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Stratocumulus adjustments to aerosol perturbations
disentangled with a causal approach
Emilie Fons 1✉, Jakob Runge2,3, David Neubauer 1 and Ulrike Lohmann 1

A large fraction of the uncertainty around future global warming is due to the cooling effect of aerosol-liquid cloud interactions,
and in particular to the elusive sign of liquid water path (LWP) adjustments to aerosol perturbations. To quantify this adjustment,
we propose a causal approach that combines physical knowledge in the form of a causal graph with geostationary satellite
observations of stratocumulus clouds. This allows us to remove confounding influences from large-scale meteorology and to
disentangle counteracting physical processes (cloud-top entrainment enhancement and precipitation suppression due to aerosol
perturbations) on different timescales. This results in weak LWP adjustments that are time-dependent (first positive then negative)
and meteorological regime-dependent. More importantly, the causal approach reveals that failing to account for covariations of
cloud droplet sizes and cloud depth, which are, respectively, a mediator and a confounder of entrainment and precipitation
influences, leads to an overly negative aerosol-induced LWP response. This would result in an underestimation of the cooling
influence of aerosol-cloud interactions.
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INTRODUCTION
Aerosols are airborne particles that modify the planetary radiative
budget, either directly, by absorbing or scattering radiation, or
indirectly, by acting as cloud condensation nuclei (CCN) for the
formation of cloud droplets and subsequently modifying the
albedo of clouds1. Between pre-industrial times and 2019,
anthropogenic aerosol emissions caused a negative effective
radiative forcing (ERF) of −1.1[−1.7; −0.4] W m−22, thereby
offsetting part of the global warming induced by greenhouse
gases. The exact magnitude of the aerosol-induced cooling is hard
to quantify, with large uncertainties originating from the under-
standing of aerosol-cloud interactions (ACI). Liquid stratocumulus
clouds particularly contribute to this uncertainty because of their
moderately high albedo (≈40%) and extensive coverage in
oceanic regions with high insolation3,4. In liquid clouds, ERFACI is
a combination of the instantaneous Twomey effect and rapid
adjustments of cloud macrophysical properties, namely liquid
water path (LWP) and cloud fraction (CF)1. The Twomey effect
describes how, at an initially constant LWP, an increase in the
cloud droplet number concentration (Nd, used as a proxy for
aerosol concentrations) will cause a decrease in the effective cloud
droplet radius (reff5) but an increase in the total cloud droplet
surface area and therefore an increase in cloud albedo6. This initial
change in Nd can later trigger LWP adjustments (∂ln LWP

∂ lnNd
), which are

hard to constrain because they result from the superposition of
two counteracting physical processes. On the one hand, a
decrease in reff leads to precipitation suppression and subsequent
increases in LWP and cloud albedo7. On the other hand, increased
droplet concentrations and smaller radii will lead to suppressed
droplet sedimentation and enhanced radiative cooling at the top
of the cloud, thereby driving turbulence and entrainment of warm
(and dry) air from the free troposphere into the cloud. This leads
to evaporation of the smaller droplets, enhanced evaporative
cooling and even stronger entrainment, resulting in decreases in
LWP and cloud albedo8–12. Precipitation suppression and cloud-

top entrainment enhancement are difficult to disentangle as these
two processes occur simultaneously and they both involve a
feedback loop between cloud microphysical properties and
dynamical processes. This is illustrated in Fig. 1a.
The sign and magnitude of LWP adjustments depend on

temporal and spatial scales, cloud regimes and environmental
conditions, making it hard to interpret mere correlations as causal
effects of aerosols on clouds. The main difficulty consists in
removing confounding, i.e. the effect that a variable Z (e.g. an
environmental factor) has on both a cause-variable X (e.g. aerosol
properties) and an effect-variable Y (e.g. cloud properties), thereby
inducing a spurious correlation between X and Y. Ideally, causality
is inferred from randomized controlled trial experiments. Unfortu-
nately, this is rarely feasible in the field of Earth sciences. A good
alternative are the so-called opportunistic experiments (e.g. ship
tracks or volcano eruptions)13–15, or the use of climate models to
simulate the response of the climate system to a given forcing
while keeping all other forcings constant (i.e. evaluating counter-
factual climate scenarios)16. However, opportunistic experiments
and model simulations have drawbacks, especially when it comes
to representativity, or to computational cost for simulations. For
this reason, many studies use non-opportunistic observational
data, and in particular, satellite observations that have represen-
tative coverage in both time and space.
Previous ACI studies have tried to explicitly identify and remove

sources of confounding in observational data, such as the
confounding effect of relative humidity (RH) on CF adjustments17,
or the confounding effect of rainfall on convective cloud
invigoration18. Methods from causal inference19–22 have also been
applied to satellite studies of LWP adjustments23–29. These studies
use multivariable regressions of the effect-variable on the cause-
variable as well as the environmental covariates, or data binning
as a function of a given covariate in order to remove spurious
confounding effects. Most of these satellite studies find a negative
Nd-LWP sensitivity, i.e. a decrease in LWP following an increase in
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Nd, causing a warming effect that can compensate part of the
cooling due to the Twomey effect. The suggested reason is the
prevalence of cloud-top entrainment enhancement over precipi-
tation suppression. However, the strength of these two physical
processes is modulated by environmental conditions. The above
studies (ibid.) have shown that LWP adjustments can become less
negative (or even reverse to positive) when conditioning the
analyses on given environmental variables: large lower tropo-
spheric stability (LTS) and high free tropospheric RH (RHFT)
conditions, precipitating cloud regimes (characterized by low
droplet number concentrations, large droplet sizes and deep
clouds), i.e. conditions where entrainment enhancement becomes
weaker and/or precipitation suppression becomes stronger. This
illustrates how accounting for environmental conditions can
change the magnitude and sign of a correlation and yield causal
effects that can be different from the original correlation.
However, environmental variables are often treated equally as
variables that can impact the causal effect of Nd on LWP, without
necessarily specifying whether they act as confounders, mediators,
colliders, etc. (Supplementary Fig. 3). A causal graph (Fig. 1b) can
help to explicitly describe the relationships between cloud and
environmental variables. This allows us to know which environ-
mental factors should be conditioned on, and which factors
should not. In fact, Simpson’s paradox describes how, depending
on the causal structure underlying the data, one can sometimes
draw false conclusions when conditioning on the wrong variable20

(Supplementary Fig. 3).
Recent studies have also investigated the temporal development

of LWP adjustments in order to use the precedence of cause with
respect to effect30–33. Geostationary satellite data are a promising
resource to resolve causality for ACI as their temporal resolution
(Δt≈ 10–15min) matches the process timescale of macrophysical
cloud adjustments to aerosol perturbations. For a stratocumulus with
a typical geometrical height H of 300 m and a typical updraft speed
of 0.5 m s−134, the expected circulation time of an air parcel through
the cloud height is 300m

0:5m s�1 ¼ 600 s � 10 min. At this resolution, it
becomes possible to resolve feedback loops35 (Supplementary Fig. 4)

involved in LWP adjustments. It should be noted that the choice of
spatial scale can also introduce confounding. In particular, spatial
aggregation could lead to spurious correlations resulting from
Simpson’s paradox if performed over an area encompassing different
cloud types (Supplementary Fig. 5). The impact of spatial aggregation
on ACI has already been addressed in other studies36–38. However,
Bender et al.39 observed that stratocumulus albedo variability is more
related to temporal rather than spatial variability (using monthly
satellite data on a 1∘ × 1∘ grid). For this reason, and because less
attention has been paid to temporal developments, we chose to
focus on temporal developments of domain-averaged cloud proper-
ties in this study.
In this study, we apply a transparent causal methodology to

investigate LWP adjustments in stratocumulus clouds. We propose
the causal graph in Fig. 1b, which encodes physical knowledge
about cloud processes (Fig. 1a) and which we apply to
geostationary satellite data of the Namibian stratocumulus deck.
We then showcase a method to derive causal effects, i.e. causality-
grounded sensitivities that go beyond simple correlations (Fig. 1c)
and can shed some light on the conflicting estimates found in the
literature by focusing on physical processes rather than state
variables. Instead of focusing on precipitation- and entrainment-
dominated regimes (low vs. high Nd) separately, we disentangle
LWP adjustments that are simultaneously mediated by rain rates
(RR) and entrainment rates (approximated by the entrainment
velocity we). We do not explicitly include further environmental
covariates (e.g. LTS, RHFT) as variables of the causal graph to keep
it (relatively) interpretable, but instead we investigate the LTS/
RHFT-specific effects, i.e. how LTS/RHFT modulate the influences of
RR and we on the causal effect of Nd on LWP, denoted
βNd; LWP ¼ ∂ln LWP

∂ lnNd
.

RESULTS
Physical description of the causal graph
Figure 2 shows linear direct causal effects αXi ;Xj ;lij , computed using
Wright’s approach40,41 applied to timeseries of the Namibian

Fig. 1 Application of the causal inference method to LWP adjustments. a Is a schematic of the physical interactions between aerosols,
clouds, and their environment. Aerosols can shift the cloud droplet size distribution to smaller radii, with consequences on cloud-top
entrainment we (enhancement) and precipitation RR (suppression). Both we and RR influence the size distribution (feedbacks), thus they
influence LWP, which is integrated from the cloud droplet mass distribution over the cloud depth. b Is an expert-knowledge causal graph
(graph A), which encodes the physical knowledge from a. Straight arrows indicate contemporaneous (i.e. lag 0) effects, while curved arrows
indicate lagged (lag 1= 15 min) effects. Autodependencies are not shown here for simplicity (Supplementary Fig. 1). c Is a Nd-LWP joint
histogram plot made with the standardized timeseries of the Namibian stratocumulus deck used in this study (see methods). It shows the
probability density function (PDF) of the data points26, with yellow dots indicating the median LWP in each Nd bin. It can be noted that,
contrary to other studies26,30, there is no positive slope at low Nd, which is a consequence of spatial averaging (Supplementary Fig. 2). b Can
be used for causal inference to go beyond the negative correlation observed in c and to quantify causal effects of Nd on LWP.
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stratocumulus deck (c.f. methods). αXi ;Xj ;lij represents the direct
effect of a variable Xi on another variable Xj on the lij-lagged arrow
linking Xi and Xj in the graph. The αXi ;Xj ;lij are similar to linear
regression slopes between X and Y except that the graph is used
to detect and remove any source of confounding prior to the
regression. The results confirm the physical plausibility of
the proposed causal graph, as the (statistically significant) signs
of the direct causal effects agree well with the physical processes
expected to underlie each arrow (marked as “correctly detected”
in Table 1). A complete result table is provided in the
Supplementary material (Supplementary Table 1). It should be
noted that, because the data are adjusted for seasonal and diurnal
cycles and standardized (see methods), the absolute magnitude of
causal effects derived here cannot be directly compared to other
studies that use non-standardized data. However, one can still
comment on the physical relevance of the sign and relative
magnitude of causal effects.
Lag-0 positive arrows from Nd, reff and H to LWP (arrow A in

Fig. 2) simply correspond to the definition of LWP as a vertical
integral of the liquid water content5. The negative arrow from Nd

to reff (arrow B) describes how an increase in Nd causes a decrease
in reff at a constant LWP6. The arrow from H to reff (arrow C) is
positive, in line with the continuous condensational growth of
cloud droplets as they are carried upwards in an adiabatic cloud42.
Although, in reality, arrows (B) and (C) might be lagged, these
effects are considered to be contemporaneous here, as the three
variables are derived simultaneously from the same cloud-top
satellite measurements.
The cloud-top entrainment enhancement feedback is well

described by the direct causal effects, with a negative and
significant effect of reff on we (arrow D). This describes the fact that
larger cloud droplets tend to sediment, thereby moving cloud
water away from the inversion level and preventing turbulence
induced by cloud-top radiative and evaporative cooling to
enhance entrainment8–11. In turn, we has a negative effect on
reff and Nd (arrow E), indicating the evaporation of entire cloud
droplets due to mixing with warm (and dry) free tropospheric air
at cloud top. This suggests a mixture of homogeneous and
extreme inhomogeneous entrainment regimes43, as was also
observed by ref. 44 in direct numerical simulations of

stratocumulus clouds. The effect of we on H is also negative and
significant, meaning that entrainment of dry and warm free
tropospheric air reduces cloud depth. It can be noted that,
although the causal effects of we on reff, Nd and H (Supplementary
Table 1) are significant, they are quite weak, potentially due to the
large-scale approximation used for the computation of we (see
methods). Even though we did not explicitly include environ-
mental variables (RHFT, LTS) in the causal graph, causal effects can
be evaluated for data binned by environmental factors. This
reveals a regime-dependence of entrainment: entrainment mixing
becomes more homogeneous (reff is reduced but Nd remains
constant)43 under moist free tropospheric conditions or polluted
conditions (lines 3 and 8 in Supplementary Table 1), which agrees
with ref. 44 and ref. 45. Under such conditions, the evaporative
timescale becomes longer than the mixing timescale, thus
evaporating all cloud droplets homogeneously. On the contrary,
under dry free tropospheric conditions, entrainment mixing
becomes more inhomogeneous (Nd is reduced but reff remains
constant) as evaporation becomes faster. Our results also seem to
indicate that entrainment becomes more inhomogeneous in
unstable boundary layers, although one would expect the
opposite, as the mixing timescale should become shorter. This
might be due to the fact that, in an unstable boundary layer,
where lateral entrainment becomes dominant, the large-scale
estimate of we used here is not a good proxy for mixing. A lag 1
was chosen for arrows (D) and (E) to indicate that entrainment
does not happen instantaneously at the entrainment
interfacial layer.
The precipitation suppression feedback is also detected by the

direct causal effects. The positive lag-1 arrow from reff to RR (arrow
F) indicates that larger droplets are likely to initiate precipitation at
the next timestep. The negative lag-0 effect of RR on Nd (arrow G)
indicates that rain onset at cloud base immediately removes
droplets from the cloud. Although, in theory, there could also be a
lag-0 arrow from RR to reff, we make the approximation that
collection efficiency is roughly independent of size. In fact, for
stratocumulus drizzle drops in the range 50–100 μm34, the
collection efficiency of cloud droplets >10 μm only varies between
60 and 70% 46. The lag-1 arrow from RR to Nd (arrow H) describes
processes that occur below the cloud and only impact Nd at the
next timestep. Arrow H is found to be weakly positive and
insignificant, although one would expect wet scavenging to make
this arrow negative. It is possible that dynamical effects (e.g.
updraft enhancement around cold pool edges47,48) somehow
counterbalance Nd losses from wet scavenging, although this
remains speculative and would need to be investigated further.

Table 1. Association of the direct causal effects αXi ;Xj ;lij with the
corresponding cloud physical processes.

Arrow (Fig. 2) Physical description Correctly
detected?

(A) Definition of LWP Yes

(B) Due to mass balance for a given LWP Yes

(C) Condensational growth with height Yes

(D) Entrainment suppression by droplet
sedimentation

Yes

(E) Evaporation due to cloud-top
entrainment

Yes

(F) Rain enhancement Yes

(G) Cloud water removal Yes

(H) Wet scavenging/Cold pool formation Non-significant

Almost all arrows are correctly detected for causal graph A (see Fig. 2), i.e.
their sign agrees well with the direction of the underlying physical process.Fig. 2 Magnitude and sign of the direct causal effects. The direct

causal effects αXi ;Xj ;lij were calculated for graph A (Fig. 1b) for the
Namibian stratocumulus deck, over the 2-year time period of the study.
Roman capital letters (A–H) indicate arrows that describe specific
physical effects, and the agreement of the computed direct effects
with the physical effects is indicated in Table 1. Straight arrows indicate
contemporaneous (i.e. lag 0) effects, while curved arrows indicate
lagged (lag 1) effects. All nodes shown in gray were hypothesized to be
autodependent (lag-1 arrow from X(t− 1) to X(t)).
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All variables (except LWP) were chosen to have causal
autodependencies (arrow from X(t− 1) to X(t)) to illustrate the
inertia of the physical variables that they represent. LWP was
chosen to have null autodependency as LWP is fully determined
by Nd, reff and H at each timestep. Note that a null causal
autodependency does not prevent LWP from having non-zero
statistical autocorrelation.

Temporal developments of causal effects
Direct causal effects αXi ;Xj ;lij confirm the validity of the proposed
causal graph but do not provide a full picture of causal effects.
Total causal effects βX,Y,l (i.e. between two variables X(t− l) and Y(t)
that are not directly linked by a single arrow in the causal graph)
can be derived from the direct causal effects using Wright’s path
approach, and these total effects can inform us about temporal
LWP changes following aerosol perturbations. Figure 3 shows the
temporal evolution of the βX,Y,l (see methods) for a selection of
(X, Y) pairs, where a positive (negative) βX,Y,l means that an
increase in X causes a increase (decrease) in Y after a lag l.
The temporal evolution of precipitation suppression (Fig. 3a)

shows a peaking negative βNd;RR;l observed 4–6 h after the initial Nd

perturbation. The Nd-RR sensitivity then decays back to 0 within 24 h,
describing the return of the cloud system to an equilibrium state as
other microphysical and dynamical processes take over. Cloud top
entrainment enhancement is also well detected (Fig. 3b), with the
strongest positive βNd ;we ;l observed about 12 h after the initial Nd

perturbation and continuing entrainment enhancement well beyond
24 h. The timescale of precipitation suppression is faster than that of
cloud top entrainment enhancement, which agrees with theoretical
calculations49 and observations of ship tracks31.
Also shown on Fig. 3a–b is the regime dependence of βNd;RR;l

and βNd ;we ;l . The boundary layer stability does not seem to impact
βNd;RR;l so much. Dryer free tropospheric conditions seem to be
associated with a more negative βNd;RR;l , even though there is no
obvious physical explanation. Entrainment enhancement is
stronger in unstable and drier free tropospheric conditions. Under

such conditions, entrainment is favored, and the entrained air
causes more evaporation, thereby enhancing evaporative cooling
and downdrafts, and in turn further entrainment. In cases of a
moist free troposphere, βNd;we;l is slightly negative (entrainment
suppression), which could be a result of additional moisture being
transported into the cloud via entrainment, leading to cloud
growth and sedimentation of the cloud top further away from the
inversion level. We also evaluated the clean vs. polluted conditions
(using a threshold Nd), but we do not include them in Fig. 3a, b
because conditioning on Nd results in a sub-case of Simpson’s
paradox (the biased lines are provided in Supplementary Fig. 6).
Figure 3c shows that the total causal effect of Nd on LWP is

initially positive, but quickly becomes negative and remains
negative for up to 24 h. This temporal development offers a more
complete picture than the negative Nd-LWP correlation from
Fig. 1c. Figure 3d shows the fractions of the total causal effect of
Nd on LWP that are mediated by RR and we. Although the RR-
mediated effect on the LWP is initially slightly positive, it becomes
slightly negative after a few hours, which is inconsistent with LWP
build-up from precipitation suppression. The slightly negative
effect could be due to the lag-0 RR→ Nd arrow being too weakly
negative compared to the other arrows in Fig. 2. There could be
data-related or causal model-related reasons why the RR variable
does not fully behave as expected. For instance, it is possible that
RR retrievals are too noisy due to the difficulty in measuring
precipitation from lightly-drizzling stratocumulus clouds using
satellites50,51, leading to incomplete confounding removal (Sup-
plementary Fig. 7). In particular, RR is an estimate of surface
precipitation, while, ideally, RR would measure the cloud-base
precipitation to better evaluate its impact on the cloud water
budget. Additionally, there could be biases associated with the
use of the adiabatic assumption, which is not valid for strongly
precipitating clouds52. Finally, there could be unknown sources of
confounding that causal graph A does not capture. The we-
mediated effect on LWP is negative, which is consistent with water
loss by evaporation of cloud droplets due to enhanced entrain-
ment of warm (and dry) free tropospheric air at cloud top.

Fig. 3 Temporal developments of causal effects. The subplots show the temporal evolution of the causal effect of Nd on RR (a), we (b), LWP
(c), LWP - mediated by RR and we (d), after an initial perturbation in Nd at l= 0. Plots a, b also show the regime-dependence of the aerosol-
induced precipitation and entrainment responses. The negative response in a is coherent with precipitation suppression, and the positive
response in b is coherent with entrainment enhancement. Plots c, d shows the resulting effect on the Nd-LWP sensitivity as calculated with the
path approach. d Shows the portion of the total effect of Nd on LWP (c) that is mediated by RR and we. The shading corresponds to the 90%
bootstrap confidence interval. The shading is not shown for sub-regimes in a, b to avoid cluttering the plots.
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The we-mediated effect is long-lasting, with a peaking negative
sensitivity after ~20 h. This agrees with the timescales of negative
LWP adjustments that were calculated in30.
A comparison of the y-axis scales of Fig. 3c and d shows that the

long-lasting negative Nd-LWP sensitivity is mainly driven by
entrainment enhancement, confirming the conclusions of multiple
studies8,9,12. However, although previous studies have demon-
strated the importance of precipitation controls on the mesoscale
structure and water budget of stratocumulus clouds7,53–55, this
study only detects weakly positive (then negative) influences of
precipitation suppression on LWP. As explained above, this could
be caused by data-related or causal model-related issues.
The positive lag-0 βNd;LWP;l¼0 ¼ αNd ;LWP;0 þ αNd ;reff ;0 ´ αreff ;LWP;0

(path rule) could be explained by increased condensation rates
of cloud droplets due to an increased cloud droplet surface area
(more numerous and smaller)56. Alternatively, it is possible that
the use of a noisy RR variable led to an incomplete removal of
confounding from RR, leading to a positively confounded
contemporaneous effect of Nd on LWP βNd;LWP;0. It is also possible
that the temporal resolution of these data, although high, is still
not high enough, and that precipitation-mediated aerosol
influences are already noticeable at lags l < 15 min, although the
graph says they should not, because of the lag-1 arrow (F) from reff
to RR. In ref. 35, Runge describes how temporal resolutions coarser
than process timescales can lead to confounded causal estimates.
With this potentially incomplete removal of confounding from RR,

it is essential to take a critical look at the temporal development of
the causal effect of Nd on LWP from Fig. 3c, as the strong positive
sensitivity of LWP to Nd at lag 0 might be an artifact due to an
incorrect diagnosis of RR-mediated influences on LWP. Instead, we
might imagine a βNd;LWP;l that is closer to 0 at lag 0, quickly becomes
positive due to fast precipitation suppression, then slowly reverses to
negative due to long-lasting entrainment enhancement.

Causal graph sensitivity study
To test the sensitivity of the results to the initial graph assumption,
three other plausible causal graphs (graphs B, C and D) are
evaluated (Fig. 4). Graph B does not include cloud depth H, graph
C includes neither H nor reff, while graph D includes neither H, reff
nor RR and we.
The first row (Fig. 4a–c) shows that direct causal effects for

graphs B, C and D are similar to the ones found for graph A (Fig. 2),
with one notable difference: the direct effect of Nd on LWP is
negative in graphs C and D, which is not physical, as one would
expect the negative effect of Nd on LWP to be exclusively
mediated by entrainment we. This simple comparison suggests
that graphs A and B (which contain reff) are more physical than
graphs C and D.
The second and third rows (Fig. 4d–g) show that precipitation

suppression and entrainment enhancement are correctly detected
in graphs B and C, as βNd;RR;l and βNd;we;l look very similar to the
ones derived from graph A (Fig. 3a, b). This highlights the
robustness of the results concerning precipitation suppression
and entrainment enhancement, i.e. the microphysics to dynamics
branch of the feedback loops.
However, the physical description of the dynamics to micro-

physics branch is not accurate with graphs B and C, as shown in
the fourth row (Fig. 4h–i). The we-mediated effect on LWP is
positive in graph C, which disagrees with the evaporation of liquid
water due to entrainment enhancement. In graph B, the we-
mediated effect is initially correctly detected as negative, similarly
to graph A, but the effect is weak and eventually becomes
positive. The RR-mediated effect on LWP is even more negative in
graphs B and C than in graph A, which disagrees with the build-up
of LWP due to precipitation suppression. This suggests that the
effects of precipitation and entrainment on LWP following aerosol
perturbations can be best captured when considering changes in

both reff and H (i.e. with causal graph A). In particular, the pivotal
role of reff for an accurate representation of how we influences the
LWP is probably due to the mixed homogeneous/extreme
inhomogeneous entrainment regime43, as discussed previously
(Fig. 5a). As H is a confounder of the causal link from reff to LWP, it
is essential to add H in the causal graph alongside reff. In fact,
including H avoids confounding due to aggregation over different
precipitation regimes (Fig. 5b).
The last row (Fig. 4j–l) shows the temporal development of the

total Nd-LWP effect. This development differs greatly between the
different graphs, which is a direct consequence of the differences
observed in Fig. 4a–c and h–i. For graphs C and D, the Nd to LWP
causal effect is always negative, with strong negative sensitivities
reached at lag-0, which slowly decay back to zero over the course of
24 h. Consistently negative developments have also been observed
in ship track studies31. Including reff in the graph (graphs A and B)
permits to remove the confounding influence of we on the initial
sensitivity and changes the initial sign of the causal effect of Nd on
LWP from negative to positive. For graph B, the Nd-LWP temporal
development is similar to graph A, although with a much stronger
magnitude. Compared to graphs B, C and D, graph A yields weaker
LWP adjustments (note the different y-axis scales in Fig. 3c and
Fig. 4j–l). In particular, when ignoring all sources of confounding
(graph D), LWP adjustments are predicted to be strongly negative,
implying a strong compensation of the cooling Twomey effect by
LWP adjustments. When covariations in reff and H are taken into
account with graph A, LWP adjustments are weaker. By integrating
βNd;LWP;l over time, we find that LWP decreases predicted from graph
A only represent about 6% of LWP decreases predicted from graph D
(after 24 h, in response to a 1-standard deviation increase in Nd). This
means that the cooling effect of aerosol-liquid cloud interactions
(including Twomey and cloud adjustments) could be much stronger
than previously thought.

DISCUSSION
This study proposes a physics-informed causal graph to quantify
the causal effect of Nd on LWP in marine stratocumulus clouds. We
evaluated the causal graph on daytime geostationary satellite data
colocated with reanalysis data, at a temporal resolution that is
expected to match the process timescale at which macrophysical
changes are propagated through stratocumulus clouds. Contrary
to other studies that looked directly at the temporal evolution of
the Nd-LWP sensitivity30–32, we divided this sensitivity into its
physical components, by separately investigating the entrain-
ment- and precipitation-mediated responses. This physical
process-oriented approach (as opposed to a state variable-
oriented approach) allows us to remove environmental confound-
ing that targets these physical processes, and hence to calculate
causal effects (as opposed to correlations), while checking the
physical plausibility of the results. We were able to disentangle
LWP adjustments due to precipitation suppression and entrain-
ment enhancement on different timescales (fast vs. slow), leading
to LWP adjustments that are both regime- and time-dependent.
We confirmed cloud-top entrainment enhancement as a key
control for LWP adjustments, and noticed issues associated with
precipitation that deserve to be addressed in future research. The
methodology adopted in this study showcases how to conduct a
thorough causal effect estimation analysis: from discussing
physical assumptions behind the causal graph to a systematic
investigation of lagged causal effects, mediation and regime-
dependence with a focus on the sensitivity of the results on the
assumed graph.
Of course, all the results in this study are contingent upon a set

of assumptions being met: (1) validity of the causal graph, (2)
linearity of causal effects, (3) absence of hidden confounders, (4)
stationarity of the causal effects, (5) trustworthiness of data.

E. Fons et al.

5

Published in partnership with CECCR at King Abdulaziz University npj Climate and Atmospheric Science (2023)   130 



We partially tested the implications of assumption (1) by
comparing the results for four different plausible causal graphs.
Although the short time lags (0 or 15 min) might justify the use

of a linear assumption (2) as a first order approximation, it might
be worthwhile to investigate non-linearities with the adjustment
approach (see methods) in future research.
Concerning assumption (3), if there were any unobserved

confounders, other than the ones already included in the graph,
the method presented here would have to be adapted to deal
with hidden confounding57. For instance, this study ignored the
confounding that can arise from the use of the adiabatic
assumption to derive cloud properties. This retrieval assumption
implies deterministic relationships that causally differ from the
physical relationships between the variables (Supplementary Fig.
8), and a causal framing of this issue is still lacking in the literature.
Moreover, it has been demonstrated that the use of this
assumption can introduce correlated noises in satellite retrievals.

This can introduce spurious correlations in the Nd-LWP relation-
ship (Supplementary Fig. 9)35. For instance58, showed how an
initially positive Nd-LWP can be falsely interpreted as negative
because of such retrieval noises. Further confounders might need
to be included in graph A. For example, including cloud-base
updraft speeds, or another proxy for the influence of cold pools47

in the causal graph could help to solve some of the issues
encountered with RR in this study.
Although the physical processes in the causal graph are

expected to be stationary (4), the passive satellite instruments
only provide daytime cloud property retrievals, and, for the sake of
this analysis, we assumed that the magnitude of the causal effects
remained unchanged through the night.
Finally, there might be additional data-related issues (5). The

physical process-based causal approach used here allows us to
diagnose where some data-related issues might arise. For
instance, the analyses suggested potential issues with

Fig. 4 Causal graph sensitivity study. Figures 2 and 3 obtained for graph A are reproduced here for three other graphs to test the robustness
of the results and to compare the physical plausibility of the four graphs. Plots (a–c) show direct causal effects for graphs B, C and D (similar to
Fig. 2 for graph A). The time-unfolded versions of graphs B, C and D are provided in and Supplementary Fig. 1. Plots (d, e) reproduce the black
line in Fig. 3b, plots (f, g) reproduce the black line in Fig. 3a, plots (h, i) reproduce Fig. 3d, and plots (j–l) reproduce Fig. 3c.
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precipitation retrievals (a difficult task for lightly-precipitating
stratocumulus clouds50,51), leading to incorrect detection of
precipitation-mediated LWP adjustments. Moreover, the coarse
spatial averaging of the data is a limitation of this study, and the
impact of spatial aggregation on causal effects will be evaluated in
future work. Other issues might include: the lack of vertical
information in passive satellite retrievals; the failure of the
adiabatic assumption in cases of strong entrainment or precipita-
tion52; the sampling strategy chosen for the calculation of Nd

59; or
an imperfect colocation of the different satellite and reanalysis
products over the stratocumulus region.
Future causal studies of ACI could focus on evaluating the effect

of data-related issues (3–5) by applying the methodology
presented here to other sources of data, e.g. model data or in-
situ data. In that sense, a causal approach can be used as a
physics-informed diagnosis tool to identify the sources of
discrepancies in ACI estimates between different data sources,
similarly to what is done for model evaluation in60. A complete
study of how errors related to retrieval assumptions propagate
from the data to the causal effects would also be of interest.
Despite these limitations, the causal inference method

presented here provides a helpful framework to address
confounding. In particular, the graph sensitivity analysis allows
to identify which variables need to be included to obtain
physically plausible causal effects. It revealed that the aerosol-
induced LWP response is overly negative if environmental
confounding is not properly removed with the use of timeseries
and with the appropriate consideration of covariations in cloud
droplet sizes and cloud depths. This implies that the cooling
effect of ACI could be underestimated when failing to account
for the effects of meteorological covariations on LWP adjust-
ments in marine stratocumulus regions. This agrees with other
studies that used causal approaches (e.g. opportunistic experi-
ments, such as refs. 14,15,61). These results put into perspective
the vastly different Nd-LWP sensitivities found in the literature
and highlight the importance of considering confounding as
well as long-term developments to accurately calculate cloud
sensitivities.

METHODS
Data
The data used in this work are 2-year timeseries (2016–2017) of
satellite cloud retrievals co-located with reanalysis data over the
Namibian stratocumulus deck (10∘–20∘ S, 0∘–10∘ E, as defined by

ref. 3). The level 2 cloud properties (reff, LWP) were obtained from
the Cloud Physical Properties (CPP) product of the CLoud property
dAtAset using SEVIRI (CLAAS 2.1)62, where SEVIRI is the Spinning
Enhanced Visible and InfraRed Imager aboard the eleventh
Meteosat Second Generation geostationary satellite. Low liquid
clouds were filtered by using the cloud type product. Nd and H
were calculated using the adiabatic assumption63,64:

Nd ¼ 1
2πk

5Cwτ
Qextρw

� �1
2
´ r�

5
2

eff ´ τ
1
2

H ¼ 5τ
3πQext

� �3
5
´ 3Cw

4πρw

� ��2
5
´ ðkNdÞ�

1
5

where Nd is assumed to be constant along the cloud depth, τ is
the cloud optical depth, k= 0.72 65 is a factor accounting for the
width of the droplet size distribution, Qext ≈ 2 is the scattering
coefficient, ρw is the density of water and Cw is the adiabatic
condensation rate. Cw is a function of temperature and pressure66,
which we calculate using the cloud top temperature and pressure
from the CTX product of SEVIRI. For the calculation of Nd, pixels
where reff < 4 μm or τ < 4 are filtered out because of high retrieval
uncertainties associated with these lower values59. Although
geostationary data are still under-used in ACI studies, it should
be noted that the SEVIRI cloud products have been extensively
validated with other more commonly used polar-orbiting satellite
data products67. Because few studies have specifically validated
cloud droplet number concentrations from SEVIRI (e.g. ref. 68), we
compared Nd from SEVIRI and from the level 3 MODIS Terra
satellite69 over our study region and period and found a very good
agreement of the two derived products (Supplementary Fig. 10).
The slight positive bias in Nd from SEVIRI should not be an issue
since the data are standardized in this study.
Precipitation rates (RR) were obtained from the Global

Precipitation Measurement (GPM) Integrated Multi-satellitE Retrie-
vals Version 6 (iMERG V06)70. Meteorological variables were
downloaded from ERA571,72. LTS was calculated as the difference
in potential temperatures between 700 and 1000 hPa3. The
entrainment velocity of free tropospheric air into the boundary
layer (we) was calculated using a large-scale boundary layer
continuity equation, following73:

d BLH
d t

¼ we þ wsubs (1)

where wsubs is the rate of large-scale subsidence, taken at 700 hPa.
This yields we values on the order of a few millimeters per second
(Supplementary Table 2), which is comparable to other studies
that employ the same equation8,74,75.

we

Nd

LWP we

Nd

LWP

reff

a b

Fig. 5 Role of reff and H as mediating and confounding variables of LWP adjustments. In a the two graphs are extracted from causal graphs C
(left) and A (right, see Figs. 2 and 4). The comparison of the causal paths from we to LWP in both graphs shows how the influences of we change
from positive in graph C (unphysical) to negative in graph A, when reff is taken into account (physical). b Shows the regression of LWP on Nd (similar
to Fig. 1c). The dashed gray line shows the regression on all the data points (βaggregated=−0.6). The regression slopes after disaggregating the data
by cloud depth bins (colored lines) are weaker than the aggregated slope (by a factor of >3). This is an example of Simpson’s paradox
(Supplementary Fig. 3), as H is a confounder of the causal link from reff to LWP. The explanation is as follows: due to accretion of rain drops and cloud
droplets, deeper clouds tend to have fewer but larger droplets and larger LWP, while thinner clouds tend to have more but smaller droplets with a
lower LWP. This results in an overly negative LWP vs. Nd relationship when aggregating the data from deep and thin clouds.
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The different data products were first co-located on the 0.25° × 0.25°
ERA5 grid and linearly interpolated to the temporal resolution of the
SEVIRI data, i.e.Δt= 15min. Then, because the emphasis of this study is
on the temporal resolution, and in order to simplify the causal analysis,
the data are spatially averaged over the larger 10° × 10° stratocumulus
region. It should be noted that the averaging of cloud properties is
performed on in-cloud properties, not on all-sky properties, i.e. we
exclude clear-sky zero values before averaging.
The diurnal and seasonal cycles might be a source of

confounding, i.e. they can introduce correlations in meteorological
properties and cloud properties that may not be causal in nature
(Supplementary Fig. 11 for an illustration). For this reason, the data
were adjusted for the diurnal and seasonal cycle by computing a
seasonal instantaneous mean value and standard deviation for all
variables (i.e. we take the mean and standard deviations of all data
points for a given timestamp, e.g. 10:15 am), and using these
means and standard deviations to standardize all data points with
the same timestamp. Because of the standardization, the units of
causal effects are not on a natural physical scale, but rather in
units of deviation of the variable from its seasonal instantaneous
mean per unit of the seasonal instantaneous standard deviation.
As a consequence, the interpretations focus on the sign of the
causal effects and their relative strength, but not on their absolute
magnitude. The cloud properties were log-transformed prior to
the standardization, for consistency with previous studies in which
sensitivities are expressed as the derivatives of the logarithms of
the variables. Zero precipitation values were removed from the
dataset prior to the application of the log-transform and
precipitation values smaller than the first percentile were removed
from the dataset. The whole precipitation timeseries were shifted
backwards by 1 timestep in order to approximate cloud-base
precipitation rates instead of the surface-level precipitation rates.
The original timeseries, as well as the adjusted timeseries, are

shown in Supplementary Fig. 12 and average values for all
variables are shown in Supplementary Table 2.

Causal effect estimation
Causal effect estimation20–22,57,76 requires three ingredients:

1. A causal graph describing all direct causal links between the
variables. Causal graphs can be obtained using causal
discovery methods, or can be drawn from domain knowl-
edge. In this study, we preferred the second option as causal
discovery is subject to large uncertainties given the finite
nature of datasets and the potential existence of hidden
confounders22. The proposed causal graph (Fig. 1b) is a
stationary directed acyclic graph, meaning that: (1) it is
resolved in time, i.e. it contains lagged causal links and
autodependency links; (2) considered to be stationary in
time, i.e. the graph structure and the associated causal
effects do not vary with time; (3) the direction of all causal
links is known, with no hidden confounding variable; and (4)
the graph does not present any feedback loop within the
same timestep. In this work, all causal links are hypothesized
to have lags l= 0 or 1 timestep (i.e. 0 or 15 min). A structural
causal model (SCM) is implicitly associated with the causal
graph. The SCM is a set of equations that describes the
causal relationships between the n variables.

XjðtÞ :¼ f jðpaðXjðtÞÞ;UjðtÞÞ
if linear¼ P

Xiðt�lijÞ
2paðXjðtÞÞ

αXi ;Xj ;lij ´ Xiðt � lijÞ þ UjðtÞ for j 2 ½1 : n�

where fj is a linear or non-linear function that determines
the value of the effect-variable Xj(t) based on the values of
its direct causal parents paðXjðtÞÞ ¼ ðXiðt � lijÞÞi , i.e. those
variables with arrows (lag lij) pointing directly towards Xj(t) in
the causal graph. Uj’s are jointly independently distributed

noise variables. In the linear case, αXi ;Xj ;lij is the coefficient of
the SCM for the direct causal effect of the parent-variable Xi
on variable Xj at lag lij. In this study, the SCM is assumed to
be linear as a first order approximation, and the αXi ;Xj ;lij
coefficients of the SCM, also called path coefficients or
direct causal effects, correspond to the weights on each
single arrow of the causal graph. They are the target metric
of the causal effect estimation performed in this study.

2. Observational data for all the variables in the causal graph.
Timeseries are ideal as the precedence of cause on effect
can be exploited. As explained in the introduction, the
15 min temporal resolution of geostationary data is reason-
able for stratocumulus clouds as it is close to the expected
process timescale at which microphysical changes occur and
are propagated throughout the cloud.

3. An estimation method for causal effect quantification given a
causal graph and its associated data. There are two methods:
the adjustment approach20,57 and Wright’s path approach40,41.
The adjustment method is a non-parametric approach that
allows to treat graphs with hidden variables. In the linear
adjustment method, the total causal effect of X on Y is:

βX;Y ¼ ∂EðYjdoðX¼xÞÞ
∂x ;

whereEðYjdoðX ¼ xÞÞ ¼ EZ EYjX;Z ½ðYjX ¼ x; Z ¼ zÞ�� �

The formulation of βX,Y can be extended to non-linear cases,
by using a non-linear estimator (e.g. a neural network). The
do-operator signals that we are calculating causal effects
(not correlations) from the observational distribution. This is
done by using a set of adjustment variables Z. Z is
determined from the causal graph and contains the
variables that block all non-causal paths from X to Y,
thereby removing any confounding. Importantly, Z does not
contain any descendants of Y, or any mediators, thereby
avoiding introducing collider bias. In the linear case, βX,Y
simply corresponds to the partial linear regression slope for
X in the regression of Y with respect to both X and Z. The
Wright method only applies to the linear case and generally
cannot handle hidden confounding. It is primarily con-
cerned with the estimation of the direct causal effects
αXi ;Xj ;lij , i.e. the arrow coefficients in the causal graph. They
are calculated as the partial regression slopes in the
multiple linear regression of Xj on its causal parents pa(Xj(t)),
thereby removing any source of confounding that is implied
by the causal graph. The Wright method differs from the
adjustment method in its computation of total effects, as
the total effect of X on Y (l-lagged) is derived from pre-
computed direct effects using the path tracing formula:

βX;Y;l ¼
X

causal paths

from Xðt�lÞ
to YðtÞ

Y

Xi!
lij
Xj arrow

in path

αXi ;Xj ;lij

0
BBB@

1
CCCA (2)

See Supplementary Fig. 4b for an illustration of the path
tracing formula. The path tracing formula can be applied to
derive contemporaneous total causal effects or lagged total
causal effects, i.e. the temporal development of causal effects.
It should be noted that the temporal developments of causal
effects are not re-calculated from the data at each timestep.
Instead, the data are used once in combination with the graph
to calculate the direct causal effects (including autodepen-
dency coefficients), and then, these direct effects are
propagated in time through the graph using the path tracing
formula. At the timescales at which direct causal effects are
computed (lags l= 0 or 1, i.e. 0 or 15 min), there is not much
advection of the cloud fields, so we can consider the cloud
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system to be stationary. Assuming stationarity of the causal
effects, we can extend temporal development calculations
past 12 h even though the satellite only provides daytime
data. 24-h developments of cloud processes should therefore
be understood as hypothetical cloud developments should
clouds persist for so long in the study region, and they should
not be understood as a direct measurement of cloud lifetime.
All results of this study were derived using the Wright method,
as it allows for an easier decomposition of direct and mediated
effects, and the variance of this method is asymptotically
smaller than the adjustment method77.

Causal effect quantification analyses were all carried out with
the Tigramite package in Python (https://github.com/jakobrunge/
tigramite).

Confidence intervals, masking
The first step of the analysis is to compute the direct causal effects
between the variables using Wright’s estimator, i.e. we calculate the
αXi ;Xj ;lij coefficients of the linear SCM. Confidence intervals for direct
causal effect estimates were calculated using a bootstrapping
method with 500 members. Direct causal effects are considered
significant when the bootstrap confidence interval does not include
0. Once direct causal effects have been estimated, total causal effects
βX,Y,l between two variables X(t− l) and Y(t) can be estimated using
Wright’s path tracing formula (Eq. (2)). The confidence intervals for
the temporal development plots were calculated by bootstrapping
with n= 100 (the number of bootstrap ensemble members was
scaled down due to the number of calculations).
We evaluate the regime-dependence of causal effects using

binary masks, i.e. by binning the data points by low/high value of
the masking variable (by comparison to the median value). Using
the lower and upper fiftieth percentiles (instead of quartiles for
instance) allows to have enough consecutive timesteps to carry
out the causal effect calculations. Specifically, LTS, RHFT, Nd are
used as masking variables for the boundary layer stability, free
tropospheric humidity and aerosol background regimes.

DATA AVAILABILITY
The timeseries used for the analyses were generated from co-located SEVIRI (Copyright
(c) (2020) EUMETSAT), GPM and ERA5 data (generated using Copernicus Climate
Change Service information [2022]). MODIS Level 3 data (used for comparison
purposes) were downloaded from https://ladsweb.modaps.eosdis.nasa.gov/archive/
allData/61/MOD08_D3. SEVIRI data are freely available from https://wui.cmsaf.eu/safira,
GPM data from https://disc.gsfc.nasa.gov/datasetsand ERA5 data from https://
cds.climate.copernicus.eu. The timeseries and analyses outputs are provided on
Zenodo (https://doi.org/10.5281/zenodo.7692695).

CODE AVAILABILITY
Code for the data processing and analysis is provided on Zenodo (https://doi.org/
10.5281/zenodo.7692232).
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