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Abstract 
New robust and yet powerful Modelica libraries have been 
developed such as the DLR ThermoFluid Stream library 
or the introduction of the Dialectic Mechanics library. 
These libraries apply a special modeling approach that 
uses linear implicit equilibrium dynamics. In this paper, 
we study the basic motivation of this approach, its benefits 
and drawbacks before we finally demonstrate how to get 
from models to applicable simulation code.  
Keywords: Object-oriented modeling, Code Generation, 
Modeling principles  

1 Introductory Example 
Classic continuous laws of physics can be interpreted as 
communicating by means of waves. When you read these 
lines, your eye’s photon receptors measure the 
electromagnetic waves communicating the corresponding 
visual information. When we speak, pneumatic waves 
communicate our audible voices. In a mechanics, pressure 
waves distribute the impulse in seemingly rigid bodies. 

Even for things that we consider not to be alive, this 
analogy may be applied. A famous example is called: 
“communicating vessels” (in German: “kommunizierende 
Röhren”) where various vessels filled with a homogenous 
liquid (let us use water) agree on a common surface level. 
This agreement is reached by hydraulic pressure waves 
going through the pipes, finally establish the hydrostatic 
equilibrium.  

 
Figure 1: Depiction of communicating vessels displaying the 
hydro-static equilibrium. Public domain from Wikipedia. 

Evidently, the macroscopic motion of a system can be 
interpreted as the emerging behavior of wave functions 
agreeing on an (quasi-) equilibrium state. One straight-
forward way to model and simulate classic physics is thus 
simply to implement the corresponding wave equations 
directly using a spatial discretization scheme. 

1.1 Example: Communicating Vessels 

We can implement this in Modelica for the example of the 
communicating vessels by using a staggered grid, where 
the inertia and compression of the fluid is alternately 
placed such as in the lower half of Figure 2. 

When we model the wave equation in an object-
oriented way, we need an interface to connect the 
distributed elements. Since a wave can be interpreted as 
the rotation within two dimensions as in Figure 3, it is a 
natural choice to choose two variables on the two 
corresponding orthogonal axes. Each of these variables 
thereby indicates a different form of energy storage. 

 

Figure 2: A model of 3 communicating vessels using a simple 
hydraulics library. Different from the depiction in Figure 1, the 
speed of flow is modulated by three narrow orifices at each tank.   
The one-dimensional hydraulic wave is modeled using a 
staggered grid for discretization. From top to bottom the layered 
icons represent the following elements: open-tank, non-linear 
pressure drop, fluid inertia, fluid compressibility. 

In our hydraulic example, these two axes are: pressure 
𝑝 and volume flow �̇�.  The pressure represents the 
potential energy of the compressed element whereas the 
volume flow rate represents the kinetic energy. We may 
call one of them a potential variable and the other one a 
flow variable. Since we work with an Eulerian framework, 
choosing the volume flow as flow is the natural choice.  

Figure 4 shows the simulation result corresponding to 
our example. We can see that at the end of the simulation, 
we reach the desired equilibrium point. However, the 
computational efficiency is abysmal if this point is the 



only result we are interested in. The pressure waves have 
a very high frequency (artificially lowered here) and so the 
simulation had to take many, very small time-steps.  

 
Figure 3: Trajectory of the pressure wave for the compressible 
volume in the two dimensions spanned by pressure and volume 
flow rate 

 

Figure 4: Step response of the communicating vessels after 
height of vessel 1 being increased at time = 1, showing the 
volume-flow through the valve openings. For the sake of 
illustration, the compressibility of water has been divided by 
1000(!). Using the actual values, frequency would be much 
higher and ripples on volume flow barely visible.  

Fortunately, we can avoid having to deal with high 
frequencies if we reduce the wave to its role as a conveyor 
of energy. The energy contained in our linear hydraulic 
wave is 

𝐸 =
1

2
𝜌 𝐴 𝜔 𝑐 

where 𝜌  is the linear density, 𝐴 the amplitude, 𝜔 the 
frequency and 𝑐 the speed of sound. If the macroscopic 
phenomenon of interest is orders of magnitudes larger 
than the amplitude and slower than the frequency, we can 
presume the wave to be an instantaneous transmitter of 
energy that simply has to uphold the conservation of 
energy (given that also the speed of sound is quick enough 
over the required distance). 

This transfer of power can be modelled by the same pair 
of variables that we have used to describe the wave 
equation. In our case the product of the pair represents a 
flow of energy: 

�̇� = 𝑝�̇� 

The power produced by a component with two such 
pairs is thus: 

𝑃 = 𝑝 �̇� + 𝑝 �̇�  

 If we are simply interested in the exchange of potential 
gravitational energy between the vessels over dissipative 
valve openings, we can choose to ignore the modeling of 
the hydraulic wave completely and simply connect the 
elements directly as in Figure 5. 

 
Figure 5: Modelling the communicating vessels by the sheer 
exchange of potential energy 

By doing so, we have created an implicit non-linear 
algebraic equation system: the pressure level below the 
valves has to be found so that the corresponding volume 
flows resulting from the pressure drop are in balance. In 
our case, this system can be reliably solved, even for the 
case of the step response as depicted in Figure 6. 

In general, we may have more than one solution or none 
at all. Also, the equation system is only available in 
implicit form. We thus replace the physical method to 
compute the transfer of energy with the solution for an 
algebraic system. Whether this works or not is simply 
down to luck in the general case. Here we were lucky.  

 

Figure 6: Corresponding step response of the direct model 
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1.2 Comparing the Modeling Approaches 

We have created our first model using explicit wave 
dynamics. 

We have created our second model using non-linear 
implicit power dynamics 

Generating code for explicit wave dynamics is rather easy. 
All the equations are in explicit form and can be directly 
written as an ODE. Setting up the simulation code is thus 
principally rather trivial. 

Simulating explicit wave dynamics is often 
computationally very expensive. Worse than the 
potentially high number of state variables is the that the 
frequency of the wave dynamics is often several orders of 
magnitude higher than the frequency of the macro-
phenomenon of interest.  

Simulating non-linear implicit power dynamics is much 
more efficient. Assuming an instantaneous transfer of 
power enables us to ignore the high frequency and phase 
shifts of the wave and we only have to deal with the low 
frequency of the macro-phenomenon. Also, we may use 
significantly fewer states.  

Generating code for implicit power dynamics however, 
is far from trivial. Our system above had permutation 
index 1, because it requires the solution of a non-linear 
equation system. In mechanical systems, higher-index 
systems are common that require a reduction of the 
differential index for instance by applying Pantelides 
(Pantelides 1988). Because the simulation code is of high 
algorithmic complexity, we like to have a Modelica 
compiler creating it for us. 

Choosing between these two can thus be seen as a trade-
off between computational complexity (time needed for 
simulation) and algorithmic complexity (length of 
program for model generation) of the simulation code. 
This comparison is also highlighted in Figure 7 where 
wave dynamics is on the left and power dynamics is on 
the right. 

For both forms of complexities, it is in practice nearly 
impossible to determine their theoretical limits. Since the 
computational complexity includes the ODE solver, we 
would need to determine the solver that reaches the 
desired precision within the shortest amount of time. The 
algorithmic complexity is to be interpreted in terms of 
algorithmic information theory (Chaitin 1987) and we 
would need to find the shortest possible program for code 
generation.  In practice, it is however feasible to work with 
the numbers at hand: measuring the code-length of the 
compiler and measuring the time the simulation took. For 
our considerations, the general concepts suffice. 

Explicit wave dynamics is computationally complex 
but can be low in algorithmic complexity. Non-linear 
implicit power dynamics is often of high algorithmic 
complexity but lower in computational complexity.  

However, Figure 7 also shows that there seems to be an 
interesting middle ground in between these two classes of 
models, that might offer a very favorable trade-off. I 
denote this class: Linear Implicit Equilibrium Dynamics 
(LIED) (you can keep the pun).  This class is typically not 
found in classic text-books and I presume that the primary 
reason for this is simply that we have to use an extended 
interface, which is not intuitive to come up with in the first 
place. 
 

Figure 7: Illustration of different modeling approaches and their impact on algorithmic and computational complexity 



2 The Idea behind Linear Implicit 
Equilibrium Dynamics 

Figure 9 illustrates the desired result. To a step change we 
react neither with a high-frequency wave function nor 
with a discrete jump but by approaching the desired 
equilibrium with replacement dynamics. These dynamics 
shall reach the same steady-state behavior than the 
original wave dynamics and exhibit only a limited 
deviation for slow-mode behavior. Any deviation shall be 
of dissipative nature in case energy conservation cannot 
be upheld. There is one additional catch though: we shall 
limit our equations which are in implicit form to constitute 
a purely linear system.  

The motivation for restricting ourselves to linearity for 
the implicit part is, to enable a robust solution of the 
system at all time, something that cannot be guaranteed 
for non-linear systems in general. 

To put these statements in formal terms: if a system is 
described by differential algebraic equations (DAEs) in 
the following implicit form: 

 

𝟎 = 𝐹(𝐱 , �̇� , 𝐮, 𝑡) 
 

where 𝒙  is the vector of potential states, �̇�  represents 
all time derivatives, 𝒖 the input vector and 𝑡 time.  

We aim to transform this system into the following 
form with an implicit linear part and an explicit non-linear 
part: 

𝐋�̇� = 𝑔(𝐱 , 𝐱 , 𝐮, 𝑡) 
 

�̇� = 𝑓(𝐱 , 𝐱 , 𝐮, 𝑡) 
 

where 𝐱  and 𝐱  are both disjoint sub-vectors of 𝐱 . 𝐋 
is a linear matrix and 𝑓  and 𝑔 are non-linear functions. 
The original DAE system 𝐹 is defined as a LIED system 
if and only if the functions 𝑓 and 𝑔 can be constructed just 
by ordering the corresponding equations of 𝐹.  

Techniques for symbolical reduction of the differential 
index (Leimkuhler 1985) or the permutation index 
(Campbell 1995) may hence only be applied to derive the 
matrix 𝐋.  Hence, all non-linearities have to be brought 
into an explicit form and placed in either 𝑓  or 𝑔 . 
Equations in implicit form (including constraints between 
potential states) have to be linear and to be placed in 𝐋.  

How can we construct such DAEs for classic physical 
systems? And how to do this in an object-oriented form? 
The basic idea is simple: we find a part in the transient 
dynamics that is suitable for linear approximation and that 
completely vanishes at steady-state. A suitable candidate 
is often the dynamics of kinetic energy since it has a linear 
characteristic for a wide range of systems. 

To enable this extraction, we have to split our interface, 
especially suited are variables that contain the flow of 
impulse (force, pressure, etc.) because here we can apply 
the superposition principle. Otherwise it may be very hard 
to separate the linear part in implicit from the non-linear 
part in explicit form. 

All of the above is much easier said than done. I have spent 
several months figuring it out for thermo-fluid domain and 
later for the mechanical domain. Refinement took years 
for thermo-fluids and is still in the process for mechanics. 
The good news is: once we have identified a suitable 
interface, the remaining part of implementation is straight-
forward, often even easy. 

 
2.1 LIED for Thermofluid Systems 

Here is the full interface for thermo-fluid streams: 

- 𝑟: inertial pressure (potential) 
- �̇�: mass-flow rate (flow) 
- Θ: Vector repr. state of medium (signal) 

o �̂�: steady-mass flow pressure 
o ℎ: steady-mass flow enthalpy 
o 𝑋: mass fractions   

For the thermo-fluid streams, we have to split the 
potential variable into two parts: The steady-state pressure 
�̂� and the inertial pressure 𝑟. The dynamics for the inertial 
pressure can be described by an implicit linear system 
using the law of inertance using the fluids inertia 𝐿: 

 

𝑟 = 𝐿
𝑑�̇�

𝑑𝑡
 

For the steady-state with a constant mass flow rate, 𝑟 
will thus go to zero. To enable the approximation during 
transients, the impact of 𝑟 on the thermodynamic state has 
to be neglected and hence Θ is composed using �̂�. 

When the interface is used correctly, the whole 
thermofluid system will be a LIED system. 𝐱  will form a 
vector that describes all mass-flow rates of the system in 
non-redundant manner. Typically, the dummy derivatives 
method (Mattsson 1993. Pantelides 1988) needs to be 
applied to construct the Matrix 𝐋. Its coefficients are then 
formed by linear combinations of the inertances. 𝐱  will 
contain all other states (such as specific enthalpy, etc. ). 
Using these states the functions 𝑓 and 𝑔 can be computed 
in a downstream manner. More details on this interface 
and the implementation of a full library can be found in 
(Zimmer 2020, 2022). Models using this interface are 
especially suitable for the simulation of complex thermal 
architectures with bypasses and switches even under hard 
real-time constraints.  

 
Figure 8: For this particular model of the communicating 
vessels, the LIED approach has an equivalent counterpart using 
conventional connectors. Modeling the inertia but leaving out 
the compressibility does the trick here. 



In the particular case of our example with the 
communicating vessels, the LIED approach is equivalent 
to using only inertias for the fluid but disregarding the 
compressibility.  Figure 8 shows the equivalent model 
diagram and Figure 9 depicts the corresponding 
simulation results. 

This simple equivalence does however only work in 
this example because we treat the water as having constant 
density and also neglect any influence of temperature. 
Hence in this example we can mimic the LIED approach 
using the basic connectors. Using more realistic media 
models, the ThermoFluid Stream approach works more 
subtly and the split interface is needed. 

 

Figure 9: Modelling the communicating vessels by the sheer 
exchange of potential energy 

2.2 LIED for Mechanical Systems 

For mechanical systems, the interface is defined as 
follows:  

- 𝑠:  position (potential) 
- 𝑓 :  elastic force (flow) 
- 𝑣:  velocity (potential) 
- 𝑓 :   kinetic force (flow) 

We have thus two pairs of effort and flow not one. The 
derivative of the position 𝑠 is thereby defined as 𝑣 . The 
velocity 𝑣  is also denoted as 𝑣 . The difference Δ𝑣 =
𝑣 − 𝑣  should ideally be zero at all times. To enable a 
linear implicit approximation, we tolerate non-zero values 
for Δ𝑣  at fast transients but establish a first order 
dynamics that ensures zero is approached for slow 
dynamics with the dialectic time constant 𝑇 : 

𝑑Δ𝑣

𝑑𝑡
𝑇 =  −Δ𝑣 

Because this interface separates the regimes of elastics 
and kinetics, I have denoted it as dialectic mechanics. First 
implementations and analysis are presented in (Zimmer 
2023) and (Oldemeyer 2023). Models using this interface 
are especially suitable for the simulation of contacts and 
limited joints also under hard-real time constraints. 

 

Dialectic mechanics are also LIED systems: the vector 𝐱  
will contain all the (generalized) positions in a non-
redundant form so that all degrees of freedom are 
described. 𝐱  then typically consists in the corresponding 
kinetic velocities.  𝑓 and 𝑔 can then be computed from the 
mechanical root of the system to the branches. Kinematic 
loops are explicitly closed using elastic elements with 
high stiff springs which is the preferred way in dialectic 
mechanics since high frequencies can be suppressed. 

The details of the domain specific implementation shall 
not be the topic of this paper. But evidently this class of 
models is very useful and hence we shall further 
investigate its implications for the generation of 
simulation code. 

 
Figure 10: Penetration depth into the left claw represented by 
an elasto-gap, for the choice of two different time constants. 
Both agree on the time-averaged solution.  

Just for the sake of quick illustration: Figure 10 from 
(Zimmer 2023) is repeated here again that shows the 
dynamics of a lightweight object moved in clamp modeled 
by a very stiff spring. The figure simply illustrates how 
the oscillatory dynamics is replaced with a replacement 
dynamics leading to the same (quasi) steady-state 
solution. 

3 How to Create Simulation Code for 
LIED Systems? 

The original intention of the LIED approach was simply 
to ensure that no non-linear system is created that spans 
across the components and hence a robust solution of the 
model evaluation could be taken for granted, given robust 
component models. When we started with it, we expected 
it to be the only notable change from other Modelica 
models and that all other features of a Modelica compiler 
(state selection, differential index-reduction, tearing of 
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linear equation systems, etc.) would basically remain 
untouched.  

However, over time, we realized that LIED systems are 
much simpler to transfer to simulation code than general 
DAEs resulting from non-linear implicit power dynamics. 
Let us go through the observed simplifications one-by 
one: 

 Because we avoid the creation of non-linear 
equation systems, we do not need a non-linear 
equation system solver anymore. 

 For the same reason, constraint equations among 
potential states cannot be non-linear and hence no 
dynamic state selection is needed (Mattsson 
2000). 

 Even stronger: we can select the states on 
component level. This is less obvious but 
ultimately the connection rules that enforce the 
linearity of the system also enforce this rule. 

 Because we can select the states on component 
level, this means that the dummy-derivative 
method can be applied also on component level 
before system composition. 

 Since the goal of the linear equation system is to 
have a synchronized replacement dynamic 
towards the equilibrium, we know suitable 
tearing variables for this system. These will be 
the linear state derivatives: �̇�  or at least a subset 
of it. 

 The residual for a tearing variable can be 
attributed to the same component as the tearing 
variable. 

The items above represent observations resulting from 
modeling many components and system examples using 
the LIED approach. However, these observations have 
profound implications: For each component we know: 

 the set of pairs of state-variables and their 
derivatives it adds to the system. 

 the set of pairs of tearing and residual variables it 
adds to the system.  

If this is the case, we can basically causalize everything 
already on the component level. In concrete terms, this 
means for each component: 

 we stipulate the states 
 we stipulate the tearing variables of the linear 

system and the corresponding residuals 
 we perform the dummy derivative method on 

those equations where necessary.  
 we define the causality of the interface variables 
 we causalize all equations into assignments in a 

particular order 
 we group the list of assignments depending on 

their dependence of the inputs. 

Practical experience so far indicates that performing index 
reduction to construct the matrix 𝐋 can be performed in a 
very methodical and deterministic manner. It is thus far 
easier to generate simulation code for the LIED modeling 
approach than it would be for general higher-index DAEs. 
Neither there is a need for global flattening anymore nor 
are elaborate heuristics needed for the selection of state or 
tearing variables. Indeed, the generation of simulation 
code is so easy that a direct implementation in C++ 
becomes feasible. The following code excerpts illustrate 
the implementation for a ThermoFluidStream Library 
(using idealized water) in C++. 

First, we have to define the interface. This is naturally 
more tedious than in Modelica because there is no direct 
support in the C++ language. Yet, it is feasible and after 
all, interfaces only need to be defined once: 

 
Listing 1. ThermoFluid Interface in C++   

class ThermodynamicStateOut: public Signal{ 
  public: 
    double p; 
    double h; 
     […] 
}; 
 

class ThermodynamicStateIn: 
  public ThermodynamicStateOut 
{ 
  public: 
    void connect(ThermodynamicStateOut* o); 
    […] 
}; 
 

class MassFlowOut : public Signal{ 
  public: 
    double flow; 
    double flow_der; 
    […] 
}; 
 

class MassFlowIn : public MassFlowOut{ 
  public: 
     void connect(MassFlowOut* o); 
    […] 
}; 
 

class InertialPressureOut : public Signal{ 
  public:     
    double r; 
    […] 
}; 
 

class InertialPressureIn : 
  public InertialPressureOut 
{ 
  public: 
    void connect(InertialPressureOut* o); 
    […] 
}; 
 

class ThermalPlugOut : public Signal{ 
   public: 
     ThermodynamicStateOut state{}; 
     MassFlowOut m{}; 
     InertialPressureIn inertial{}; 
     […]        
}; 



class ThermalPlugIn : public Signal{ 
  public: 
    ThermodynamicStateIn state{}; 
    MassFlowIn m{}; 
    InertialPressureOut inertial{}; 
    void connect(ThermalPlugOut* o); 
    […] 
}; 
 

class Connection { 
  public: 
    Connection(ThermalPlugOut* o, 
               ThermalPlugIn* i) { 
                i->connect(o); 
     }; 
}; 
typedef std::vector<Connection>  Connections; 
 
To best understand the interface, let us look at the classes 
ThermalPlugOut for a nominal outlet flow and at 
ThermalPlugIn for a nominal inlet flow first. These 
contain the same 3 components as the corresponding 
Modelica connector of the DLR ThermoFluid Stream 
library. 

There are two notable differences however. In 
Modelica, inertial pressure and mass flow were not 
causalized signals as in the C++ implementation. Also the 
mass-flow signal in the C++ library consists of the mass-
flow rate and its derivative. In Modelica, this is not 
necessary since symbolic differentiation can be applied by 
the Modelica compiler. Using this interface, we can now 
implement a component such as the pressure drop: 

 
Listing 2. Implementation of a pressure drop component 

class PressureDrop : public Component{ 
  public: 
    ThermalPlugIn inlet; 
    ThermalPlugOut outlet;    
     PressureDrop(double v_ref,double dp_ref)  
    void evalState(); 
    void evalFlow(); 
    void evalInertial(); 
    double v_ref; 
    double dp_ref; 
   
    virtual void metainfo(Meta& meta)  
      override; 
    […] 
}; 
 
First, we declare our interface for outlet and inlet. Then 
we have to implement three blocks represented by 
methods. The first is evalState and computes the 
thermodynamic state downstream: 

Listing 3. Calculation of the pressure drop by the corresponding 
method 
void PressureDrop::evalState() { 
   const double v =  
     inlet.m.flow / density(inlet.state); 
   const double v_norm = v/v_ref; 
   const double dp = 0.5*dp_ref* 
     (v_norm + v_norm*v_norm); 

   outlet.state.h = inlet.state.h; 
   outlet.state.p = inlet.state.p – dp;                    
}; 
 

The second method is evalFlow to ensure what flows in 
is what flows out. However, this constraint is restated for 
the derivative. This is because the dummy derivative 
method is applied on the component level.  

Listing 4. Trivial implementation of evalFlow 

void PressureDrop::evalFlow() { 
  outlet.m = inlet.m; 
} 
 
 
The third one is evalInertia that implements the law 
for the inertance as in the ThermoFluid Stream Library.  

Listing 5. Calculation of the inertial pressure 
void PressureDrop::evalInertial() { 
   inlet.inertial.r = outlet.inertial.r 
                    + L*inlet.m.flow_der; 
} 
 
Meta-information can be collected by a dedicated virtual 
method to register state and tearing variables as well as to 
track the signal dependence of the computing blocks. 

Listing 6. The meta information of the component is described 
in a virtual method. 
void PressureDrop::metainfo(Meta& meta) 
{ 
  meta.regComp (&inlet, “inlet”);   
  meta.regComp (&inlet, “outlet”); 
  meta.addBlock(this, 
     LambdaFuncCalling(this->evalState()), 
     Signals{&inlet.state,&inlet.m}, 
     Signals{&outlet.state});          
  meta.addBlock(this, 
    LambdaFuncCalling(this->evalFlow()),  
    Signals{&inlet.m}, 
    Signals{&outlet.m});          
  meta.addBlock(this, 
    LambdaFuncCalling(this->evalInertial), 
    Signals{&outlet.inertial,&inlet.m}, 
    Signals{&inlet.inertial});          
} 
 
 
For the pressure drop the signal dependencies of the 
methods have to be registered as vital structural 
information. Because of the horribly bad support of 
method function pointers in C++, the implementation 
requires the use of a lambda function which is done here 
in pseudo-code for the sake of readability.   

In similar manner the other components of our 
introductory example can be implemented. Each of these 
components declares its interfaces, defines and 
implements methods representing the computational 
blocks and then registers these blocks as well as states, etc 



by overriding the virtual metainfo method. It is not as 
convenient as Modelica but also not overburdening. 

Finally, we can compose the introductory example: 
 

Listing 7. Total system composition 
class ComVessels : public Component { 
public: 
  OutTank t1{}; 
  InTank t2{}; 
  InTank t3{}; 
   Splitter s{}; 
  PressureDrop p1{}; 
  PressureDrop p2{}; 
  PressureDrop p3{}; 
 
  Connections con {  
    Connection{&t1.outlet, &p1.inlet}, 
    Connection{&p1.outlet, &s.inlet}, 
    Connection{&s.outlet1, &p2.inlet}, 
    Connection{&p2.outlet, &t2.inlet}, 
    Connection{&s.outlet2, &p3.inlet}, 
    Connection{&p3.inlet, &t3.inlet}, 
  }; 
 
  virtual void metainfo(Meta& meta) override{ 
    meta.regComp(&t1, "t1: first vessel"); 
    meta.regComp(&t2, "t2: second vessel"); 
    meta.regComp(&s,  "s: flow split"); 
    meta.regComp(&t3, "t3: third vessel"); 
    meta.regComp(&p1, "p1: first valve"); 
    meta.regComp(&p2, "p2: second valve");          
    meta.regComp(&p3, "p3: third valve"); 
 
  }; 
}; 
 
Regarding that C++ is a statically compiled imperative 
general-purpose language, the end result is astonishingly 
close to what we are used to from Modelica.   

When an instance of the class is coupled to a simulator, 
a crawler for meta information collects all blocks 
recursively as well as the structural information regarding 
the signals, the states and the tearing variables for the 
linear equation system. Then the blocks are put into right 
order for complete or partial model evaluation.  The full 
model evaluation is thus simply a list of method calls that 
are called in their respective order.  

This also means that all component code is statically 
compiled but the system composition is performed at run-
time. Advanced tasks such as variable structure systems 
would thus be comparably easy to achieve.  

This is also the purpose of this code demonstration. It is 
not suggesting that we should use C++ instead of 
Modelica but to highlight that for a certain class of models 
the object-oriented Modelica code could be translated to 
object-oriented imperative code that can be statically 
compiled even before system composition. 

This would avoid the flattening of all equations before 
code generation and help to overcome many limitations of 
current Modelica compilers and you can of course choose 
a different target than C++.  

4 Conclusions 
That a more restrictive class of modeling enables a simpler 
compilation scheme is not surprising. The same can be 
said about the many conventional signal-based modeling 
schemes or simple modeling schemes as Forrester’s 
System Dynamics (Junglas 2016). Typically, the 
disadvantage is that the easier generation of simulation 
code has to be paid by an inferior modeling approach and 
indeed modeling complex mechanics or thermo-fluid 
streams is painful when using signal-based approaches 
(nevertheless this pain has been taken in industrial 
practice all too often). 

The remarkable thing about the LIED approach is that 
you have a simple scheme for code generation but you can 
conveniently model both mechanics and thermo-fluid 
streams in a very robust manner. The corresponding 
Modelica Libraries prove this (Zimmer 2022, Zimmer 
2023). Both application domains are known to be rather 
difficult but LIED can even be applied to the challenging 
parts of these fields such as handling stiff contact 
mechanics or complex by-passes in thermal architectures. 
It is yet unclear for what other domains LIED is an 
attractive choice.  

Figure 11 attempts to qualitatively depict the trade-off 
between computational complexity and algorithmic 
complexity. LIED forms a very exposed point on a 
hypothetical Pareto front. This means that for a large 
number of applications it is a very attractive choice.  

 

 
Figure 11: Hypothetical Pareto front weighing computational 
complexity against algorithmic complexity for code generation. 
LIED systems form an attractive compromise. The ultimate 
choice of the modeling approach depends however on the 
concrete application.  

What does this mean for the Modelica community? We 
should recognize that fully within our standard, this 
particular class of LIED models has been hidden. Due to 
their non-conventional interfaces (that appear in no 
textbook), this class has been overlooked for more than 20 
years. It is a robust class of models that scales for complex 
systems and also it is suitable for hard-real time simulation 
since everything non-linear is explicit and there are 
effective methods to manipulate fast eigendynamics.  



I think it is justified to give this class extra support, by 
enabling the following features: 

 
 The modeler shall be enabled to mark 

components that are compatible to LIED, and 
provide additional meta-information to this end. 
The Modelica compiler can then check whether 
this is true. 

 The Modelica compiler can then enable the 
component-wise compilation of such 
components, at least for explicit ODE solvers and 
for implicit solvers with the numerical 
computation of the Jacobian. 

The primary motivation of this paper is to raise awareness 
on this class of models and the possibilities it enables for 
the generation of simulation code. The provided code 
examples are not necessarily the best approach and can be 
improved on. Furthermore, this modeling approach is still 
new and open for further investigation.  

Many statements in this paper require further validation 
also the topic is not very tangible. Hence, I want to 
encourage the reader to play with the open-source library 
ThermoFluid Stream and study dialectic mechanics. The 
practical way is the best way to develop an understanding 
for this modeling style. 

As a final remark, I shall say that I am very grateful for 
Modelica and its tool-set. I am not sure whether I would 
have ever found this particular class without it. Quick 
experimentation within Modelica was certainly extremely 
helpful.  
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