signals to derive the decomposition basis. Given a signal y(t), the sifting consists of the
following steps:

1. derive a zero-mean signal r(t) = y(t) − 〈y(t)〉, with 〈. . . 〉 denoting the time average;
2. derive the local maxima and minima of r(t) and interpolate them separately via cubic

splines to derive upper u(t) and lower l(t) envelopes;
3. evaluate the mean envelope m(t) = (u(t)+ l(t))/2 and determine the detail h(t) = r(t)−

m(t);
a. if the numbers of extrema and zero crossings are equal or differ at most by one and

if the mean envelope of h(t) has a zero mean, then h(t) is assigned to be an Intrinsic
Mode Function (IMFu) or empirical mode;

b. otherwise steps 1 to 3 are iterated n times until a candidate detail hn(t) is assigned to
be an IMFu.

Step 1. to 3. are repeated on the residual rh(t) = r(t) − hn(t) until no more IMFus can be
extracted. In the end, the signal y(t) can be written as the sum of all empirical modes {ck(t)}
and the final residue r(t), e.g., a non-oscillating function, as

y(t) =
Nk∑
k=1

ck(t) + r(t), (2.32)

where Nk is the number of detected IMFus. The set of {ck(t)} is the basis of a Hilbert space,
satisfying properties of completeness, convergence, and local orthogonality (Huang et al.
1998; Flandrin et al. 2004).

An example of the intrinsic mode functions obtained via the EMD procedure is shown in
Fig. 2 for the geomagnetic storm occurred on 22 August 2005. As expected, the amplitudes
of empirical modes show an increase in correspondence of the three geomagnetic storms.
However, the empirical modes associated with the shortest timescales, i.e., C1(t) − C8(t),
show irregular amplitude enhancements also before/after the storms (see, e.g., the time
period from 10 to 15 August 2005), suggesting that at these timescales the dynamics of
SYM-H may be not directly controlled by the external driving, i.e., not linearly correlated
to interplanetary changes. Indeed, according to Alberti et al. (2017) the fluctuations at these
timescales do not show a one-to-one coupling with solar wind and interplanetary parameters,
indicating the occurrence of a nonlinear response at these timescales (see, e.g., Tsurutani
et al. 1990).

Once the decomposition basis is obtained, the local amplitude-frequency modulation can
be derived via the Hilbert Transform (HT) defined as

c̃k(t) = 1

π
P

∫ ∞

0

ck(t
′)

t − t ′
dt ′, (2.33)

where P denotes the Cauchy principal value. By defining a complex signal as

zk(t) = ck(t) + ic̃k(t) = ak(t)e
iφk(t) (2.34)
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Fig. 2 (Fig. 4 from Alberti et al.
2018) The empirical modes
(Ck(t)) and the residue (res(t))
extracted from the SYM-H time
series for the time period from 10
August 2005 to 10 September
2005. The empirical modes are
ordered by increasing
characteristic timescale (from top
to bottom)

with

ak(t) =
√

ck(t)2 + c̃k(t)2,

Φk(t) = tan−1

[
c̃k(t)

ck(t)

]
,

(2.35)

where ak(t) and φk(t) are the instantaneous amplitude and phase of the k-th empirical mode,
respectively, a time-frequency-amplitude representation can be derived, usually known as
Hilbert-Huang spectrum, by contouring the squared instantaneous amplitudes in a time-
frequency plane (Huang et al. 1998). By integrating over time, the so-called Hilbert marginal
spectrum can be derived, strictly related to the Fourier power spectral density, accounting for
the second-order statistical moment frequency distribution (Consolini et al. 2017). It should
be noted though that estimating the exponents that characterize scaling is challenging in
real-world data, and requires a methodology that goes beyond Fourier approaches (Kiyani
et al. 2009, 2013).
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Fig. 3 (Fig. 6 from Consolini
et al. 2017) The marginal Hilbert
energy spectra in the parallel and
perpendicular directions to the
mean field

An example of the Hilbert marginal spectrum obtained from the analysis of solar wind
turbulence and small-scale dynamics is shown in Fig. 3 (Consolini et al. 2017). Two differ-
ent spectral regimes, characterized by different spectral exponents, can be identified above
and below the spectral break fb ∼ 0.3 Hz. This frequency break is compatible with the ion
cyclotron frequency fΩ considering the effect of the Doppler shift. Furthermore, below the
frequency break all the spectra tend to the typical magnetohydrodynamic (MHD) Alfvénic
turbulence spectrum (S(f ) ∼ f −3/2), while above fb , i.e., in the kinetic domain, the spec-
tra are approximately ∼f −8/3. This value seems to be compatible with several different
kinetic turbulent regimes (e.g., compressible Hall-MHD turbulence, EMHD-turbulence, ki-
netic Alfvén wave turbulence), which predict a spectral slope near ∼−7/3.

As a conclusion of this part, we would like to summarize some of the advantages and
limitations of the EMD. It is particularly suitable to reduce a priori assumptions on the
functional form of the basis of the decomposition, carrying out local features from time
series that cannot usually be obtained by using fixed eigenfunctions. However, as for each
data analysis method some outstanding problems need to be listed.

1. End/Boundary effects occur since the sifting is based on the local extremes of the time
series. End points of the latter are clearly classified as local extrema. This can produce
misleading empirical modes, propagating into the decomposition process through the
sifting steps, since they are not the extreme values of the time series. To avoid this prob-
lem mirror and/or data extending methods (Huang and Wu 2008) have been proposed for
a better spline fit at the ends.

2. Mode mixing can take place if a similar scale is present in different empirical modes.
This is related to the signal intermittency, aliasing the time-frequency distribution and
devoiding empirical modes of physical meaning (Huang et al. 1998, 1999). One of the
ways to avoid this problem is a noise-assisted sifting, known as Ensemble EMD. It con-
sists of adding an ensemble of white noise series to the original data and use the EMD to
decompose each time series. Then, the true empirical mode is the ensemble mean of the
corresponding intrinsic mode functions of the decomposition.

2.5.4 Multiscale Fractal Measures of State Space Trajectories

One of the most intensively studied contemporary problems in nonlinear sciences is the
investigation of the multiscale dynamical properties of time series. Recently, the previously
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described EMD has been used in combination with state space indicators to investigate scale-
dependent properties of physical systems. As shown in Alberti et al. (2020a) multiscale
measures can be derived by looking at the generalized fractal dimensions at different scales
retrieved via the EMD algorithm. Let us assume that a signal s(t) could manifest a multiscale
behaviour

s(t) = 〈s〉 +
∑

τ

δsτ (t), (2.36)

where 〈s〉 is a steady-state average value and δsτ (t) a fluctuation at scale τ . For each∑
τ δsτ (t) a natural measure dμτ can be introduced in a way similar to the concept of

scale-local Rényi dimensions (Grassberger 1985) as follows. We first consider a partition
function

Γq

[
μτ ,Bs,τ (l)

] =
∫

dμτ (s)μτ

(
Bs,τ (l)

)q ∼ l(q−1)Dq,τ , (2.37)

with Bs,τ (l) being the hypercube of size l centered at the point s on the space of the
∑

τ δsτ .
Thus, the multiscale generalized fractal dimensions can be introduced as

Dq,τ = 1

q − 1
lim
l→0

logΓq [μτ ,Bs,τ (l)]
log l

. (2.38)

This approach, similarly to the partial dimensions proposed by Grassberger (1983), allows us
to detect information on the state space topological properties by investigating the behaviour
of the generalized dimensions at different scales τ . Furthermore, via the Legendre transform
we can evaluate the multiscale singularities and singularity spectrum as

ατ = d

dq

[
(q − 1)Dq,τ

]
,

fτ = f (ατ ) = qατ − [
(q − 1)Dq,τ

]
.

(2.39)

Figure 4 reports an exemplary application of this formalism to the analysis of the SYM-
H geomagnetic index. It is interesting to observe the existence of a multifractal nature at
all scales, although different values are found for the multiscale generalized fractal dimen-
sions Dq,τ . Indeed, a more regular behaviour is found at long timescales, mainly related
to the solar wind variability and to the nonlinear response of the magnetosphere to solar
wind changes. Conversely, the short timescale dynamics, that can be related to the internal
dynamics of the magnetosphere, is characterized by larger dimensions, reflecting a stochas-
tic nature of fluctuations. Furthermore, by reconstructing the phase space we can underline
two different regions: one corresponds to the quiet-time values of the SYM-H index and the
other to the disturbed-time ones. By using the short-scale reconstruction of empirical modes
it does not quite reproduce the phase space dynamics, suggesting that some relevant infor-
mation is missed. By providing instead reconstructions of IMFs on large timescales we are
able to cover those phase space regions which have not been captured by the fast compo-
nent. This can be interpreted as a signature of the existence of a different origin of processes
operating on short and long timescales.

2.6 Multiscale Stochastic Approaches in Geospace Research

Interpreting the geospace variability in terms of a dynamical system, whose dynamics spans
a wide range of scales with a clear separation between fast and slow processes, is one of the
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Fig. 4 (Fig. 14 from Alberti et al. 2020a) Multifractal analysis of the Dst index

most promising aspects for understanding and predicting its variations. In the simplest way
a non-linear stochastic model, based on a generalized Langevin equation, could be feasible.
This approach, extensively used in the climate framework (see, e.g., Ditlevsen 1999; Kwas-
niok and Lohmann 2009; Livina et al. 2010; Alberti et al. 2014), is based on a 1-dimensional
system, described by a continuous system variable x(t), whose slow dynamics is driven by
a forcing term F(x), while the fast dynamics is described in terms of a noise process η(t)

of amplitude σ . The Langevin equation reads

dx = −U ′(x)dt + σdη(t), (2.40)

where U ′(x) = −F(x). From a dynamical system point of view, U(x) captures all the sta-
tistical properties of the system, since it can be linked to the probability distribution function
of the system variable x. Indeed, in this case the Fokker-Planck equation now reads

∂p(x, t)

∂t
= −∂

∂x

[
U ′(x)p(x, t)

] + σ 2

2

∂2

∂x2

[
p(x, t)

]
. (2.41)

In this case, the stationary solution for the probability distribution, ps(x), is a direct function
of the state function U(x), being

ps(x) ∼ exp

[−2U(x)

σ 2

]
. (2.42)

Then, once the stationary distribution function ps(x) is known, by inverting the above rela-
tion it is possible to get the state function U(x) responsible for the slow dynamics as

U(x) = −σ 2

2
logps(x). (2.43)

The stationary solution is also an equilibrium solution (Ichimaru 1973), so that the state
function U(x) can be used to investigate the number and the nature of the available system
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states. Indeed, having even-order state functions (i.e., with positive curvature at both minus
and plus infinity), the number of zero crossings of the first derivative of U(x) corresponds
to the number of system states, while the sign of the second derivative evaluated at the zeros
of U ′(x) characterizes their nature (positive: stable, negative: unstable) (Ditlevsen 1999;
Kwasniok and Lohmann 2009; Livina et al. 2010; Alberti et al. 2014).

3 Contributions to Substorm Research

3.1 Nonlinear and System Science Approaches to Substorms

Substorms share basic characteristics with driven, dissipative systems that are far-from-
equilibrium, and as such suggest points of contact with the wider field of non-equilibrium
statistical physics. The magnetosphere is a driven system with capacity for mass, momentum
and energy storage and release on multiple scales: (i) microscales, where an instability oc-
curs in a background plasma that can be treated as approximately uniform, (ii) mesoscales,
where the variation in the background is relevant, and (iii) macro- or system scales, there
the process spans the entire magnetosphere, as in a geomagnetic substorm.

Many of the approaches and physical models that have been suggested for substorms
have heritage in non-linear and complex systems modeling. We can chart the development
of this strand of substorm research across three broad categories:

1) Low-dimensional and in a smoothed sense deterministic
2) High dimensional and intrinsically stochastic
3) An emergent transition from a system dominated by processes on the micro and

mesoscale, to one characterized by large scale system-spanning coherent structure

3.2 Low-Dimensional and Deterministic

Some of the earliest attempts to understand and model the substorm cycle are of this class.
Baker et al. (1990a) suggested that the cycle of magnetotail loading and unloading maps
onto the “dripping faucet” of Shaw (1984). The water drip from a slowly leaking faucet will
always eventually produce a disconnected droplet of water, but the exact time of discon-
nection, and size of droplet, is highly uncertain as it appears to behave as a chaotic system.
An analogue is the formation of a near-Earth neutral line or the disconnection of the mag-
netotail (plasmoid formation: Hones et al. 1984) that can thus be modelled as a repeatable
phenomenon which nonetheless has an apparently random spread of properties around a
well-defined mean. Deterministic low-dimensional chaotic systems thus explain a broad dis-
tribution in inter-substorm waiting times without recourse to any stochasticity (Lewis 1991).
This class of model points to only a few parameters being necessary to determine the state of
the system. Sharma (1995) considered a data-driven approach to systemizing the substorm
cycle as a low-dimensional system. Sharma et al. (1993) used Singular Spectrum Analysis
(SSA) to project the time-series of driving and dissipation (solar wind input parameters and
geomagnetic indices) to construct the low-dimensional dynamical space in which the sys-
tem moves. By truncating to the first few components this space becomes low-dimensional
(few degrees of freedom) and the system orbits on a manifold in this space that is folded-
so that there is a catastrophe or discontinuous jump. Again, the motion is deterministic but
can exhibit a broad distribution of waiting times and event sizes. All approaches in this class
require the system to be low-dimensional, and as observations became more extensive it
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became clear that important physics is occurring across a broad range of spatio-temporal
scales. How these approaches could be extended to understand the substorm-storm relation-
ship is an open question. The system also can relax in principle via steady reconnection, and
has a strong-driving limit. These driving and relaxation modes are naturally accommodated
by the “dripping faucet” analogy.

3.3 High Dimensional and Stochastic

Following from new ideas in complexity science, there has been considerable interest in
models that are intrinsically stochastic and high dimensional. The “poster child” for this kind
of system is the avalanche, or “sandpile” model (Bak et al. 1987, 1988), intended to demon-
strate Self Organized Criticality – SOC (reviews: Jensen 1998; Watkins et al. 2015) although
there are a variety of interesting and potentially relevant models (Sornette 2006). The key
elements that these models seek to capture are as follows. The system is high dimensional
or has many degrees of freedom, that is, the physics enabling energy release and transport is
occurring on multiple spatial and temporal scales. These processes are non-linearly coupled
across a broad range of spatial and temporal scales. This is in contrast to systems which
we can isolate to a specific space and timescale, such as an oscillator or wave, or indeed, a
broad spectrum of waves which are not coupled and simply linearly propagate through each
other. There is a separation of timescales, the driving of the system occurs slowly and dis-
sipation and energy release (i.e., substorm onset and evolution) is fast. The system evolves
through many metastable states, there is no single path to instability (substorm onset), it is a
dynamical steady-state, not an equilibrium. The stochasticity in the system is intrinsic to the
many paths through which the system can evolve. This class of model naturally codifies the
idea of “multiscale” or “cross-scale” processes and indeed, the early work on sandpile mod-
els promoted this way of thinking about magnetospheric dynamics. Sandpile models were
considered as having points of contact with auroral observation and magnetotail dynamics
(Chapman et al. 1998; Lui et al. 2000; Uritsky and Pudovkin 1998; Consolini 1997; Uritsky
et al. 2002) but it is important to differentiate between models as a way to illustrate and cod-
ify the important physics – simple sandpile models – in the same sense as Baker’s “dripping
faucet” did for low-dimensional chaos, as opposed to detailed models that attempt to synthe-
sise avalanche models and MHD (e.g., Klimas et al. 2005). Furthermore, stochastic systems
near criticality can under some circumstances be characterized by a small number of rele-
vant parameters (Chang 1992) so that observations will exhibit low-dimensional behaviour
as described above.

These approaches are perhaps most valuable in that they drove new ways of looking
at the data. They predict that the onset time of the substorm will be inherently uncertain,
whereas event sizes will be predictable in their statistical distribution. Importantly, these
statistical models do not aim to reproduce specific detailed time-sequences of events that
are seen in the data. They do not identify a specific instability or detailed scenario of evolu-
tion of the system with energy transport, indeed, under different conditions, the system will
utilize different pathways for energy transport and release. This perspective suggests that a
quantitative statistical approach to the data can capture relevant aspects of the system’s be-
haviour. Although the solar wind driving of the magnetosphere and its response are highly
variable, their statistical distributions quantify space weather risk (Chapman et al. 2020 and
references therein) and are found to have properties that are independent of variation across
solar cycles (Hush et al. 2015; Tindale and Chapman 2016; Tindale et al. 2018; Chapman
et al. 2018) supporting space weather prediction and providing a quantitative benchmark for
space weather models.
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Alongside these complexity-led approaches, there is a well-developed field of stochastic
processes, that is, developing stochastic and kinetic equations (Langevin, Fokker-Planck and
Fractional Kinetics) that capture the essential features of the stochastic timeseries. These
have found application in describing solar wind parameters and geomagnetic indices (Hnat
et al. 2004; Watkins et al. 2009a; Alberti et al. 2018) and the relationships between them
(Hnat et al. 2005).

It is important to distinguish these approaches from the extensive work on turbulence
where models and methods developed in the mainstream turbulence literature have found
both application and development in quantifying the scaling properties of fluctuations in the
solar wind, magnetosheath and magnetotail (see e.g., Borovsky 2021). Turbulence and SOC
can be clearly distinguished in their limiting behaviour (Chapman et al. 2009) but are more
challenging to distinguish observationally in the finite-sized systems that we find in solar
and magnetospheric physics (e.g., Watkins et al. 2009b).

3.4 An Emergent Transition from Small to Large Scale Coherent Structure

Model driven approaches to the observations, such as those described above, when at their
best frame the analysis in terms of testing a hypothesis – the data supports the model or it
does not. Limitations of the data, and oversimplification in the models, can often mean that
quite distinct physical pictures are corroborated by some aspect of the observations when
viewed through a specific methodology. The methods used for quantifying low-dimensional
deterministic dynamics, and high-dimensional stochastic behaviour, can be quite distinct
and may only extract the properties consistent with one or the other. We are now moving
from a data-poor to a data-rich era of space plasma physics. Hence there is new interest in
data analysis methods that can handle large and diverse datasets and are, as far as possible,
non-parametric and model independent.

Network science is a well-established and highly active field, it provides a system for
extracting pattern from large datasets. Networks can be dynamic (i.e., time-evolving) and
directed (codifying information flow). Once a network is formed from the data, it can be
characterized by parameters that capture its topological properties (Dods et al. 2017). This
quite recent approach has already found application in ionospheric total electron content –
TEC (McGranaghan et al. 2017; Zou et al. 2011; Liu et al. 2020) and in ground-based mag-
netometers (Orr et al. 2019, 2021). Networks find natural application to non-uniform spatial
sampling and can extract the pattern of spatial correlation without requiring any gridding of
the data, desirable as gridding necessarily introduces its own spatial correlation. An impor-
tant non-trivial consideration is that the data needs to be uniformly calibrated, as is the case
of the SuperMAG network (Gjerloev 2012). Network characterization of spatio-temporal
correlation is in principle model-independent. This is a major advantage, in that a single
analysis based on networks can capture both high dimensional (many small interacting struc-
tures) and low-dimensional (few, large-scale coherent structures) behaviour. Naturally, the
analysis is limited to the spatial and temporal resolution of the measurements. Thus, in the
analysis of substorms (Orr et al. 2021), we can capture the transition from many, meso-scale
(a few hundreds of km) current filaments around onset, to one single current wedge at ex-
pansion phase. This picture of a substorm is the emergence of large-scale structure which
is always repeatable, from meso-scale structures which may differ from one event to an-
other. Since all the physics (that can be resolved by the observations) is captured, one can
test against competing hypotheses, most clearly, whether the substorm current wedge is a
single large-scale coherent structure or many small wedge-type current systems as a result
of individual flux bundles.
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Fig. 5 (adapted Fig. 2 from Orr et al. 2021) Evolution of network community structure at the onset of the 16
March 1997 storm as seen by SuperMAG. Polar plots are in magnetic coordinates centered at the magnetic
pole, with midnight located at the bottom of each panel. (MLT = 0 h). Maps show the nightside from dusk
(MLT = 18 h) to dawn (MLT = 6 h) and 60–90° magnetic latitude. Magnetic field perturbation vectors (North
and East components, BN,E) are plotted in black. Polar VIS images are superimposed on each panel. Each
panel (a–f) shows a snapshot of the community structure in intervals of five normalized minutes from before
onset (a, t ′ = −5) to the time of maximum expansion (f, t ′ = 20). The circles represent ground magnetometer
locations with the line representing the BN,E vector. Black magnetometers are not part of a community. Each
individual community is indicated by a different colour. See Orr et al. (2021) for details, this study analysed
41 isolated substorms, and whilst the evolution towards onset is unique for each event, the final state is a
single large-scale community, indicative of a single large-scale current wedge

This approach can in principle be extended to three spatial dimensions and to combine
different, inhomogeneous data, which will enable both the exploration of extensive datasets,
and data-model comparison. Since it reduces the detailed multipoint observations to a few
topological network parameters, it allows statistical inter-event comparison to determine
to what extend the behaviour is repeatable, which features are typical and predictable and
which are essentially unpredictable. It may ultimately lead to a synthesis of the ideas devel-
oped above, so that the system in fact at different times/phases of activity exhibits high, or
low-dimensional behaviour. This kind of understanding is essential to understanding what
about the system is predictable, and what will be straightforward, or highly challenging, to
capture in advanced space weather modeling. An example of this analysis is shown in Fig. 5
and Fig. 6.
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Fig. 6 (adapted Fig. 3 from Orr et al. 2021) The normalized modularity, QN, of a set of 41 substorms that
have two or more magnetometers in four even local time sectors of the nightside and are quiet before onset.
Panels a, b normalized time is the abscissa. Panel a ordinate indicates bins of QN at each normalized time
and the color intensity indicates the probability as indicated by the colour bar on the rhs of the panel (count of
substorms with QN/total number of substorms). Panel b plots QN of each of the 41 substorms as a function of
normalized time, t ′, as thin light gray lines. The median is overplotted in black and the 25 and 75% quantiles
in darker gray. Panel c plots the normalized histograms of QN of the events aggregated over 10-min intervals
as time progresses. The median is overplotted on each histogram. See Orr et al. (2021) for details, whilst there
is a wide variation in network modularity before onset, by 20 minutes after onset the modularity falls to a low
value, indicating that the network is dominated by a single community

4 Contributions to Storm Research

At the beginning of the space age, Akasofu (1964), discovered and described a sequence
of auroral brightenings and expansions in the midnight sector at auroral latitudes. These
events occurred up to a half dozen times a day during relatively geomagnetic quiet intervals.
Because there were no spacecraft carrying auroral cameras at the time, Akasofu made this
discovery using multiple ground-based all sky camera photographs of auroras laid out on
his living room floor. Sydney Chapman, the then PhD advisor of Akasofu, demanded that
Akasofu call these events “substorms” in his publication on the topic (Akasofu, personal
communication, 2016). To this day everyone agrees that a substorm is indeed the fundamen-
tal mode of massive energy deposition into the magnetosphere and ionosphere. However,
concerning the exact triggering mechanism, there are many different ideas (magnetic re-
connection: Dungey 1961; Russell and Elphic 1978; current driven instabilities: Huba et al.
1977; Coroniti and Eviatar 1977; ion tearing mode instability: Schindler 1975; Galeev et al.
1978; Zelenyi and Kuznetsova 1984; Lakhina and Tsurutani 1998; ballooning instability:
Roux et al. 1991), all of them with strong arguments in favor of them. It is possible that all
of these mechanisms are indeed correct in that there are several different causes of substorm
macroinstabilities.

The part of the concept of a substorm which is still controversial today is its role with
magnetic storms. Both Chapman and Akasofu considered a substorm to be an integral part
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of a magnetic storm, thus the name. The idea is that many substorms added together made
up a magnetic storm. To discuss this further, we first need to describe what a magnetic storm
is and isn’t.

In the 1960s, it was thought that magnetic storms had three main phases, the “initial
phase” where the Dst index (Iyemori 1990) becomes and remains positive, the storm main
phase where the Dst index becomes negative, and the recovery phase, where the Dst index
recovers to its background (∼0 nT) level. From space age satellite observations, it was found
that it was magnetic reconnection between the interplanetary magnetic field (IMF) and the
Earth’s magnetopause magnetic field leads to solar wind energy input into the magneto-
sphere during magnetic storms (Rostoker and Fälthammar 1967; Gonzalez and Tsurutani
1987; Tsurutani et al. 1988; Zhang et al. 2007; Echer et al. 2008). The mechanism of mag-
netic reconnection and energy injection into the nightside region of the magnetosphere was
proposed by Dungey (1961). The superthermal plasmasheet plasma is convected and adia-
batically energized to ∼10 to 300 keV as it is injected into the magnetosphere to form the
ring current. The particles form a ring of current through gradient and curvature drift, thus
the name. The total amount of particle kinetic energy of the ring current particles is linearly
related to the decrease in the Dst indices, indicating that Dst is a good quantitative measure
of the storm intensity (Dessler and Parker 1959; Sckopke 1966).

This magnetic reconnection on both the dayside and nightside magnetosphere (Dungey
1961) and the formation of the enhanced ring current thus causes the main phase of the
magnetic storm. What are the interplanetary parameters that are the causes of magnetic
reconnection and magnetic storms? Well obviously southward magnetic fields for one and
solar wind velocity for another. Combined together they are the interplanetary electric field
E = V × B. Also a factor, but less of one is the plasma density (Gonzalez et al. 1989).
Echer et al. (2008) have shown that all 90 major magnetic storms with Dst < −100 nT that
occurred in solar cycle 23 were due to southward IMFs. Tsurutani and Gonzalez (1995)
showed that with northward IMFs geomagnetic quiescence occurred. The energy input into
the magnetosphere was 100 to 30 times less than during southward IMFs.

Then what is the “initial phase” and its physical cause? It was experimentally found by
Smith (1979) and Tsurutani et al. (1988) that magnetic storms generated near solar max-
imum were typically caused by Interplanetary Coronal Mass Ejections (ICMEs) and their
upstream sheaths. ICMEs are the interplanetary remains and evolution of CMEs coming
from the Sun. The fast CMEs are led (on the antisunward side) by fast mode collisionless
shocks (Kennel et al. 1985), which have compressed and accelerated the slow solar wind
forming the sheaths. The abrupt plasma density jump at the shock/sheath causes a sudden
compression of the Earth’s magnetosphere due to the increase in the solar wind ram pres-
sure. This compression is noted as a “sudden impulse” (SI+) by ground-based magnetome-
ters (Araki et al. 2009). However, if there is no southward IMF component in the sheath or
following ICME proper, there is no enhanced magnetic reconnection and thus no magnetic
storm main phase. For this reason, modern scientists have dropped the term storm “initial
phase” because it is just magnetospheric compression and not part of the storm itself. This
has been discussed in detail by Joselyn and Tsurutani (1990) in which they suggest that the
term “Storm Sudden Commencement” (SSC) be dropped from the literature. The shock will
always produce a “sudden impulse” (Araki et al. 2009) and that term should be used instead.

The magnetic recovery phase is caused by the loss of the energetic ring current particles.
This has been described and modeled by Kozyra et al. (1997, 2002) and Jordanova et al.
(1998). The loss processes are charge exchange, Coulomb collisions, wave-particle inter-
actions (with consequential particle loss to the ionosphere) and convection out the dayside
magnetopause.
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When Chapman and Akasofu coined the term “substorm”, they realized that although
substorms occur during all phases of magnetic storms, there were far more events during the
storm main phase than either of the other two. This led to their speculation that substorms
were the building blocks of magnetic storm main phases.

Is there observational evidence contrary to the Chapman and Akasofu hypothesis that mag-
netic storm (main phases) are caused by multiple substorms?

The answer is yes, on two different fronts. Tsurutani et al. (2004) searched for magnetic
storms with a lack of substorms. The magnetic storms were identified by events where Dst <

−50 nT and substorms were identified by high values of the AE indices. They found that
magnetic storms caused by slowly rotating southward interplanetary magnetic fields would
create Dst depressions that would quantitatively qualify as magnetic storms. These slowly
rotating magnetic fields were part of the magnetic cloud (MC) portion of the ICME. These
storms had a significant lack of AE substorms or no substorms at all. So there are published
examples of storms without substorms.

But is that the end of the argument? Well not quite. These events appeared as large
amplitude “convection bays” (Pytte et al. 1978; Sergeev et al. 1996). The question then
becomes “is this not a true magnetic storm, but some other geophysical phenomena?”. This
topic has yet to be answered.

There is another form of geomagnetic activity besides isolated substorms and magnetic
storms. This geomagnetic activity that occurs associated with Alfvén waves embedded in
high speed solar wind streams. The streams emanate from coronal holes primarily during
the declining phase of the solar cycle (Krieger et al. 1973; McComas et al. 2002). Earlier
Tsurutani and Gonzalez (1987) found this activity and gave it a descriptive name, “High-
Intensity Long-Duration Continuous AE Activity” (HILDCAA) event. These events had to
occur outside of a magnetic storm, had to last 2 days or longer, reached peak AE values of
1000 nT or higher, and had no lapse of AE less than 200 nT for 2 hours or more. The south-
ward component of the Alfvén waves caused magnetic reconnection and the consequential
HILDCAA geomagnetic activity. HILDCAAs have been found to be a series of substorms
(identified by spacecraft imaging), but there are other “convection events” present as well
(Tsurutani and Gonzalez 2007). The convection events are now recognized as being associ-
ated with Nishida (1968) DP2 current systems. However, the main point is that HILDCAAs
are an example of many consecutive substorms/convection events that do not form a mag-
netic storm. Thus, this is a contrary example from another perspective.

If magnetic storms are different from a series of substorms what is the relationship between
the two?

We know from observations that both are caused by southward interplanetary magnetic
fields and magnetic reconnection. Substorms occur from short duration southward fields
(Tsurutani and Meng 1972; Kamide et al. 1977). Magnetic storms are caused by long dura-
tion and intense southward magnetic fields (Gonzalez et al. 1994; Daglis et al. 2007). During
most (main phase) magnetic storms there are many substorms as well.

It is possible that the two phenomena are independent and the two systems can be opera-
tional at the same time (Tsurutani and Gonzalez 2007). Magnetic storms involve large scale
entire magnetospheric convection patterns. The convection electric fields produce the ener-
gization for the ring current formation. Substorm reconnection and subsequent convection
is more highly localized and involve only a relatively small portion of the nightside magne-
tosphere. One test to determine if this scenario is correct and the two systems can operate at
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the same time is to study nightside electric fields and determine if two separate systems are
coexisting.

When we mention that magnetic reconnection is the cause of storms and substorms, it
is clear that there are other interplanetary parameters that influence the efficiency of the
magnetic reconnection process (Gonzalez et al. 1989; Borovsky 2013). It is also known that
interplanetary shock impingement onto the magnetosphere can trigger substorms (Heppner
1955; Zhou and Tsurutani 2001). In some cases, the substorms are so intense that they may
be the main energy input factor for a coincident magnetic storm (Tsurutani and Hajra 2021;
Hajra et al. 2016; Hajra and Tsurutani 2018). What is the source of this substorm/storm
energy? There is probably stored magnetotail energy but additional solar wind ram kinetic
energy cannot be ruled out as well.

Application of Information-Theoretic Measures for Storm Research

Information-Theory measures, such as the ones discussed in Sect. 2.4, can provide valu-
able insights into the state of the magnetosphere and the various changes that it is subjected
to, and thus, can be used to study and characterize the onset and evolution of phenomena
such as magnetic storms. In Balasis et al. (2013) the authors have used various entropies to
study the variations in the information content of the Dst series, for the entire year of 2001,
which included two intense magnetic storms, on March 31st and November 6th, with values
that reached a minimum of −387 nT and −292 nT respectively. They used the Tsallis en-
tropy formula, with a q value equal to 1.84, on the binary representation of the series, as well
as the Approximate, Sample and Fuzzy entropies, the latter of which with an exponential
membership function.

As can be seen in Fig. 7, all measures accurately detect the complexity dissimilarity
among different “physiological” (quiet times) and “pathological” (intense magnetic storms)
states of the magnetosphere. They imply the emergence of two distinct patterns: a pattern
associated with the intense magnetic storms, which is characterized by a higher degree of
organization (lower entropy values) and a pattern associated with normal periods, which is
characterized by a lower degree of organization (higher entropy). In general, all four entropy
measures clearly distinguish between the different complexity regimes in the Dst time series.

5 Solar Wind Driving of Radiation Belt Dynamics

Characterizing and modeling processes at the sun and of space plasma in our solar system
are difficult because the underlying physics is often complex, nonlinear, and not well under-
stood. The drivers of a system are often nonlinearly correlated with one another, which
makes it a challenge to understand the relative effects caused by each driver. However,
entropy-based information theory can be a valuable tool that can be used to determine the
information flow among various parameters, causalities, untangle the drivers, and provide
observational constraints that can help guide the development of theories and physics-based
models. Similarly correlative methods provide a basis for ranking solar wind functions in
terms of their geoeffectiveness, and for building models driven by these solar functions. The
solar wind drivers of radiation belt electrons are investigated using correlation functions,
mutual information (MI), conditional mutual information (CMI), transfer entropy (TE), and
impulse response functions (IRF). Relativistic electron fluxes at the geosynchronous orbit
(herein Je,GEO refers to geosynchronous MeV electron energy flux) is found to be anticor-
related with solar wind density (nsw) with a lag of 1 day. However, this lag time and an-
ticorrelation can be attributed mainly to the Je,GEO(t + 2 days) correlation with solar wind
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Fig. 7 (Fig. 1 from Balasis et al. 2013) From top to bottom: Dst time series from January 1, 2001, to De-
cember 31, 2001, associated with two intense magnetic storms (marked in red) and the corresponding ApEn,
SampEn, FuzzyEn and non-extensive Tsallis entropy, Sq , for sliding windows of 256 hours each. The tri-
angles denote five time intervals in which the first, third and fifth intervals correspond to higher entropies,
whereas the second and fourth time windows exhibit lower entropies (the parts of the entropy plots shown in
red)

velocity, Vsw(t), and the anticorrelation of solar wind density and velocity over timescale of
1 day. Analyses of solar wind driving of the magnetosphere need to consider this (Vsw, nsw)

anticorrelation. Using CMI to remove the effects of Vsw, the response of Je,GEO to nsw is
30% smaller and has a lag time <24 hr, suggesting that the loss mechanism due to nsw or
solar wind dynamic pressure has to start operating in <24 hr. Nonstationarity in the system
dynamics is investigated using windowed TE. The solar wind drivers are then investigated
using filtering methods: the impulse response functions of the electron flux, as a function of
L shell and energy, to solar wind velocity, density, and interplanetary magnetic field are pre-
sented. We discuss the physical significance of three large-scale modes in these responses.
Determining the spatial, temporal, and energy parameters of these modes narrows down
the search for the salient acceleration and loss processes in the radiation belts. Finally, we
present linear and nonlinear dynamical models of the electron flux.

5.1 Introduction

The Earth’s radiation belts refer to a region in space that is populated by trapped energetic
electrons and ions. Typically, there are two electron radiation belts, the inner belt and outer
belt, but sometimes a third belt appears between the two belts. The inner belt is located
at an equatorial distance approximately between 1.2 and 3 RE (RE = radius of the Earth



38 Page 34 of 82 G. Balasis et al.

∼6378 km) from the center of the Earth and contains electrons having energies of hun-
dreds of keVs and ions having hundreds of MeVs. The outer belt is located at an equatorial
distance approximately between 4 and 8 RE and contains mostly electrons having energies
ranging from a few hundred keVs to tens of MeVs. The present chapter deals only with the
outer radiation belt electron population.

The existence of radiation belt MeV electrons is usually explained by several acceleration
mechanisms that can accelerate electrons from a few keVs to tens of MeVs.

There have been several acceleration mechanisms proposed, but most studies generally
suggest either local or global acceleration. In a local acceleration scenario, storms and sub-
storms inject plasma-sheet particles into the inner-magnetosphere and accelerate low-energy
(e.g., few-keV) electrons to a few hundred keVs. Once in the inner magnetosphere, elec-
trons interact with locally excited ultra-low-frequency (ULF) waves (e.g., Elkington et al.
1999; Rostoker et al. 1998; Ukhorskiy et al. 2005; Mathie and Mann 2000, 2001), very-
low-frequency (VLF) waves (e.g., Summers et al. 1998; Omura et al. 2007; Thorne 2010;
Simms et al. 2015; Camporeale 2015; Camporeale and Zimbardo 2015), and/or magne-
tosonic waves (e.g., Horne et al. 2007; Shprits et al. 2008), which can energize electrons
to the MeV-energy range. The solar wind velocity may be linked to the local acceleration
mechanism through substorm particle injections (e.g., Baker and Kanekal 2008; Kissinger
et al. 2011; Tanskanen 2009; Kellerman and Shprits 2012; Newell et al. 2016).

Although the previous paragraph would link the substorm injections and electron ac-
celeration to high Vsw, some studies emphasized the role of the southward component of
the magnetic field, especially during high-amplitude Alfvén waves, and High Intesity Long
Duration Continuous AE Activity (HILDCAA) events (Hajra et al. 2013). Tsurutani et al.
(2010 and references therein) suggested that the process starts at the Sun with nonlinear
Alfvén waves carried by high-speed solar wind streams emanating from coronal holes. The
southward component of the Alfvén wave magnetic field would cause magnetic reconnec-
tion at the dayside magnetopause, which would lead to energetic plasma injections on the
nightside and electron acceleration (this is discussed further in the Journal of Geophysical
Research (JGR) Special Section on Chorus, Tsurutani et al. (2010)).

Certain global-acceleration mechanisms also invoke ULF waves for electron accelera-
tion. A popular scenario is that the ULF waves are generated globally by a Kelvin-Helmholtz
instability (KHI) along the magnetopause flanks due to large velocity shear between the
magnetosheath and magnetosphere plasmas (e.g., Johnson et al. 2014; Engebretson et al.
1998; Vennerstrøm 1999). Indeed, studies have shown that Vsw is probably the most dom-
inant driver of relativistic electron fluxes at geosynchronous orbit (6.6 RE) (e.g., Paulikas
and Blake 1979; Baker et al. 1990b; Li et al. 2001, 2005; Vassiliadis et al. 2005; Ukhorskiy
et al. 2004; Rigler et al. 2007; Kellerman and Shprits 2012; Reeves et al. 2011; Hajra et al.
2015).

In contrast to Vsw, which correlates with Je,GEO, nsw appears to anticorrelate with Je,GEO

(e.g., Lyatsky and Khazanov 2008; Kellerman and Shprits 2012); however, we are providing
an explanation of this in Sect. 5.6 below. One mechanism supporting this anticorrelation
states that an increase in nsw would increase solar wind dynamic pressure (Pdyn), which, in
turn, would push the magnetopause inward, leading to electron losses at the high L shell
(e.g., Li et al. 2001). Furthermore, the magnetopause compression would drive ULF waves
(e.g., Korotova and Sibeck 1995; Kepko and Spence 2003; Claudepierre et al. 2010) lead-
ing to fast radial diffusion, which redistributes the losses to lower L shells, including at
geosynchronous orbit (Shprits et al. 2006; Kellerman and Shprits 2012; Turner et al. 2012).
Ukhorskiy et al. (2006) used a test particle simulation to demonstrate this scenario, which is
known as magnetopause shadowing (West et al. 1972). However, there is evidence that solar
wind density can lead to electron acceleration at L < 4 (Vassiliadis et al. 2003, 2008, 2011).
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Information theory has been applied to problems in magnetospheric, ionospheric, and
solar physics (e.g., Consolini et al. 2009; Balasis et al. 2011a; Materassi et al. 2011; De
Michelis et al. 2011, 2017b; March et al. 2005; Johnson and Wing 2005; Johnson et al.
2018; Johnson and Wing 2014; Wing et al. 2005, 2016, 2018, 2022). We will use some of
its tools in later parts of this section.

Returning to the question of whether the density leads to energization or losses, we note
that, in the solar wind, Vsw and nsw are anti-correlated with each other (e.g., Hundhausen
et al. 1970) while pressure balance is maintained. The anti-correlation of Vsw and nsw com-
plicates the interpretation of the driving of the Je,GEO. If Vsw is causally correlated with
Je,GEO, the anticorrelation between Je,GEO and nsw could simply be coincidence. Conversely,
if nsw is causally correlated with Je,GEO, the anticorrelation between Vsw and Je,GEO could
simply be coincidence. On the other hand, we cannot rule out the possibility that both Vsw

and nsw can produce effects on the electron flux. If that is the case, how can we untangle the
effects of Vsw from nsw and which of these two parameters exert more influence on Je,GEO?

In the following, we review our recent work applying information theory to solar wind–
radiation belt system. We demonstrate how information theory can be used to untangle the
solar wind drivers of the radiation belt. The information theoretic tools that we use are mu-
tual information (e.g., Li 1990; Tsonis 2001), conditional mutual information (e.g., Wyner
1978), and transfer entropy (e.g., Schreiber 2000).

5.2 Data Sets

Electron Flux at Geosynchronous Orbit The geosynchronous orbit is a useful location for
measuring the electron flux, Je,GEO. The solar wind–radiation belt system study uses daily
averages of MeV electron fluxes obtained from Energetic Sensor for Particles (ESP) (Meier
et al. 1996) and Synchronous Orbit Particle Analyzer (SOPA) (Belian et al. 1992) on board
of all seven Los Alamos National Laboratory (LANL) geosynchronous satellites from 22
September 1989 to 31 December 2009. The data and format description can be found at
ftp://ftop.agu.org/apend/ja/2010ja015735. We only examine the Je,GEO flux of electrons with
energy range of 1.8–3.5 MeVs. A detailed description of the dataset and its processing are
given in Reeves et al. (2011).

Electron Flux at Other Altitudes in the Radiation Belts The electron flux is a function of
electron position and velocity, denoted by Je(t;L,E, α) where the last three arguments are
L shell, energy, and pitch angle. In practice we will use the logarithmic flux (also: log-flux),
je = logJe .

In addition to measurements of the flux from geosynchronous orbit (corresponding to a
narrow range of L shells), it is possible to measure the flux from other orbits, some of which
go through the high-activity regions in the belts. Therefore, we discuss spacecraft missions
such as the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX), the Polar
spacecraft in NASA’s Global Geospace Science program, and the recent Van Allen Probes
(VAP) which have proven invaluable in the understanding of the dynamics and physics of
the belts.

SAMPEX (1992-2012) traveled in a polar, roughly circular, low-Earth orbit (LEO) with
a 96.7-min period which provided high-cadence measurements over the entire L shell range
of the radiation belts (the resolution in L used below is �L = 0.1). Limitations included
a) the spacecraft’s low altitude which allowed measurements of only part of the particle
distribution near the loss cone – which, however, proved sufficiently representative of the
large-scale changes of the full distribution; b) a very sparse energy sampling (relevant to this

ftp://ftop.agu.org/apend/ja/2010ja015735
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Fig. 8 (Fig. 1 from Vassiliadis 2008) SAMPEX and Polar missions: representative orbits

discussion: the 2-MeV channel of the Proton Electron Telescope, or PET), and c) occasional
contamination of the detector by protons. SAMPEX, however, has been a valuable mission
for its energy coverage as well as its longevity and reliability. In the following we discuss
analysis of several years of daily-averaged electron flux data measured by PET. Figure 8
shows representative orbits of SAMPEX and other spacecraft.

Polar was in a highly elliptical (apogee: 9 RE), high-inclination (78.63°) orbit. Its long
period of 18.5 hours was compensated to a certain extent by its excellent instrumentation.
The Comprehensive Energetic Particle and Pitch Angle Distribution (CEPPAD) detector
provided 3-D electron angular distributions in the energy range of 20 keV-1 MeV. We will
mention the analysis of electron flux data from the HIST sensor of CEPPAD from a three-
year interval (1997-1999) at the beginning of the mission at a daily resolution.

The VAP mission was active from August 2012 to October 2019. This study uses data
from the VAP-A spacecraft which has a highly elliptical, low-inclination (10.2°) orbit and
goes rapidly through a wide L shell range with a period of 8.95 hours. Because the particle
counts drop off rapidly at high L shells, the shell range for this study is L∗ = 1.1-6.5; in addi-
tion, we use a resolution of �L∗ = 0.1. The Energetic-Particle, Composition, and Thermal-
Plasma (ECT)’s Magnetic Electron and Ion Spectrometer (MagEIS) measures electrons with
25 channels in the range 31.5 keV-4.22 MeV and a large number of pitch angle channels.
Here we will present results for the omnidirectional electron flux dataset from one year
(2015) at a 6-hour resolution. The analysis was originally done with Release 3 data (Vas-
siliadis 2018) and repeated with virtually identical results with Release 4 data (Vassiliadis
2019); only the latter results are discussed below.

Interplanetary and Magnetospheric Activity To properly understand the dynamics of the
radiation belt electron flux, we must place it in the context of interplanetary and broader
magnetospheric activity. For the studies of electron flux at geosynchronous orbit (LANL
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spacecraft data), the daily and hourly averaged solar wind data 1989–2009 come from OMNI
dataset provided by NASA (http://omniweb.gsfc.nasa.gov/). The LANL and solar wind data
are merged. The LANL electron flux dataset has 7187 daily averages out of which 6438 data
points have simultaneous solar wind observations.

A similar approach is applied to studies of electron flux from off-geosynchronous orbits.
Solar wind, IMF, and solar measurements are obtained from NASA’s OMNIweb service and
are interpolated and/or averaged to be in the same time resolution as those of the magneto-
spheric particle fluxes. The timescales range from 1 day (SAMPEX and Polar) to 6 hours
(VAP).

Radiation belt events are part of the overall magnetospheric activity. As such it is corre-
lated with geomagnetic indices (Dst, AL, AU, PC) which are regional or global measures of
magnetospheric activity.

5.3 Radiation Belt Structure in Configuration Space and Energy Space

As discussed in the Introduction to this Section, the motion of electrons in the radiation belts
is determined by a large number of magnetospheric and interplanetary effects. As a result
the dynamics of phase space density f (x,v, t) and the flux je(x,E, α, t) in one region of the
inner magnetosphere can significantly differ from their dynamics in another region.

We can use the dynamics of the measured electron flux to discern these regions in con-
figuration space or energy space. For simplicity we use omnidirectional fluxes je(t;L,E)

and average over either the energy or the L shell. Our starting point is the cross-correlation
function for time series x(t) and y(t) defined in Equation (2.9) which we will apply to the
energetic electron fluxes at specific L shells and energies.

First, we compare energy-averaged fluxes je(L1, t) and je(L2, t) at shells L1 and L2,
measured over time intervals T long compared to drift periods, e.g., many days and typically
a year or longer. The L-shell correlation

C(L1,L2) = 1

σJe(L1)σJe(L2)T

∫
T

δje(t;L1) · δje(t;L2)dt (5.1)

is a measure of the spatial coherence of the radiation belt regions (Vassiliadis et al. 2003).
For 2-MeV omnidirectional fluxes measured by SAMPEX/PET at a daily time resolution
from 1993-2000, we obtain a correlation matrix (Fig. 9) (Vassiliadis et al. 2003). The corre-
lation matrix is divided into symmetric off-diagonal blocks (diagonal correlations are triv-
ially unity). We identify several spatial regions with correlated dynamics: a) the main outer
belt (L = 4-7); b) the inner edge of outer belt (L = 3-4); c) the slot (L = 2-3); and d) the
inner belt (L = 1.1-2). The L shell ranges obtained from the correlation function indicate
that different processes predominate in each region and determine its dynamics.

Second, we compare L shell-averaged fluxes je(t;E1) and je(t;E2) at energies E1 and
E2, measured over long time intervals T . We define the energy correlation

C(E1,E2) = 1

σje(E1)σje(E2)T

∫
T

δje(t;E1) · δje(t;E2)dt (5.2)

as a measure of the coherence in energy space (Vassiliadis 2018). For omnidirectional fluxes
measured by VAP-A/MagEIS at a 6-hour resolution over 1 year (2015), we obtain a corre-
lation matrix in the energy range 31.5 keV-4.22 MeV (Fig. 10).

The correlation matrix is divided into blocks which identify three distinct energy re-
gions:

http://omniweb.gsfc.nasa.gov/
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Fig. 9 (adapted Fig. 2 from
Vassiliadis et al. 2003) Cross-L
correlations from 2-MeV daily
omnidirectional fluxes measured
by SAMPEX/PET over the range
L = 1.1-10.0 in the interval
1993-2000

Fig. 10 Cross-energy
correlations from 6-hour
omnidirectional fluxes measured
by VAP-A/MagEIS over the
range 31.5 keV-4.22 MeV in
2015 (Vassiliadis 2018)

1. 31.5-143 keV. This range includes seed electrons and the low end of the acceleration
range.

2. 184-749 keV. This range includes the intermediate acceleration.
3. 909 keV-4.06 MeV. This range includes relativistic electrons.

The division of the correlation matrix indicates that the dynamics of the flux at each energy
may be correlated with one or more other energy levels. The acceleration/loss processes
determining the time series of the flux at each energy appear to be different at each one of
the three ranges.
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5.4 Electron Flux Dynamics at Geosynchronous Orbit

Correlation with Solar Wind Activity Early observations showed a consistent correlation be-
tween electron flux at geosynchronous orbit and several measures of activity in the inter-
planetary medium.

Paulikas and Blake (1979) showed that the solar wind speed has the greatest correlation
with the flux of relativistic electrons over a range of energies (0.14-3.9 MeV) measured by
the geostationary ATS-1, −5, and −6 satellites. Those results were the basis for many other
studies of the relation between electron fluxes and interplanetary activity. One can form the
correlation function between the log-flux and a measure of interplanetary activity such as
the solar wind speed:

C(τ ;L,E) = 1

σVswσJe(L,E)T

∫
T

δVsw(t) · δJe(t + τ ;L,E)dt. (5.3)

At geosynchronous orbit, the correlation with solar wind speed peaks at 2 days after solar
wind arrival, but this may be different for lower L shells.

Mutual Information, Conditional Mutual Information, and Transfer Entropy Dependency is
commonly used to understand how systems operate. The standard tool used to identify de-
pendency is cross-correlation such as the ones above. Considering two variables, x and y,
the correlation analysis essentially tries to fit the data to a 2D Gaussian cloud, where the
nature of the correlation is determined by the slope and the strength of correlation is de-
termined by the width of the cloud perpendicular to the slope. The correlation analyses are
useful, fast, and simple. However, they cannot describe nonlinear relationships and usually
cannot be used to establish causalities.

The entropy-based information theory can help identify nonlinearities in the system, in-
formation transfer between input and output parameters, and the response times (lags). This
nonparametric, statistics-based method is not constrained by the assumption of an under-
lying dynamics – rather the underlying (physics-based) dynamics is discovered by the ap-
proach and then ultimately utilized to improve predictions. Moreover, it can help untangle
the input parameters that are correlated or anti-correlated with each other. It can also help
modelers select input parameters and determine prediction horizon. The latter refers to how
far ahead can one predict a variable. Hence, it can be a useful tool to study many complex
systems. This approach should be considered complimentary to correlational analyses and
to physics-based and empirical modeling efforts.

Mutual information (MI) (Tsonis 2001; Li 1990; Darbellay and Vajda 1999) between
two variables, x and y, compares the uncertainty of measuring variables jointly with the
uncertainty of measuring the two variables independently. The uncertainty can be measured
by any entropic measure; below we show this using the Shannon entropy. In order to estimate
the entropies, it is necessary to obtain the probability distribution functions, which in this
study are obtained from histograms of the data based on discretization of the variables (i.e.,
bins).

Suppose that two variables, x and y, are binned so that they take on discrete values, x̂

and ŷ, where

x ∈ {x̂1, x̂2, . . . , x̂n} ≡ ℵ1; y ∈ {ŷ1, ŷ2, . . . , ŷn} ≡ ℵ2. (5.4)

The variables may be thought of as letters in alphabets ℵ1 and ℵ2, which have n and m let-
ters, respectively. The extracted data can be considered as sequences of letters. The entropy
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associated with each of the variables is defined as

H(x) = −
∑
ℵ1

p(x̂) logp(x̂); H(y) = −
∑
ℵ2

p(ŷ) logp(ŷ), (5.5)

where p(x̂, ŷ) is the probability of finding the letter x̂ in the set of x-data and p(ŷ) is the
probability of finding letter ŷ in the set of y-data. To examine the relationship between the
variables, we extract the letter combinations (x̂, ŷ) from the dataset. The joint entropy is
defined by

H(x,y) = −
∑
ℵ1ℵ2

p(x̂, ŷ) logp(x̂, ŷ), (5.6)

where p(x̂, ŷ) is the probability of finding the letter combination (x̂, ŷ) in the set of (x, y)

data.
The mutual information is then defined as

MI(x, y) = H(x) + H(y) − H(x,y). (5.7)

While MI is useful to identify nonlinear dependence between two variables, it is often useful
to consider conditional dependency with respect to a conditioner variable z that takes on
discrete values, Ẑ ∈ {z1, z2, . . . , zn} ≡ ℵ3. The conditional mutual information (Wyner 1978)

CMI(x, y|z) =
∑

ℵ1ℵ2ℵ3

p(x̂, ŷ, ẑ) log
p(x̂, ŷ|ẑ)

p(x̂|ẑ)p(ŷ|ẑ)
= H(x, z) + H(y, z) − H(x,y, z) − H(z)

(5.8)

determines the mutual information between x and y given that z is known. In the case
where z is unrelated, CMI(x, y|z) = MI(x, y), but in the case that x or y is known based on
z, then CMI(x, y|z) = 0. CMI therefore provides a way to determine how much additional
information is known given another variable. CMI can be seen as a special case of the more
general conditional redundancy that allows the variable z to be a vector (e.g., Prichard and
Theiler 1995; Johnson and Wing 2014).

A common method to establish causal-relationships between two time series, e.g., [xt ]
and [yt ], is to use a time-shifted correlation function in Equation (2.9). The results of this
type of analysis may not be particularly clear when the correlation function has multiple
peaks or there is not an obvious asymmetry. Additionally, correlational analysis only de-
tects linear correlations. If the feedback involves nonlinear processes, its usefulness may be
seriously limited.

Alternatively, time-shifted mutual information, MI(x(t), y(t + τ)), can be used to detect
causality in nonlinear systems, but this too suffers from the same problems as time-shifted
correlation when it has multiple peaks and long range correlations.

A better choice for studying causality is the one-sided transfer entropy (Schreiber 2000)

T Ex→y(τ ) = −
∑
ℵ1ℵ2

p(yt+τ , ypt , xt ) log

(
p(yt+τ |ypt , xt )

p(yt+τ |ypt )

)
, (5.9)

where ypt = [yt , yt−�, . . . , yt−k�], k + 1 = dimensionality of the system, and � =
first minimum in MI[y(t), y(t − τ)]. Transfer entropy (TE) can be considered as a spe-
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cialized case of conditional mutual information:

T Ex→y(τ ) = CMI
(
y(t + τ), x(t)|yp(t)

)
, (5.10)

where yp(t) = [y(t), y(t − �), . . . , y(t − k�)]. The transfer entropy can be considered as
a conditional mutual information that detects how much average information is contained
in a variable x about the next state of variable y that is not contained in the past history
of y, yp, of the system (Prokopenko et al. 2013). In the absence of information flow from
x to y, TE(x → y) vanishes. Also, unlike correlational analysis and mutual information,
transfer entropy is directional, TE(x → y) �= TE(y → x). The transfer entropy accounts for
static internal correlations, which can be used to determine whether x and y are driven by a
common driver or whether x drives y or y drives x.

5.5 The Dilemma of the Solar Wind Drivers of the Radiation Belt System

Figure 11 plots the radiation belt je,GEO vs. Vsw. The figure shows log je,GEO(t + τ) vs.
Vsw(t) for τ = 0,1,2, and 7 days. The solar wind–radiation belt system is nonlinear and
hence the standard linear correlational analysis would be inadequate. The radiation belt flux
Je is correlated with Vsw. The best correlation can be found with je,GEO with a two-day lag,
but it is hard to see this in the scatter plot in Fig. 11.

In order to see the best response lag time of the radiation belt je,GEO to Vsw, Fig. 12 shows
the plot of the corr(je,GEO(t + τ),Vsw(t)). The figure shows that the correlation coefficient
peaks at τ = 2 day with r = 0.63. There is a smaller peak at τ = 29 days (r = 0.42), which
can be attributed to the 27 day synodic solar rotation. Because the large number of data
points (n > 5772), the two peak correlation coefficients are highly significant with P <

0.01. However, the linear correlational analysis may be inadequate because the solar wind–
radiation belt system is nonlinear (Fig. 11). Hence, mutual information and transfer entropy
need to be calculated. Figure 12b shows MI(je,GEO(t + τ),Vsw(t)) and TE(Vsw → je,GEO).
The figure shows that information transfer from Vsw to je,GEO peaks at τ = 2 days. Although
in this case, the linear correlation, MI, and TE peak at the same τ , in general this is not
always the case (as shown in the solar cycle analysis in Sect. 5.6).

In order to get a measure of the significance of TE(Vsw → je,GEO), we calculate noise =
TE(sur(Vsw) → je,GEO) where sur(Vsw) is the surrogate data of Vsw, which is obtained
by randomly permuting the order of the time series array Vsw. The mean and standard
deviation of the noise are calculated from an ensemble of 100 random permutations of
TE(sur(Vsw) → je,GEO). The mean noise and 3σ (standard deviation) from the mean noise
are plotted with solid and dashed green curves, respectively, in Fig. 12b. The maximum TE,
TE(je,GEO(t + 2 days),Vsw(t)) has peak information transfer itmax = 0.30, signal to noise
ratio snr = 5.7 and significance = 94σ where itmax = peak − mean noise, snr = peak/mean
noise and significance = itmax/σ (noise). From the snr, itmax, and significance, we conclude
that there is a significant transfer of information from Vsw to je,GEO with a 2 day delay. Note
that the linear correlation, MI, and TE analyses are consistent with the previous studies (e.g.,
Baker et al. 1990b; Vassiliadis et al. 2005; Reeves et al. 2011; Balikhin et al. 2011; Lyatsky
and Khazanov 2008).

Figure 12c shows that the anticorrelation between nsw and je,GEO minimizes at τ = 1 day
(r = −0.49). Figure 12d shows that MI(je,GEO(t + τ), nsw(t)) and TE(nsw → je,GEO) peak
also at τ = 1 day (itmax = 0.13, snr = 4.4 and significance = 42σ ). This result is consistent
with Balikhin et al. (2011), which finds that Je has the strongest dependence on nsw with a
lag of 1 day.
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Fig. 11 (Fig. 1 from Wing et al. 2016) Scatter plots of logJe,GEO(t + τ) vs. Vsw(t) for τ = 0,1,2, and 7
days in panels (a), (b), (c), and (d), respectively. The data points are overlain with density contours showing
the nonlinear trends. The panels show that Je,GEO has dependence on Vsw for τ = 0,1, and 2 days and the
dependence is strongest for τ = 2 days. (d) At large τ , e.g., τ = 7 day, Je,GEO dependence on Vsw is very
weak. The triangle distribution (Reeves et al. 2011) can be seen in panels (a), (b), and (c). This is essentially
the same as Fig. 10 in Reeves et al. (2011), except that no density contours are drawn and Fig. 9d plots τ = 7
days instead of τ = 3 days

However, Vsw and nsw anti-correlate with each other (e.g., Hundhausen et al. 1970).
Figure 12e shows that the anticorrelation between Vsw and nsw minimizes at τ = 1 day
(r = −0.56). Figure 12f shows that MI(nsw(t + τ),Vsw(t)) and TE(Vsw → nsw) peak also at
τ = 1 day (itmax = 0.20, snr = 7.4 and significance = 95σ ).

As mentioned in Sect. 5.1, the anti-correlation of Vsw and nsw with a lag of 1 day compli-
cates the interpretation of the driving of the je,GEO. If Vsw is causally correlated with je,GEO

with a lag of 2 days, the anticorrelation between je,GEO and nsw with a lag of 1 day could
simply just be coincidence. Conversely, if nsw is causally correlated with je,GEO with a lag
of 1 day, the anticorrelation between Vsw and je,GEO could simply just be coincidence. On
the other hand, from Fig. 12, we cannot rule out the possibility that both Vsw and nsw can
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Fig. 12 (adapted from Wing et al. 2016) (a) Correlation coefficient of [je,GEO(t + τ),Vsw(t)].
(b) MI(Je,GEO(t + τ),Vsw(t)) (blue) and TE(je,GEO(t + τ),Vsw(t)) (yellow). The transfer of infor-
mation from Vsw to Je,GEO(TE(Vswτje,GEO)) peaks at τmax = 2 days. (c) Correlation coefficient of
[je,GEO(t + τ), nsw(t)]. (d) MI(je,GEO(t + τ), nsw(t)) (blue) and TE(je,GEO(t + τ), nsw(t)) (yellow). The
transfer of information from nsw to je,GEO(TE(nswτje,GEO)) peaks at τmax = 1 day. (e) Correlation coef-
ficient of [nsw(t + τ),Vsw(t)]. (f) MI(nsw(t + τ),Vsw(t)) (blue) and TE(nsw(t + τ),Vsw(t)) (yellow). The
solid and dashed green curves are the mean and 3τ from the mean of the noise. The transfer of information
from Vsw to nsw[TE(Vswτnsw)] peaks at τmax = 1 day
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exert influence on the je,GEO. If that is the case, how can we untangle the effects of Vsw from
nsw and which of these two parameters exert more influence on je,GEO?

5.6 Untangling the Drivers of the Radiation Belt Electron Flux

Geosynchronous Orbit The correlation functions (Equation (2.9)) for a single input or even
for multiple inputs are limited because a) they are linear, b) if there are multiple inputs,
they are not always independent from each other. Therefore, and in an attempt to address
the above question at the end of Sect. 5.5, we use conditional mutual information, CMI, to
untangle the effects of Vsw from nsw and vice versa. To calculate how much information
flows from nsw to Je , given Vsw, we calculate CMI(je,GEO(t + τ), nsw(t)|Vsw(t)), which is
plotted as blue curve in Fig. 13a. Using a similar approach as for TE, we determine the noise
level of the surrogates: CMI(je,GEO(t + τ), sur(nsw(t))|Vsw(t)). The mean and σ of the noise
are calculated in the same manner as TE and used to determine the significance of the results.
The mean noise and 3σ are plotted as solid and dashed green curves respectively. Figure 13a
shows that CMI(je,GEO(t + τ), nsw(t)|Vsw(t)) peaks at τmax = 0 day with itmax = 0.091 and
snr = 3.2. The τmax = 0 day suggests that je,GEO response lag time to nsw is less than 24 hr.
However, Fig. 13a shows that the peak is rather broad, suggesting that the je,GEO response is
still significant at τ = 1 day.

Earlier, we established that je,GEO(t + 2 days) correlates with Vsw(t), je,GEO(t + 1 day)

anticorrelates with nsw(t), but nsw(t +1 day) anticorrelates with Vsw(t) (Fig. 12). In Fig. 12d,
some of the information in the MI(nsw, Je) at τ = 1–2 days actually come from Vsw.
MI(Vsw, je,GEO) peaks at τ = 2–3 days. Because Vsw anticorrelates with nsw at τ = 1 day,
the information in MI(Vsw, je,GEO) at τ = 2–3 days would appear in MI(nsw, je,GEO) at
τ = 1–2 days. Subtracting this information from MI(nsw, je,GEO) at τ = 1–2 days would
allow the MI(nsw, je,GEO) at τ = 0 to become the tallest peak, as shown in Fig. 13a.
MI(nsw(t) → je,GEO(t + 1 day)) has itmax = 0.21, but removing the effects of Vsw, the itmax

drops ∼57% to 0.091 [itmax of CMI(je,GEO(t + 0 day), nsw(t)|Vsw(t)) is 0.091].
Conversely, some of the effects attributed to Vsw can be attributed to nsw, but the effect of

nsw is smaller. To see this, we calculate CMI(je,GEO(t + τ),Vsw(t)|nsw(t)), which is plotted
in Fig. 13b as solid blue curve. The blue curve peaks at τ = 2 days with itmax = 0.25 which
is about 2.7 times larger than the itmax of 0.091 for CMI(je,GEO(t + τ), nsw(t)|Vsw(t)). Thus,
Vsw transfers more information to je,GEO than nsw does. MI(Vsw(t) → je,GEO(t + 2 days))
has itmax = 0.32, but removing the effects of nsw, the itmax drops only ∼22% to 0.25
[itmax of CMI(Je(t + 2days),Vsw(t)|nsw(t)) = 0.25)].

The reason for the broader peak in Fig. 13b is that there is a significant information
transfer from nsw to je,GEO at τ = 0–1 day, but it falls off rapidly at larger τ . Because the
anticorrelation between Vsw and nsw has a one day lag, removing the effects of nsw would
lower information transfer from Vsw to je,GEO (i.e., MI(Vsw(t) → je,GEO(t + τ))) at τ = 1–2
days. So, it for MI(Vsw(t) → je,GEO(t + τ)) at τ = 1,2, and 3 are 0.25, 0.32, and 0.23,
respectively, whereas the corresponding values for CMI(je,GEO(t + τ),Vsw(t)|nsw(t)) are
0.14, 0.25, and 0.24, respectively. Note that, at τ = 1 and 2 there are reductions in informa-
tion transfer while at τ = 3, the information transfer is more or less the same (the difference
is within one σ [∼0.01]), leading to a broader peak in the CMI(je,GEO(t + τ),Vsw(t)|nsw(t))

curve in Fig. 13b than that in the MI(Vsw(t) → je,GEO(t + τ)) curve in Fig. 12d.
The above analysis suggests that Vsw is the major driver of je,GEO and places constraints

on the je,GEO response time lag to Vsw and nsw. The process to accelerate the electrons
to MeV energy range takes 2–3 days, as previously suggested (e.g., Kellerman and Sh-
prits 2012; Reeves et al. 2011). Moreover, based on information transfer from nsw to Je ,
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Fig. 13 (Fig. 8 from Wing et al. 2016) Blue curve showing (a) CMI(je,GEO(t + τ), nsw(t)|Vsw(t)),
and (b) CMI(je,GEO(t + τ),Vsw(t)|nsw(t)). The solid and dashed green curves are the mean and
3τ from the mean of the noise. (a) Unlike TE(je,GEO(t + τ), nsw(t)), which peaks at τmax = 1
day, CMI(je,GEO(t + τ), nsw(t)|Vsw(t)) peaks at τmax = 0 day (itmax = 0.091). The smaller τmax
comes about because CMI removes the effect of Vsw on je,GEO (see text). (b) The peak in
CMI(je,GEO(t + τ),Vsw(t)|nsw(t)) (itmax = 0.25) is broader and has slightly higher snr than that of
TE(je,GEO(t + τ),Vsw(t)) in Fig. 13b because CMI removes the effect of nsw, which anticorrelates with
je,GEO. Vsw transfers about 2.7 times more information to je,GEO than nsw

any mechanism for nsw anticorrelation with je,GEO has to operate or start operating within
<24 hr.

Next, we investigate whether other solar wind parameters also contribute to je,GEO. We
calculate the information transfer from IMF|B|, Pdyn, σ(IMFB), southward IMF Bz, north-
ward IMF Bz, IMF By , IMF Bx , and solar wind electric field (Esw) to je,GEO, given Vsw. The
northward (southward) IMF Bz is calculated from the daily average of the hourly IMF Bz

when IMF Bz > 0 (IMF Bz < 0). The results are tabulated in Table 1, which ranks various
solar wind parameters based on the itmax. Thus, the ranking gives the importance of each so-
lar wind parameter based on the information transfer to je,GEO. Table 1 also lists τmax which
signifies the lag time when information transfer to je,GEO maximizes.

Note that the ranking in Table 1 is obtained with daily resolution data. It is possible
that the ranking of some parameters may change if the data are analyzed at higher time
resolution. For example, some studies showed that southward IMF Bz can influence je,GEO

(e.g., Li et al. 2005; Onsager et al. 2007; Miyoshi and Kataoka 2008), but southward IMF Bz

is only ranked number 5 in Table 1. IMF fluctuates with periods of northward and southward
IMF at minutes or tens of minutes timescale. Thus, the low ranking of the southward IMF
Bz most likely result from the fluctuations of IMF Bz within one day period (e.g., Li et al.
2001; Balikhin et al. 2011; Reeves et al. 2011). Consistent with our result, Li et al. (2001)
found IMF Bz is poorly correlated with je,GEO at daily resolution.

In Fig. 13b, the CMI(je,GEO(t + τ),Vsw(t)|nsw(t)) curve shows that Vsw has little influ-
ence on the geosynchronous MeV electrons after a delay of 7–10 days. Thus, using Vsw, the
prediction or information horizon for je,GEO is about 7–10 days. Figure 13a shows that using
nsw, the prediction horizon for je,GEO is about 2 days.

In applying our information theoretical tools, the number of bins (nb) need to be chosen
appropriately. Sturges (1926) proposes that for a normal distribution, optimal nb = log2(n)+
1 and bin width (w) = range/nb , where n = number of points in the dataset, range =
maximum value – minimum value of the points. In practice, there is usually a range of nb

that would work. Using Sturges (1926) formula, with roughly 6400 points, nb ∼ 13.6. For
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Table 1 (From Wing et al. 2016, Table 1) Ranking of the importance of the solar wind parameters based
on information transfer to geosynchronous Mev electron flux (je,GEO) at tmax, where tmax is the lag time
when the information transfer peaks. Parameters 1–9 are calculated from CMI(Je,GEO(t + t), x(t)|Vsw(t))

whereas parameter 1 is calculated from CMI(je,GEO(t + t),Vsw(t)|nsw(t)), where x = parameter 1–9. The
peak information transfer (itmax) = peak − mean noise, the signal to noise ratio = peak/noise, and signifi-
cance = itmax/s(noise). Noise is calculated from surrogate data (see Sect. 5.4). The prediction horizon gives
the lag time when there is no information transfer from the solar wind parameter to je,GEO. Note that nsw and
Pdyn are both ranked at number 3 because they have similar itmax (the effect of Vsw has been removed [see
Sect. 5.5]). Northward IMF has slightly higher snr than southward IMF because northward IMF has lower
noise level than southward IMF. ∗Excluding the effect of solar rotation

Rank Solar wind
parameters

Peak
information
transfer
(itmax)

Signal to
noise ratio
at τmax

Significance
at τmax (σ )

τmax
(days)

Prediction
horizon
(days)

1 Vsw 0.25 6.6 94 2 10∗
2 IMF |B| 0.12 3.9 48 0 2

3 Pdyn 0.092 3.4 35 0 2

3 nsw 0.091 3.2 34 0 2

4 σ (IMF B) 0.075 3.9 48 0 2

5 IMF Bz < 0 0.064 2.7 26 0 2

6 Esw 0.056 2.9 22 1 5

7 IMF By 0.052 2.3 20 0 2

8 IMF Bz > 0 0.048 3.1 22 0 2

9 IMF Bx 0.044 2.2 19 0 2

the present study, we find that nb = 10 to 15 would work well. Having too few bins would
lump too many points into the same bin, leading to loss of information. Conversely, having
too many bins would leave many bins with 0 or a few number of points, which also leads to
loss of information. For the present study, we choose nb = 10.

Synoptic View of the Radiation Belts A distinction between the drivers of the flux dynamics
can be obtained by using the impulse response to the solar wind speed VSW as a linear model
and comparing its predictions ĵe(t;L;VSW), where the second argument indicates the solar
wind or other driver, with actual measurements of the log-flux je(t;L). The data-model
correlation for a model driven by speed VSW is defined as:

C(L;VSW) = 1

σĵe(L;VSW)σje(L)T

∫
T

δĵe(t,L;VSW) · δje(t;L)dt (5.11)

with notation similar to the correlations above. For the SAMPEX/PET dataset, we obtain the
data-model correlation for VSW and compare with 16 other interplanetary, magnetospheric,
and solar drivers of the radiation belt electron flux dynamics (Fig. 14).

(a) The data-model correlation for models driven by solar wind speed VSW is indicated by
a red thick line; that of a model driven by the dynamic pressure PSW with a red thin
line; and that of a model driven by the density nSW with an orange dashed line. These
three correlations represent the hydrodynamic aspects of the solar wind–magnetosphere
interaction. The interaction with the solar wind speed takes place at a longer time scale,
many hours to days, than the interaction with the solar wind pressure or density.
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Fig. 14 (Fig. 3 from Vassiliadis et al. 2005) Data-model correlation C(I) (L) from Equation (5.1) for 17 inter-
planetary/ magnetospheric variables. (top) Solar wind plasma parameters VSW (red thick line), PSW (red thin
line), and nSW (orange dashed line) represent the hydrodynamic aspects of the solar wind–magnetosphere in-
teraction. (middle) Interplanetary inputs BSouth (blue thick line) and VSWBSouth (blue thin line) and magnetic
indices Kp, Ap, C9, Dst, AL, AU, and PC (light blue lines) represent the effects of magnetic reconnection.
AL and AU are denoted by dashed lines. (bottom) Interplanetary inputs BNorth (green thick line), VSWBNorth
(green thin line), and solar wind quasi invariant QI as well as solar variables F10.7 and SSN (cyan lines) show
the effect of electron losses

(b) Interplanetary inputs BSouth (blue thick line) and VSWBSouth (blue thin line) and magnetic
indices Kp, Ap, C9, Dst, AL, AU, and PC (light blue lines) represent the effects of
magnetic reconnection such as substorm and storm injections. AL and AU are denoted
by dashed lines. These correspond to magnetic interactions between the interplanetary
and magnetospheric plasmas and take place rapidly within minutes and hours.
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(c) Interplanetary inputs BNorth (green thick line), VSWBNorth (green thin line), and solar
wind quasi-invariant QI as well as solar variables F10.7 and SSN (cyan lines) are inter-
preted as drivers of electron loss processes.

5.7 Measuring the Response of the Flux to Solar Wind and Magnetospheric Drivers

Another approach that gives a more precise diagnostic than the correlation is the impulse
response function. It assumes a linear, time-invariant relation between an input x(t) and a
resulting output y(t). Considering the input to be the dominant solar wind driver, i.e., the
solar wind speed, and the output to be the flux je,GEO at geosynchronous orbit, we obtain the
relation:

je,GEO(t) =
∫

T

VSW(t − τ) · hGEO(τ )dt, (5.12)

where the impulse response function hGEO(τ ) captures all the relevant dynamics at a linear
approximation. Figure 15a shows this for the log-flux at 3-5 MeV measured by the SEE
detector on board spacecraft 1982-2019 from April 1982 to December 1985 (Baker et al.
1990b). a) The negative peak of hGEO(τ ) corresponds to the quasiadiabatic displacement of
the electrons by the growing inner-magnetospheric field during the storm main phase (the
“Dst effect”). b) The positive peak corresponds to the actual acceleration of the electrons
peaking 2 days after the solar wind arrival (at τ = 0 by definition).

We obtain more general representation of the response of the radiation belts to the solar
wind speed VSW by parameterizing the response by L shell:

je(t;L) =
∫

T

VSW(t − τ) · h(τ ;L)dt. (5.13)

Using data from SAMPEX which scanned the entire L shell range several times per day, we
obtain the impulse response (Fig. 15b). In addition to the two peaks V0 and P1 familiar from
the geosynchronous orbit, we obtain a new peak, P0, in the inner edge of the outer belt, i.e.,
the shell range L = 3-4. This is in agreement with the block correlation results and indicates
a different set of acceleration/loss processes that determine the dynamics in each radiation
belt region.

Since SAMPEX is limited due to its orbit and energy range in measuring the electron
flux over a range of L shells and energies, we have repeated the analysis with Polar/CEP-
PAD/HIST electron flux measurements (Vassiliadis 2008) and with VAP/ECT/MagEIS mea-
surements (Vassiliadis 2018, 2019). Figure 15c shows the impulse response function of the
MagEIS log-flux to the solar wind velocity. The three peaks (V1,P0, and P1) can be clearly
seen. The analysis in terms of correlations and impulse responses shows that there are differ-
ent sets of acceleration/loss processes acting at these spatial, temporal, and energy ranges.

5.8 Linear and Nonlinear Models

Modeling is an important part of complex systems methods. Equation (5.13) is a linear
moving-average (MA) model of the log-flux and can be extended to autoregressive moving-
average (ARMA) models (Vassiliadis et al. 1995) and nonlinear autoregressive-moving aver-
age models with exogenous parameters (NARMAX) (Balikhin et al. 2011). Selected results
of these models are shown in Fig. 16.

A different class of nonlinear models are the artificial neural networks (ANNs) and the
more recent deep neural networks (DNNs). Selected results of these models are shown
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Fig. 15 (Fig. 12 from Baker et al.
1990b) Impulse response
functions of the log-flux to the
solar wind speed: (a) at
geosynchronous orbit for the
log-flux of 3-5 MeV electrons
measured by the SEE detector on
spacecraft 1982-019. (b) (Fig. 1
from Vassiliadis et al. 2005) as a
function of time lag and L shell,
as obtained for the log-flux of
2-MeV electrons measured by
PET onboard SAMPEX. (c) as a
function of time lag and L shell,
as obtained from VAP-A/MagEIS
in 2015 (Vassiliadis 2019)
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Fig. 16 (a) and (b): NARMAX model forecast showing measured GEO electron flux in blue and the model
estimate in red for > 0:8 MeV and > 2 MeV from January 1 to May 31, 2011 (Fig. 1 from Boynton et al.
2015). (c) Figure (5) from Vassiliadis (2011) shows the outputs of two models (linear vs. nearest-neighbor)
developed from the historical SAMPEX/PET 2-MeV flux dataset and applied in predicting the electron flux
as a function of L shell during the January 9, 1997 magnetic storm
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Fig. 17 (a) Neural net for Dst
(Nagai 1993) as cited inCostello
(1997). (b) (Fig. 5 from Ling
et al. 2010) Electron flux at GEO

in Fig. 17. Early models include (Stringer et al. 1996; Joselyn et al. 1994). More recent
ANNs/DNNs for the relativistic-electron flux at GEO have been developed by Ling et al.
(2010) and Shin et al. (2016). The relativistic-e flux parameterized by L shell has been mod-
eled by Taylor et al. (2011) using the SAMPEX 2-MeV electron flux. ANNs and DNNs
are useful in detecting patterns and have been applied to the classification and detection of
spacecraft anomalies (Wintoft et al. 2001). More recent studies of relativistic-electron flux
at GEO include modeling with recurrent networks (Fukata et al. 2002).

5.9 Concluding Remarks

We have shown how information theory can be useful in the studies of solar and space
physics. Our methodology can generally be applied to a large number of problems because
it does not assume a priori the underlying physics of the system. Our findings of information
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transfer from one parameter to another and the response lag time can provide insights into
the physical relationships between the two parameters and provide constraints to models.

In the radiation belt study, the challenge is that several solar wind drivers can affect the
radiation belt flux, Je , simultaneously. We show how information theory can be useful to
untangle the drivers of the solar wind–radiation belt system, identify causal parameters, and
the system response lag times to drivers. One of the conclusions is that the radiation belt
electron response lag times to Vsw and nsw are 2 and 0 day, respectively. We show that the
nonlinearity and the high variability of Je in the triangle distribution can be better understood
if we take these response time lags into account.

6 How Systems Science Methodology Can Be Used to Assist Physical
Understanding: Application to Magnetospheric Dynamical Processes

6.1 Introduction

The traditional approach employed by physicists to advance our knowledge about the world
in which we live is to formulate the basic physical principles, gain an understanding of the
elementary physical processes and subsequently develop increasingly sophisticated mathe-
matical models for the complex physical objects i.e., a bottom up approach. The underlying
assumption of this approach is that once enough experimental/observational data about any
complex, natural phenomenon have been collected it is possible to gain a complete physi-
cal understanding of this phenomenon and subsequently developed accurate mathematical
models to explain its dynamics. This physical approach is based on the premise that, while
we are currently unable to fully understand the physics of some complex objects, but with
time and more data we will be able to glean the processes involved and to build a mathemat-
ical model that will be able to account for any aspects of the dynamics of these objects. This
includes sophisticated phenomena and processes such as stem cells, solar-terrestrial system,
and even human brain activity. However, often the knowledge that enables the forecast of
the evolution of a complex object is required before the thorough from the first principles
understanding of physics behind this evolution. Some of the examples are effects of newly
developed medicine, evolution of the terrestrial climate and many others including the dy-
namics of space weather parameters under the solar wind drive.

For complex phenomena that are not yet comprehensively understood from first princi-
ples, complementary approaches have been developed within the field of systems science.
In some sense, systems science builds the knowledge in the opposite direction to the tradi-
tional first principles based approach, i.e., systems science represents a top-down approach.
It analyses the overall dynamics of a sophisticated phenomenon by incorporating generic
knowledge of the system’s behaviour, and aims to advance our knowledge of the underlying
dynamical processes. Therefore, systems science acquires new knowledge from complex to
simple, complementary to a traditional approach. In many cases systems science method-
ologies only aim to provide a reliable forecasting tool that can be used to predict the future
evolution of a complex system. However, the most robust techniques developed within this
field can also be used to obtain physically interpretable mathematical models of complex
phenomena that yield new physical knowledge about them.

The terrestrial magnetosphere is an example of complex system that evolves under the in-
fluence of the solar wind. We have achieved colossal advances in our understanding of mag-
netospheric physics since the start of the space era. We have identified principal processes
that are involved in the dynamics of magnetosphere, but from the “system” point of view
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our knowledge is rather limited. We do not even know the number of degrees of freedom
of the magnetosphere. Our current knowledge does not enable us to deduce a quantitative
model of the magnetosphere that will allow accurate forecast of space weather parameters
from the first principles. We can be confident that in the future, high-quality observations
provided by new space missions will make it possible to identify all physical processes that
together dynamically drive the magnetosphere and thus our knowledge in a comprehensive
first principles based model that could be used for accurate and reliable forecasts of space
weather. However, space weather events can harm the critical infrastructure that is vital for
a smooth operation of our contemporary society. Reliable forecasts of critical space weather
parameters are required now to mitigate effects of possible space weather hazards. There are
many examples of systems science-based tools that have been developed to forecast space
weather parameters. While these data-based forecasts can greatly assist the mitigation of
space weather effects, they have an important shortcoming. Data based models are only reli-
able if the set of parameters driving the process and their limits are like those used to identify
the model. Therefore, the reliability of such models to extreme events such as the Carrington
event or the magnetic storms that occurred in May 1921 is unknown since there have been
no observational data for events of such magnitude during the era of space measurements
and solar wind monitoring. However, it is exactly these extreme events, that could lead to the
devastation of modern technological systems, that necessitates their use for space weather
forecasting. A thorough understanding of the physics and the ability to create comprehen-
sive quantitative models of the magnetosphere are required to obtain reliable predictions
of the effects resulting from such severe space weather events. The application of systems
science to space weather can not only result in forecasting tools but also provides insight to
advance our physical knowledge about the processes and effects of space weather. The goal
of this Section is to illustrate how the powerful systems science methodology can be used to
advance the “first principles” based knowledge about the terrestrial magnetosphere.

6.2 System Identification

System identification is a method of dealing with mathematical modeling problems for dy-
namic systems about which a very limited knowledge of the system internal structure is
available. What it is known is that the system is evolving under some external factors that
drive its dynamics. For example, in case of the magnetosphere the solar wind is such an
external factor. Measurements of these external driving factors are referred to as inputs to
the system. In the case of the solar wind and the magnetosphere, the parameters of the solar
wind just upstream on the magnetosphere can be considered as inputs to the system. We
can also measure some parameters that quantify the response of system, referred to as the
system’s outputs, and we assume that these parameters are representative of the state of the
system. In the case of the magnetosphere the various geomagnetic indices or fluxes of en-
ergetic particles in the inner magnetosphere may be considered as examples of the system
outputs. The system is often considered as an unknown input-output “black box” system.
However, if some knowledge about the system is available it can be incorporated, and the
system is considered as a “grey box”. System identification deals with data sets of system
inputs and outputs with the aim to answer different questions such as

• “How is it possible to predict the evolution of system outputs, if the inputs to the system
are known?”

• “Is it possible to validate first principles based models of the system if the inputs and
outputs of the system are known?”
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• “Can a mathematical relation that governs the evolution of the system’s output be deduced
directly from data?”

In the simple case of a Linear Time-Invariant (LTI) Single Input-Single Output (SISO) sys-
tem it is well known that the output o(t) is determined by the convolution of the impulse
response function h1(t) and the input i(t):

o(t) =
∫ ∞

−∞
h1(τ )i(t − τ)dτ. (6.1)

Equation (6.1) reflects the validity of the superposition principle for linear system. The
causality condition requires that h1(τ ) = 0 if τ < 0. If we have two inputs proportional
to the delta functions i1δ(t − τ1) and i2δ(t − τ2) the system response o(t) will be the sum of
the individual responses:

o(t) = o1(t) + o2(t) = h1(τ1)i1δ(t − τ1) + h1(τ2)i2δ(t − τ2).

In the case of a continuous input, the convolution integral replaces the summation.
The impulse response function represents the system response when the input is the delta

function δ(t). The dynamics of an LTI system is completely characterized by its impulse
response function. If h1(t) is known, then it is possible to forecast the evolution of output
provided that the input is known. The knowledge of h1(t) allows a linear mathematical re-
lation that governs the evolution of the system to be deduced and to validate first principles-
based models of the system. The Linear Frequency Response Function (LFRF) H1(f ) is the
Fourier transform of h1(t). H1(f ) determines the ratio between the Fourier components of
the output O(f ) and the input I (f ):

O(f ) = H1(f )I (f ). (6.2)

H1(f ) also, completely defines a linear system. One of the easiest ways to identify a linear
SISO system is to use the ratio of the Fourier spectra of the system’s output and input to
determine the LFRF and then applying the inverse Fourier transform to calculate h1(t). If
the system is linear, the ratio of the Fourier spectra of the output and input should not depend
upon time, providing a simple test for linearity as demonstrated in the study of geomagnetic
activity (Bargatze et al. 1985).

The Volterra decomposition is the generalisation of (6.1) for nonlinear systems:

o(t) = h0 +
∫ ∞

−∞
h1(τ1)i(t − τ1)dτ1 +

∫∫
h2(τ1, τ2)i(t − τ1)i(t − τ2)dτ1dτ2

+
∫∫∫

h3(τ1, τ2, τ3)i(t − τ1)i(t − τ2)i(t − τ3)dτ1dτ2dτ3 + · · · ,

(6.3)

where hi(τ1, τ2, . . . , τi) is the i-th order kernel of the Volterra expansion. The value of
hi(τ1, τ2, . . . , τi) should be zero if the value of any of the arguments is negative because
of the causality condition. The second term is simply the convolution integral (6.1) and
accounts for the linear part of the system response. To illustrate the process of Volterra de-
composition we again consider a simple example with two inputs proportional to the delta
function that was used above for a linear system. The superposition principle is not valid
in the presence of nonlinearity, so the system response will deviate from the simple sum of
o1(t) and o2(t). In general, this deviation should depend upon relative times of inputs:

o(t) = h1(τ1)i1δ(t − τ1) + h1(τ2)i2δ(t − τ2) + h2(τ1, τ2)i1δ(t − τ1)i2δ(t − τ2).
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Again, when the inputs are continuous signals the sum should be replaced by the integral
over all possible values of τ1and τ2. Therefore, the third term of the Volterra expansion
reflects the effect of nonlinearity due to all possible pairs of the values of inputs in various
times. Similarly, the fourth term in (6.3) is related to the effect of nonlinearity due to all
possible triads of the values of input and so on. The infinite set of kernels hi(τ1, τ2, . . . , τi)

completely determines the dynamics of the nonlinear system. In the case of discrete data
sets, the integrals in (6.3) are replaced by sums:

o(k) = h0 +
∞∑

n1=0

h1(n1)i(k − n1) +
∞∑

n1=0

∞∑
n2=0

h2(n1, n2)i(k − n1)i(k − n2)

+
∞∑

n1=0

∞∑
n2=0

∞∑
n3=0

h3(n1, n2, n3)i(k − n1)i(k − n2)i(k − n3) + · · · .

(6.4)

The frequency domain representation of the Volterra expansion can be obtained by the mul-
tidimensional Fourier transform of (6.4):

O(f ) = H1(f )I (f )

+
∑

f1,f2,f1+f2=f

H2(f1, f2)I (f1)I (f2)

+
∑

f1,f2,f3,f1+f2+f3=f

H3(f1, f2, f3)I (f1)I (f2)I (f3) + · · · ,

(6.5)

where Hi(f1, f2, . . . , fi) is referred to as the i-th order Generalised Frequency Response
Function (GFRF). The 1st order GFRF H1(f ) has the same physical interpretation as the
Linear Frequency Response Function. Its absolute value at a frequency f determines the
growth (attenuation) rate of the corresponding spectral component of the input spectrum
at that frequency. The phase of H1(f ) reflects the speed of the component propagation
through the system. H2(f1, f2) determines the strengths of the nonlinear coupling between
the spectral components f1 and f2 and transfer of their energy to the component f = f1 +f2.
In the case of plasma systems this corresponds to 3-wave processes, for example the decay
instability. Similarly, H3(f1, f2, f3) corresponds to 4-wave processes such as a modulational
instability. The main problem in the application of Volterra series to real systems is the
difficulty to operate with an infinite set of terms and the need to truncate the infinite series
to a finite number of (preferably only a few) terms. This can be illustrated using a simple
example of the SISO system: o(k) = i2(k − 1) · i(k − 2) · o(k − 1). The identification of this
system requires the identification of a single term. However, the Volterra-based frequency
domain identification will result in an excessive set of GFRFs.

It is known that wave coupling involving more than four waves can be neglected in the
case of weak plasma turbulence. Therefore, weak plasma turbulence provides a straightfor-
ward justification to truncate Volterra expansion in frequency domain after the third term.
System identification methodologies based on truncated Volterra decomposition in the fre-
quency domain have often been applied to study plasma turbulence (Ritz et al. 1989; De Wit
et al. 1999; Giagkiozis et al. 2011).

The NARMAX (Nonlinear AutoRegressive Moving Average models with eXogenous
inputs) approach, proposed by Leontaritis and Billings (1985a, 1985b) implements method-
ologies to overcome difficulties of dealing with infinite number of terms of Volterra series.
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6.3 NARMAX Approach

The theoretical foundations of NARMAX and overarching description the methodology and
key concepts such as the Error Reduction Ratio are provided in Billings et al. (1989) and
Billings (2013). In this section, only brief descriptions of the NARMAX approach and the
key concept of Error Reduction Ratio is provided based on (Billings et al. 1989; Billings
2013). The basic underlying assumption of the NARMAX is that the value of the output
o(k) can be expressed as a function (F ) of preceding values of outputs, inputs and noise
e(k)

o(k) = F
(
o(k − 1), o(k − 2) . . . o(k − no),

i1(k − 1), i1(k − 2) . . . i1(k − ni1), . . . ,

il(k − 1), il(k − 2) . . . il(k − nil),

e(k − 1), e(k − 2) . . . e(k − ne)
) + e(k),

(6.6)

where l is the number of inputs, no,ni1, . . . , nil, ne are the maximum time lags of the out-
puts, inputs and noise signal e(t). The noise accounts for both impacts of unknown inputs
(if any) and measurement errors. The NARMAX approach aims to identify the mathemat-
ical form of the function F(. . . ). However, instead of looking for an explicit form of this
function, it searches for its decomposition in some basis (e.g., polynomial, wavelet, radial
basis functions etc.). Billings et al. (1989) and Billings (2013) provide a comprehensive
and mathematically rigorous description of the NARMAX methodology in the general case.
Here, a simplified description of the NARMAX approach, that follows Billings (2013) and
Boynton et al. (2018a) but limited to the use of a polynomial set of basis functions and not
accounting for the error function, is presented. In such a simplified case F(. . . ) is a polyno-
mial function comprising the sum of various monomials Rj(k) that represent the products
of its various arguments. The overall set of monomials includes all possible combinations
of these arguments. Therefore, in order to find the function F(. . . ), all unknown constant
coefficients Cj in the decomposition (6.7) need to be determined

o(k) =
∑

j

CjRj (k). (6.7)

While the overall aim is to find Cj , the initial stage comprises of the search for the coeffi-
cients Tj of the auxiliary decomposition:

o(k) =
∑

j

TjPj (k), (6.8)

where Pj (k) are new set of basis functions resulting from the orthogonalisation of the initial
basis Rj(k). For the new orthogonal basis:

〈PmPl〉 =
∑

k

Pm(k)Pl(k) = 0 if m �= l.

The coefficients Tj can be estimated one by one. If both sides of (6.8) are multiplied by
Pl(k) then the sum of values for all data points can be represented as:

∑
k

Pl(k)o(k) =
∑

j

∑
k

TjPj (k)Pl(k) = Tl

∑
k

P 2
l (k).
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Therefore (Billings et al. 1989)

Tl =
∑

k Pl(k)o(k)∑
k P 2

l (k)
. (6.9)

Once all unknown coefficients are estimated, the decomposition in terms of an orthogonal
basis can be subjected to the inverse transform to obtain the coefficients in the original basis
Rj(k). Mathematically the calculations of the coefficients are rather simple. However, in
practice the main problem is that the order of nonlinearity of the system is often unknown
and strictly the set of monomials Rj should be infinite. Even if the order of nonlinearity
is known, the number of monomials can be huge, leading to overfitting problems and a
decrease in reliability because the calculations involve measured data that are affected by
measurement errors.

If a mathematical model is derived from first principles, the number of independent terms
should correspond to the number of degrees of freedom. Similarly, the complexity of a
data-derived NARMAX model should mirror the complexity of the system, otherwise the
identified system model will not be able to accurately represent the dynamics of the real
system. In practical applications, the identification of the NARMAX model involves 3 steps:
structure identification, parameter estimation and validation.

The aim of the structure detection is to identify the set of monomial terms that are impor-
tant for system dynamics. Once such a subset is identified, a simple parameter estimation
procedure can then be used to estimate corresponding coefficients Cj . After the model is
identified it should be validated using data that were not employed in the process of model
identification. Validation includes both statistical and dynamical validation. Dynamical val-
idation involves observation of the model dynamics under the same input to a complex sys-
tem under investigation and assessment of how well the model represents the system. For
example, if the model for the Dst index is identified, the comparison of the real Dst index
and the evolution of the model output can be used for the dynamical validation. Statistical
validation involves several correlation tests developed by Billings and Voon (1986). These
statistical tests are able to assess how well the model can account for the variance of the
system output, and can also indicate if modifications to the model (e.g., increasing the order
of nonlinearity, including extra inputs etc.) are required to create a more accurate representa-
tion of the system. The philosophy of NARMAX requires that the developed models should
be as simple as possible (Billings 2013). In the beginning a linear model can be considered.
However, if the identified model is not able to reproduce the system dynamics with suffi-
cient accuracy, quadratic nonlinearity can be included and so on until the developed model
satisfies the correlation tests.

The Forward Regression Orthogonal Least Squares (FROLS) algorithm, developed by
Billings et al. (1989), is used for the identification of model structure. This algorithm pro-
ceeds as follows. First, if the order of nonlinearity and maximum time lag for the input and
the output are defined, the set of monomials (in the case of the polynomial basis functions
considered here) is identified. For each element of this set the Error Reduction Ratio (ERR)
is calculated:

ERRj = T 2
j

∑
k R2

j (k)∑
k o2(k)

. (6.10)

Taking into account (6.9), it is obvious that ERRj quantifies the individual contribution of
the basis function Rj to explaining the evolution of F(. . . ), i.e., to evolution of the system’s
output. The basis function that corresponds to highest ERR is identified as P1. At the second
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stage, the subset of remaining basis functions Rl are orthogonalised with respect to P1. For
the third stage the ERR is calculated for each element of this orthogonal subset. Again, the
element that corresponds to the highest value of ERR is identified and procedure is repeated.
Each newly identified basis function accounts for a fraction of the system output variance
determined by equation (6.10). The procedure is terminated when the addition of new ba-
sis functions does not significantly increase the sum of ERR for previously identified Pl .
The threshold for the “significance” corresponds to the required accuracy. Once the set of
“important” Pl is identified the coefficients Tl are re-estimated. Statistical validation is per-
formed to quantify the quality of the identified model or if the model should be made more
complex by increasing the order of nonlinearity or increasing the maximum time lags. The
main advantage of NARMAX models is that they are physically interpretable. The explicit
mathematical relation resulting from the NARMAX approach can be transformed to fre-
quency domain. If the system is linear the transformation of the model to frequency domain
will display features corresponding to the Linear Frequency Response function such as res-
onances, providing important information about physical processes involved. For nonlinear
systems, the resonances are replaced by other features in the GFRFs such as “ridges” that
similarly are able to provide information about the physics of the system (Billings 2013).

There is another beneficial aspect of model representation in frequency domain. Even
simple mathematical expressions in continuous form can correspond to non-unique expres-
sions in discrete form. For example, central, forward or backward finite-difference methods
will lead to distinct polynomial representations of the third derivative. Similarly, if polyno-
mial representations of the system’s model are distinct, it does not mean that they are not
equivalent or do not represent the same dynamics. In the time domain, it is often not a very
easy task to show similarity of two discrete models representing the same system. However,
if both models accurately represent the system’s dynamics their transformation to frequency
domain should lead to very similar structures of GFRFs. This was done in first applications
of the NARMAX approach to the modeling of the Dst index (Boaghe et al. 2001).

6.4 Quest for Inputs

One of the first questions that should be answered in the study of a complex natural dy-
namical system is: What are the external factors that drive the evolution of this system? The
knowledge of these external drivers is key for both the traditional first principles based and
for the systems science approaches. If these external factors are not known, it is impossible
to develop a first principles based mathematical model of the system’s dynamics or to apply
a black box approach. In the case of the terrestrial magnetosphere, it has been known for
a long time that the solar wind is the main driver of its dynamics. However, not all param-
eters of the solar wind will have a significant effect on the magnetosphere. For example,
under normal conditions the proton temperature is usually “forgotten” after the solar wind
has traversed the bow shock and therefore cannot have a notable influence on the dynamics
of the magnetosphere. The quest to determine which of the solar wind parameters or their
combination play a key role in the dynamics of the magnetosphere dates back to the early
days of space physics (Chapman and Ferraro 1931). These solar wind inputs are referred
to as Solar wind – Magnetosphere Coupling Functions (CFs). Chapman and Ferraro (1931)
suggested that the solar wind dynamic pressure is the most probable candidate for the CF.
Early first principles based studies considered diverse factors that may affect geomagnetic
activity including lunar phases and positions of Mercury and Venus (e.g., Bigg 1963). The
concept of the merging of magnetic fields (Dungey 1961) and progress in our comprehen-
sion of magnetic reconnection phenomenon led to an understanding of the importance of the
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southward IMF component Bs in geomagnetic activity. The half-wave rectifier vBs (v is the
solar wind speed) was proposed by Burton et al. (1975) as another possible CF.

Perreault and Akasofu (1978) argued that the CF should be related to the solar wind input
energy flux. They proposed the product of the magnetic energy flux vB2, the effective length
of the reconnection line l0 squared and the angle factor (ε-function) as a CF:

ε = vB2 sin

(
θ

2

)4

l2
0 , (6.11)

where θ is the polar angle of the IMF in the Y-Z (GSM) plane. Kan and Lee (1979) devel-
oped a theoretical justification for (6.11) as a CF. Considerations of the dimensionality have
led to the proposal by Vasyliunas et al. (1982) of other mathematical forms for CF. With
time, first-principles based studies resulted in a significant growth of the set of possible ex-
pressions for solar wind-magnetosphere CFs. For example, about 20 different mathematical
relations for CFs have been investigated by Newell et al. (2007). For a long time, the as-
sessment of the appropriateness of a CF involved its correlation with geomagnetic indices.
This approach could, however, be misleading because only linear dependences between two
data sets can be assessed by the correlation function. In the case of a nonlinear system, the
correlation between the input and output can be very low. The standard example is a simple
quadratic system o(tk) = i2(tk−1) driven by a zero-mean input i. A technique that is relevant
for not only linear but also nonlinear relations should be used to assess the potential of a par-
ticular version of the coupling function. The concept of ERR, that accounts for both linear
and nonlinear dependences, has been applied to investigate the forecasting abilities of vari-
ous previously proposed CFs (Balikhin et al. 2010; Boynton et al. 2011): V Bs (Burton et al.
1975); ε = vB2 sin( θ

2 )4 (Perreault and Akasofu 1978); CW = vB2
T sin( θ

2 )6, (Wygant et al.

1983); CSR = p
1
2 vBT sin( θ

2 )4 (Scurry and Russell 1991); CN = v
4
3 B

2/3
T sin( θ

2 )8/3, (Newell

et al. 2007); CV = n
1
6 v

4
3 BT G(θ) (Vasyliunas et al. 1982) where BT =

√
B2

y + B2
z .

In addition to the CFs derived from first principles, the data based CF developed by

Temerin and Li (2006) CT L = p
1
2 vBT sin( θ

2 )6 (where BT =
√

B2
y + B2

z ) is also included in

the list. The data sets used by Balikhin et al. (2010) and Boynton et al. (2011) to employ the
ERR technique to identify the most effective CF included about 11 years (from the start 1998
to the end of 2008) of solar wind data from the OMNI website (http://omniweb.gsfc.nasa.
gov/ow_min.html) and Dst values for the same period. The application of the NARMAX
methodology usually requires continuous data sets of inputs and outputs. Typically, if data
are not oversampled, about 1000 pairs of input-output measurements are required for the
successful application of NARMAX. The 11 years of solar wind data obtained from the
OMNI website contained a few data gaps. A set of 64 subintervals without data gaps that
contained at least 1000 data points were identified within the 11-year interval. The set of
possible inputs included all CFs listed above and previous values of “Dst”. ERRs for terms
corresponding to five possible time lags from t − 1 to t − 5 for each input were calculated in
(Boynton et al. 2011). It is well known that the value of Dst(t − 1) has a very strong effect
on the value of Dst(t). Indeed, the mean over all 64 intervals of the ERR corresponding
to term Dst(t − 1) (Boynton et al. 2011) was 95.5% with a standard deviation 2.13%. The
quest for the best coupling function is the quest for the solar wind parameter that possesses
the strongest potential for the forecast of geomagnetic disturbances. While statistically the
persistence model can account for major part of Dst variance, and will provide an accurate
the significant fraction of time, it will fail at times when a quiet period gives way to a

http://omniweb.gsfc.nasa.gov/ow_min.html
http://omniweb.gsfc.nasa.gov/ow_min.html
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Table 2 (From Boynton et al.
2011, Table 3) Left column:
Previously proposed coupling
function selected based on ERR.
Middle column: NERR values.
Right column: Number of times
Coupling functions were selected

Coupling Function NERR (%) Number of
times selected

p
1
2 vBT sin( θ

2 )6(t − 1) 31.32 51

vBs(t − 1) 12.76 40

n
1
6 v

4
3 BT G(θ) 10.30 32

p
1
2 vBT sin( θ

2 )4 8.37 31

Dst(t − 2) 7.23 45

Table 3 (From Boynton et al.
2011, Table 5) Similar to Table 2
but for coupling functions
resulting from combinations of
input monomials

Coupling Function NERR (%) Number of
times selected

p
1
2 v2BT sin( θ

2 )6(t − 1) 14.0 39

p
1
2 v

4
3 BT sin( θ

2 )6(t − 1) 12.5 27

p
1
2 vBT sin( θ

2 )6(t − 1) 12.1 34

vBs(t − 1) 8.9 41

n
1
6 v

4
3 BT sin( θ

2 )4(t − 1) 8.7 35

geomagnetic storm. Therefore, while the input parameter Dst(t − 1) accounts for about
95% of the Dst(t) variance the quest for the coupling function should aim to determine to
the parameter that accounts for the highest fraction of remaining variance. Boynton et al.
(2011) introduced the concept of Normalized ERR:

NERRC = ERRC

S − ERRDst
100% (6.12)

where ERRC and NERRC are ERR and NERR corresponding to the input parameter C

and S is the sum of ERR values for all inputs included into study. Therefore, the sum of
all NERRs for all inputs except Dst(t − 1) for any subinterval should be equal to 100%.
The five coupling functions with the highest NERR and corresponding values of NERR as
obtained by Boynton et al. (2011) are given in Table 2 (from Boynton et al. 2011, Table 3).
The values of NERR in this table are the result of averaging over all 64 subintervals. It can
be seen that CT L, the CF identified by Temerin and Li (2006), has the highest NERR value
31.32% while the second highest value corresponds to vBs(t − 1) and is equal to 12.76%,
indicating a sharp decrease in the forecasting abilities in comparison to CT L. There is a clear
difference in the NERR values between first and second CFs in the table but the other are
fairly similar 10.30% for CF suggested by Vasyliunas et al. (1982) and 7.23% for Dst(t −2).

As explained above, the NARMAX approach can be used to combine input monomials
to maximise the ERR values. To capitalize on this advantage of NARMAX Boynton et al.
(2011) decomposed the 5 coupling functions in Table 3 into individual factors.

This resulted in the following set of factors p
1
2 , n

1
6 , v, v

4
3 , Bs , BT sin4( θ

2 ), BT sin6( θ
2 ).

Boynton et al. (2011) imposed the 4th order limit on the monomials composed of these
factors to constrain required computational resources. The factors BT sin4( θ

2 ) and BT sin6( θ
2 )

were included instead of BT and sin( θ
2 ) because of this imposed limitation.
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Fig. 18 (Fig. 1 from Kan and
Lee 1979). Verbatim [Kan and
Lee 1979] “Fig. 1. A schematic
illustration of the field line
reconnection geometry. (a) An
illustration of how the orientation
of the X line is determined. The
circle is used to illustrate the
assumed equality in magnitudes
of Bm and Bs . The solar wind
velocity is normal to the plane.
The orientation of the X line is
chosen so that the field
component parallel to the X line
is uniform across the
magnetopause. (b) An illustration
of the equipotentials (dashed
lines) of the reconnection electric
field. A component of the
reconnection electric field is
parallel to the reconnected field
lines inside the magnetopause”

Three top coupling functions with the highest values of NERR include the factor sin( θ
2 )6.

While this power of sin( θ
2 ) was identified empirically by Temerin and Li (2006), it differs

from the factor sin( θ
2 )4 deduced from first principles by Kan and Lee (1979).

The NARMAX ability to provide physically interpretable results motivated Balikhin
et al. (2010) to re-visit the derivation of ε by Kan and Lee (1979). The geometry of the
model is illustrated in Fig. 18 from Kan and Lee (1979) where it was assumed that the
magnetosheath magnetic field Bs and the magnetospheric magnetic field Bm have the same
magnitude but different directions. Kan and Lee (1979) used an expression for the recon-
nection electric field Er derived by Sonnerup (1974):

Er = vsBs sin

(
θ ′

2

)
, (6.13)

where vs is the component of the magnetosheath plasma velocity in the direction normal to
Bs . Kan and Lee (1979) noted that θ = θ ′ on the noon-midnight meridian, but they can differ
along the reconnection line. However, the approximation θ = θ ′ was used in their model.
Er is parallel to the reconnection line and is the only component of the magnetosheath
electric field “impressed by the reconnection on open field lines inside the magnetosphere”
(Kan and Lee 1979). On the magnetospheric side Er has both parallel E‖ and perpendicular
E⊥ components with respect to the magnetic field. Kan and Lee (1979) stated that only
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E⊥ = Er sin( θ
2 ) contributes to the potential difference across the polar cap Φ:

Φ =
∫ E

B

E⊥dl =
∫ E

B

Er sin

(
θ

2

)
dl sin

(
θ

2

)

= vsBs sin

(
θ

2

)3 ∫ E

B

dl = vsBs sin

(
θ

2

)3

l0,

(6.14)

where the integration is along the reconnection line, B , E, l0 represent the beginning, the
end and the length of the reconnection line.

According to (Kan and Lee 1979) model the power produced by the solar wind dynamo
P is

P = Φ2

R
= v2

s B
2
s sin( θ

2 )6l2
0

R
, (6.15)

where R is the “equivalent resistance” connected to the solar wind magnetospheric dynamo.
Therefore, according to Kan and Lee (1979) model the factor sin( θ

2 ) should enter the cou-
pling function with the power 6, i.e., the same power as was identified by the ERR approach
(Balikhin et al. 2010). The power 4 of this factor in Kan and Lee (1979) is the result of the
miscalculation of the integral (5.11). Since the E⊥ component is not parallel to the recon-
nection line E⊥dl = E⊥dl sin( θ

2 ) and this extra factor sin( θ
2 ) appears to have been missed.

Thus, the interpretation of the results of the NARMAX ERR approach was able to deduce
the mathematical form of the factor that is missing in derivation by Kan and Lee (1979).

The NARMAX and related linear methodologies can be extended to other equally power-
ful approaches. Instead of using global functions of the state and input variables as evidenced
in the LTI and NARMAX models, an approach that uses local functions of the state is the
local-linear model (Vassiliadis et al. 1995; Klimas et al. 1997, 1998). A local-linear ARMA
model is obtained from a parameter estimation approach applied to a region of the state
space instead of the entire space (Farmer and Sidorowich 1987; Vassiliadis et al. 1995). The
procedure is repeated for other regions to cover all observed dynamics.

Klimas et al. (1997) showed how to map the local-linear ARMA model to a nonlinear,
continuous-time analogue by transforming both to the frequency domain and mapping their
transfer functions. The continuous-time analogue is capable of the same dynamics as the
discrete-time model, and in addition having a clearer physical interpretation. In that work
and its continuation (Klimas et al. 1998), several examples were shown based on the Dst in-
dex and solar wind CFs such as the vBs product where Bs is the Southward IMF component
mentioned earlier. The resulting general model for Dst is a damped, nonlinear oscillator in
good agreement with the Burton et al. (1975) model derived using a different, phenomeno-
logical approach. The dynamics of the model, such as strong coupling to the solar wind CF
before and during the storm main phase and uncoupling during storm recovery, provide a
solid physical interpretation of the large-scale dynamics of the ring current amplitude as rep-
resented by the ground-based index Dst. The nonlinearity of the model can be adjusted by
applying the parameter estimation to a large time window, representative of a broad region of
the state space and the slower dynamics vs. a narrow window which is more representative
of the more detailed variations of the index.

The application of systems science to the successful search of external parameters that
are effective in governing evolution of complex dynamical system has stimulated other mag-
netospheric modeling problems such as the evolution of fluxes of energetic electrons at
the geostationary orbit (Boynton et al. 2013) and spatio-temporal distributions of key wave
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emissions in the inner magnetosphere such as hiss, equatorial magnetosonic waves and lower
band chorus (Boynton et al. 2018b).

The radiation belts or Van Allen belts were discovered by the very first in situ obser-
vations of the space era. Occupying the equatorial region between approximately 1.2 and
7-8 Re the radiation belts are characterized by large numbers of high energy particles which
may pose a threat to the communications, navigational, and other satellites whose orbits ei-
ther cross this region or are located in Geostationary orbit (GEO). While the inner radiation
belt is relatively stable, in the outer radiation belt the fluxes of highly energetic electrons
can vary by a few orders of magnitude on time scales of a few hours. More than half a
century after their discovery our understanding of the dynamics of the radiation belts is far
from complete. The energisation of radiation belt electrons is usually attributed to two main
processes, namely radial diffusion and the local interaction of particles with waves such as
chorus. The relative efficiency of these processes can depend upon the location within the
radiation belts. There are many arguments in favour of the fact that in the central part of the
outer radiation belt (4-5.5 Re) the interaction with waves is the dominant acceleration pro-
cess and radial diffusion only plays a minor role (Shprits et al. 2008). However, the relative
importance of these two processes can be different at the outskirts of the outer radiation belt
where GEO is located (∼6.6 Re). The advantage of GEO for applications of systems science
methods is that continuous data sets are available. Application of the ERR to electron flux
measurements at GEO allowed Balikhin et al. (2012) and Boynton et al. (2013) to show that
the dynamics of electron fluxes at GEO is incompatible with acceleration models based on
local quasilinear interaction with waves. Below the study of Boynton et al. (2013) is briefly
reviewed.

This study was based on data obtained during the 7405 day period (09/22/1989-
12/31/2009) by the Los Alamos National Laboratory Synchronous Orbit Particle Analyzer
(SOPA) instruments (Reeves et al. 2011). The methodology that has been used to eval-
uate the fluxes of energetic electrons at 13 fixed virtual energy channels in the range from
24.1 keV to 2 MeV (24.1. keV, 31.7 keV, 41.6 keV, 62.5 keV, 90.0 keV, 127.5 keV, 172.5 keV,
270.0 keV, 407.5 keV, 625 keV, 925 keV, 1.3 MeV, 2.0 MeV) is described in Reeves et al.
(2011) and Cayton and Tuszewski (2005). The data for the electron flux in the energy range
1.8-3.5 MeV are obtained by the Energetic Sensor for Particles (ESP). The resulting data
sets have been published by Reeves et al. (2011) and are available as the auxiliary material
for their paper at ftp://ftp.agu.org/apend/ja/2010ja015735, together with an overview of the
data preparation methodology. These 14 data sets of the daily averages fluxes were treated
as the outputs of a “black box” system. The input data set included daily averaged values for
GSM components of the interplanetary magnetic field, solar wind density, velocity and dy-
namic pressure. The daily averaged solar wind data at L1 were downloaded from the OMNI
web site. Since the NARMAX approach requires continuous data sets, linear interpolation
was used in Boynton et al. (2013) to fill data gaps with less than 6 missing data points in the
input and output data sets. As a result, 8 continuous subsets that contained at least 250 data
points were identified. All together these 8 subsets contained 6076 days or about 82% of the
original data set.

The results of ERR analysis by Boynton et al. (2013) is summarised in the Table 4. Each
row corresponds to a particular energy range. For each energy range the top four terms with
the highest ERR are shown. The two numbers in brackets after each term are the corre-
sponding value of ERR averaged over the 8 data subsets and the number of data subsets for
which that the term was selected. It can be seen from Table 4 that the velocity of the solar
wind is the most effective control parameter at all energies except for the two highest ranges
2.0 MeV and 1.8-3.5 MeV. The velocity terms account for more than 96% of flux variations

ftp://ftp.agu.org/apend/ja/2010ja015735


38 Page 64 of 82 G. Balasis et al.

Table 4 (From Boynton et al. 2013, Tables 1-4). NARMAX results for basic solar wind inputs

Energy
(keV)

1st term 2nd term (ERR (%),
Number of times
selected)

3rd term 4th term

24.1 v(t) (96.92, 8) v2(t) (2.82, 8) n(t) (0.082, 8) Bz(t) (0.041, 5)

31.1 v(t) (96.94, 8) v2(t) (2.82, 8) n(t) (0.071, 8) Bz(t) (0.037, 5)

41.6 v(t) (96.97, 8) v2(t) (2.82, 8) n(t) (0.057, 8) Bz(t) (0.033, 5)

62.5 v(t) (97.01, 8) v2(t) (2.80, 8) n(t) (0.035, 8) Bz(t) (0.028, 5)

90.9 v(t) (97.06, 8) v2(t) (2.77, 8) nv(t) (0.026, 3) vBz(t) (0.019, 5)

127.5 v(t) (74.88, 8) v(t − 1) (22.25, 7) v2(t) (2.08, 7) v2(t − 1) (0.65, 7)

172.5 v(t − 1) (65.69, 8) v(t) (31.56, 7) v2(t − 1) (1.74, 8) v2(t) (0.88, 6)

270 v(t − 1) (97.48, 8) v2(t − 1) (2.34, 8) Bz(t − 1) (0.022, 7) v(t) (0.012, 6)

407.5 v(t − 1) (84.12, 8) v(t − 2) (13.73, 4) v2(t − 1) (1.63, 8) v2(t − 2) (0.247, 4)

625 v(t − 1) (75.88, 8) v(t − 2) (22.28, 3) v2(t − 1) (0.61, 4) v(t − 4) (0.22, 3)

925 v(t − 2) (96.16, 8) n(t) (0.28, 2) v(t − 4) (0.24, 7) n(t − 4) (0.20, 2)

1300 v2(t − 2) (76.51, 7) nv(t − 1) (2.21, 3) nv(t) (1.90, 2) v2(t − 3) (1.92, 2)

2000 n(t − 1) (53.69, 7) nv(t − 1) (13.56, 3) n2(t − 1) (5.55, 5) v2(t − 4) (4.32, 5)

1800-3500 n(t − 1) (51.50, 8) n2(t − 1) (15.11, 6) v2(t − 2) (6.13, 7) v2(t − 4) (5.13, 6)

for the energy ranges from 2.4 to 925 keV. For these energy ranges the top velocity terms
have been selected for all 8 intervals. However, as can be seen from Table 4 the time delay
corresponding to the solar wind velocity measurements that accounts for most of the vari-
ance in the electron flux measurements depends upon the energy range. For lower energy
ranges, up to 90 keV, the fluxes are mostly controlled by the value of solar velocity on the
same day. This accounts for more than 97% of the flux variance for these energy ranges.
The contribution of all other terms is negligible. However, for the energy range 127.5 keV
the value of velocity on the same day accounts for only for 74.9% of the variance. For this
energy range the velocity measured on the previous day v(t −1) provides substantial contri-
bution of about 22%. As the energy range increase, further to 172.5 keV the role of the solar
wind velocity on the previous day becomes the dominant factor, accounting for 65.7% of
the variance while velocity on the same day accounts only for about 31.6% of the variance.
For the next energy range of 270 keV v(t − 1) terms account for more than 99% of the flux
variance and contribution of all other factors including the solar wind velocity on the same
day can be neglected. For energy ranges 407.5 keV and 625.0 keV the solar wind velocity on
the previous day remains the dominant factor that controls fluxes, however the contributions
from v(t − 2) become increasingly more significant at levels of 13.7% and 22.2% respec-
tively. Finally, for the energy range 925 keV the term v(t − 2) accounts for 96% of variance,
while the contributions of all other terms can be neglected. The dependence between the
energy of accelerated electrons and the time that is required for the solar wind to affect this
energy range has been observed previously (e.g., Li 2004). The acceleration model, based
on the quasilinear interaction with magnetospheric waves, naturally leads to a monotonic
dependence between time and energy. Quasilinear diffusion of the seed population will lead
to the emergence of an electron population with slightly higher energies. This newly formed
population will undergo quasilinear interactions, leading to the formation of a more ener-
getic population and so on. Qualitatively, quasilinear diffusion should lead to a monotonic
dependence between the time delay and the energy range. In simple diffusion processes, this
dependence should be close to the dependence of the Brownian displacement upon time and
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Fig. 19 (Fig. 1 from Boynton
et al. 2013) Dependence of the
energy range upon the time delay

proportional to the square root of the time. The results from the ERR analysis presented in
Table 4 have been used to calculate the effective time delay τEeff for the reaction of electron
fluxes at a particular energy E to the velocity of the solar wind (Boynton et al. 2013):

τEeff = dE1 + 2dE2 + 3dE3 + 4dE4

dE0 + dE1 + 2dE2 + 3dE3 + 4dE4
,

where dEj is the sum of ERR values for the energy E of all terms that include v(t − j).
Figure 19 taken from Boynton et al. (2013) displays the resulting dependence of E(τEeff).
It can be seen from Fig. 19 that the energy increase occurs significantly faster than

√
τEeff

expected for a simple Brownian process.
The energy diffusion equation (6.16) (Horne et al. 2005) that describes the effect of

wave particle interactions in the magnetosphere is similar but also more complex than that
describing a simple Brownian process:

∂F

∂t
= ∂

∂E

[
A(E)D

∂

∂E

(
F

A(E)

)]
− F

τL

, (6.16)

where A(E) = (E + E0)(E + 2E0)
1
2 E

1
2 , F(E,αeq) is the electron distribution function

which depends upon energy and equatorial pitch angle, E0 = mc2 is the electron rest energy,
D is the bounce-averaged energy diffusion coefficient and τL is the characteristic timescale
for atmospheric loses.

The distribution function F(E,αeq) of the electron fluxes J (E,αeq) may be relativisti-
cally expressed as (Horne et al. 2005):

F(E,αeq) = E + E0

c(E + 2E0)
1
2 E

1
2

J (E,αeq). (6.17)

Balikhin et al. (2012) used (6.16) to determine the analytical dependence of fluxes upon time
for three different energy regimes (1) E � E0; (2) E ≈ E0; and (3) E � E0 and showed that
in all three regimes the time required for the formation of more energetic electron popula-
tions still exhibits a dependence close to

√
τEeff that is characteristic of a diffusion process.
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In this derivation Balikhin et al. (2012) used a few simplifying assumptions. The deriva-
tion was performed separately for all energy regimes and for each regime it was assumed
that D does not depend upon energy. The gradient of E(τEeff) from Fig. 19 is about 1.5
(if the lowest energy value 127.5 keV is not taken into account) or 1.05 if all points are
considered. Both values significantly exceed 0.5 that would be expected from a

√
τEeff de-

pendence. This result allowed Boynton et al. (2013), to conclude that quasilinear interaction
with local waves is not the dominant acceleration process at GEO. They suggested that the
increase of fluxes of energetic electrons at GEO is the result of outward radial diffusion from
central regions of the radiation belts where local wave-particle interaction is the dominant
acceleration process.

In contrast to the lower energy ranges for which the effect of terms that do not include the
solar wind velocity are negligible, the fluxes at higher energies (2 MeV and 1.8-3.5 MeV)
are more dependent on the previous day’s solar wind density. While higher velocity leads to
the increase in fluxes, higher densities lead to the decrease of fluxes.

6.5 Concluding Remarks

While the most frequent application of systems science in solar terrestrial physics is the de-
velopment of space weather forecasting tools, the most powerful systems science method-
ologies can also yield advances in our understanding of the underlying physics. Examples of
the identification of a system’s input parameters were presented in this Section. Much more
complicated methodologies include the use of GFRFs to develop frequency domain models
of an unknown system and their interpretation. Further techniques enable the reconstruction
of integro-differential continuous equations that relate the inputs of a system to its outputs.
These data-based modeling results may also be compared to models derived from analytical
first principles based considerations.

7 Outlook

Herein we have provided an essential overview on existing nonlinear dynamical systems-
based methodologies along with key results of their previous application in a space physics
context, thus illustrating how complementary modern complex systems approaches have
recently shaped our understanding of nonlinear magnetospheric variability.

There is a series of immediate next steps for future work inspired by the present initiative,
which can be outlined in the following objectives:

• Which are the most efficient and versatile diagnostic approaches and schemes based on
these methods that can be transitioned into reliable space weather forecasting tools?

• Which ongoing open research questions would benefit from in-depth investigations from
complex systems viewpoint, and which existing methods or combinations thereof would
be appropriate for tackling them?

• Specifically, how can these methods be utilized to efficiently integrate information from
various data sources (satellites, ground magnetometers, models, etc.) in the presence of
multiple interacting temporal and spatial scales, variables and processes that are relevant
for the variability of the geomagnetic field?

Given the currently available enormous amounts of space-related datasets (e.g., solar wind
data, magnetospheric and ionospheric satellite data, ground-based observatory data, geo-
magnetic activity indices data), nonlinear dynamical systems methods have the potential to
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treat combined data from the various sources in a unique way, providing valuable informa-
tion about the spatial and temporal evolution along with the underlying physical processes
of the near-Earth electromagnetic environment.
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