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Abstract

Causal discovery from time series data is a typical
problem setting across the sciences. Often, multi-
ple datasets of the same system variables are avail-
able, for instance, time series of river runoff from
different catchments. The local catchment systems
then share certain causal parents, such as time-
dependent large-scale weather over all catchments,
but differ in other catchment-specific drivers, such
as the altitude of the catchment. These drivers can
be called temporal and spatial contexts, respec-
tively, and are often partially unobserved. Pool-
ing the datasets and considering the joint causal
graph among system, context, and certain auxil-
iary variables enables us to overcome such latent
confounding of system variables. In this work, we
present a non-parametric time series causal dis-
covery method, J(oint)-PCMCI+, that efficiently
learns such joint causal time series graphs when
both observed and latent contexts are present, in-
cluding time lags. We present asymptotic consis-
tency results and numerical experiments demon-
strating the utility and limitations of the method.

1 INTRODUCTION

Causal discovery from observational data has gained
widespread interest in recent years. Next to score-based
methods Chickering [2002], Granger causality Granger
[1969], and the more recent restricted structural causal mod-
els (SCM) framework Peters et al. [2017], Spirtes and Zhang
[2016], the constraint-based approach[Spirtes et al., 2000]
to this discovery task exploits conditional independencies in
the data to constrain causal graphs and can flexibly handle
nonlinear dependencies.

Most real world data comes in the form of time series,
which provide opportunities and challenges for causal dis-

covery [Runge et al., 2019a]. While the inherent time order
implies certain causal directions, time-series data typically
violates the i.i.d. assumption usually made in conditional
independence testing. Therefore, specific algorithms that
target the challenges of time-series data have become an in-
creasingly popular sub-category within causal discovery, for
instance, versions of the PC algorithm and FCI [Entner and
Hoyer, 2010b, Malinsky and Spirtes, 2018], or the PCMCI
framework [Runge et al., 2019b, Runge, 2020, Gerhardus
and Runge, 2020].

The methods mentioned above consider single multivari-
ate time series datasets and aggregate samples across time.
Another relevant development has been the incorpora-
tion of multiple datasets and modeling their different con-
texts [Mooij et al., 2020, Huang et al., 2020], which can also
be framed as a data-fusion problem [Pearl and Bareinboim,
2011, Bareinboim and Pearl, 2016].

In the following, we illustrate the main ideas of this pa-
per on the example of time series datasets of river runoff
from different catchment systems [Wagener et al., 2007].
If we assume all of these to come from the same (station-
ary) distribution, we can just concatenate (pool) the data to
obtain a larger sample and, hence, more reliable causal dis-
coveries among the system variables. But multiple datasets
can also be used to de-confound relationships: The local
catchment systems often share certain causal parents, such
as time-dependent large-scale weather dynamics over all
catchments, that can be called temporal contexts and cause
latent confounding between two or more system variables,
if they are unobserved. If we now assume that such a time-
dependent latent confounder is the same across all datasets,
we can condition on the time index (or add a so-called time-
dummy variable) by aggregating samples across datasets,
instead of aggregating across time. This then yields a joint
graph across all time points.

But datasets not only share common causal drivers, they also
differ in other dataset-specific drivers, such as the altitude
or vegetation-type of the catchment, which can be called
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spatial contexts. As spatial contexts are constant across time,
they do not constitute a confounding within each dataset.
However, in the pooled data they vary across datasets and
lead to confounding in the joint graph across datasets. If
spatial contexts are observed, they can be included as vari-
ables in the analysis and if they are unobserved, they can
be de-confounded by the same idea as time-dependent con-
founders by assuming that they are constant across all time
points and conditioning on the dataset index (or adding a
so-called space-dummy variable, not to be confused with
physical space). The idea of conditioning on time and space
is heavily employed in fixed-effect panel regression models
in econometrics [Angrist and Pischke, 2009] and here we
consider these for causal discovery.

Next to deconfounding system variables, observed context
variables can help to orient causal links: Consider two sys-
tem variables X◦−◦Y whose causal direction cannot be
identified by Markov equivalence. In the joint graph we
could add a context variable C and assume (or learn) that
C → X◦−◦Y . Then applying the collider or orientation
rules [Meek, 1995] allows to infer the causal direction be-
tween X and Y .

Our approach partially follows Mooij et al. [2020]. Their ap-
proach is to pool data from different contexts, for instance,
observational and interventional data, and do causal dis-
covery on the pooled dataset, called joint causal inference
(JCI). In particular, they established a general framework to
(i) interpret contexts as auxiliary variables that describe the
context of each dataset, (ii) pool all the data from different
contexts while keeping the contextual information of the
data by including the auxiliary context variables into a single
dataset, and (iii) apply standard causal discovery to all data
jointly, incorporating appropriate background knowledge
on the causal relationships involving the context variables.

Our aim is to extend the PCMCI+ time series causal discov-
ery algorithm [Runge, 2020] to the case of datasets from
multiple dataset- or time dependent contexts with poten-
tially unobserved context confounders of the system vari-
ables. We term this technique J(oint)-PCMCI+ because it
combines the two JCI-ideas mentioned above, i.e., pooling
datasets from multiple contexts, and adding observed con-
text variables to the graph. We go beyond JCI by providing
a specific algorithmic implementation of it in the time-series
setting and using time- and space-dummy variables to ac-
count for latent context variables that confound system vari-
ables, that are conceptually similar to surrogate variables
in [Huang et al., 2020]. Therefore, we are faced with the
additional challenge of dealing with observed context as
well as dummy variables simultaneously, which requires
caution due to the fact that they are deterministically re-
lated to one another Lemeire et al. [2012]. This approach
combines the advantages of PCMCI+ regarding detection
power and false positive control in the presence of strong
autocorrelation [Runge, 2020] with the advantage of the JCI

framework. To summarize, we present a consistent causal
discovery algorithm J-PCMCI+ that can:

(i) de-confound those system nodes that are confounded
by latent contexts without having any knowledge of
the latent contexts themselves;

(ii) retain as much information about the causal links be-
tween the observed context and system variables as
possible by checking conditional independencies ap-
propriately;

(iii) discover the correct induced causal graph between the
system nodes.

2 RELATED WORK

In causal inference, the idea of context variables has been
explored under different notions : “policy variables” Spirtes
et al. [2000], “force variables” Pearl [1993], “decision vari-
ables” in influence diagrams Dawid [2002], “selection vari-
ables” in selection diagrams Bareinboim and Pearl [2013],
and “environment variables” Peters et al. [2016]. Mooij et al.
[2020] established a general framework to combine data
from multiple contexts with traditional causal discovery
techniques.

In Huang et al. [2020], the problem of heterogeneous data,
which might correspond to varying dataset collection condi-
tions (analogous to contexts in JCI), as well as the problem
of non-stationary data was addressed in a framework called
CD-NOD. Here, changing causal mechanisms across time
or datasets were interpreted as confounding of the system
by an unobserved pseudo-confounder, so named because it
can be written as a function of the dataset or the time index.
This confounding was then addressed by introducing a sur-
rogate variable that captures changes of causal mechanisms,
thereby deconfounding the pseudo-confounded system vari-
ables. Further, they employed the information of changing
causal mechanisms to infer additional causal directions than
standard causal discovery allows for by formalizing inde-
pendence of cause and mechanism Peters et al. [2017]. Note
that explicitly known context variables can not be included
in this setup. It also focuses on non-stationarity that can be
modeled as a smooth function of time. This is a restriction
we do not place.

The concept of changing regimes over time is similar to the
presence of a temporal context. In particular, Saggioro et al.
[2020] consider regimes that vary over time and assume that
these regimes are not known a priori. This is in contrast to
our assumptions that the context variables are constant over
time or across the data sets which implies that we know from
domain knowledge when a context change might happen.
They present the Regime-PCMCI algorithm that learns the
regimes together with the causal graphs within each regime.

Certain Bayesian methods can also deal with heterogeneous
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data, i.e. data from different contexts, e.g. Zhou et al. [2022].
Naturally, identifying the causal structure by a Bayesian
method requires strong model assumptions. Instead of using
dummy or surrogate variables, the authors suggest to impute
possible latent covariates using an embedding method, and
they also provide a way to infer the latent covariates jointly
with the causal graph.

Constraint-based causal discovery methods for time-series
data historically began with Granger causality Granger
[1969], and since has been addressed in Entner and Hoyer
[2010a], Malinsky and Spirtes [2018], Runge et al. [2019b],
Runge [2020], Gerhardus and Runge [2020] to cover non-
linear relationships, contemporaneous as well as lagged
links, latent confounders and highly auto-correlated data.
For an overview, see Runge et al. [2019a].

3 THEORETICAL FOUNDATIONS

Within the JCI framework [Mooij et al., 2020], the causal re-
lations of a system and its context are represented by a joint
(or meta) structural causal model (SCM). A system variable
is a time-dependent random variable whose distribution can
change across datasets. In the following, a temporal context
variable is a time-dependent random variable 1 that remains
the same across datasets. A spatial context variable is a ran-
dom variable that is constant over time and within a dataset
but can change across datasets. See figure 1 for an example.
The information on which variables belong to the system
or to the context is given as a domain assumption. We now
formulate an assumption on the data-generating mechanism
that always holds, unless stated otherwise.

Assumption 0 (Joint time-dependent SCM). The under-
lying data-generating mechanism across datasets d ∈ D
with |D| = M is an acyclic time-dependent structural
causal model (SCM) involving the time-dependent system
variables Xt = {Xi

t}i∈I at time t as well as context
variables C̃ = C̃time∪̇ C̃space with temporal contexts
C̃time,t = {C̃kt }k∈Ktime

and (time-independent) spatial-
contexts C̃space = {C̃l}l∈Kspace

, for i ∈ I:

Xd
t := f(PaX(Xd

t ),PaC̃time
(Xd

t ),PaC̃space
(Xd

t ),η
d
t )

C̃time,t := g(PaC̃time
(C̃time,t),ηtime,t)

C̃d
space := h(PaC̃space(C̃space),η

d
space)

(1)

where the exogenous noise variables (ηdt ,ηtime,t,η
d
space)

are jointly independent and ηi,dt are identically distributed
across time and space, ηktime,t are identically distributed
across time, and ηl,dspace are identically distributed across

1The term random variable is used for context variables in the
sense that it is done in Mooij et al. [2020].

Dataset 1

Dataset 2

Time-context variable

A

B C

Figure 1: Causal discovery with temporal- and spatial-
contexts. (A) Two datasets of system variablesX1, X2 may
be confounded by the same temporal context C̃1

time, but dif-
fer in dataset-specific characteristics that are constant over
time, here autocorrelation, which can be represented by a
spatial context C̃1

space. J(oint)-PCMCI+ learns the causal
relations which can be represented in (B) a summary causal
graph (link labels denote time lags) or (C) a time series
graph. Samples of the nodes are pooled from both datasets
over the (user-defined) stationary part of the time series
(grey dotted lines) leading to a repeating structure of the
time series graph (grey links). Context nodes can also help
orienting links since they can create colliders. If contexts
are unobserved, J-PCMCI+ can utilize temporal- or spatial
dummy variables to de-confound system variable relation-
ships.

space. PaX denotes the causal parents within X, and anal-
ogously for PaC̃time

and PaC̃space
.

Note that we restrict our exploration to the case of acyclic
SCMs. However, since the PC algorithm has been proven to
be consistent in the presence of cycles [Mooij and Claassen,
2020], we expect that the consistency of our method extends
straightforwardly to the case of SCMs with contemporane-
ous cycles. As discussed above, we allow for latent context
variables. Non-stationary data could be modeled by inter-
vening on a temporal context node simultaneously across
all time points.

Assumption 1 (Markov, Faithfulness and partial causal suf-
ficiency). LetM be a SCM of the form (1) with graph G, the
joint distribution PM (X, C̃) induced by the SCM satisfies
the Markov Property with respect to the graph G. Addi-
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tionally, PM (X, C̃) is faithful to the graph G of M . The
collection of datasets from the joint SCM (1) is assumed
to contain data from all system nodes Xt, but may contain
unobserved context nodes L and observed context nodes C,

C̃ = L ∪̇ C. (2)

Subsequently, L and C can also be written as a disjoint
union over their spatial and temporal components.

Note, that in the setup of (1) we have included the assump-
tion that context variables are exogenous to the system, see
JCI assumption 1 in Mooij et al. [2020]. Furthermore, we
assume that no latent context confounds an observed con-
text and a system variable. Since a latent context is the only
possible latent confounder in our setup, this assumption
is equivalent to JCI assumption 2 Mooij et al. [2020]. We
make an additional assumption in view of efficiency:

Assumption 2 (Context-system links). JCI assumption 1
holds. Further, a causal link between an observed context
and a system variable is not mediated by latent context
variables.

Assumption 3 (No context-system confounders). JCI as-
sumption 2 holds, i.e. no latent context confounds an ob-
served context and a system variable.

Finally, we adapt the pseudo-causal sufficiency assumption
of Huang et al. [2020] for our case as follows:

Assumption 4 (Context-determinism). The spatial context
variables are deterministic functions of the dataset index.
The temporal context variables are deterministic functions
of the time-index. We assume these functions to be non-
invertible.

The SCM (1) yields a joint time series causal graph G (see
Fig. 1) over all datasets d. Note that the spatial context vari-
ables appear as a single node in the time series graph. This
representation is chosen to denote that they are constant in
time and therefore do not have a time-dimension associated
with them. The joint graph G is related to the target of our
discovery task:

Definition 1 (Target graph). The target graph of J-PCMCI+
is the induced subgraph of G over the system nodes together
with the observed context nodes and their edges to the sys-
tem nodes.

4 METHOD

The general idea of our method is to include context nodes
in the time series graph motivated by the JCI approach. In
order to deal with latent context variables, we introduce
dummy variables (Sect. 4.1) before presenting J-PCMCI+

(Sect. 4.2) and state consistency results in Sect. 4.3.

4.1 DUMMY VARIABLES AS PROXIES FOR
LATENT CONFOUNDERS

Let G = (V,E) be the time series graph corresponding to
SCM (1), where V denote the vertices and E edges between
vertices. Here, V = X ∪C ∪ L, where X (resp. C and L)
refers to vertices at all time points. The set of edgesE can be
written as a disjoint union between edges EL, where at least
one of the corresponding nodes is in L, and its complement
EO, which consists of edges that only connect observed
(system and/or context) nodes. That is, E = EL∪̇EO. Fur-
ther, EO is itself a disjoint union of ES , which are the
edges where at least one of the two nodes is in X and its
complement EC , i.e., EO = ES∪̇EC . Using this notation,
we can express the definition of the target graph (defini-
tion 1) more formally: Based on a given ground truth graph
G = (X∪̇C∪̇L, EL∪̇ES∪̇EC), we define the target graph
G̃ as G̃ = (X∪̇C, ES). See figure 1 in the SM for an exam-
ple.

Definition 2 (Space dummy variable). The space dummy
variable Dspace, henceforth referred to as space dummy, is
a variable that labels datasets.

Without prior expert knowledge, this labelling is arbi-
trary. For instance, the simplest embedding is Dspace ∈
{1, . . . ,M}. Alternatively, in a one-hot-encoded embed-
ding, i ∈ {1, . . . ,M} denotes the position of the 1 in an
M -dimensional vector where all other entries are 0. In the
following, we work with a one-hot-encoded space dummy.
However, we note that the question of which embedding to
choose for the space dummy is far from settled, and requires
further expert knowledge about the particular setup and the
type of conditional independence to be used in the causal
discovery algorithm. Refer to the SM for further details.

Also note, there is no one-to-one relation between datasets
and spatial contexts, i.e., two datasets can have same value
for a spatial context.

Definition 3 (Time dummy variable). The time dummy vari-
able Dtime, henceforth referred to as time dummy, is a vari-
able that labels each time-step in the time-series data.

Here too, we arbitrarily choose the embedding for Dtime to
be a one-hot-encoding into a T -dimensional vector, where
T is the length of the time-series.

Definition 4 (Dummy projection). We define the dummy-
projection of the graph G = (X ∪C ∪ L, EL ∪ EO) to be
the graph GD = (X ∪ C ∪ {Dspace ∪ Dtime}, Ẽ), where
edges Ẽ are defined as:

Ẽ = {(Dspace, v)|(u, v) ∈ E, ∀ u ∈ Lspace and v ∈ X}
∪{(Dtime, v)|(u, v) ∈ E, ∀ u ∈ Ltime and v ∈ Xt} ∪ ES .

Further, note that in the dummy projection, we have omitted
the edges EC , i.e., the edges between the observed context
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variables, since these relationships are not of interest for the
target graph (definition 1).

Finally, we introduce the dummy-deleted graph. For a visu-
alization of the dummy projection and deletion operations,
see figure 3 in SM.

Definition 5 (Dummy deletion). Let GD be the dummy
projection of the graph G. The dummy-deleted graph GDdel

is the graph where the dummy variables and any outgoing
edge therefrom is removed.

Under assumption 4, for Cs ∈ Cspace and Ls ∈ Lspace,
we can always find (not necessarily unique) functions gC
and gL with Cs = gC(Dspace) and Ls = gL(Dspace), and
analogously for the temporal counterparts.

Such mappings can be assumed to exist, since the dummy
D takes a unique value within each dataset (def. 2), and
each spatial context variable C is assumed constant within
each dataset (and analogously for the temporal version).
Therefore, there exists a mapping g with C = g(D). There
would exist no mapping from the dummy variable to the
context variable if the context variable would take two dif-
ferent values within one dataset, but this case is excluded by
assumption.

The introduction of the dummy variables into the causal dis-
covery task is for the purpose of removing the confounding
effect of latent context variables on a pair of system vari-
ables. Latent system variables and their confounding cannot
be handled with this method. As we will see in Section 4.2,
our method yields a graph between X, C and D, which is
not exactly the dummy projection of the true graph G, but
whose dummy deletion is the target graph (definition 1).

Interpretation of the dummy-projection Some caution
has to be applied in the interpretation of links between the
dummy and system nodes in the dummy-projected graph.
These links are only placeholders for the links between un-
observed context nodes and system nodes in the ground truth
graph. The dummy is not a causal variable itself! Further,
note that in definition 4, we did not include links between
the dummy and observed context nodes in the dummy pro-
jection since these links are deterministic by assumption 4
and always present and thus not informative.

Including both observed context and dummy variables
A natural question at this point might be, why include the
observed context variables at all in the causal discovery task,
even though the dummy can remove all influence of context
variables because of the general way in which is it defined
(definitions 2, 3). Theoretically, there would indeed be noth-
ing wrong with excluding contexts altogether. However, the
dummy variable is not interpretable, and not useful when
the goal is to learn the causal relationship between specific
context and system variables. Further, as we will see be-
low, in the first step our causaldiscovery algorithm learns

the context-system adjacencies, the relationship between
which may be mathematically simpler than those between
the highly general dummy and system variables. In the sec-
ond step, it learns the dummy-system adjacencies given the
context parents learnt in the first step. This helps infer influ-
ence on the system variable of the dataset label that cannot
be explained by the context variables, i.e., in essence we
learn hidden contexts. Finally, as also pointed out by Mooij
et al. [2020], the separate observed context nodes help in
orienting adjacencies between system variables. Refer also
figure 1 for a visualization.

A naive implementation to learn the causal relationships
between context-system and dummy-system, where the con-
text and dummy variables are treated on the same footing
when testing adjacencies to the system, would not be cor-
rect as the causal faithfulness assumption would be violated.
This is because the relationship between context and dummy
variables is deterministic. The two-step procedure outlined
above circumvents erroneous inferences of adjacencies due
to faithfulness violation. For details, see sect.4.2 and SM.

4.2 ALGORITHM

In the pooled dataset, we include one variable for the space
and time dummy each, as well as for spatial context vari-
ables, at time t. These nodes can only have contemporaneous
links to system nodes since they either do not change over
time or contain no information about the temporal structure.
That is, only temporal context variable can have a lagged
influence on the system variables, see also figure 1 and SM
(figure 2). To be able to deal with observed contexts and
dummy variables, that are essentially placeholders for the
unobserved context variables, our method first discovers
links between system and observed context nodes while
ignoring the dummy nodes, and in the next step discovers
links between dummy and system nodes. Finally, using the
information on the contextual parents of each system node,
we do causal discovery on the system node pairs. In the
following, we detail this procedure for the non-time series
and time-series case.

Non-time series case: To ease the explanations for the
time-series case, where both spatial and temporal context
variables can occur, we first focus on the non-time-series
case, where only spatial context variables can occur. Conse-
quently, we only have to consider the space dummy. Note
that assumption 0 can be simplified to the non-time series
straightforwardly. We will combine the well-known PC al-
gorithm Spirtes et al. [2000] with both observed and dummy
context variables. Pseudocode for this method is provided
in Algorithm 1. In the standard setting, the PC algorithm is
a constraint-based causal discovery algorithm for the causal
sufficient case that relies on the Markov and Faithfulness
assumption. In its first stage (skeleton discovery), adjacen-
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cies are learned based on iteratively testing conditionally
independence of pairs of variables at some significance level
α. Afterwards, the links are oriented based on a set of rules.
We will focus on how its skeleton phase needs to be adapted.

1. In the first step, we discover context-system links. We
iteratively test independence between the following
node pairs (Xi, Cj), and (Cj , Xi) for all i, j while
conditioning on subsets of the union over system and
observed context nodes X ∪C. In other words, we ini-
tialize a fully connected graph between the system and
context variables, eliminate the edges between context
variables, and run the skeleton phase. By ignoring the
dummy node in this step, we are able to circumvent
the faithfulness violation that stems from the fact that
every observed context node is a deterministic function
of the dummy. By the exogeneity of the context to the
system (assumption 2), we already know that any link
between context variable C and system variable X is
oriented as C → X . Therefore, we construct the set of
observed contextual parents PaC(Xi) of each system
variable Xi from all observed context variables that
are found to be adjacent to Xi.

2. In the second step, we focus on the discovery of
dummy-system links. In particular, we test indepen-
dence betweenD and eachXi ∈ X conditional on sub-
sets of X and the found contextual parents PaC(Xi).
Combined with the expert knowledge that the dummy
cannot be a descendent of a system variable, this gives
us the dummy parents of Xi. We denote the set of
dummy and contextual parents of Xi by PaCD(Xi).

3. Finally, we run the skeleton phase of the full PC algo-
rithm on X ∪C ∪ {D} while incorporating the back-
ground knowledge of the links from PaCD(Xi) to Xi,
and no context-context and context-dummy links.

Since context-system and dummy-system links are oriented
by assumption, the orientation phase, see Meek [1995] for
rules, needs to be applied to orient the system variables only.
Note, however that we are taking between context-system
or dummy-system edges into account whenever they form
an unshielded triple with two system variables, i.e. C →
Xi◦−◦Xj or D → Xi◦−◦Xj . This allows to orient more
edges than only considering triples of system variables.

Time series case: Next, we combine the PCMCI+ al-
gorithm Runge [2020] with observed context and dummy
variables. To recall briefly, PCMCI+ is a causal discovery
algorithm for time series data, that allows for both contem-
poraneous and lagged links and assumes causal sufficiency.
It consists of two steps. The first PC1 lagged phase infers
a superset of the lagged parents together with the parents
of contemporaneous ancestors. Next, the MCI contempo-
raneous phase starts with links found in the previous step
and all possible contemporaneous links, it then conducts

Algorithm 1: J-PC (for non-time series), pseudocode
for poolData, and partialSkeletonPC is provided in SM
Data: Background knowledge on context-system link

orientation E , observational data
(X(m))m=1,...,M in M dataset, observed context
variables (C(m))m=1,...,M for each dataset,
dummy variable D with distinct values for each
dataset, significance level α

Result: graph G
(X,C, D)← poolData((X(m),C(m))m=1,...,M , D)
Set PC := {(X,C), (C,X)|X ∈ X, C ∈ C},
PD := {(X,D)|X ∈ X},PS := {(X,Y )|X,Y ∈ X}
Set dataC := (X,C) and dataD := (X,C, D)
Set C = ∅
for index in [C, D] do
G ← partialSkeletonPC(dataindex, α,Pindex, C)
for X in X do

Orient context-system edge as in E
Add contextual parents Paindex(X) as in G to C

end
end
G ← partialSkeletonPC(dataD, α,PS , C)
Orient system edges using PC-orientation rules
return G

momentary conditional independence (MCI) with a modi-
fied conditioning set learned in the previous step to increase
detection power.

Our method consists of four main steps: one PC1 lagged
phase and three MCI phases. In the first step, supersets of
the lagged parents of the system and observed temporal
context nodes are discovered by running the PC1 lagged
phase on this subset of nodes. Next, the MCI test is run
on pairs of system and context nodes conditional on sub-
sets of system and context, i.e. perform MCI tests for pairs
((Cjt−τ , X

i
t))τ>0, (Cjt , X

i
t), (X

i
t , C

j
t ) for all i, j,

Cit−τ ⊥⊥ X
j
t |S, B̂−t (X

j
t ) \ {Cit−τ}, B̂−t−τ (Cit−τ )

with S being a subset of the contemporaneous adjacencies
At(Xj

t ) and B̂−t (X
j
t ) are the lagged adjacencies from step

one. If C is a spatial context variable, we only have to
test the contemporaneous pairs (Cjt , X

i
t), (X

i
t , C

j
t ) for all

i, j. If Cjt and Xi
t are conditionally independent, all lagged

links between Cjt and Xj
t−τ are also removed for all τ .

In the third step, MCI tests on all system-dummy pairs
conditional on the superset of lagged links, the discovered
contemporaneous context adjacencies, as well as on subsets
of contemporaneous system links, are performed, i.e. test
for (D,Xi

t), (X
i
t , D) for all i, i.e.

D ⊥⊥ Xj
t |S, B̂Ct (X

j
t )

where S ⊂ At(Xi
t) and B̂Ct (X

j
t ) are the lagged and contex-

tual adjacencies found in the previous step. If D and Xj
t are
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Algorithm 2: J-PCMCI+ (for time series), laggedSkeletonPCMCI+ refers to Algorithm 1 in Runge [2020],
partialContempSkeletonPCMCI+ is a small adaption of Algorithm 2 of Runge [2020] which is further described
in the SM, colliderPhase and rulePhase refer to Algorithms 3 and 4 in Runge [2020]
Data: Background knowledge on context-system link orientation E , M observational system time series datasets

X = (Xi)i∈I , observed temporal context variables Ctime, observed spatial context variables Cspace, temporal and
spatial dummy variables Dtime, Dspace, significance level α, maximal time lag τmax, CI(X,Y,Z)

Result: graph G
{B̂−t (X)|X ∈ X ∪Ctime} ← laggedSkeletonPCMCI+(X ∪Ctime)
Initialize C(X)← ∅ for all X ∈ X
Set PC := {(Ckt−τ , Xi

t), (X
i
t , C

k
t )|τ ≥ 0,∀i, k}, PD := {(Xi

t , D), (D,Xi
t)|for D ∈ {Dtime, Dspace}, ∀i},

PS = {((Xj
t−τ , X

i
t))τ>0, (X

i
t , X

j
t )|i, j}

Set dataC := X ∪Ctime ∪Cspace, and dataD := X ∪Ctime ∪Cspace ∪ {Dtime, Dspace}
for index in [C, D] do
G ← partialContempSkeletonPCMCI+(dataindex, |I|, τmax, α, B̂−t (X), C(X), Pindex)
for X in X do

orient context-system edge as in E
add all context nodes that are adjacent to X in G to C(X)

end
end
G ← partialContempSkeletonPCMCI+(dataD, |I|, τmax, α, B̂−t (X), C PS)
G, sepset, ambigious triples, conflicting links← colliderPhase(dataD), i.e., on all unshielded triples
Xi
t−τ → Xk

t ◦−◦X
j
t (τ > 0) or Xi

t◦−◦Xk
t ◦−◦X

j
t or K → Xi

t◦−◦X
j
t with K ∈ Ctime ∪Cspace ∪ {Dtime, Dspace}

G, conflicting links← rulePhase(G, ambigious triples, conflicting links)
return G

found to be conditionally independence, links between D
and Xj

t−τ are removed for all τ . Using assumption 2, con-
text node is the parent in all system-context links. Finally,
in the fourth step, we perform MCI tests on all system pairs
conditional on discovered lagged, context and dummy adja-
cencies, as well as on subsets of contemporaneous system
links and orientation phase. In more detail, we perform MCI
test for pairs ((Xj

t−τ , X
i
t))τ>0, (Xi

t , X
j
t ) for all i, j, i.e.

Xi
t−τ ⊥⊥ X

j
t |S, B̂CDt (Xj

t ) \ {Xi
t−τ}, B̂CDt (Xi

t−τ )

where S ⊂ At(Xi
t) and B̂CDt (Xj

t ) are the lagged, contex-
tual, and dummy adjacencies found in the previous steps.
Finally, all remaining edges (without expert knowledge) are
oriented using the PCMCI+ orientation phase while making
use of all triples involving one context or dummy variable
and two system variables as in the non-time series case.

4.3 THEORETICAL RESULTS

Proofs for the following statements are provided in SM.

Theorem 1 (Non-time series consistency result). Denote
the output of J-PC (Algorithm 1) as Galg. Under the as-
sumptions 1,2, 3, 4, and assuming consistent conditional
independence tests are used, the dummy deletion of Galg
corresponds to the dummy-deleted ground truth graph as
the number of data sets M tends to infinity.

Note that here the dummy-deleted ground truth graph is the
target graph (definition 1) adapted to the non-time series
case.

Theorem 2 (Time series consistency result). Denote the
time series graph output of J-PCMCI+ (Algorithm 2) as
Galg . Under assumptions 1, 2, 3, 4, and assuming consistent
conditional independence tests are used, the dummy deletion
of Galg corresponds to the target graph (definition 1) as the
number of data sets M and the number of times steps T
tend to infinity.

The following consequence of theorem 2 allows us to relax
the rather strong assumption that latent context variables
cannot mediate or confound an observed context variable
and a system variable.

Corollary 1. If some of the observed context variables are
treated as unobserved, and the assumptions 1-4 still hold,
our method J-PCMCI+ will recover the correct system-
system adjacencies.

In particular, even if all context variables are treated as
unobserved, our algorithm yields the correct induced graph
over the system variables.

5 NUMERICAL EXPERIMENTS

Data simulation We generate toy data from the SCM
1 where we assume the functions fi, gk, and hl to be lin-
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ear. We also evaluate the method on data where the mech-
anisms fi are nonlinear. For a more detailed description
of this setup, see the SM. In particular, in the linear set-
ting, for system variables X = {Xi}i∈I and temporal con-
text variables (C time,k)k∈Ktime and spatial context variables
(Cspace,l)l∈Kspace, we consider the following ground truth
SCM Xi,m

t = aiX
i,m
t−1 +

∑
j bjX

j,m
t−τj +

∑
j cjC

time,j
t−τj +∑

j djC
j,m
space + ηi,mt , where i ∈ I, t = 1, . . . , T , and

m = 1, . . . ,M , C time,k ∼ N (0, 1), Cspace ∼ N (0, 1). Fur-
thermore, ηi ∼ N (0, 1) i.i.d., ai autocorrelation parame-
ter uniformly drawn from [0.3, 0.8], coefficients bj , cj , dj
are uniformly drawn from [0.5, 0.9], 50% of the links are
contemporaneous, the remaining lags are drawn uniformly
from [1, 3]. After the data has been generated, its variance
is rescaled to one across all datasets to avoid varsortabil-
ity Reisach et al. [2021]. In the numerical experiments, we
make the restriction that one system node can have at most
one contextual parent. After the time series for the ground
truth model has been generated a certain fraction (indicated
by parameter frac_observed) of the context nodes is selected
to be observed, the others are unobserved. Note that in our
simulated data all context nodes are exogeneous (they do not
even have other context nodes as parents). We decided to set
the experiments up in this way to put the focus on the discov-
ery of the system-context links and also the deconfounding
property of the dummy nodes.

Setup We evaluate the performance of our method us-
ing True (TPR) and False Positive Rate (FPR) for the ad-
jacencies which is calculated only on the system-system
context links. Separately, we report the TPR and FPR on
system-observed context links. All metrics and their stan-
dard deviations are computed on the estimated graphs of 50
realizations of the model from time series with length T .

We compare our method to PCMCI+ run on the data of
the system nodes only by simply concatenating the data,
as well as to PCMCI+ where we have only included the
observed (context and system) nodes. In this variant, we
took care to include spatial context nodes only once in the
time series graph. We build upon the implementation of
PCMCI+ algorithm within the Tigramite software package
[Runge et al., 2019b] published under the GNU General
Public License.

We used the following model parameters in our experi-
ments: Number of system nodes |I| = 5, number of context
nodes |Ktime|+ |Kspace| = 3 , maximal time lag τmax = 2,
significance level α = 0.05. We use an extension of the
(component-wise) partial correlation conditional indepen-
dence test. We vary the value of the time sample size T ,
and number of datasets M . Results for other fractions of
observed context nodes can be found in the SM.

Benefit of including expressive context nodes and dummy
In figure 2, we report the TPR and FPR for observed context-

Figure 2: Discovery results of context-system links for vary-
ing sample sizes T , M = 10. All other setup parameters
are set as the defaults described in the main text. In this set-
ting all context nodes are observed. Here, we compare our
method (J-PCMCI+) to PCMCI+ using all data of observed
nodes. Note that the maximal TPR that can be reached is
equal to frac_observed.

system links, respectively. We see that our method finds the
links between all observed context nodes and the system
nodes as well as the PCMCI+ variant with observed context
nodes included in the graph. In figure 3, we observe that the
performance of our method is comparable to only including
dummy variables when evaluated only on the system-system
links. These two observations illustrate the benefit of using
our method: If we would only rely on the dummy context
variables, we would achieve deconfounding of the system
variables but, naturally, we would not find any of the links
between the observed context nodes and the system. In other
words, we would not be able to learn which parts of the
system are dependent on the properties of the context. On the
other hand, if we would only include the observed context
nodes, we would not be able to remove the confounding
that could be introduced by the latent context variables. The
effects of the counfounding latent context variables, are
visible in the rise in FPR on system-system links in figure 3.
We also see lower edgemark recall and precision when only
using system data, see the figures in the SM.

Convergence analysis (time and space dimension) We
want to numerically study the finite sample properties of
our method. For that, we look at the TPR and FPR on the
system links for varying time sample size T while keeping
the number of spatial contexts M fixed, and the other way
around, see figure 3. In these experiments half of the context
nodes are unobserved. In the SM, we have also included
3D-plots for TPR and FPR on all pairs of T and M .

It is a well established result in the econometrics literature,
that, when considering fixed effects models, a bias is intro-
duced in the OLS estimator of the slope parameter Nickell
[1981]. A similar inconsistency problem can be observed in
our method whenever T is kept fixed and is small compared
to M : Even when the number of spatial contexts M goes to
infinity, the links are not discovered correctly, see figure 3
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Figure 3: Discovery results of system-system links for vary-
ing sample sizes T , and fixed M = 10 (top row), and
varying number of contexts M , and fixed T = 10 (bottom
row). All other setup parameters are set as the defaults de-
scribed in the main text. In this setting half of the context
nodes are observed. We compare our method (J-PCMCI+)
to PCMCI+ using all data of observed nodes (PCMCI+

with C), using all data of system variables and including
dummies (PCMCI+ with D), and only using data of system
variables (PCMCI+). The inset shows the adj-FPR-surface
with the contour of the α-level in a simplified experimental
setup to visualize the convergence of the method. Refer to
the SM for details.

(in particular the FPR plots) and the SM.

6 DISCUSSION AND CONCLUSIONS

We presented an algorithm (J-PCMCI+) for causal discov-
ery from a collection of multivariate time series datasets that
is able to deal with observed and unobserved context vari-
ables underlying the datasets. We established its asymptotic
consistency and studied its convergence properties numeri-
cally.

The main strengths of J-PCMCI+ are that it combines the
efficient algorithm from Runge [2020] (handling highly au-
tocorrelated time series) with ideas in Mooij et al. [2020],
Huang et al. [2020] to model observed as well as unobserved
contexts. Pooling data from multiple datasets and adding
observed contexts as well as dummies has several important
benefits: (1) pooling increases sample size, (2) adding ob-
served contexts and dummies allows to learn context-system
relations and can help to orient system-system links, (3)
dummy variables allow to remove confounding at least from

latent context variables. J-PCMCI+ inherits the benefits of
PCMCI+ for high-recall and accounting for autocorrelation
in the conditional independence tests. We find numerically
that J-PCMCI+ has good performance for sufficiently large
sample sizes and moderate numbers of datasets.

The main weaknesses are that some assumptions might
be strong and unrealistic. In particular, JCI assumption 2
and the assumption that prohibits latent context mediation
of the observed context to system link can be hard to jus-
tify depending on the setup, see Assumption 2. In the SM,
we discuss ramifications of partially relaxing this assump-
tion. Our numerical experiments indicate that for too small
sample sizes, we get inflated false positives due to missing
latent confounders. We also cannot overcome the funda-
mental finite-sample bias in the OLS estimator [Nickell,
1981] for small sample sizes and dummy variables carry the
disavantage of increasing dimensionality.

In future work, we plan to extend the method to weaken
the partially strong assumptions and to account for latent
system variable confounding Gerhardus and Runge [2020].
Furthermore, while our method only uses high-dimensional
dummy variables where it finds dependence, we haven’t
looked yet into adapting CI tests specifically for dummy
variables. In this work, we also only considered acyclic
SCMs. However, an extension to include the cyclic case is
possible based on the consistency of the PC algorithm in
the cyclic setting Mooij and Claassen [2020]. Moreover, an
in-depth analysis of finite sample properties of the presented
method is needed.
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