
Object-Oriented Formulation and
Simulation of Models using Linear

Implicit Equilibrium Dynamics

Dirk Zimmer

Institute of System Dynamics and Control,
German Aerospace Center (DLR),

dirk.zimmer@dlr.de

Abstract
New robust and yet powerful Modelica libraries have been
developed such as the DLR ThermoFluid Stream library
or the introduction of the Dialectic Mechanics library.
These libraries apply a special modeling approach that
uses linear implicit equilibrium dynamics. In this paper,
we study the basic motivation of this approach, its benefits
and drawbacks before we finally demonstrate how to get
from models to applicable simulation code.
Keywords: Object-oriented modeling, Code Generation,
Modeling principles

1 Introductory Example
Classic continuous laws of physics can be interpreted as
communicating by means of waves. When you read these
lines, your eye’s photon receptors measure the
electromagnetic waves communicating the corresponding
visual information. When we speak, pneumatic waves
communicate our audible voices. In a mechanics, pressure
waves distribute the impulse in seemingly rigid bodies.

Even for things that we consider not to be alive, this
analogy may be applied. A famous example is called:
“communicating vessels” (in German: “kommunizierende
Röhren”) where various vessels filled with a homogenous
liquid (let us use water) agree on a common surface level.
This agreement is reached by hydraulic pressure waves
going through the pipes, finally establish the hydrostatic
equilibrium.

Figure 1: Depiction of communicating vessels displaying the
hydro-static equilibrium. Public domain from Wikipedia.

Evidently, the macroscopic motion of a system can be
interpreted as the emerging behavior of wave functions
agreeing on an (quasi-) equilibrium state. One straight-
forward way to model and simulate classic physics is thus
simply to implement the corresponding wave equations
directly using a spatial discretization scheme.

1.1 Example: Communicating Vessels

We can implement this in Modelica for the example of the
communicating vessels by using a staggered grid, where
the inertia and compression of the fluid is alternately
placed such as in the lower half of Figure 2.

When we model the wave equation in an object-
oriented way, we need an interface to connect the
distributed elements. Since a wave can be interpreted as
the rotation within two dimensions as in Figure 3, it is a
natural choice to choose two variables on the two
corresponding orthogonal axes. Each of these variables
thereby indicates a different form of energy storage.

Figure 2: A model of 3 communicating vessels using a simple
hydraulics library. Different from the depiction in Figure 1, the
speed of flow is modulated by three narrow orifices at each tank.
The one-dimensional hydraulic wave is modeled using a
staggered grid for discretization. From top to bottom the layered
icons represent the following elements: open-tank, non-linear
pressure drop, fluid inertia, fluid compressibility.

In our hydraulic example, these two axes are: pressure
𝑝 and volume flow �̇�. The pressure represents the
potential energy of the compressed element whereas the
volume flow rate represents the kinetic energy. We may
call one of them a potential variable and the other one a
flow variable. Since we work with an Eulerian framework,
choosing the volume flow as flow is the natural choice.

Figure 4 shows the simulation result corresponding to
our example. We can see that at the end of the simulation,
we reach the desired equilibrium point. However, the
computational efficiency is abysmal if this point is the

only result we are interested in. The pressure waves have
a very high frequency (artificially lowered here) and so the
simulation had to take many, very small time-steps.

Figure 3: Trajectory of the pressure wave for the compressible
volume in the two dimensions spanned by pressure and volume
flow rate

Figure 4: Step response of the communicating vessels after
height of vessel 1 being increased at time = 1, showing the
volume-flow through the valve openings. For the sake of
illustration, the compressibility of water has been divided by
1000(!). Using the actual values, frequency would be much
higher and ripples on volume flow barely visible.

Fortunately, we can avoid having to deal with high
frequencies if we reduce the wave to its role as a conveyor
of energy. The energy contained in our linear hydraulic
wave is

𝐸 =
1

2
𝜌 𝐴 𝜔 𝑐

where 𝜌 is the linear density, 𝐴 the amplitude, 𝜔 the
frequency and 𝑐 the speed of sound. If the macroscopic
phenomenon of interest is orders of magnitudes larger
than the amplitude and slower than the frequency, we can
presume the wave to be an instantaneous transmitter of
energy that simply has to uphold the conservation of
energy (given that also the speed of sound is quick enough
over the required distance).

This transfer of power can be modelled by the same pair
of variables that we have used to describe the wave
equation. In our case the product of the pair represents a
flow of energy:

�̇� = 𝑝�̇�

The power produced by a component with two such
pairs is thus:

𝑃 = 𝑝 �̇� + 𝑝 �̇�

 If we are simply interested in the exchange of potential
gravitational energy between the vessels over dissipative
valve openings, we can choose to ignore the modeling of
the hydraulic wave completely and simply connect the
elements directly as in Figure 5.

Figure 5: Modelling the communicating vessels by the sheer
exchange of potential energy

By doing so, we have created an implicit non-linear
algebraic equation system: the pressure level below the
valves has to be found so that the corresponding volume
flows resulting from the pressure drop are in balance. In
our case, this system can be reliably solved, even for the
case of the step response as depicted in Figure 6.

In general, we may have more than one solution or none
at all. Also, the equation system is only available in
implicit form. We thus replace the physical method to
compute the transfer of energy with the solution for an
algebraic system. Whether this works or not is simply
down to luck in the general case. Here we were lucky.

Figure 6: Corresponding step response of the direct model

0 1 2 3 4 5 6 7 8

-40

-20

0

20

40

60

[l/
m

in
]

1 2 3

0 1 2 3 4 5 6 7 8
-60

-40

-20

0

20

40

60

80

[l/
m

in
]

1 2 3

1.2 Comparing the Modeling Approaches

We have created our first model using explicit wave
dynamics.

We have created our second model using non-linear
implicit power dynamics

Generating code for explicit wave dynamics is rather easy.
All the equations are in explicit form and can be directly
written as an ODE. Setting up the simulation code is thus
principally rather trivial.

Simulating explicit wave dynamics is often
computationally very expensive. Worse than the
potentially high number of state variables is the that the
frequency of the wave dynamics is often several orders of
magnitude higher than the frequency of the macro-
phenomenon of interest.

Simulating non-linear implicit power dynamics is much
more efficient. Assuming an instantaneous transfer of
power enables us to ignore the high frequency and phase
shifts of the wave and we only have to deal with the low
frequency of the macro-phenomenon. Also, we may use
significantly fewer states.

Generating code for implicit power dynamics however,
is far from trivial. Our system above had permutation
index 1, because it requires the solution of a non-linear
equation system. In mechanical systems, higher-index
systems are common that require a reduction of the
differential index for instance by applying Pantelides
(Pantelides 1988). Because the simulation code is of high
algorithmic complexity, we like to have a Modelica
compiler creating it for us.

Choosing between these two can thus be seen as a trade-
off between computational complexity (time needed for
simulation) and algorithmic complexity (length of
program for model generation) of the simulation code.
This comparison is also highlighted in Figure 7 where
wave dynamics is on the left and power dynamics is on
the right.

For both forms of complexities, it is in practice nearly
impossible to determine their theoretical limits. Since the
computational complexity includes the ODE solver, we
would need to determine the solver that reaches the
desired precision within the shortest amount of time. The
algorithmic complexity is to be interpreted in terms of
algorithmic information theory (Chaitin 1987) and we
would need to find the shortest possible program for code
generation. In practice, it is however feasible to work with
the numbers at hand: measuring the code-length of the
compiler and measuring the time the simulation took. For
our considerations, the general concepts suffice.

Explicit wave dynamics is computationally complex
but can be low in algorithmic complexity. Non-linear
implicit power dynamics is often of high algorithmic
complexity but lower in computational complexity.

However, Figure 7 also shows that there seems to be an
interesting middle ground in between these two classes of
models, that might offer a very favorable trade-off. I
denote this class: Linear Implicit Equilibrium Dynamics
(LIED) (you can keep the pun). This class is typically not
found in classic text-books and I presume that the primary
reason for this is simply that we have to use an extended
interface, which is not intuitive to come up with in the first
place.

Figure 7: Illustration of different modeling approaches and their impact on algorithmic and computational complexity

2 The Idea behind Linear Implicit
Equilibrium Dynamics

Figure 9 illustrates the desired result. To a step change we
react neither with a high-frequency wave function nor
with a discrete jump but by approaching the desired
equilibrium with replacement dynamics. These dynamics
shall reach the same steady-state behavior than the
original wave dynamics and exhibit only a limited
deviation for slow-mode behavior. Any deviation shall be
of dissipative nature in case energy conservation cannot
be upheld. There is one additional catch though: we shall
limit our equations which are in implicit form to constitute
a purely linear system.

The motivation for restricting ourselves to linearity for
the implicit part is, to enable a robust solution of the
system at all time, something that cannot be guaranteed
for non-linear systems in general.

To put these statements in formal terms: if a system is
described by differential algebraic equations (DAEs) in
the following implicit form:

𝟎 = 𝐹(𝐱 , �̇� , 𝐮, 𝑡)

where 𝒙 is the vector of potential states, �̇� represents
all time derivatives, 𝒖 the input vector and 𝑡 time.

We aim to transform this system into the following
form with an implicit linear part and an explicit non-linear
part:

𝐋�̇� = 𝑔(𝐱 , 𝐱 , 𝐮, 𝑡)

�̇� = 𝑓(𝐱 , 𝐱 , 𝐮, 𝑡)

where 𝐱 and 𝐱 are both disjoint sub-vectors of 𝐱 . 𝐋
is a linear matrix and 𝑓 and 𝑔 are non-linear functions.
The original DAE system 𝐹 is defined as a LIED system
if and only if the functions 𝑓 and 𝑔 can be constructed just
by ordering the corresponding equations of 𝐹.

Techniques for symbolical reduction of the differential
index (Leimkuhler 1985) or the permutation index
(Campbell 1995) may hence only be applied to derive the
matrix 𝐋. Hence, all non-linearities have to be brought
into an explicit form and placed in either 𝑓 or 𝑔 .
Equations in implicit form (including constraints between
potential states) have to be linear and to be placed in 𝐋.

How can we construct such DAEs for classic physical
systems? And how to do this in an object-oriented form?
The basic idea is simple: we find a part in the transient
dynamics that is suitable for linear approximation and that
completely vanishes at steady-state. A suitable candidate
is often the dynamics of kinetic energy since it has a linear
characteristic for a wide range of systems.

To enable this extraction, we have to split our interface,
especially suited are variables that contain the flow of
impulse (force, pressure, etc.) because here we can apply
the superposition principle. Otherwise it may be very hard
to separate the linear part in implicit from the non-linear
part in explicit form.

All of the above is much easier said than done. I have spent
several months figuring it out for thermo-fluid domain and
later for the mechanical domain. Refinement took years
for thermo-fluids and is still in the process for mechanics.
The good news is: once we have identified a suitable
interface, the remaining part of implementation is straight-
forward, often even easy.

2.1 LIED for Thermofluid Systems

Here is the full interface for thermo-fluid streams:

- 𝑟: inertial pressure (potential)
- �̇�: mass-flow rate (flow)
- Θ: Vector repr. state of medium (signal)

o �̂�: steady-mass flow pressure
o ℎ: steady-mass flow enthalpy
o 𝑋: mass fractions

For the thermo-fluid streams, we have to split the
potential variable into two parts: The steady-state pressure
�̂� and the inertial pressure 𝑟. The dynamics for the inertial
pressure can be described by an implicit linear system
using the law of inertance using the fluids inertia 𝐿:

𝑟 = 𝐿
𝑑�̇�

𝑑𝑡

For the steady-state with a constant mass flow rate, 𝑟
will thus go to zero. To enable the approximation during
transients, the impact of 𝑟 on the thermodynamic state has
to be neglected and hence Θ is composed using �̂�.

When the interface is used correctly, the whole
thermofluid system will be a LIED system. 𝐱 will form a
vector that describes all mass-flow rates of the system in
non-redundant manner. Typically, the dummy derivatives
method (Mattsson 1993. Pantelides 1988) needs to be
applied to construct the Matrix 𝐋. Its coefficients are then
formed by linear combinations of the inertances. 𝐱 will
contain all other states (such as specific enthalpy, etc.).
Using these states the functions 𝑓 and 𝑔 can be computed
in a downstream manner. More details on this interface
and the implementation of a full library can be found in
(Zimmer 2020, 2022). Models using this interface are
especially suitable for the simulation of complex thermal
architectures with bypasses and switches even under hard
real-time constraints.

Figure 8: For this particular model of the communicating
vessels, the LIED approach has an equivalent counterpart using
conventional connectors. Modeling the inertia but leaving out
the compressibility does the trick here.

In the particular case of our example with the
communicating vessels, the LIED approach is equivalent
to using only inertias for the fluid but disregarding the
compressibility. Figure 8 shows the equivalent model
diagram and Figure 9 depicts the corresponding
simulation results.

This simple equivalence does however only work in
this example because we treat the water as having constant
density and also neglect any influence of temperature.
Hence in this example we can mimic the LIED approach
using the basic connectors. Using more realistic media
models, the ThermoFluid Stream approach works more
subtly and the split interface is needed.

Figure 9: Modelling the communicating vessels by the sheer
exchange of potential energy

2.2 LIED for Mechanical Systems

For mechanical systems, the interface is defined as
follows:

- 𝑠: position (potential)
- 𝑓 : elastic force (flow)
- 𝑣: velocity (potential)
- 𝑓 : kinetic force (flow)

We have thus two pairs of effort and flow not one. The
derivative of the position 𝑠 is thereby defined as 𝑣 . The
velocity 𝑣 is also denoted as 𝑣 . The difference Δ𝑣 =
𝑣 − 𝑣 should ideally be zero at all times. To enable a
linear implicit approximation, we tolerate non-zero values
for Δ𝑣 at fast transients but establish a first order
dynamics that ensures zero is approached for slow
dynamics with the dialectic time constant 𝑇 :

𝑑Δ𝑣

𝑑𝑡
𝑇 = −Δ𝑣

Because this interface separates the regimes of elastics
and kinetics, I have denoted it as dialectic mechanics. First
implementations and analysis are presented in (Zimmer
2023) and (Oldemeyer 2023). Models using this interface
are especially suitable for the simulation of contacts and
limited joints also under hard-real time constraints.

Dialectic mechanics are also LIED systems: the vector 𝐱
will contain all the (generalized) positions in a non-
redundant form so that all degrees of freedom are
described. 𝐱 then typically consists in the corresponding
kinetic velocities. 𝑓 and 𝑔 can then be computed from the
mechanical root of the system to the branches. Kinematic
loops are explicitly closed using elastic elements with
high stiff springs which is the preferred way in dialectic
mechanics since high frequencies can be suppressed.

The details of the domain specific implementation shall
not be the topic of this paper. But evidently this class of
models is very useful and hence we shall further
investigate its implications for the generation of
simulation code.

Figure 10: Penetration depth into the left claw represented by
an elasto-gap, for the choice of two different time constants.
Both agree on the time-averaged solution.

Just for the sake of quick illustration: Figure 10 from
(Zimmer 2023) is repeated here again that shows the
dynamics of a lightweight object moved in clamp modeled
by a very stiff spring. The figure simply illustrates how
the oscillatory dynamics is replaced with a replacement
dynamics leading to the same (quasi) steady-state
solution.

3 How to Create Simulation Code for
LIED Systems?

The original intention of the LIED approach was simply
to ensure that no non-linear system is created that spans
across the components and hence a robust solution of the
model evaluation could be taken for granted, given robust
component models. When we started with it, we expected
it to be the only notable change from other Modelica
models and that all other features of a Modelica compiler
(state selection, differential index-reduction, tearing of

0 1 2 3 4 5 6 7 8

-40

-20

0

20

40

60

[l/
m

in
]

1 2 3

0 1 2 3 4

-0.102

-0.101

-0.100

-0.099

-0.098

[m
m

]

Time [s]

TC = 1 microsecond TC = 1 millisecond

linear equation systems, etc.) would basically remain
untouched.

However, over time, we realized that LIED systems are
much simpler to transfer to simulation code than general
DAEs resulting from non-linear implicit power dynamics.
Let us go through the observed simplifications one-by
one:

 Because we avoid the creation of non-linear
equation systems, we do not need a non-linear
equation system solver anymore.

 For the same reason, constraint equations among
potential states cannot be non-linear and hence no
dynamic state selection is needed (Mattsson
2000).

 Even stronger: we can select the states on
component level. This is less obvious but
ultimately the connection rules that enforce the
linearity of the system also enforce this rule.

 Because we can select the states on component
level, this means that the dummy-derivative
method can be applied also on component level
before system composition.

 Since the goal of the linear equation system is to
have a synchronized replacement dynamic
towards the equilibrium, we know suitable
tearing variables for this system. These will be
the linear state derivatives: �̇� or at least a subset
of it.

 The residual for a tearing variable can be
attributed to the same component as the tearing
variable.

The items above represent observations resulting from
modeling many components and system examples using
the LIED approach. However, these observations have
profound implications: For each component we know:

 the set of pairs of state-variables and their
derivatives it adds to the system.

 the set of pairs of tearing and residual variables it
adds to the system.

If this is the case, we can basically causalize everything
already on the component level. In concrete terms, this
means for each component:

 we stipulate the states
 we stipulate the tearing variables of the linear

system and the corresponding residuals
 we perform the dummy derivative method on

those equations where necessary.
 we define the causality of the interface variables
 we causalize all equations into assignments in a

particular order
 we group the list of assignments depending on

their dependence of the inputs.

Practical experience so far indicates that performing index
reduction to construct the matrix 𝐋 can be performed in a
very methodical and deterministic manner. It is thus far
easier to generate simulation code for the LIED modeling
approach than it would be for general higher-index DAEs.
Neither there is a need for global flattening anymore nor
are elaborate heuristics needed for the selection of state or
tearing variables. Indeed, the generation of simulation
code is so easy that a direct implementation in C++
becomes feasible. The following code excerpts illustrate
the implementation for a ThermoFluidStream Library
(using idealized water) in C++.

First, we have to define the interface. This is naturally
more tedious than in Modelica because there is no direct
support in the C++ language. Yet, it is feasible and after
all, interfaces only need to be defined once:

Listing 1. ThermoFluid Interface in C++

class ThermodynamicStateOut: public Signal{
 public:
 double p;
 double h;
 […]
};

class ThermodynamicStateIn:
 public ThermodynamicStateOut
{
 public:
 void connect(ThermodynamicStateOut* o);
 […]
};

class MassFlowOut : public Signal{
 public:
 double flow;
 double flow_der;
 […]
};

class MassFlowIn : public MassFlowOut{
 public:
 void connect(MassFlowOut* o);
 […]
};

class InertialPressureOut : public Signal{
 public:
 double r;
 […]
};

class InertialPressureIn :
 public InertialPressureOut
{
 public:
 void connect(InertialPressureOut* o);
 […]
};

class ThermalPlugOut : public Signal{
 public:
 ThermodynamicStateOut state{};
 MassFlowOut m{};
 InertialPressureIn inertial{};
 […]
};

class ThermalPlugIn : public Signal{
 public:
 ThermodynamicStateIn state{};
 MassFlowIn m{};
 InertialPressureOut inertial{};
 void connect(ThermalPlugOut* o);
 […]
};

class Connection {
 public:
 Connection(ThermalPlugOut* o,
 ThermalPlugIn* i) {
 i->connect(o);
 };
};
typedef std::vector<Connection> Connections;

To best understand the interface, let us look at the classes
ThermalPlugOut for a nominal outlet flow and at
ThermalPlugIn for a nominal inlet flow first. These
contain the same 3 components as the corresponding
Modelica connector of the DLR ThermoFluid Stream
library.

There are two notable differences however. In
Modelica, inertial pressure and mass flow were not
causalized signals as in the C++ implementation. Also the
mass-flow signal in the C++ library consists of the mass-
flow rate and its derivative. In Modelica, this is not
necessary since symbolic differentiation can be applied by
the Modelica compiler. Using this interface, we can now
implement a component such as the pressure drop:

Listing 2. Implementation of a pressure drop component

class PressureDrop : public Component{
 public:
 ThermalPlugIn inlet;
 ThermalPlugOut outlet;
 PressureDrop(double v_ref,double dp_ref)
 void evalState();
 void evalFlow();
 void evalInertial();
 double v_ref;
 double dp_ref;

 virtual void metainfo(Meta& meta)
 override;
 […]
};

First, we declare our interface for outlet and inlet. Then
we have to implement three blocks represented by
methods. The first is evalState and computes the
thermodynamic state downstream:

Listing 3. Calculation of the pressure drop by the corresponding
method
void PressureDrop::evalState() {
 const double v =
 inlet.m.flow / density(inlet.state);
 const double v_norm = v/v_ref;
 const double dp = 0.5*dp_ref*
 (v_norm + v_norm*v_norm);

 outlet.state.h = inlet.state.h;
 outlet.state.p = inlet.state.p – dp;
};

The second method is evalFlow to ensure what flows in
is what flows out. However, this constraint is restated for
the derivative. This is because the dummy derivative
method is applied on the component level.

Listing 4. Trivial implementation of evalFlow

void PressureDrop::evalFlow() {
 outlet.m = inlet.m;
}

The third one is evalInertia that implements the law
for the inertance as in the ThermoFluid Stream Library.

Listing 5. Calculation of the inertial pressure
void PressureDrop::evalInertial() {
 inlet.inertial.r = outlet.inertial.r
 + L*inlet.m.flow_der;
}

Meta-information can be collected by a dedicated virtual
method to register state and tearing variables as well as to
track the signal dependence of the computing blocks.

Listing 6. The meta information of the component is described
in a virtual method.
void PressureDrop::metainfo(Meta& meta)
{
 meta.regComp (&inlet, “inlet”);
 meta.regComp (&inlet, “outlet”);
 meta.addBlock(this,
 LambdaFuncCalling(this->evalState()),
 Signals{&inlet.state,&inlet.m},
 Signals{&outlet.state});
 meta.addBlock(this,
 LambdaFuncCalling(this->evalFlow()),
 Signals{&inlet.m},
 Signals{&outlet.m});
 meta.addBlock(this,
 LambdaFuncCalling(this->evalInertial),
 Signals{&outlet.inertial,&inlet.m},
 Signals{&inlet.inertial});
}

For the pressure drop the signal dependencies of the
methods have to be registered as vital structural
information. Because of the horribly bad support of
method function pointers in C++, the implementation
requires the use of a lambda function which is done here
in pseudo-code for the sake of readability.

In similar manner the other components of our
introductory example can be implemented. Each of these
components declares its interfaces, defines and
implements methods representing the computational
blocks and then registers these blocks as well as states, etc

by overriding the virtual metainfo method. It is not as
convenient as Modelica but also not overburdening.

Finally, we can compose the introductory example:

Listing 7. Total system composition
class ComVessels : public Component {
public:
 OutTank t1{};
 InTank t2{};
 InTank t3{};
 Splitter s{};
 PressureDrop p1{};
 PressureDrop p2{};
 PressureDrop p3{};

 Connections con {
 Connection{&t1.outlet, &p1.inlet},
 Connection{&p1.outlet, &s.inlet},
 Connection{&s.outlet1, &p2.inlet},
 Connection{&p2.outlet, &t2.inlet},
 Connection{&s.outlet2, &p3.inlet},
 Connection{&p3.inlet, &t3.inlet},
 };

 virtual void metainfo(Meta& meta) override{
 meta.regComp(&t1, "t1: first vessel");
 meta.regComp(&t2, "t2: second vessel");
 meta.regComp(&s, "s: flow split");
 meta.regComp(&t3, "t3: third vessel");
 meta.regComp(&p1, "p1: first valve");
 meta.regComp(&p2, "p2: second valve");
 meta.regComp(&p3, "p3: third valve");

 };
};

Regarding that C++ is a statically compiled imperative
general-purpose language, the end result is astonishingly
close to what we are used to from Modelica.

When an instance of the class is coupled to a simulator,
a crawler for meta information collects all blocks
recursively as well as the structural information regarding
the signals, the states and the tearing variables for the
linear equation system. Then the blocks are put into right
order for complete or partial model evaluation. The full
model evaluation is thus simply a list of method calls that
are called in their respective order.

This also means that all component code is statically
compiled but the system composition is performed at run-
time. Advanced tasks such as variable structure systems
would thus be comparably easy to achieve.

This is also the purpose of this code demonstration. It is
not suggesting that we should use C++ instead of
Modelica but to highlight that for a certain class of models
the object-oriented Modelica code could be translated to
object-oriented imperative code that can be statically
compiled even before system composition.

This would avoid the flattening of all equations before
code generation and help to overcome many limitations of
current Modelica compilers and you can of course choose
a different target than C++.

4 Conclusions
That a more restrictive class of modeling enables a simpler
compilation scheme is not surprising. The same can be
said about the many conventional signal-based modeling
schemes or simple modeling schemes as Forrester’s
System Dynamics (Junglas 2016). Typically, the
disadvantage is that the easier generation of simulation
code has to be paid by an inferior modeling approach and
indeed modeling complex mechanics or thermo-fluid
streams is painful when using signal-based approaches
(nevertheless this pain has been taken in industrial
practice all too often).

The remarkable thing about the LIED approach is that
you have a simple scheme for code generation but you can
conveniently model both mechanics and thermo-fluid
streams in a very robust manner. The corresponding
Modelica Libraries prove this (Zimmer 2022, Zimmer
2023). Both application domains are known to be rather
difficult but LIED can even be applied to the challenging
parts of these fields such as handling stiff contact
mechanics or complex by-passes in thermal architectures.
It is yet unclear for what other domains LIED is an
attractive choice.

Figure 11 attempts to qualitatively depict the trade-off
between computational complexity and algorithmic
complexity. LIED forms a very exposed point on a
hypothetical Pareto front. This means that for a large
number of applications it is a very attractive choice.

Figure 11: Hypothetical Pareto front weighing computational
complexity against algorithmic complexity for code generation.
LIED systems form an attractive compromise. The ultimate
choice of the modeling approach depends however on the
concrete application.

What does this mean for the Modelica community? We
should recognize that fully within our standard, this
particular class of LIED models has been hidden. Due to
their non-conventional interfaces (that appear in no
textbook), this class has been overlooked for more than 20
years. It is a robust class of models that scales for complex
systems and also it is suitable for hard-real time simulation
since everything non-linear is explicit and there are
effective methods to manipulate fast eigendynamics.

I think it is justified to give this class extra support, by
enabling the following features:

 The modeler shall be enabled to mark

components that are compatible to LIED, and
provide additional meta-information to this end.
The Modelica compiler can then check whether
this is true.

 The Modelica compiler can then enable the
component-wise compilation of such
components, at least for explicit ODE solvers and
for implicit solvers with the numerical
computation of the Jacobian.

The primary motivation of this paper is to raise awareness
on this class of models and the possibilities it enables for
the generation of simulation code. The provided code
examples are not necessarily the best approach and can be
improved on. Furthermore, this modeling approach is still
new and open for further investigation.

Many statements in this paper require further validation
also the topic is not very tangible. Hence, I want to
encourage the reader to play with the open-source library
ThermoFluid Stream and study dialectic mechanics. The
practical way is the best way to develop an understanding
for this modeling style.

As a final remark, I shall say that I am very grateful for
Modelica and its tool-set. I am not sure whether I would
have ever found this particular class without it. Quick
experimentation within Modelica was certainly extremely
helpful.

References
Campbell, S.L., C. William (1995), The Index of General

Nonlinear DAEs. In: Numerische Mathematik, Vol. 72, pp.
173–196

Chaitin, G.J. (1987). Algorithmic Information Theory.
Cambridge University Press. ISBN 9780521343060

Junglas, P. (2016), Causality of System Dynamics Diagrams,
SNE Simulation Notes Europe 26/3, 147-154

Leimkuhler, B., C.W. Gear, G.K. Gupta (1985), Automatic
integration of Euler-Lagrange equations with constraints. In:
J. Comp. Appl. Math., Vol. 12&13, pp. 77–90.

Mattsson, S.E., Gustaf Söderlind (1993). “Index Reduction in
Differential-Algebraic Equations Using Dummy
Derivatives” In: SIAM Journal on Scientific Computing 1993
14:3, 677-692

Sven Erik Mattsson, H. Olsson, H. Elmqvist (2000) “Dynamic
Selection of States in Dymola”. Proceedings of Modelica
Workshop 2000.

Oldemeyer, C., D. Zimmer (2023). “Dialectic Mechanics:
Extension for Hard Real-time Simulation”. Proceedings of
the 15th International Modelica Conference, Aachen.

Pantelides, C. (1988), The consistent initialization of
differential-algebraic systems, SIAM J. Sci. Statist. Comput.,
9 (1988), 213–231

Zimmer, D. (2020), Robust Object-Oriented Formulation of
Directed Thermofluid Stream Networks . Mathematical and
Computer Modelling of Dynamic Systems, Vol 26, Issue 3.

Zimmer, D. N. Weber, M. Meißner (2022) The DLR
ThermoFluid Stream Library. MDPI Electronics - Special
Issue.

Zimmer, D. C. Oldemeyer (2023). “Introducing Dialectic
Mechanics”. Proceedings of the 15th International Modelica
Conference, Aachen.

