
Technische Universität Berlin

Department of Aeronautics and Astronautics

Chair of Space technology

Deutsches Zentrum für Luft- und

Raumfahrt

Institute of robotics and Mechatronics

Oberpfaffenhofen

Master Thesis

Systems Integration with Autonomous
Navigation of the Lunar Rover Mini for a

Space Demo Mission

Ricardez Ortigosa, Adrian
Matriculation Number: 452150

supervised by
Prof. Dr.-Ing. Enrico Stoll
Dr.-Ing. Armin Wedler
Dipl.-Ing. Cem Avsar

February 7, 2023

Declaration of Authorship

I hereby certify that this thesis has been composed by me and is based on
my own work, unless stated otherwise. No other person’s work has been
used without due acknowledgment in this thesis. All references and verba-
tim extracts have been quoted, and all sources of information, including
graphs and data sets, have been specifically acknowledged.

Munich, February 7, 2023 .

Adrian Ricardez Ortigosa

Agreements on rights utilization

The Technische Universität Berlin, represented by the Chair of Space Tech-
nology, may use the results of the thesis at hand in education and research.
It receives simple (non-exclusive) rights of utilization as according to § 31
Abs. 2 Urheberrechtsgesetzt (Urhg). This right of utilization is unlimited
and involves the content of any kind (e.g. documentation, presentations,
animations, photos, videos, equipment, parts, procedures, designs, drawings,
software including source code and similar). An eventual commercial use
on part of the Technische Universität Berlin will only be carried out with
the approval of the author of the thesis at hand under the appropriate
share of earnings.

Place and date .

Professor Dr.-Ing. Enrico Stoll
Head of the Chair of Space Technology

II

Acknowledgments

I would like to express my gratitude to my supervisor Dr. Armin Wedler,
for his valuable technical feedback and continuous moral support through-
out this thesis work. I would also like to thank Cem Avsar for all the time
and motivation he gave me as a supervisor and mentor.

My family has been a pillar throughout my career as a professional. They
have stayed by my side in the best and most difficult moments. I also
appreciate all the close friends I have, whose presence was also of great
support to me, here in Europe, and in Mexico.

I want to give a special thanks to CONACYT and the DAAD for having
supported me in most part of my master’s degree.

Finally, I would like to mention the important contribution to the project
from the DLR colleagues who guided me in solving small to big problems.

III

Abstract

Over the last few years, the area of robotic exploration has been growing
very quickly. There are already various rover models on the Moon and
Mars for planetary exploration purposes, among other functions. However,
launching these missions is often too expensive and complex. Therefore, it
is sought at DLR for ways to create low-cost prototypes for experimental
testing, algorithms development, and even usage for educational lectures at
many institutions. This work, the Lunar Rover Mini, shows an approach to
the development and integration of modular systems at the Robotics and
Mechatronics Center. Such prototype, based on the ExoMars rover, will
be used as a testing platform to execute three driving modes on terrains
similar to those on the Moon and Mars, which can be found in the Vulcano
island and on artificially-created testbeds. The systems, as well as the data
pipeline, will be validated and evaluated. It will be determined if the LRM
can be remotely and manually operated and if the autonomous navigation
featured successful obstacle avoidance and path planning to reach a final
objective.

IV

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Scope . 1

1.2.1 Primary Objectives 2

1.2.2 Secondary Objectives 2

1.3 System Requirements . 2

1.3.1 Functional Requirements 2

1.3.2 Design Requirements 3

1.3.3 Validation Requirements 4

1.4 Main Events . 4

1.4.1 Vulcano Summer School 4

1.4.2 Festival der Zukunft 5

1.5 Outline . 6

1.5.1 Use cases . 7

2 Literature Review 8

2.1 System Overview . 9

2.1.1 High-level Hardware 9

2.1.2 Low-level Hardware 11

2.1.3 On-Board Computer Subsystem 12

2.2 Software Framework . 13

2.2.1 Graphical User Interface 13

2.2.2 Simulink . 15

2.2.3 Links and Nodes Manager 16

2.2.4 Cissy . 17

V

3 Development 18

3.1 Previous Rover Version . 18

3.2 New Electrical Power System 19

3.2.1 Graphical Interconnection Diagram 21

3.3 Communications System 22

3.4 Algorithms for the OBC 24

3.4.1 Driving Modes . 25

3.4.2 LN World: Breaking Down The Modules 30

3.4.3 ROS World: Breaking Down The Modules 38

3.4.4 Final Data LN-ROS Pipeline 42

4 System Performance 44

4.1 Electrical Behavior . 44

4.2 Communication Behavior 45

4.3 Low-Level Data Handling Behavior 45

5 Tests Results & Analysis 46

5.1 Vulcano Summer School 46

5.1.1 Driving Modes In Real Environments 47

5.1.2 Mapping of the Dried “Moon Lake” 48

5.1.3 WiFi Connection Results 50

5.1.4 Presentation . 51

5.2 Festival der Zukunft . 51

5.2.1 Mapping - Deutsches Museum Testbed 52

5.3 Space Demo Mission . 53

5.3.1 Indoor Evaluation Setup 54

5.3.2 Manual Mode . 58

5.3.3 Autonomous Navigation 59

6 Conclusions 65

6.1 Future Work . 66

6.1.1 Proposal for a Permanent Exhibition 67

6.1.2 New Pipeline Version 68

6.1.3 Migration to New Chassis 68

6.2 Work Contribution . 69

6.2.1 GitHub Documentation 69

VI

A Relevant Links at DLR 74

B Mission Instructions 76
B.1 Establishing The WiFi Connection 76
B.2 Running The Processes . 76

C Simulink: Driving Modes 78
C.1 Ackerman mode script . 78
C.2 Rotation mode script . 82
C.3 Crabwalk mode script . 83

D gamepad controller code 85

E rover communication with Simulink 91

F rover communication no Simulink 99

G pantilt tf publisher code 109

VII

List of Figures

1.1 Vulcano Summer School in Sicily, Italy 5

1.2 Festival Der Zukunft at the Deutsches Museum 6

2.1 LRM system overview . 8

2.2 Intel RealSense Depth Camera D435i [7]. 9

2.3 Next Unit of Computing (NUC) model 8i7BEK[8]. 10

2.4 Logitech Gamepad F710 [9]. 10

2.5 WiFi antenna module . 11

2.6 MiddleBoard PCB . 11

2.7 BogieBoard PCB . 12

2.8 Servomotor for Locomotion: linear velocity and steering [15] 12

2.9 On-Board Computer Subsystem (OBC) 13

2.10 LRM’s GUI for testing and calibration [13] 14

2.11 Simulink model: home view [13] 15

2.12 LN Manager processes example [13] 16

3.1 Electrical Power Subsystem diagram 20

3.2 14.8V-LiPo battery [14] 20

3.3 14.8V to 9.0V DC-DC Converter [16] 21

3.4 Graphical Interconnection Diagram 21

3.5 WiFi modules . 22

3.6 WiFi Antenna Station . 23

3.7 Ackerman Steering geometry 26

3.8 Rotation geometry . 28

3.9 Crabwalk geometry . 30

3.10 gamepad controller node diagram 31

3.11 LRM Simulink node diagram 32

3.12 rover communication node diagram 33

VIII

3.13 Autonomous Navigation: driving modes conditioning . . . 36
3.14 rostopic2ln node diagram 37
3.15 LN world integration diagram 38
3.16 Realsense ROS Diagram 39
3.17 Scaled-down OBC prototype with navigation concept and

locomotion . 40
3.18 RMC GBR Navigation Diagram 41
3.19 RMC Local Mapping node diagram 42
3.20 lrm pan tilt tf publisher node diagram 42
3.21 Final LN-ROS data pipeline scheme 43

5.1 Terrains at Vulcano island 47
5.2 2D Map of the dried Moon Lake 48
5.3 Occupancy Grid of the Moon dried Lake 49
5.4 WiFi Antenna Range . 50
5.5 LRM’s poster at the Vulcano Summer School 51
5.6 Testbed at the Deutsches Museum 52
5.7 PointCloud of the Deutsches Museum’s testbed 53
5.8 Space Demo Mission setups 56
5.9 Space Demo Mission experiment 57
5.10 Experiment Validation Results 57
5.11 Instantaneous Pointcloud 60
5.12 2D Map and trajectory . 61
5.13 3D Map, path planner with obstacle avoidance 62
5.14 Costmap from the RMC Local Mapping 63

6.1 Apriltag code example [26] 67
6.2 New design migration concept [13] 69
6.3 Work contribution statistics 69

IX

Acronyms

6DoF 6-Degrees-of-Freedom. 10

ARCHES Autonomous Robotic Networks to Help Modern Societies. 4

Cissy Continuous Integration Software System. 16, 17, 70

COMMS Communications System. 3, 19, 22

CPU Central Processing Unit. 9, 19

DC-DC Direct Current to Direct Current. VIII, 21, 45

DER Design Requirements. 3, 4, 19, 22, 24, 25

DLR Deutsches Zentrum für Luft- und Raumfahrt. I, 2, 4–6, 10, 11, 13,
17, 22, 23, 25, 30, 41, 42, 51, 70, 76

EPS Electrical Power Subsystem. 3, 19, 21

ESA European Space Agency. I, 51

FNR Functional Requirements. 2, 3, 24

GND Ground. 12

GPS Global Positioning System. 48

GUI Graphical User Interface. VIII, 13, 14, 18, 30, 31

IDE Integrated Development Environment. 12, 77

IMU Inertial Measurement Unit. 9, 10, 52

X

IT Information Technology. 50

LED Light-Emitting Diode. 22, 23

LiPo Lithium-Polymer. 19, 20, 44

LN Links and Nodes Manager. VIII, 2, 16, 24, 30–33, 37, 38, 55, 58, 60,
65, 70, 77

LRM Lunar Rover Mini. I, VIII, IX, 2–10, 14, 16, 18–20, 23, 34–36, 45,
48, 50–56, 59, 61, 64, 66, 68–70, 76

LRU Lightweight Rover Unit. 6, 25, 41, 51, 53, 64, 66

NASA National Aeronautics and Space Administration. I

NUC Next Unit of Computing. VIII, 10–13, 19, 21, 22, 24, 31, 44, 55, 59,
76

OBC On-Board Computer Subsystem. VIII, IX, 3, 4, 12, 13, 19, 24, 25, 40

OPR Operational Requirements. 22

PCB Printed Board Circuit. VIII, 11, 12, 44, 45

PEL Planetary Exploration Laboratory. 53, 58

PWM Pulse Width Modulation. 12, 13

RGB Red, Green, and Blue. 39, 40

RMC Robotics and Mechatronics Center. IX, 10, 17, 22, 24, 41, 42, 50,
63, 70

RMPM Robotics and Mechatronics Package Management. 17

ROS Robot Operating System. 2, 30, 35, 37–39, 46, 55, 58, 64, 65, 77

RTAB-Map Real-Time Appearance-Based Mapping. 40, 59–61, 77

SLAM Simultaneous Localization and Mapping. 40, 49, 53, 56

XI

TF Transformation. 39, 41

TRL Technology Readiness Level. 66

UART Universal Asynchronous Receiver-Transmitter. 11, 12

USB Universal Serial Bus. 9–11, 18, 31

USC Use Cases. 7

VAR Validation Requirements. 4, 46, 54

VSS Vulcano Summer School. 4, 5, 46, 54, 58

WiFi Wireless Fidelity. VIII, IX, 10, 11, 13, 21–24, 45, 48, 50, 55, 58, 76,
77

XII

CHAPTER 1. INTRODUCTION

Introduction

1.1 Motivation

Over the last few years, the area of robotic exploration has been growing
very quickly. There exist the classic exploration rovers such as the Exo-
Mars rover of European Space Agency (ESA) [1] and the Curiosity rover
of National Aeronautics and Space Administration (NASA) [2]. However,
there are many environments that are not explorable yet with such sys-
tems. For these areas, a large number of new robots, such as unmanned
aerial vehicles, lava-tube explorers, and underwater mobile mechanisms are
being developed. Building and launching these space missions is extremely
expensive, therefore it is sought to find a way to demonstrate some of these
concepts through low-cost prototype development at the Deutsches Zen-
trum für Luft- und Raumfahrt (DLR) for science contribution, engineering,
and education purposes.

1.2 Objectives and Scope

The focus of this master thesis is on a partial development and a full inte-
gration of a system mainly based on the ExoMars rover: the Lunar Rover
Mini (LRM).
The scope of this thesis includes the adaptation and standardization of
data exchange and variables, as well as some mathematical equations for
the demonstration of planetary exploration concepts during indoor and
outdoor experiments.

In order to boost the motives for space rover missions, some reachable

Adrian Ricardez Ortigosa 1

1.3. SYSTEM REQUIREMENTS CHAPTER 1. INTRODUCTION

objectives were stated in order to help the low-budget research process here
on Earth.

1.2.1 Primary Objectives

1. To achieve a fully functional system integration of the LRM.

2. To validate the system performance through an experiment in a con-
trolled environment.

3. To use the LRM prototype as an open-source learning platform for
students.1

1.2.2 Secondary Objectives

1. To integrate an autonomous navigation algorithm into the LRM data
pipeline 2.

2. To contribute to the application for a space demo mission proposal as
a permanent exhibition.

1.3 System Requirements

In order to fulfill the previously stated objectives, different requirements
were derived at the system level. They were based on the inputs from the
DLR project supervisors.

1.3.1 Functional Requirements

The Functional Requirements (FNR) are unique and are the heart of what
the system is expected to do and describes the capabilities the LRM needs
to have to accomplish its mission [3].

1Educational concepts in school to learn: robotic frameworks (e.g. ROS, LN, LN Manager, Robotkernel,
Sensornet, DDS, ROS2), high-level programming languages (Python, C++), high-level mission planning
(Skretch, RAFCON-Mission Logic), and control theory using Simulink (drive modes, signal observation

2It is important to mention this “data pipeline” since it is a special one. In spite of being an open-
source project, this framework works with Cissy and other software tools with multiple packages released
only in the DLR framework, which will be explained in more detail in the coming sections.

2 Adrian Ricardez Ortigosa

CHAPTER 1. INTRODUCTION 1.3. SYSTEM REQUIREMENTS

Table 1.1: Functional Requirements

ID FNR 01
Description The LRM shall perform three rover driving modes: Ackerman, Rotation,

and Crabwalk modes.
Justification This provides the locomotion with many capabilities to move in most

required directions, which let the rover adapt better to the terrain.
Flow down to System requirements: OBC
Verification Method Review of Framework Integration, Test

ID FNR 02
Description The LRM shall allow remote manual operation by using a GamePad.
Justification This allows the user to control the rover and to analyze real-scenario

situations.
Flow down to System requirements: OBC
Verification Method Review of Framework Integration, Test, Analysis

ID FNR 03
Description The LRM shall be able to perform autonomous navigation.
Justification This provides a full-robotics integration level, in which the main goal is

to achieve a completed task through an autonomous behavior.
Flow down to System requirements: OBC
Verification Method Review of Framework Integration, Test, Analysis

ID FNR 04
Description The LRM shall provide a mission interface, which external users can use

to start the rover processes.
Justification This promotes the practical experience of the working rover principles to

students, researchers, and the general public.
Flow down to System requirements: OBC
Verification Method Review of Framework Integration, Test, Analysis

1.3.2 Design Requirements

The Design Requirements (DER) allows defining the functional attributes
that enable the LRM to convert ideas into design technical features [3].

Table 1.2: Design Requirements

ID DER 01
Description The LRM shall feature at least all previously used hardware: F710

GamePad, MiddleBoard, BogieBoards, D435i camera, NUC, LiPo battery,
DC-DC converter, WiFi antenna modules, locomotion, and Pantilt servos.

Justification This eases the hardware selection process by using all existing modules
used by previous students and focusing only on the high-level algorithms
and integration.

Flow down to System requirements: OBC, EPS, and COMMS
Verification Method Review of Framework Integration, Review of Design, Test

Adrian Ricardez Ortigosa 3

1.4. MAIN EVENTS CHAPTER 1. INTRODUCTION

ID DER 02
Description The LRM shall use Simulink as the centralized framework tool for control

loops.
Justification Simulink/Matlab reduces the complexity and effort of programming com-

pared to using a non-standardized software tool or integrating everything
in Python.

Flow down to System requirements: OBC
Verification Method Review of Framework Integration, Test

1.3.3 Validation Requirements

The Validation Requirements (VAR) are scenario specifications that de-
scribe how the concept validation should be performed. These are prag-
matically stated terms to describe an environment setup, for example.

Table 1.3: Validation Requirements

ID VAR 01
Description The LRM’s locomotion shall be tested on rocky terrains, such as the ones

at Vulcano island.
Justification This validation makes possible to qualify and quantify how suitable the

prototype is for more realistic terrains.
Verification Method Test, analysis

ID VAR 02
Description The LRM shall be tested on an artificial testbed that simulates a Lunar

environment.
Justification This validation will provide an opportunity to analyse more specific be-

haviors in a realistic controlled environment.
Verification Method Test, analysis

1.4 Main Events

During a full year of internship at the DLR from Feb. 2022 til Feb. 2023,
the LRM was used at two main events: the Vulcano Summer School (VSS),
and the Festival der Zukunft at the Deutsches Museum.

1.4.1 Vulcano Summer School

In June 2022, the VSS, sponsored by the Autonomous Robotic Networks
to Help Modern Societies (ARCHES) [4] took place at the Vulcano Island
in Sicily, Italy. Here, students and researchers from DLR Oberpfaffenhofen,
DLR Berlin, and Jacob’s University, daily presented lectures and performed

4 Adrian Ricardez Ortigosa

CHAPTER 1. INTRODUCTION 1.4. MAIN EVENTS

their own project experiments for 13 days.

(a) The LRM at Vulcano

(b) Vulcano group: around 35 people

Figure 1.1: Vulcano Summer School in Sicily, Italy

The LRM (Fig. 1.1a) was tested on the top of the vulcano, where other
people (Fig. 1.1b) brought scientific experiments, such as land mapping
using drones.

The obtained results from the Cratere della Fossa were analyzed and
shared with all the VSS participants at the end of the event. This was a
unique experience, a mixture of knowledge between geologists, physicists,
and engineers. It was a perfect opportunity for networking and testing the
rover in more realistic and uncontrolled environments, terrains similar to
those on the Moon and Mars.

In the following sections, the results of the mapping and locomotion
tests will be explained in detail.

1.4.2 Festival der Zukunft

In July 2022, the Deutsches Museum invited the DLR to participate in the
Festival der Zukunft [5], an event sponsored by IE9, where many scientific
and technological companies came together to announce their idea and/or
market their product. To the LRM team, this was another unique opportu-
nity to show the working rover principles within a controlled environment.

Adrian Ricardez Ortigosa 5

1.5. OUTLINE CHAPTER 1. INTRODUCTION

The experiments were presented and explained to the public. The Bavarian
ambassador and the head of the museum were also present at the event.

Figure 1.2: Festival Der Zukunft at the Deutsches Museum

The museum organizers provided the DLR with a 3x4 m testbed to show
three rover models: the LRM version of this thesis, a future model of the
LRM, and the famous Lightweight Rover Unit (LRU), which can be seen
in Fig. 1.2.

As well as in the Vulcano section, the results obtained during the exhi-
bition at the Deutsches Museum will be explained.

1.5 Outline

In the following chapters, the system characteristics, performed experi-
ments, results, and analysis will be explained.

The results of the indoor evaluation, labeled as the “space demo mis-
sion”, as well as the and outdoor experiments at Vulcano, are mainly based
on integration validation and general performance accuracy.

With the conclusions and future work, it is expected that the next
generation of students understand all the working principles explained in
this thesis and can improve the system features such as the Simulink model
and further autonomous navigation integration.

6 Adrian Ricardez Ortigosa

CHAPTER 1. INTRODUCTION 1.5. OUTLINE

1.5.1 Use cases

Table 1.4: Use Cases

ID Description
USC 01 The LRM can be used to demonstrate the working principles of remote

manual control.
USC 02 The LRM can be used to test different controller interfaces via standard-

ized parameters.
USC 03 The LRM can be used to demonstrate working principles of autonomous

navigation.
USC 04 The LRM can be used to improve path-planning algorithms.
USC 05 The LRM can be used to demonstrate the application of planetary explo-

ration concepts.
USC 06 The LRM can be used to show working principles of module integration

for space demo missions.

Adrian Ricardez Ortigosa 7

CHAPTER 2. LITERATURE REVIEW

Literature Review

In order to understand the systems integrated into the rover, it is necessary
to explain a little about some principles and features used in the instru-
mentation.

In previous works, only partial documentation existed along with sev-
eral outdated modules without maintenance. Indeed, there was a Manual
(2021) [6] that mainly explained the low-level architecture, such as the
communication protocol for locomotion, but it did not contain updated
status information. Hence, a theoretical and practical investigation was
carried out to define all functions of the system.

(a) Full-body render [6]
(b) Bogie-wheel numbering [6]

Figure 2.1: LRM system overview

8 Adrian Ricardez Ortigosa

CHAPTER 2. LITERATURE REVIEW 2.1. SYSTEM OVERVIEW

2.1 System Overview

In this section, the LRM’s subsystems are described. Fig. 2.1a shows a
rendered graphical representation of the rover model, and Fig.2.1b shows
the bogie numbering convention for all algorithms and protocols, which fits
the standard followed by the Python, C++, and Simulink/Matlab scripts.

2.1.1 High-level Hardware

The high-level hardware is where most of this thesis development was
implemented since these are tools directly connected to programs with
Python or devices with encapsulated functionalities.

Camera

Figure 2.2: Intel Re-
alSense Depth Camera
D435i [7].

For the image capture, a stereoscopic depth camera
model D435i is being used (Fig. 2.2), which extracts
depth points from the environment. This image pro-
cessing, which is managed by the Central Process-
ing Unit (CPU), can perform object recognition and
self-localization, depending on the implemented algo-
rithm.

This camera also features an Inertial Measurement
Unit (IMU), which helps to increase the accuracy of the odometry, unlike its
companion the D435 model, which does not have this integrated circuit [7].

The main features of the D435i are:

• indoor/outdoor device usage

• vision processor D4

• up to 1280 x 720 active stereo depth resolution

• up to 1920 x 1080 RGB resolution with 30 fps

• Universal Serial Bus (USB)-C* 3.1 Gen 1* connector

• diagonal field of view over 90°

Adrian Ricardez Ortigosa 9

2.1. SYSTEM OVERVIEW CHAPTER 2. LITERATURE REVIEW

• range 0.2 m to over 10 m (it depends on the light conditions)

• depth frame rate up to 90 fps

• a 6-Degrees-of-Freedom (6DoF) IMU

Since this device is used extensively for mapping and vision prototyping
within the DLR, it was kept for the LRM.

Intel - NUC

Figure 2.3: Next Unit
of Computing (NUC)
model 8i7BEK[8].

TheNext Unit of Computing (NUC) is a mini com-
puter with diverse characteristics that allow the
LRM to operate competently with the grouped
processes, in addition, to handle different periph-
eral ports for all needed devices: the depth camera,
the MiddleBoard, and the WiFi antenna. For more
detailed features, one can visit its official website
[8].

The encasing of Fig. 3.3 fits perfectly with the LRM’s dimensions, being
much better than a Raspberry Pi with respect to the size-performance ratio.

Python is the main programming language used in this device due to
its compatibility with various software tools.

Logitech GamePad

Figure 2.4: Logitech
Gamepad F710 [9].

This device is often used at the RMC. The F710
GamePad (D-pad) of Fig. 2.4 is a four-switched precise
control device. It uses a 2.4GHz Bluetooth Universal
Serial Bus (USB) nano receiver, and two AA batter-
ies as the power source [9]. It is mainly used for the
manual control and a graphical control interface.

Wireless Fidelity (WiFi) Antenna

There are two ways to establish communication with
the rover. The first one is through Ethernet cable,
which comes from the DLR internal network and allows to:

10 Adrian Ricardez Ortigosa

CHAPTER 2. LITERATURE REVIEW 2.1. SYSTEM OVERVIEW

• update software packages

• improve big data sharing, especially graphics

• and other features

Figure 2.5: WiFi an-
tenna module

The second way is with the WiFi antenna of Fig.
2.5, which is connected through the Ethernet port of
the NUC. The great advantage of this setup is that
the rover can be remotely operated without any cable
attached from outside, making easier the experimental
setup.

The biggest disadvantage is that, as one might think,
data exchange is slower and a delay is even created by
default.

A more detailed description of how to use it and to
connect to it will be explained in Sec. 3.3.

2.1.2 Low-level Hardware

The low-level hardware, such as the Printed Board Circuit (PCB)s, are
devices mostly designed and manufactured at the DLR. These components
feature communication with commands managed by C++ programs, which
were developed by students from previous generations.

MiddleBoard

Figure 2.6: MiddleBoard PCB

The MiddleBoard receives data from the main
computer via USB, processes it, and sends it to
the BogieBoards as quickly as possible. It uses
two Atmel microcontrollers for on-board data
handling.

This PCB transmits and receives data
via USB from the NUC, and transmits the
Universal Asynchronous Receiver-Transmitter

Adrian Ricardez Ortigosa 11

2.1. SYSTEM OVERVIEW CHAPTER 2. LITERATURE REVIEW

(UART) protocol over three buses of four wires each to the BogieBoards.
Also, it sends Pulse Width Modulation (PWM) signals to the PanTilt servo-
motors with two data buses of three wires each (GND, VCC, PWM). It uses
a C++ program, developed with the Integrated Development Environment
(IDE) Atmel Studio for data packaging.

BogieBoards

Figure 2.7: BogieBoard PCB

A BogieBoard could be said to be the PCB that
works at the lowest level. The six BogieBoards
receive data from the MiddleBoard and convert
the commanded values into electrical power to
the actuator coils for the steering and speed.
In addition, they have a magnetic sensor that
allows calibration. They were also flashed with
a C++ program.

Servomotors

Figure 2.8: Servo-
motor for Locomo-
tion: linear veloc-
ity and steering
[15]

The Faulhaber SR-FLAT series 2619S006 servomotors
have a 207 to 1 reduction with an extremely flat shape.
Their length range goes from 6 mm to 19 mm and it has
a four poles design. The moment of inertia is reduced
to the minimum, and it has integrated optical encoders
[15].

These servomotors are used to move the rover’s locomo-
tion, both in steering and linear speed. Each bogie counts
with two servos, counting 12 in total, which are directly
connected to the BogieBoards.

2.1.3 On-Board Computer Subsystem

The On-Board Computer Subsystem (OBC) is responsible for communica-
tion, data processing, control, and monitoring. Its architecture is shown in
Fig. 2.9 and is described as follows:

• The NUC receives data from the depth camera and processes it.

12 Adrian Ricardez Ortigosa

CHAPTER 2. LITERATURE REVIEW 2.2. SOFTWARE FRAMEWORK

• The NUC is connected to the process manager mission interface via
DLR’s Intranet or via local WiFi network.

• The MiddleBoard receives the high-level data protocol from the NUC,
and commands the PanTilt servomotors with PWM. In addition, the
MiddleBoard transmits the locomotion values to the BogieBoards.

• The BogieBoards transmit the low-level power data to the wheel’s
servomotors.

Figure 2.9: On-Board Computer Subsystem (OBC)

2.2 Software Framework

The software tools that were already utilized for the codes and interfaces
are here described.

2.2.1 Graphical User Interface

The Graphical User Interface (GUI) of Fig. 2.10 was developed by a pre-
vious student, who decided to create a locomotion testing and calibration
tool. Such GUI sends a protocol of 68 integer and float values to command

Adrian Ricardez Ortigosa 13

2.2. SOFTWARE FRAMEWORK CHAPTER 2. LITERATURE REVIEW

the movement [13].

It is planned that it will continue to be used as an offline tool, without
having a dependency on middleware or other programs, just a python script
with which the base commands can be tested.

Figure 2.10: LRM’s GUI for testing and calibration [13]

Besides connecting the GamePad program with the MiddleBoard pro-
gram, the GUI allows the operator to calibrate the wheels so that they
mark the same steering angle at the beginning of each test, taking advan-
tage of the BogieBoard’s magnetic sensor that detects the actual position.
With this, it does not matter if any mechanical modifications are made,
the rover will always have this calibration option, which is suggested to be
carried out every two months.

14 Adrian Ricardez Ortigosa

CHAPTER 2. LITERATURE REVIEW 2.2. SOFTWARE FRAMEWORK

2.2.2 Simulink

Simulink is used in this project to combine all Cartesian control loops at
one place in one control framework. All sent commands and received sensor
values are first processed and passed by this pipeline.

The model consists of the controlling part of the rover and provides
the data for communication which states how the locomotion should move
next depending on its input. It features a Controller (Prio1, Prio2, Prio3),
a Controller switch, Pantilt, and Wheels blocks (Figure 2.11).

Figure 2.11: Simulink model: home view [13]

These three controllers represent different input devices: the GamePad,
autonomous navigation, and an open slot for future implementations. The
main idea is that the input values from the control devices are directly
transferred to Simulink. Then, the output of the model is transferred to a
python communication script. It was planned that, for the work of this the-
sis, the Ackerman, Rotation, and Crabwalk modes could be implemented
in the Simulink model.

Adrian Ricardez Ortigosa 15

2.2. SOFTWARE FRAMEWORK CHAPTER 2. LITERATURE REVIEW

2.2.3 Links and Nodes Manager

The Links and Nodes Manager (LN) is a system deployment software, a
middleware. It aims to provide a clear view of the running modules (viewer,
Simulink, vision processing) and the way they are exchanging data. It could
be said that LN is the tool that directly helps to group the necessary pro-
cesses (modules/programs) to launch a mission (experiment). It is compiled
and deployed by Cissy, which is explained in the next section.

Fig. 2.12 shows the grouping of processes that the LRM has to carry out
for the mission. At the bottom, one can find the Log, where everything that
is displayed in the terminal is printed (for example, Python print functions,
or errors). At the top part, the user can manage the tabs to navigate to
the different properties of the nodes and topics, as well as to analyze their
variable messages and other useful tools. On the right side are the tabs to
activate or cancel each process. The relevant links, as well as for the next
subsections, can be found in Appx. A.

Figure 2.12: LN Manager processes example [13]

16 Adrian Ricardez Ortigosa

CHAPTER 2. LITERATURE REVIEW 2.2. SOFTWARE FRAMEWORK

2.2.4 Cissy

Continuous Integration Software System (Cissy) is the successor of the
old tool Robotics and Mechatronics Package Management (RMPM), which
was a system for the handling of software (and other) packages before is
was replaced by Conan (another package manager for C/C++).

Cissy provides the main development pipeline for software at the insti-
tute. It is a combination of several modern software engineering tools, and
its purpose is to smoothen the software development pipeline, using the
RMC-GitHub. More information can be found in the DLR relevant links
of Appx. A.

Adrian Ricardez Ortigosa 17

CHAPTER 3. DEVELOPMENT

Development

This chapter talks about the methods for the development and integration
of the LRM modules and subsystems. It is described in detail the way in
which the algorithms were implemented until reaching a final functional
version.

3.1 Previous Rover Version

In the past, the LRM used to work only in one way: connected to a com-
puter/laptop with USB cable and using the GUI without any remote mon-
itoring tool. Some technical references, such as several voltage lines, were
taken from [6], but the integration and documentation were something
that completely changed during the development of this thesis.

In order to achieve the primary and secondary objectives stated in Sec.
1.2.1, a list of feature tasks was noted down. Table 3.1 shows these tasks
and processes that needed to be completed at the end 2022, where the
percentages represented the status progress from previous works at the
beginning of the mentioned year.

Table 3.1: List of planned tasks

Previous version feature Progress Status description
GUI 100% Successful development of a GUI for locomotion testing
Driving modes 30% Partial development of Ackerman, Rotation, and Crab-

walk
Data pipeline 20% Only Middleboard and external computer via USB com-

munication
Antenna range info 0% Working driving area experiment to be set
Mapping 0% Not developed yet
Autonomous Navigation 0% Not developed yet

18 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.2. NEW ELECTRICAL POWER SYSTEM

3.2 New Electrical Power System

Table 3.2: EPS Requirements

ID DER EPS 01
Description The EPS shall use the 14.8V, 99.98Wh LiPo battery as the main power

source.
Justification Apart from being already tested in multiple experiments, this device meets

the power capacity and voltage requirements to let all devices operate for
approximately two and a half hours.

Flow down from DER 01
Verification Method Test

ID DER EPS 02
Description The EPS shall use two TSR2-2490 as the DC-DC converters for the power

source.
Justification In the past, only one was used to condition the voltage input for the other

devices. The overall peak current of the LRM was estimated to be ca.
4.0A. Hence, two of these modules in parallel are required.

Flow down from DER 01
Verification Method Review of Framework Integration, Test

The main task of the EPS is to deliver power to the instruments, starting
with the main power supply which, in this case, can be the battery of Fig.
3.2, or a stationary one powered by a common electrical outlet.

Previously, there were multiple faulty electrical connections, and some-
times the CPU was working very slowly. This often caused the NUC to shut
down or make some programs stop suddenly. Therefore, it was assumed
that there existed some hardware issues, hence the power budget of Table
3.3 was calculated.

Table 3.3: Power Budget

Mode/Power(W) EPS OBC COMMS Camera Actuators Total—(W)
Sleep 0.1 0.0 0.0 0.0 0.0 0.05
Stand-by 0.35 18 3 0.0 0.0 21.35
Camera-only 0.35 30 3 2 0.0 35.5
Actuators-only 0.35 22 3 0.0 3.5 28.85

All active (avg) 0.35 30 3 2 3.5 38.85

Fig. 3.1 is a representative diagram of all power buses and distributions
for the LRM’s components. The Lithium-Polymer (LiPo) batteries are well

Adrian Ricardez Ortigosa 19

3.2. NEW ELECTRICAL POWER SYSTEM CHAPTER 3. DEVELOPMENT

Figure 3.1: Electrical Power Subsystem diagram

known to have great performance in terms of their capacity and power
in relation to their weight. Even so, they are more delicate than other
kinds of batteries, since their chemical components could be a bit unstable,
which could lead to an explosion, corrosion, or human intoxication as their
chemical particles harbor a certain danger.

Figure 3.2: 14.8V-
LiPo battery [14]

The battery used in this rover version is shown in Fig.
3.2. It is an XTRON LiPo battery [14] with a capacity of
6750 mAH, 99.98Wh, and a discharge rate of 25C, which
means that, in order to know the average time the LRM
could operate with all devices active, the calculation of Eq.
3.1 was done.

toperation =
Phbattery

Prover
=

99.98Wh

38.85W
= 2.57h (3.1)

However, since some tolerance required to be consid-
ered, the estimated time was decreased to 2 hours and 15 minutes.

20 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.2. NEW ELECTRICAL POWER SYSTEM

Figure 3.3: 14.8V
to 9.0V DC-DC
Converter [16]

Once the battery delivers energy to the WiFi antenna
and the NUC which feeds the depth camera, a Direct Cur-
rent to Direct Current (DC-DC) converter modifies the
power bus for the MiddleBoard (the NUC also feeds the
MiddleBoard’s logic). The DC-DC converter feeds the high-
power circuit inside the MiddleBoard, which reduces the
voltage to the PanTilt and BogieBoards for the locomotion

servomotors.

It was noted that a single TSR 2-2490 [16] DC-DC converter was not
enough for feeding all the system, so a doubled device was implemented
in parallel. This small encapsulated integrated circuit uses a 390uF, 50V-
electrolytic capacitor for signal smoothing.

3.2.1 Graphical Interconnection Diagram

Based on the previous EPS diagram, a more graphical one is shown in Fig.
3.4 to help the developer understand the physical interconnections between
the robot components.

Figure 3.4: Graphical Interconnection Diagram

Adrian Ricardez Ortigosa 21

3.3. COMMUNICATIONS SYSTEM CHAPTER 3. DEVELOPMENT

3.3 Communications System

Table 3.4: COMMS Requirements

ID OPR COMMS 01
Description The COMMS shall use the 2,4/5GHz WiFi communication modules which

have compatibility with the RMC computers.
Justification This eases the hardware selection process by using the already tested

WiFi modules.
Flow down from DER 01
Verification Method Test

It was defined that the communication had to be through WiFi data
reception and transmission since most of the rovers at the DLR operated
in this manner.

WiFi Connection

This type of connection is suitable for demo missions and remote local
tests. It involves more realistic characteristics, but the data transmission
is certainly slower than the one with direct DLR Ethernet cable.

(a) WiFi station rocket (b) WiFi station bullet

Figure 3.5: WiFi modules

As it was mentioned, the WiFi module of Fig. 2.5 is mounted in the
middle of the rover and is connected via a small Ethernet cable to the NUC.
This green module, once turned on, seeks to connect to the Rocket module
of Fig. 3.5a. All blue illuminated Light-Emitting Diode (LED)s from both

22 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.3. COMMUNICATIONS SYSTEM

modules are a sign that indicates a successful connection.

Finally, since the Rocket AC module (providing a Ubiquity WiMAX
Protocol, not so important to be described) is not directly compatible with
the DLR WiFi (2.4GHz,5GHz) laptops, the Bullet M5 module of Fig. 3.5b
is required. A sign that the LRM has been successfully connected is that
all monitor LEDs are glowing.

To activate the mentioned connection, Appendix B.1 explains an already
tested set of instructions.

Figure 3.6: WiFi Antenna Station

To mount the entire WiFi station, an Ethernet signal distributor is re-
quired. In this case, a Netgear G5108 was used with its respective voltage
source of 12.0V at 0.5A and two voltage converters (black boxes) shown
in Fig. 3.6, which provide the necessary power for the Rocket and Bullet
modules.

It is important to highlight that some radar signals can affect the qual-
ity and effectiveness of this remote communication. Something that helps
to avoid interference is to mount the station on a tripod at a medium height.

Adrian Ricardez Ortigosa 23

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

3.4 Algorithms for the OBC

The On-Board Computer Subsystem (OBC) is the “brain” of the rover. For
new implementations, this subsystem required doing a lot of more advanced
tasks, such as handling all modules needed for navigation: PointClouds,
image streaming, path planning, 2D and 3D mapping, etc. Here is where
the core of this thesis development was done.

Table 3.5: OBC Requirements

ID DER OBC 01
Description The OBC shall run the Ackerman, Rotation, and Crabwalk driving modes.
Justification This provides the locomotion with many capabilities to move in most

required directions, which let the rover adapt better to the terrain.
Flow down from FNR 01
Verification Method Review of Framework Integration, Test

ID DER OBC 02
Description The OBC shall allow remote manual operation by using the GamePad.
Justification This allows the user to control the rover and to analyze real-scenario

situations.
Flow down from FNR 02
Verification Method Review of Framework Integration, Test, Analysis

ID DER OBC 03
Description The OBC shall include the RMC Navigation Stack for autonomous navi-

gation.
Justification Using this already implemented algorithm, the Navigation Stack integra-

tion provides all modules to perform an autonomous behavior.
Flow down from FNR 03
Verification Method Review of Framework Integration, Test, Analysis

ID DER OBC 04
Description The OBC shall use LN Manager as the main interface for process admin-

istration.
Justification This open-source software tool helps to unify all processes to show a

cleaner launching mission interface.
Flow down from FNR 04
Verification Method Review of Framework Design, Analysis

ID DER OBC 05
Description The OBC shall feature all previously used devices: F710 GamePad, Mid-

dleBoard, BogieBoards, D435i camera, NUC, WiFi antenna module, loco-
motion, and PanTilt servos.

Justification This eases the hardware selection process by using all existing modules
and helps to focus only on the high-level algorithms and integration.

Flow down from DER 01
Verification Method Review of Framework Integration, Review of Design, Test

24 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

ID DER OBC 06
Description The OBC shall use Simulink as the centralized framework tool for control

loops.
Justification Simulink reduces the complexity and effort of programming compared to

using a non-standardized software tool.
Flow down from DER 02
Verification Method Review of Framework Integration, Test

3.4.1 Driving Modes

The driving modes, which are based on the ExoMars rover and the DLR’s
LRU, are mainly three: Ackerman Steering, Rotation, and Crabwalk. Each
one has a specific function that helps the rover to move through different
terrains and reach a target point. Such driving modes can be used in addi-
tion to trajectory planning to avoid obstacles. This opens the panorama
of possibilities for better mapping with fewer restrictions.

The four most important variables to be calculated are explained here:

• vrover: linear velocity of the rover, where the coordinate system is at
the center of mass of the body.

• vwheel: linear velocity of the wheel, where the coordinate system is at
the center of the tire.

• ωrover: angular velocity of the rover, where the coordinate system is
at the center of mass of the body.

• ωwheel: angular velocity of the wheel, where the coordinate system is
at the center of the tire.

It is important to mention that the three driving modes follow the
numbering standard explained in Fig. 2.1b for all programs.

Ackerman

Rudolf Ackerman was the one who discovered and defined this principle
early in the 19th century. This concept is the relationship between the
front inside tire and the front outside tire in a corner or curve.

The calculations define the application of the geometry for 2- or 4-wheel
vehicles and enable a precise turning angle to negotiate a changing curved

Adrian Ricardez Ortigosa 25

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

Figure 3.7: Ackerman Steering geometry

trajectory. This concept is to have all four wheels rolling around a com-
mon point during a turn. This can greatly improve cornering ability and
performance [11].

The steering arms need to be angled to turn the inside wheel at a sharper
angle than the outside wheel. Moreover, it allows the inner wheel to track
smaller circles than the outer wheel, a relation that prevents the scrubbing
of the steer tires.

The inner wheel angle needs to be slightly sharper compared to the outer
wheel to reduce tire slippage. This allows softer and improved performance
navigation [12].

One can derive the Ackerman Steering equation by considering the

26 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

formed angles from the parallel verticals set on each tire center and then
adding or subtracting half of the track width ω. After the geometric ap-
proach of the Fig. 3.7, each wheel’s velocity and steering angle equations
are obtained in the following equations (3.2):

R =
L

tan δ
,

ωrover =
vrover
R

,

rfi =
√

(R−D)2 + L2,

rci = R−D, rco = R +D

rfo =
√
(R +D)2 + L2,

vfi = rfi × ω, vfo = rfo × ω,

δfi = tan−1 L

R−D

δfo = tan−1 L

R +D
vfi = vri, vci = vco, vfo = vro,

dfi = dri, dfo = dro

(3.2)

where:

R: turning radius of the vehicle.

L: half of the wheelbase of the vehicle = 0.102 m.

D: half of the tread of the vehicle = 0.085 m.

vrover: reference velocity of vehicle.

ωrover: angular velocity of vehicle.

rfi/fo: turning radius of front inner/outer wheel.

rci/co: turning radius of center inner/outer wheel.

Adrian Ricardez Ortigosa 27

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

vfi/fo: velocity of front inner/outer wheel.

vci/co: velocity of center inner/outer wheel.

dfi/fo: steering angle of front inner/outer wheel.

As we know, the dci and dco are zero, because the steering angle never
changes, since there is no rotation circle.

Rotation mode

The rotation mode from Fig. 3.8 allows the robot to turn around its own
axis. In other words, there does not exist linear, but angular speed. This
driving mode is suitable when there is not much space to turn with Acker-
man, or when the goal is facing away from the robot.

Figure 3.8: Rotation geometry

To precisely compute the rover’s angular velocity, the wheel steering
angle needs to be calculated first. Since the rotation circle does not corre-
spond to a perfect square but to a rectangle, the corner tires do not lean
at 45°. Eq. (3.3) calculates the rotation angle of the wheels.

28 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

θ = 90◦ − arctan(
D

L
) = 90◦ − 39.79◦ = 50.21◦ (3.3)

In Eq. (3.4), the steering angle for each wheel is rounded so that the
hardware capabilities can command it in an easier way.

θ2 = 310◦, θ5 = 50◦

θ3 = 0◦, θ4 = 0◦

θ0 = 50◦, θ1 = 310◦
(3.4)

And finally, Eq. (3.5) calculates the angular velocity of the vehicle where
all wheels must be commanded by the same linear velocity to avoid hard-
ware issues.

vwheel = v1 = v2 = v3 = v4 = v5 = v6

vrover = 0
m

s

ωrover =
vwheel√
L2 +D2

= (7.532
1

m
)vwheel

(3.5)

Crabwalk mode

Just exactly like a sea crab, this driving mode from Fig. 3.9 allows the rover
to move with only linear velocity by using the same steering angle value for
all wheels. This mode is particularly interesting because it provides extra
accuracy when the rover is driving within the final goal’s neighborhood.
When combined with the Ackerman and the Rotation for navigation, this
mode can considerably increase the efficiency in various aspects such as
mechanical energy and time, as well as getting out of possible mechanical
stuck.

The calculation of the linear speed in Eq. 3.6 is relatively simple, and
since there is no rotation, the angular speed is reduced to zero.

ωrover = 0
1

s
vrover = vwheel = (rwheel)ωwheel = (0.085m)ωwheel

(3.6)

Adrian Ricardez Ortigosa 29

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

Figure 3.9: Crabwalk geometry

3.4.2 LN World: Breaking Down The Modules

There exist two middleware worlds: Links and Nodes Manager (LN) and
Robot Operating System (ROS).

LN is a real-time-capable software tool, while Robot Operating System
(ROS)1, another open-source tool, is a set of software libraries that help
developers build robot applications [17]. DLR developers use LN pack-
ages for control and required data during real-time communication, and
ROS for higher-level processes where quick processes are no longer required.

It could be said that, in the world of LN, the processes are more central-
ized and are in charge of managing the direct commands for the hardware
operation, as well as the management of higher-level language (mainly
Python), while, in the world of ROS, the processes are more modular and
standardized for all DLR rovers, and have greater complexity (mainly done
in C++, XML, and Python). In LN, simpler data strings are handled, such
as floats and integers, while in ROS, matrices for image processing, Point-
Clouds, maps, and vectors are handled.

The GUI can still be used as an offline mode for testing purposes, as

30 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

long as it is connected via USB to a computer. The great advantage of
this tool, as mentioned in Sec. 2.2.1, is to have an independent process for
control and calibration.

GamePad Controller

The gamepad controller node is the first to act on the process list. Once
activated, it will be in charge of recognizing the commands received from the
Bluetooth module and transmitting the data to the LN Manager pipeline.
In the previous version, there already existed Python developments for the
GUI. However, the following improvements have been done:

• variable renaming for better understanding

• joystick filtering for softer behavior

• LN Manager pipeline integration

• printing information for monitoring purposes

Figure 3.10: gamepad controller node diagram

Table 3.6: Controller 1 message

Parameter Range or values Type Variable description

power [-1.0, 1.0] double Raw wheel power
rotation [0, 360] double Raw steering angle

drive mode 1, 2, 3 int Ackerman, Rotation, or Crabwalk
mode 90, 200,... int Modes received by BogieBoards, coded in C++
Pan [0, 180] int Angle for the Pan
Tilt [0, 180] int Angle for the Tilt

Permission 0, 1 int To activate autonomous navigation

Fig. 3.10 shows the data transfer. Firstly, the raw data from the GamePad
is sent via Bluetooth to the NUC. Secondly, the Python code processes
and maps the data with proper vectors to let the rover understand what

Adrian Ricardez Ortigosa 31

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

the user wants to do. Finally, the parameter data explained in Table 3.6 is
sent to Controller 1 topic via LN Manager.

The GamePad controller code can be found in Appx. D

LRM Simulink

The output of the three controllers: GamePad, autonomous navigation, or
an open one, goes directly to the input of the LRM Simulik, which has been
described in Sec. 2.2.2. Here, in Fig. 3.11, the output of the three driving
modes is computed and sent to six topics that have data for the locomotion.
Furthermore two more topics are provided: PanTilt and Modes.

Figure 3.11: LRM Simulink node diagram

Table 3.7: DataIN BogieX WheelX, PanTilt, and Modes message

Parameter Range or values Type Variable description

setMode 90, 200,... int Modes received by BogieBoards, coded in C++
setPower [-1.0, 1.0] float Processed wheel power depending on the driving mode
setAngle [0, 360] int Processed steering angle depending on the driving mode
setPan [0, 180] int Movement of the Pan servo
setTilt [0, 180] int Movement of the Tilt servo

setDriving 1, 2, 3 int Ackerman, Rotation, or Crabwalk
setPermission 0, 1 int To activate autonomous navigation

The three driving modes are operated here inside three independent
Matlab scripts. These scripts can be found in Appx. C.

Rover Communication

The rover communication has a direct link between the locomotion
and the body control while it receives the command expressions from the

32 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

mathematical Simulink model. This is probably the most important
module of all development of the thesis since it integrates, processes,
and conditions the inputs from Simulink, as well as for autonomous navi-
gation.

Fig. 3.12 shows the data transfer coming from the Simulink model, and
the most important variables (from many provided) are the same as the
ones explained in Table 3.7.

Figure 3.12: rover communication node diagram

These parameters are sent through the LN Manager pipeline to the
rover communication node made in Python, which processes the input de-
pending on the controller (GamePad or autonomous navigation). Once
the right conditioning has been set, the output is sent through a 68-digit
protocol message directly to the MiddleBoard, which has a direct command
to the BogieBoards and all actuators. the structure of the 68-digit protocol
can be found in [13].

From both, manual and autonomous navigation controllers, there is an
internal calculation in this node for the body’s linear (vrover) and angular
velocities (ωrover). As we know, there exist some hardware limitations that
needed to be conditioned in the program in order to try to match the
autonomous navigation vector explained in Sec. 3.4.3. In other words, the
calculations differ from each other when changing the controller.

Two versions were refactored: one with a working Simulink integration
(only using the GamePad controller), and another one without Simulink

Adrian Ricardez Ortigosa 33

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

(which includes the autonomous navigation and the three driving modes
inside its own Python code). Both releases are in Appx. E and Appx. F,
respectively.

GamePad Values Conditioning

If the green button of the GamePad is not pressed, the ‘permission’ param-
eter stays as ‘0’. The LRM will be set to GamePad control, which means
that all values from the user’s hands will be commanded as desired and
delivered to the Simulink model.

From a controlled experiment performed on 09.11.2022, it was found
that the maximum linear and angular velocities that the rover could move
at were 0.115 m/s and 0.49 rad/s, respectively. If the rover moves only
with the GamePad, the python code is receiving a body velocity range of
[-1.0, 1.0] (unitary signed floating vector) from the Simulink model, but
the MiddleBoard can only process a wheel value range of [0, 15000]. The
Manual Mode equations (3.7) in m/s for printing purposes and in [-] (non-
dimensional) for the MiddleBoard were applied.

vrover = (0.115
m

s
)vsimulink

vrover = (15000)vsimulink

(3.7)

Each calculation depends on the equations set of each driving mode already
explained in 3.4.1. Therefore, it is suggested to the developer to check the
Matlab scripts.

In order to not exceed the limit, the velocity value for each wheel was
truncated to a maximum of 15000. However, a conditioning implementa-
tion to get the final linear and angular velocities based on the hardware
limitations were still needed.

For the negative values that the MiddleBoard can not receive, a two’s
binary complement [18] was applied for each received value. An example

34 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

of the maximum linear velocity is shown in Table 3.8. With this, the LRM
could drive in all directions and quadrants of the coordinate system.

Table 3.8: Two’s Binary Complement Example

Bits Unsigned Value Two’s Complement Value Signed Value
1100 0101 0110 1000 15000 0011 1010 1001 1000 -15000

Some noise from the joystick was noticed and then reduced with a simple
filter application that can be found within the Rover.py code, and finally,
all relevant values were packaged and printed. A Crabwalk example could
look like this:

W2: 15000 63° W5: 15000 63°
W3: 15000 63° W4: 15000 63°
W0: 15000 63° W1: 15000 63°
drive_mode: 3 rover_mode: 200 pan: 139 tilt: 164 permission: 0

From GamePad:

power_gamepad: 1.000 angle_gamepad: 63°
body_vel: 0.115 m/s body_w: 0.000 rad/s

Autonomous Navigation Conditioning

This was the most challenging part of all the thesis work, since it
includes coordinate frames standards, ROS-type Twist vector management,
and characterization of maximum and minimum values for ‘if’ conditionals.

When the green button is pressed, the ‘permission’ parameter changes
from ‘0’ to ‘1’, and the mathematical context changes completely. The
Navigation Stack already provides the LRM with one Twist-message type
vector, which includes linear velocity in m/s and angular velocity in rad/s.
Therefore, it is no longer necessary to transform these values, but only to
adapt the units for the MiddleBoard.

In order to change between the three driving modes and make the
navigation softer and more effective, the logic of the vectors from the
topic lrm1.cmd vel autonomy was taken as a reference. Here is a simple
explanation of the three driving modes:

1. Ackerman: If the linear velocity is commanded in x and the angular
velocity is commanded in z (please note that neither vz, ωx nor ωy will

Adrian Ricardez Ortigosa 35

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

appear), then it is best to set the LRM to this mode since this allows
the robot to move more freely by negotiating big circles.

2. Rotation: If there is no linear velocity, but there exists ωz, then it
means rotation.

3. Crabwalk: If there is only linear velocity in x and y, but no rotational
velocity, the path planner is communicating that the LRM is close to
its target and it is easier for it to perform Crabwalk (similar to when
a car starts parking).

Fig. 3.13 explains the same in a more graphical way.

Figure 3.13: Autonomous Navigation: driving modes conditioning

During the experiments, some constants were found and adjusted by
which the linear and angular speeds are multiplied (and they are highlighted
in the codes), allowing the values to stay within the desired range already
explained in the previous section.

It was experimentally found that the Twist vector that the autonomous
navigation algorithm provides to the Rover Communication program, in
the face of a new planned trajectory as long as its offset is less than ca.
35 degrees from the previous one, the rover can continue operating with
Ackerman mode.

36 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

However, after 35 degrees, the Ackerman mode exceeds its limit, and
the rover stays in a loop, so it was established that, based on the analysis
of the driving conditioning of Fig. 3.13, it changes to a Rotation mode,
clockwise or anticlockwise depending on the sign transmitted.

And of course, when the rover is close enough to the target (about 30-40
cm away), the algorithm moves only in translation without rotation, indi-
cating that it is best to switch to Crabwalk.

Finally, all relevant values were packed and printed. A Rotation mode
example would look something like this:

W2: 15000 310° W5: -15000 50°
W3: 15000 0° W4: -15000 0°
W0: 15000 50° W1: -15000 310°
drive_mode: 2 rover_mode: 200 pan: 139 tilt: 164 permission: 1

From Navigation Stack:

nav_vx: 0.000 m/s nav_vy: 0.000 m/s nav_wz: -0.25 rad/s

body_vel: 0.000 m/s body_w: -0.250 rad/s

Please note that the navigation topic can provide negative angular
velocities. Due to this, the angle was conditioned to stay within the range
of [0,360], which is the range the servos can only operate with.

Rostopic to LN

The lrm1 rostopic2ln node configures the topics coming from the ROS
world and transforms them to be used by the LN world. Therefore, the
autonomous navigation vector calculated from the Navigation Stack’s path
planner is integrated into the Simulink model and later to the rover com-
munication, nodes that are in charge of the locomotion function. Fig. 3.14
shows the data transfer.

Figure 3.14: rostopic2ln node diagram

Adrian Ricardez Ortigosa 37

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

LN World: Integration

Once the previous modules have been applied in the LN world, the inte-
gration of such processes can be fully shown in Fig. 3.15. This is achieved
through the correct use of functions and methods in the LN package, which
is stored in the GitHub repositories, managed by Cissy.

Figure 3.15: LN world integration diagram

The use of LN when is the only world running is a huge advantage
because it allows the use of only the Manual Mode without the need to
activate other types of controllers, such as the autonomous navigation (in
ROS). This is very convenient when only instrumentation and quick lo-
comotion testing are required. This configuration takes from five to ten
minutes to be set up, which makes it suitable for rover demos and concept
proof.

3.4.3 ROS World: Breaking Down The Modules

As it has been described at the beginning of Sec. 3.4.2, ROS is an open-
source tool used as a set of software libraries that help developers build

38 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

robot applications [17]. Multiple packages were used in this world and will
be described below.

Realsense ROS

The realsense-ros repository contains three packages that allow using the
Intel RealSense Depth Camera D435i with ROS: the realsense2 camera,
realsense2 camera msgs, and realsense2 description.

These 3 packages provide messages such as raw rectified image (for RGB
image streaming, for example), depth points, etc.

Figure 3.16: Realsense ROS Diagram

Fig. 3.16 shows the data transfer. Note that it is also connected to
the Transformation (TF) topic, which allows the user to track multiple
coordinate frames over time. The TF package maintains coordinate frame
relationships in the form of a time-buffered tree structure. This allows
the developer to transform points, vectors, etc., according to the desired

Adrian Ricardez Ortigosa 39

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

coordinate system [19].

RTAB-Map

The Real-Time Appearance-Based Mapping (RTAB-Map) is an RGB-D,
Stereo, and LiDAR Graph-Based Simultaneous Localization and Mapping
(SLAM) approach based on an incremental appearance-based loop closure
detector, which uses a so-called ‘bag-of-words’ approach to state how likely
a new image will come based on a new or previous location. When this
hypothesis is accepted, a new constraint is added to the map’s graph, then
a graph optimizer minimizes the errors in the map [10].

Figure 3.17: Scaled-down OBC prototype with navigation concept and locomotion

Fig. 3.17 shows the data flow inside its package.

Navigation Stack: RMC GBR Navigation

The rmc gbr navigation package provides local navigation for ground-
based rovers, including path planning with obstacle avoidance, motion gen-
eration for following a path, and motion generation for driving the robot
to a local goal.

Fig. 3.18 shows the data flow inside its package.

40 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

Figure 3.18: RMC GBR Navigation Diagram

It uses a so-called ‘A*’ algorithm, which searches down all path options
to the goal and decides upon the most optimal path. After some attempts,
as a gap between obstacles is discovered, and it must stop and re-plan from
scratch this new optimal path to the goal [25].

Navigation Stack: RMC Local Mapping

This package does the local mapping. It is being developed to be used both
on the LRU and SHERP (another DLR project). Currently, the mapping
included in the gridmap is restricted to terrain information. The elevation
layer (built using only geometric data), semantic layer (color-coded by most
likely terrain type), probability distribution layer for first rock type, and
probability distribution layer for second rock type, are features that this
package provides.

lrm pan tilt tf publisher

This node, created in Python, is used to relate the frames of the TF tree
with respect to the PanTilt servos. This not only gives better accuracy to
the mapping but also more precision related to the position of the servos
devices under the camera. This allows more dynamic possibilities which

Adrian Ricardez Ortigosa 41

3.4. ALGORITHMS FOR THE OBC CHAPTER 3. DEVELOPMENT

Figure 3.19: RMC Local Mapping node diagram

are to be explored and tested G.

Figure 3.20: lrm pan tilt tf publisher node diagram

3.4.4 Final Data LN-ROS Pipeline

All modules, including the /lrm1/rgbd odometry from the Navigation
Stack, are integrated into this single diagram of Fig. 3.21. Each mod-
ule was individually verified by the author with guidance from some DLR
colleagues at the institute. With this, the task of module and subsystem
development and integration was completed.

42 Adrian Ricardez Ortigosa

CHAPTER 3. DEVELOPMENT 3.4. ALGORITHMS FOR THE OBC

Figure 3.21: Final LN-ROS data pipeline scheme

Adrian Ricardez Ortigosa 43

CHAPTER 4. SYSTEM PERFORMANCE

System Performance

4.1 Electrical Behavior

Looking at Figs. 3.1 and 3.4, the analysis will be done from top to bot-
tom of the block diagrams. Starting with the LiPo battery, it was able to
operate as calculated in Eq. (3.1) for approximately two hours and fifteen
minutes (+/- 15min). This means, that the camera streaming and the state
of communication between devices were maintained without interruption
during that period. After the calculated hours, the voltage might drop
below thirteen volts and could generate current variations throughout the
system, causing sudden blackouts in the NUC or the camera and poor
quality of locomotion movement. Therefore, it is recommended to have at
least one backup battery, so that after a proper shutdown of the system
(see Appendix B) the power source could be changed immediately and the
experimentation could have a break for not more than five minutes. This
proves that the assumed power budget was precise.

On the other hand, if the user does local testing, the 2.1A power supply
can always be used, which has about the capacity of an average laptop
charger. The author suggests using the batteries only in required remote
experiments.

The PanTilt servomotors pointed at the commanded angle. However, the
MiddleBoard did not always provide enough power when the user logged
in from the NUC, therefore an electronic design inspection should be done
in the future. It is believed to be an internal issue in the PCB itself, the
author suggests.

44 Adrian Ricardez Ortigosa

CHAPTER 4. SYSTEM PERFORMANCE 4.2. COMMUNICATION BEHAVIOR

The setup of the two DC-DC converters in parallel was the solution
to avoid sudden system blackouts, in addition to providing enough power
to the locomotion to not stop while operating remotely (a fully-charged
battery). It is very likely that the 2.0A capacity of the TSR 2-2490 [16] is
not enough to handle all system’s current peaks. Taking into account the
numbers from the calculated data budget, it is estimated that it is necessary
to implement a DC-DC converter of a minimum of 3.4A of capacity in the
future if only one is required to be used.

4.2 Communication Behavior

The WiFi antenna and all other components performed as expected. There
were found some radar-related signals interfering with the LRM, but in
most occasions, the entire communication system was established almost
automatically once the IP of each device was known. There were not too
many setbacks that prevented experimentation throughout the day.

4.3 Low-Level Data Handling Behavior

The communication between the MiddleBoard and the BogieBoards was
never interrupted, and as long as the tires were mechanically tight, no
faulty movements were found. However, for two tire servos (not the steering
ones), it is believed that there is a bug in the low-level C++ code in the
BogieBoard’s PCBs, because the buffer exceeds its maximum raw value (ca.
15000), and the servo keeps moving even though it is commanded to stop.
This can be fixed by reviewing the code of the BogieBoards and flashing
again the ones that are faulty.

Adrian Ricardez Ortigosa 45

CHAPTER 5. TESTS RESULTS & ANALYSIS

Tests Results & Analysis

5.1 Vulcano Summer School

Table 5.1: Validation Requirement 1

ID VAR 01
Description The LRM’s locomotion shall be tested on rocky terrains, such as the ones

at Vulcano island.
Justification This validation makes possible to qualify and quantify how suitable the

prototype is for more realistic terrains.
Verification Method Test, Analysis

The main objective of the Vulcano Summer School (VSS) was to carry
out locomotion tests on more realistic terrains and share the project re-
sults with other students and researchers. Most of the participants had a
background in geology or research in astronomy, physics (magnetic fields
of certain rocks), or image processing, thus it was an excellent opportunity
for the team to show some progress in the field of planetary exploration
robotics. This knowledge complement formed a diverse atmosphere of sci-
ence and engineering.

Table 5.2: Intermediate progress

Feature Progress Description
GUI 100% It is now kept as a testing and calibration offline tool
Driving modes 100% Fully functional Ackerman, Rotation, and Crabwalk
Data pipeline 60% Partial integration of some high- and low-level modules
Antenna range info 100% Antenna ready for testing within the 50m-coverage radius
Mapping 80% Some first mapping tests performed with the camera
Autonomous Navigation 20% Navigation concept only tested with the move base ROS node

Based on the preparation for the VSS, Table 5.2 represents the achieved
progress at that time. As can be seen, almost all tasks are completed, except

46 Adrian Ricardez Ortigosa

CHAPTER 5. TESTS RESULTS & ANALYSIS 5.1. VULCANO SUMMER SCHOOL

the autonomous navigation tuning and calibration. Thus, it was planned
to focus more on the driving modes execution, and later, on the Navigation
Stack.

5.1.1 Driving Modes In Real Environments

The three different driving modes, along with their equations already ex-
plained in Sec. 3.4.1, were successfully tested on three different terrains
(Fig. 5.1): on the dried “Moon Lake”, on a ”Martian” surface at La Fossa
(top of Vulcano), and at the beach.

(a) Dried Moon Lake (b) Martian Surface (c) Beach

Figure 5.1: Terrains at Vulcano island

Results:

1. At the dried Moon Lake: the Rotation and Crabwalk modes per-
formed flawlessly, basically without any mishaps, preventing the robot
from getting stuck on the ground. No significant mechanical losses
due to sliding were perceived, except for the Ackerman mode, which
sometimes had trouble making a proper turn while moving forward
at the same time. This was mostly due to the reduced force value of
the servomotors that Eqs. 3.2 scaled down. This could easily be fixed
by amplifying a bit (estimated 20%) of the top speeds achieved when
rotating.

2. At the “Martian Surface”: as in the dried Moon Lake, the Ack-
erman mode presented some issues since on the Mars surface existed
larger rocks. The Rotation mode had no issues at all, but the Crabwalk
was only able to navigate paths where there were obstacles less than

Adrian Ricardez Ortigosa 47

5.1. VULCANO SUMMER SCHOOL CHAPTER 5. TESTS RESULTS & ANALYSIS

6cm in diameter. The mechanics, together with the speed commanded
for the tires could manage to stabilize the camera and adapt to the
terrain as long as it could face smaller rocks than 6 cm. On one occa-
sion, a 15cm rock almost causes breaks in the 3D-printed chassis of
one of the bogies, and the robot began to “dig” in its own spot.

3. At the Beach: it can be highlighted that all driving modes worked
100% in this terrain. Certainly, rovers hardly would find this kind of
viscous (wet) sand in space, or at least not in known places nearby.
The surface seemed to “mold” to the tires, but at the same time, the
tires adapted to the terrain. It was noted that, as long as the LRM
traveled at a maximum of 3/4 of its highest speed, the rover could be
easily maneuvered in all directions.

5.1.2 Mapping of the Dried “Moon Lake”

Figure 5.2: 2D Map of the dried Moon Lake

The LRM was manually operated to
reach ca. 35m away from the WiFi
antenna, first in a straight line, and
then turning clockwise until com-
ing face to face with a 1m-high
rock.

This test was carried out by
loading a Global Positioning Sys-
tem (GPS) weighing 800g, in or-
der to also test how much ex-
tra load the robot could carry
in case it was decided to attach
a robotic arm on it in the fu-
ture.

Due to security measures and the
toxic gases from the sulfur that descended toward the place of the exper-
iment, only a few experiments could be carried out. These tests helped
to generate a 2D map of the area, which is shown in Fig. 5.2. Its initial

48 Adrian Ricardez Ortigosa

CHAPTER 5. TESTS RESULTS & ANALYSIS 5.1. VULCANO SUMMER SCHOOL

position and trajectory can also be observed.

The meaning of all the colors is explained below:

• Rover’s initial position: coordinate system, x on green, and y on
red

• Followed path: blue-yellow

• Explored area without obstacles: light gray (almost white)

• Explored area with obstacles: black

• Unexplored area: dark gray

Figure 5.3: Occupancy Grid of the Moon dried Lake

It was also possible to generate the 3D map shown in Fig. 5.3, using
the depth data, then converting it to a PointCloud, and finally, performing
SLAM as explained in Sec. 3.4.3 to create the occupancy grid.

Adrian Ricardez Ortigosa 49

5.1. VULCANO SUMMER SCHOOL CHAPTER 5. TESTS RESULTS & ANALYSIS

In the upper left of the image, the depth points that the D435i generates
from the image stereoscopically can be appreciated; the top image is the
right camera, and the bottom image is the left camera.

The correlation between the 2D and the 3D map matches, and the
user can easily identify the place where the experiment was performed.
Certainly, it took a lot of movement from the PanTilt servomotors and a
long journey to really generate something recognizable. It should also be
remembered that within the depth cameras in the market, the D435i is in
an intermediate range, which means that its range of vision goes from 30
cm to 3 m, but with a surface accuracy of 2% when the objects are less
than 2 m away and with good light conditions. This dried lake is a wide
place with obstacles varying in size and concentration. Hence, and based
on the above explanation, these results can be classified by the author as
“acceptable”.

5.1.3 WiFi Connection Results

Figure 5.4: WiFi Antenna Range

During the WiFi antenna experiments, the
maximum working range was around 50 me-
ters in radius. This means that the LRM
can receive and transfer data within this
radio. The data exchange could always be
data chains, commands, PointClouds, video
streaming, etc.

The steps of Appx. B.1 are effective in
every launching mission, as long as the op-
erating system or network updates do not
change too much. In any case, one could
always go to the Information Technology
(IT) department of the RMC for some support.

50 Adrian Ricardez Ortigosa

CHAPTER 5. TESTS RESULTS & ANALYSIS 5.2. FESTIVAL DER ZUKUNFT

5.1.4 Presentation

Finally, a video was made to show the rover driving on different terrains,
and the team presented a poster (Fig. 5.5) showing the results obtained
during the tests. This information was shared with the audience, where
students, members of the DLR, and even supervisors of the ESA were
present.

Figure 5.5: LRM’s poster at the Vulcano Summer School

5.2 Festival der Zukunft

Another place where these rover concepts could be demonstrated was at the
Festival der Zukunft at the Deutsches Museum, where a 3x4m environment
was used as the testbed.

The setup that was presented during the three days of the exhibition
is shown in Fig. 5.6. Three models were shown: the LRU (the big rover),

Adrian Ricardez Ortigosa 51

5.2. FESTIVAL DER ZUKUNFT CHAPTER 5. TESTS RESULTS & ANALYSIS

Figure 5.6: Testbed at the Deutsches Museum

the LRM black model used in this thesis (bottom left), and the new white
chassis that is intended to be the new version of the LRM in a near future
(the one in between).

5.2.1 Mapping - Deutsches Museum Testbed

The testbed mapping was done in about 15 minutes, taking care that the
rover did not move too fast, as there was something called IMU drift. The
camera’s gyroscope, which measures rotational speed, has two complica-
tions: this drift and an integration error [21].

This is why another component is fusioned: the accelerometer, which
measures linear acceleration (gravity vector) and helps to compensate the
drift stability with some approaches from the state of the art. The camera
faces some big challenges when generating accurate odometry if the move-
ments are drastic. A more precise calibration would be the key to improve
its performance, but even after carrying out some standalone tests, it was
always best to perform slower maneuvers to ensure the stability of the
self-localization of the LRM in 3D space. It was found that, after 70% of its
maximum linear and angular velocities, which would mean (0.7)0.115m/s
= 0.0805m/s and (7.532 1/m)0.0805m/s = 0.6 rad/s (rotation based on

52 Adrian Ricardez Ortigosa

CHAPTER 5. TESTS RESULTS & ANALYSIS 5.3. SPACE DEMO MISSION

Eq. (3.5)) respectively, the drift starts to get accumulated and therefore
rises a self-localization problem. Operating under these values will ensure
the successful performance of the rover.

Figure 5.7: PointCloud of the Deutsches Museum’s testbed

In Fig. 5.7, a large part of the LRU can be seen in the SLAM. Some
people in the audience were able to identify some perspectives of the
terrain by just looking at the displayed mapping on a big monitor. Some
kids and young students were even able to control the LRM by just using
the GamePad and watching the screen on the wall.

5.3 Space Demo Mission

In order to validate the operation of the systems and the mathematical
theory, three experiments were carried out in a controlled environment on
a 10x5.5m2 testbed at the Planetary Exploration Laboratory (PEL). The

Adrian Ricardez Ortigosa 53

5.3. SPACE DEMO MISSION CHAPTER 5. TESTS RESULTS & ANALYSIS

soil material was black sand (type of sand), somehow a similar terrain as it
was in the VSS and the Festival der Zukunft, but this time with all systems
and the autonomous navigation integrated.

Table 5.3: Validation Requirement 2

ID VAR 02
Description The LRM shall be tested on an artificial testbed that simulates a Lunar

environment.
Justification This validation will provide an opportunity to analyze more specific be-

haviors in a realistic controlled environment.
Verification Method Test, Analysis

The results of such experiments, which include the generated maps,
success rate, performance, and limitations, will be described in this section.

5.3.1 Indoor Evaluation Setup

Firstly, the initial and final positions of the LRM were defined. Some ob-
stacles, the “moon rocks”, were placed relatively randomly, and the final
setups for the three different experiments were defined.

First experiment: the Manual Mode with the GamePad was proven
with completely random-placed “moon rocks” to be crossed in order to
reach a final goal by only using the camera streaming and the map from the
laptop. This means: without direct visual contact with the rover. During
these first six attempts, the rover’s vision was pointing at an angle of 65
degrees out of phase to the target, with a final goal distance of 3.9 m. Fig.
5.10b shows the setup of this environment arrangement.

Second experiment: the first setup of autonomous navigation was
tested. The total distance to the target was the same, 3.9m, but the initial
pointing angle was set to 165 degrees out of phase to the final goal. The
environmental arrangement was similar to the previous one.

Third experiment: this last test also had the goal of proving the
autonomous navigation concept, but with a different arrangement: 3.53m

54 Adrian Ricardez Ortigosa

CHAPTER 5. TESTS RESULTS & ANALYSIS 5.3. SPACE DEMO MISSION

of the total distance to the target, and with 170 degrees out of phase. All
objects were moved to different positions.

For the execution setup, the steps below were followed:

1. All the instrumentation of the rover was ensured to be properly con-
nected, including the WiFi antenna, since this was pretended to be a
completely remote-operated mission.

2. A fully charged 3.2 battery was connected to the main power input of
the rover, and the NUC was powered on.

3. The rmc-lx0431 laptop was turned on, which was configured with the
explanation of Sec. 3.3.

4. The WiFi station was placed in a stand, connected to a power source
(it could be a battery or a direct socket). Then, it was turned on.

5. Once the WiFi connection has been secured, the series of commands
of Appx. B were executed.

6. Once inside the LN Manager window, each group of processes was run
from top to bottom by double-clicking or using the tick button.

7. When the ROS Visualization (RViz) was opened, and after ensuring
the mapping was being collected, the goal was manually placed on the
virtual map, also forcing the final direction the LRM was pretended
to “park” to. With this, the LRM began to navigate autonomously.

In the sense of integration and validation, Table 5.4 indicates that all
tasks have been completed.

Table 5.4: Final progress

Feature Progress Description
GUI 100% It is now kept as a testing and calibration offline tool
Driving modes 100% Fully functional Ackerman, Rotation, and Crabwalk
Data pipeline 100% Full integration of high- and low-level processes
Antenna range info 100% Antenna ready for testing within the coverage area
Mapping 100% PointCloud, mapping, self-localization
Autonomous Navigation 100% Integrated Navigation Stack with odometry and path planner

Adrian Ricardez Ortigosa 55

5.3. SPACE DEMO MISSION CHAPTER 5. TESTS RESULTS & ANALYSIS

(a) Manual Mode & Autonomous Navigation 1 (b) Autonomous Navigation 2

Figure 5.8: Space Demo Mission setups

The mission was run six times per experiment setup, thus having a total
of eighteen attempts for the whole mission. Fig. 5.9 shows a photo from
the first environment arrangement. The blue tripod was established to be
the final goal, and the rover can be seen at the left-bottom part of the
image. There were two rocks in between that prevented the direct passage
of the LRM towards its goal, so that a video could show the autonomous
navigation performing.

The final success rate results can be analyzed in Fig. 5.10. The rover
achieved 100% success in Manual Mode tests, which included only the use
of the GamePad, the remote streaming of the camera, and the visualization
of SLAM on the laptop.

The autonomous navigation experiments also had a high success rate,
but considerably lower than Manual Mode. The results of the first au-
tonomous mission are better than those of the second one. Although it is
quite difficult to achieve 100% in all cases since mobile robot algorithms are
still under development in many institutes nowadays, the author suggests
some possibilities for accuracy improvement to reach the final goal in Sec.
5.3.3.

56 Adrian Ricardez Ortigosa

CHAPTER 5. TESTS RESULTS & ANALYSIS 5.3. SPACE DEMO MISSION

Figure 5.9: Space Demo Mission experiment

(a) Manual Mode (b) Autonomous Naviga-
tion 1

(c) Autonomous Navigation
2

Figure 5.10: Experiment Validation Results

These experiments show an average success rate of 75%. Some authors
such as [23] and [24], suggest that an autonomous navigation algorithm
with all sensors fused, proper tuning, and accurate calculations, can begin
to be considered effective from 71%-80% of the successful tests. The num-
ber of attempts is suggested to be as many as possible, and even more, if
artificial intelligence is implemented. If this was the case, dozens of them
could be needed.

Nonetheless, based on what author Chandra says in [22]:

Adrian Ricardez Ortigosa 57

5.3. SPACE DEMO MISSION CHAPTER 5. TESTS RESULTS & ANALYSIS

“The discussion about autonomous operation shows that there is no sin-
gle sensing solution that is sufficient. Multiple sensor data combined with
the sensor fusion method is suggested for autonomous navigation and path
planning. The challenge is that different autonomous operation requires a
different level of localization precision, which further raises the selection
of technique. Hence, sensor selection and sensing technology need research
that considers power consumption, computational complexity,...”

All this analysis is relative since it also depends a lot on the naviga-
tion targets, the traveled distances, the context (if it is space-related, or
navigation here on earth), the environment, and other variable factors.

5.3.2 Manual Mode

As it was done during the VSS tests, the driving modes did not have any
critical problems, since this type of slightly rocky sand at the PEL testbed
was quite similar to that on the dried “Moon Lake”, with certain charac-
teristics also similar to those of the beach sand.

The maximum reached linear speeds of the tires (0.115 m/s), the entire
body velocity (depending on the selected driving mode), and the small
pauses that the rover had throughout the journey were solely based on the
operator’s skills, pauses which lasted no more than 1.5 seconds.

It is interesting to note that the pipeline of LN and ROS, the laptop,
and the WiFi antenna, generated a delay very similar to an operation on
the Moon, which is an average of 2.56 seconds based on real experiments
from the Apollo missions [20].

Taking these 2.5 seconds delay considerations into account and with no
more than the laptop screen to run the remote mission, the final goal at
(3,2.5)m was reached in 1:33 minutes or 93 seconds, a pretty good result,
the author suggests.

This is not an absolute measure or completely proportional to other

58 Adrian Ricardez Ortigosa

CHAPTER 5. TESTS RESULTS & ANALYSIS 5.3. SPACE DEMO MISSION

missions from other rovers and therefore cannot be directly compared, as it
depends very much on how adequate the GamePad commands were used
by the operator to avoid obstacles.

The Manual mode concept was successfully validated, and there were
no major collisions or delays between each drive mode change.

What was a bit difficult to understand for the operator at some points
of the path, was the orientation of the robot, since when turning with the
Rotation Mode, being quite fast, it was not possible to appreciate how
much the LRM had turned, and the camera had to be moved with other
commands for reconnaissance of the area.

In any case, this was not a problem. The carried out odometry by the
RTAB-Map package and the display on Rviz helped this map perception,
and it was possible to correlate the orientation of the robot with the image
in the streaming, which was quite accurate to the reality: not greater than
an offset of 5 degrees.

5.3.3 Autonomous Navigation

At it was described in Sec. 5.3.1, by using the same testbed setup for the
first experiment, and a different one for the second, the autonomous navi-
gation was validated.

The difference between the Manual Mode and this controller is the ab-
sence of external intervention. The autonomous navigation only relies on
the calculations that the algorithm provided internally from the NUC. The
“Moon” delay does not affect the performance this time, since the data
pipeline is performed locally. This setup is considered to have no more
than 30 milliseconds in reaction delay. But this is only what the rover ‘sees’
because the user could notice the same 2.5 delay seconds.

However, if the rover made a mistake, the user could still intervene,
but it would be much more difficult in a real mission since damage could
occur even before aborting processes or pressing an emergency button. One

Adrian Ricardez Ortigosa 59

5.3. SPACE DEMO MISSION CHAPTER 5. TESTS RESULTS & ANALYSIS

way to prevent this is by implementing a watchdog, which is an algorithm
that, after a certain amount of time, somehow indicates to the system
that something is going wrong with the process, and allows it to restart or
reschedule the rover’s trajectory, or even wait for further orders from the
operator.

(a) Depth points and streaming (b) Unique view

Figure 5.11: Instantaneous Pointcloud

Fig. 5.11a shows the depth points (similar to how it was done on the
“Martian Surface” at Vulcano, while 5.11b literally represents how the robot
“sees” in 3D space with an instantaneous the PointCloud.

Once the experiment was completed, the RTAB-Map visualizer was
opened with another process in LN manager, and the 2D and 3D maps
were displayed from the RTAB-Map database stored after the space mission.

The figure on the left is the direct streaming, while the one on the right
was taken with the rtabmap-databaseViewer tool. A small zoom-out was
made, and both the body (the center of mass of the robot) and the camera
frames can be seen in the middle-bottom part.

In Fig. 5.12, in this generated 2D map, where it can be observed how the
rover navigated using the planned path. The color labels are the following:

60 Adrian Ricardez Ortigosa

CHAPTER 5. TESTS RESULTS & ANALYSIS 5.3. SPACE DEMO MISSION

• Rover’s initial position: coordinate system, x on green, and y on
red

• Followed path: blue-yellow

• Explored area without obstacles: light gray (almost white)

• Explored area with obstacles: black

• Unexplored area: dark gray

Figure 5.12: 2D Map and trajectory

The path planner, as explained in Sec. 3.4.3, uses an A* algorithm, where
the robot’s correction is generated. Such triangular approach depends on
the present obstacles and the free path towards the final goal. The obstacle
avoidance can be clearly noted by looking at the turning to the right (from
the robot’s perspective) and then adapting once more to the global planner.

Besides, a 3D map was generated and analyzed with the RTAB-Map
visualizer. In Fig. 5.13 it is shown how the LRM clearly avoided the rock

Adrian Ricardez Ortigosa 61

5.3. SPACE DEMO MISSION CHAPTER 5. TESTS RESULTS & ANALYSIS

Figure 5.13: 3D Map, path planner with obstacle avoidance

that was on the straight path to its goal. The costmap of Fig. 5.14 at the
second 45 of its trajectory defines whether there is an obstacle in front or
not. In fact, it is categorizing the rock that is about to collide as a red
area and leaves the free space as a pink area. After that assumption, the
robot proceeded to recalculate the trajectory to the right, which was the
most feasible path it found based on the explored map at that particular
moment, a situation that not always is the best choice if the rover would
know all the surroundings from the beginning, a decision which was one of
the right ones in this case.

A small side note is that the drawn black circle at the beginning of its
path represents the clockwise-Rotation mode to adjust the body steering
towards the goal.

The setup and execution for each experiment took around an hour. More
will be said about reaching a possible 100% future work in Sec. 6.1.

62 Adrian Ricardez Ortigosa

CHAPTER 5. TESTS RESULTS & ANALYSIS 5.3. SPACE DEMO MISSION

Figure 5.14: Costmap from the RMC Local Mapping

In the final video, two comments can be made about autonomous navi-
gation:

Firstly, at minute 1:25, the rover began to rotate twice as if it did not
locate itself on the map and did not know where to go. This would seem
like an on-purpose exploration feature, but in reality, this phenomenon oc-
curred due to the lack of good light conditions, the optimization of certain
parameters, and the adjustment of the empirical driving modes condition-
ing.

There are many ways to correct the above, but two will be mentioned:

1. Sensor fusion: adding a LiDAR, improving the IMU integration (or
another extra device), or even tracking the locomotion’s odometry,
could compensate for the limited field of view of the camera. Despite
having good-quality image processing, it does not have as much reso-
lution as other higher-priced cameras on the market, and it is quite
sensitive to light conditions.

2. Camera calibration: the D435i camera already comes with an ac-
ceptable calibration for use by default; it can generate PointClouds

Adrian Ricardez Ortigosa 63

5.3. SPACE DEMO MISSION CHAPTER 5. TESTS RESULTS & ANALYSIS

which can be transmitted within a short time period. However, some
calibration tools, which were developed by Intel or by other members
of the ROS community, have been explored, and many parameters and
some experiments need to be reviewed in detail to take full advantage
of their capabilities.

Secondly, some parameters such as the “step height” and “slow max”
from the Navigation Stack package that represent the maximum delta-
height that should not be recognized as an obstacle could be modified to
adapt the algorithm to the dimensions of the LRM. It was noted that the
free passage (half the distance between rock and rock) through which the
rover could cross, could not be less than a meter. This happened because
the tuning is very likely configured for the LRU, which has larger dimen-
sions. Consequently, the rover “thinks” that it is bigger than it really is,
so this perception must be modified.

In total, the first autonomous navigation experiment (which went bet-
ter), took 2:51 minutes, or 171 seconds. This would mean that, compared to
the Manual Mode, which lasted 93 seconds, the autonomy took 83.9% more
time to reach its goal than a test by a direct user operation. Advantages?
The LRM does all the traveling and decision-making by only consuming just
under twice the time and energy as otherwise. Moreover, with more tests
and better tuning, the LRM could perform obstacle avoidance and parking
in a cleaner and more efficient way, although a little slower in average speed.

Regarding the accuracy to reach the final goal, the autonomous naviga-
tion experiments have shown an absolute error of less than 12 cm.

Of course, all these numbers can vary, since they depend on many fac-
tors.

64 Adrian Ricardez Ortigosa

CHAPTER 6. CONCLUSIONS

Conclusions

As shown in Table 5.4, every feature of the rover that was planned to be
implemented, has been completed. This means that a 100% functional pro-
totype with autonomous navigation has been achieved for concept testing
and future new development.

The locomotion’s driving modes and conditioning worked as devel-
oped, especially using slowed-down velocities in some tests. It served as a
benchmark for upcoming concept validations and improvements.

The concepts validated at the Vulcano Summer School and the Festival
der Zukunft were very similar. One was done on more realistic terrains,
and the other one was shown and explained to the general public, people
who also interacted with the rover’s interfaces. The objective of presenting
the project as an integration of open-source modules for learning and
education purposes has been fulfilled. Most people in the audience
managed to understand the correlation between the software tools, the
prototype, and the testbed.

All the connection and data exchange tests were successful since the
key was the message standardization (GamePad controller, Simulink, rover
communication, Navigation Stack, etc.). Both LN and ROS tools allowed
the transfer and reception of data, thus being flexible in their operation
and further module integration.

In matters related to quick tests, 15-20 minutes of setup are possibly
classified as “normal”, but compared with the setup of a real demo mission

Adrian Ricardez Ortigosa 65

6.1. FUTURE WORK CHAPTER 6. CONCLUSIONS

rover, the LRU, which was tested at Mount Etna, such setup could take
even several hours. It can be established that the LRM is a very efficient
platform to carry out basic to moderately-complex experiments to demon-
strate planetary exploration principles.

The setting of changing driving modes explained in Sec. 3.4.2 was proven.
The rover executed the driving modes continuously and without loops (a
situation that had not been achieved in the first module integration at-
tempt). In other words, the adaptation and integration of the program in
Python rover communication were adequate.

Using the percentages of the effectiveness of autonomous navigation
explained in the analysis, its integration is considered within the range of
“beginning to be good”. It can always be improved, but the integration
and validation of all the modules have been a success.

The efficiency, the optimization, and other terms of deep analysis should
be discussed since it was determined that the rover does not meet the
necessary requirements to have a high Technology Readiness Level (TRL)
value 4 as the LRU is with some -6 and 9 components.

6.1 Future Work

Great achievements have been made with this thesis, but much more re-
mains to be done for future generations.

The autonomous navigation algorithm was adapted to the pipeline
through mathematical conversions and standardization in system coor-
dinates but was not deeply analyzed. A more detailed discussion of how
efficient it is is beyond the scope of this thesis and could be looked up by
other students.

66 Adrian Ricardez Ortigosa

CHAPTER 6. CONCLUSIONS 6.1. FUTURE WORK

6.1.1 Proposal for a Permanent Exhibition

After the presentation at the Festival der Zukunft, the possibility of propos-
ing a setup for a permanent exhibition was discussed. For this, the following
elements were explored:

Testbed

As it was done in the Deutsches Museum exhibition, a test bed similar to
Fig. 5.6 would be needed. The dimensions may vary, but it is enough that
per side they are approximately 4 m, being totally square or rectangular,
but for assembly and weight purposes, a 3x4m2 one is proposed. Obstacles
can vary in size and distance from one another, but based on experimental
results, it is suggested that there exist some that occupy no more than
15cm2 with a minimum distance of 70 cm among each.

AprilTag codes

Figure 6.1: April-
tag code example
[26]

The AprilTag codes are essentially codes that represent
visual fiducial systems, useful for a wide variety of tasks
including augmented reality, robotics, and camera calibra-
tion. The original idea is to use two or three of them in
some corners of the test bed. This would make the rover
have to cross the entire terrain avoiding obstacles and thus
demonstrate all its traversability and driving modes. In
addition, the plan is for the rover to be able to create a
3D PointCloud and display it somehow (tablet interface or
computer), either in real-time or at the end of the mission.

Other tools

And of course, the GamePad or the controller being used at that moment
(preferably a user-friendly tablet interface) with a single targeting option
could be the essence of the exhibition. Certainly, other configurations can
be used, such as looking for a battery or moving geological samples, but it
would require a robotic arm, and it is believed that an integration point of
that level is still a long way away.

Adrian Ricardez Ortigosa 67

6.1. FUTURE WORK CHAPTER 6. CONCLUSIONS

6.1.2 New Pipeline Version

This subsection is best explained in a descriptive document sent to the
LRM team by mail.dlr.de. It is about the restructuring of the data received
by the Simulink model since this input is not a standardized vector data
as it is the Twist vector. The team will need to go for any of the following
two options:

1. Keep the current Simulink and GamePad program versions. This soft-
ware transmits and receives the data message from Table 3.6, which is
very specific. In order to integrate the Navigation with the full pipeline,
the conditioning of autonomous navigation should be removed from
the Rover Communication program and moved to the input of the
Simulink model.

2. Integrate the conditioning and selection of management modes within
the Simulink model, which would also lead to modifying the output
of the GamePad code.

Currently, there are two functional but incomplete versions: one with
the Manual Mode integrated with Simulink (no autonomous navigation),
and the other one without Simulink but with all three driving modes and
autonomous navigation conditioning implemented in the Rover Communi-
cation program. The goal in the future is to integrate both into a single
standardized structure.

6.1.3 Migration to New Chassis

Other students are working on interface integration, like new controllers,
or attaching a robotic arm as a payload. The new concept art representing
the migration to the newly built design was developed during the Vulcano
Summer School. The result was Fig. 6.2.

With this new model, it is expected that the mechanical stability will
improve and the electronics will have a little more space for positioning,
thus improving the ergonomic aspect. As a consequence, the camera sta-
bility might also increase.

68 Adrian Ricardez Ortigosa

CHAPTER 6. CONCLUSIONS 6.2. WORK CONTRIBUTION

Figure 6.2: New design migra-
tion concept [13]

Regarding the algorithms, do not forget to
adapt the new dimensions in the calculations of
the driving modes and the Python codes of the
conditioning for autonomous navigation. Also,
reviewing and modifying the equations of linear
and rotational speeds would be required. The
change should not be huge, but it is needed to
achieve more accuracy.
tR

6.2 Work Contribution

Some final specifications about the documentation on GitHub are explained
here, as well as a general analysis of the time investment on the project
and the interactions with the public in Fig. 6.3.

(a) Work Contribution (b) Ca. 45 interactions with the LRM

Figure 6.3: Work contribution statistics

6.2.1 GitHub Documentation

All relevant links are in the Appx. A. The documentation, together with
the codes of the packages along with their respective README files are

Adrian Ricardez Ortigosa 69

6.2. WORK CONTRIBUTION CHAPTER 6. CONCLUSIONS

stored on the RMC-GitHub repositories.

The manual [13] made by the LRM team is intended to complement
this thesis in a more technical way and be used as a guide for future devel-
opments.

To make use of software tools such as LN Manager or Cissy, it is rec-
ommended to watch the video tutorials on the DLR Wiki and rely on the
Mattermost platform for more efficient troubleshooting.

Most of the necessary processes here developed are also shown in the
Appendices, in case it is necessary to go back to a functional version and
restore the Simulink model or the manual and autonomous navigation
modes.

70 Adrian Ricardez Ortigosa

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] ExoMars Factsheet. European Space Agency, 2022, recovered from:
https://www.esa.int/Science_Exploration/Human_and_Robotic_

Exploration/Exploration/ExoMars/ExoMars_Factsheet, accessed on 14.06.2022.

[2] Mars Curiosity Rover. NASA Science Mars Exploration Program, 2022, recovered
from: https://mars.nasa.gov/msl/home/, accessed on 14.06.2022.

[3] Requirement Categories. Argon Digital, 2022, recovered from:
https://argondigital.com/blog/product-management/, accessed on 15.06.2022.

[4] Projekt Arches. Helmholtz, 2022, recovered from:
https://www.arches-projekt.de/aktuelles/, accessed on 15.06.2022.

[5] Festival der Zukunft. 1E9 und Detusches Museum, 2022, recovered from:
https://www.festivalderzukunft.com/, accessed on 15.06.2022.

[6] Wedler, Armin, Irrgang Valentin; Previous Manual of the LRM, DLR (2021).

[7] Intel RealSense Depth Camera D435i. Intel, 2022, recovered from:
https://www.intelrealsense.com/depth-camera-d435i/, accessed on
16.06.2022.

[8] Intel NUC: Build It The Way You Want It. Intel, 2022, recovered from:
https://www.intel.de/content/www/de/de/products/docs/boards-kits/

nuc/nuc8i7beh-brief.html, accessed on 16.06.2022.

[9] Gamepads. Logitech, 2022, recovered from: https://www.logitechg.com/de-de/
products/gamepads.html, accessed on 16.06.2022.

[10] Real-Time Appearance-Based Mapping. Open robotics, 2021, recovered from:
http://introlab.github.io/rtabmap/, accessed on 25.08.2022.

[11] Min Wan Choi, J. S. Park, Bong Soo Lee and Man Hyung Lee, The performance
of independent wheels steering vehicle(4WS) applied Ackerman geometry.
2008 International Conference on Control, Automation and Systems, 2008, pp. 197-
202, doi: 10.1109/ICCAS.2008.4694549., recovered from:
https://ieeexplore.ieee.org/document/4694549

Adrian Ricardez Ortigosa 71

https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ExoMars/ExoMars_Factsheet
https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ExoMars/ExoMars_Factsheet
https://mars.nasa.gov/msl/home/
https://argondigital.com/blog/product-management/
https://www.arches-projekt.de/aktuelles/
https://www.festivalderzukunft.com/
https://www.intelrealsense.com/depth-camera-d435i/
https://www.intel.de/content/www/de/de/products/docs/boards-kits/nuc/nuc8i7beh-brief.html
https://www.intel.de/content/www/de/de/products/docs/boards-kits/nuc/nuc8i7beh-brief.html
https://www.logitechg.com/de-de/products/gamepads.html
https://www.logitechg.com/de-de/products/gamepads.html
http://introlab.github.io/rtabmap/
https://ieeexplore.ieee.org/document/4694549

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Ackerman Steering. Robert Eisele, Computer Science & Machine Learning, 2022,
recovered from:
https://www.xarg.org/book/kinematics/ackerman-steering/, accessed on
30.08.2022.

[13] Wedler, Armin, Ricardez Ortigosa, Adrian, Glückstadt Ludwig; Official Manual
of the LRM, DLR (2022).

[14] XTRON LiPo Battery. SLS, 2022, recovered from:
hhttps://www.stefansliposhop.de/en/batteries/sls-xtron:::173_120.

html, accessed on 03.09.2022.

[15] FAULHABER SR-FLAT. FAULHABER, 2022, recovered from:
https://www.faulhaber.com/de/produkte/serie/2619sr/, accessed on
04.09.2022.

[16] TSR 2-2490. TRACO POWER, 2022, recovered from: https://www.tracopower.
com/de/deu/model/tsr-2-2490, accessed on 04.09.2022.

[17] ROS - Robot Operating System. ROS.org, 2022, recovered from:
http://wiki.ros.org, accessed on 06.09.2022.

[18] Two’s Complement. Wikipedia, 2022, recovered from:
https://en.wikipedia.org/wiki/Two%27s_complement, accessed on 10.09.2022.

[19] tf. ROS.org, 2022, recovered from:
http://wiki.ros.org/tf, accessed on 23.12.2022.

[20] Communication Delays in Apollo Missions. FlatEarth.ws, 2022, recovered
from: https://flatearth.ws/apollo-delay, accessed on 03.01.2023.

[21] IMU Calibration and Drift. Head tracker, 2022, recovered from:
https://headtracker.gitbook.io/head-tracker/getting-started/

imu-calibration-and-drift, accessed on 04.01.2023.

[22] Chandra S., Rathin (2020). Precise localization for achieving next-generation au-
tonomous navigation: State-of-the-art, taxonomy and future prospects, recovered from:
https://doi.org/10.1016/j.comcom.2020.06.007.

[23] Ibarra B., Natalia (2009). Navegación autónoma de un robot con técnicas de
localización y ruteo. Instituto Nacional de Astrof́ısica, Óptica y Electrónica,
Tonantzintla, Puebla. Recovered from:
https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/394/1/

IbarraBMN.pdf

[24] Duoc Nguyen, H. (2023). Efficient autonomous navigation for terrestrial insect-
machine hybrid systems. School of Mechanical & Aerospace Engineering, Singapore:
Recovered from: https://doi.org/10.1016/j.snb.2022.132988

72 Adrian Ricardez Ortigosa

https://www.xarg.org/book/kinematics/ackerman-steering/
hhttps://www.stefansliposhop.de/en/batteries/sls-xtron:::173_120.html
hhttps://www.stefansliposhop.de/en/batteries/sls-xtron:::173_120.html
https://www.faulhaber.com/de/produkte/serie/2619sr/
https://www.tracopower.com/de/deu/model/tsr-2-2490
https://www.tracopower.com/de/deu/model/tsr-2-2490
http://wiki.ros.org
https://en.wikipedia.org/wiki/Two%27s_complement
http://wiki.ros.org/tf
https://flatearth.ws/apollo-delay
https://headtracker.gitbook.io/head-tracker/getting-started/imu-calibration-and-drift
https://headtracker.gitbook.io/head-tracker/getting-started/imu-calibration-and-drift
https://doi.org/10.1016/j.comcom.2020.06.007
https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/394/1/IbarraBMN.pdf
https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/394/1/IbarraBMN.pdf
https://doi.org/10.1016/j.snb.2022.132988

BIBLIOGRAPHY BIBLIOGRAPHY

[25] Algorithms Used in Pathfinding and Navigation Meshes. Corey Trevena,
2022, recovered from:
https://www.cs.csustan.edu/~mmartin/teaching/CS4960S15/Corey%

20Trevena%20-%20Pathfinding%20Algorithms%20in%20Navigational%

20Meshes%20PDF.pdf, accessed on 05.01.2023.

[26] Apriltag. April Tag Robotics Laboratory, 2010, recovered from:
https://april.eecs.umich.edu/software/apriltag#:~:text=AprilTag%

20is%20a%20visual%20fiducial,tags%20relative%20to%20the%20camera,
accessed on 16.01.2023.

Adrian Ricardez Ortigosa 73

https://www.cs.csustan.edu/~mmartin/teaching/CS4960S15/Corey%20Trevena%20-%20Pathfinding%20Algorithms%20in%20Navigational%20Meshes%20PDF.pdf
https://www.cs.csustan.edu/~mmartin/teaching/CS4960S15/Corey%20Trevena%20-%20Pathfinding%20Algorithms%20in%20Navigational%20Meshes%20PDF.pdf
https://www.cs.csustan.edu/~mmartin/teaching/CS4960S15/Corey%20Trevena%20-%20Pathfinding%20Algorithms%20in%20Navigational%20Meshes%20PDF.pdf
https://april.eecs.umich.edu/software/apriltag#:~:text=AprilTag%20is%20a%20visual%20fiducial,tags%20relative%20to%20the%20camera
https://april.eecs.umich.edu/software/apriltag#:~:text=AprilTag%20is%20a%20visual%20fiducial,tags%20relative%20to%20the%20camera

APPENDIX A. RELEVANT LINKS AT DLR

Relevant Links at DLR

Please note that one must be logged in on the DLR Intranet to get access to these websites, and
that is why these links are not in the bibliography section.

Documentation:

• https://wiki.robotic.dlr.de/LRM - Official site of the LRM

• https://www.overleaf.com/project/6242ec321176b869f45aabc5 - LRM 2022 Manual

• https://wiki.robotic.dlr.de/Cissy - Cissy

Documentation and GitHub packages

• https://rmc-github.robotic.dlr.de/moro/LRM_simulink - LRM Simulink

• https://rmc-github.robotic.dlr.de/moro/LRM_communication - LRM Communica-
tion

• https://rmc-github.robotic.dlr.de/moro/LRM_ln_msgdef - LRM ln message defini-
tion

• https://rmc-github.robotic.dlr.de/moro/LRM_simulink_ln_msgdef - LRM Simulink
ln message definition

• https://rmc-github.robotic.dlr.de/moro/LRM_gamepad_controller - LRMGamePad
controller

• https://rmc-github.robotic.dlr.de/3rdparty/realsense-ros/tree/recipe/release/

2.3.2 - realsense-ros for the intel d435i camera

• https://rmc-github.robotic.dlr.de/rica-ad/lrm_pan_tilt_tf_publisher - PanTilt
Transform from LN to ROS

• https://rmc-github.robotic.dlr.de/3rdparty/rtabmap - RTAB-Map

• https://rmc-github.robotic.dlr.de/3rdparty/rtabmap_ros - RTAB-Map ROS

• https://rmc-github.robotic.dlr.de/moro/rmc_gbr_navigation - RMC GBR Navi-
gation

74 Adrian Ricardez Ortigosa

https://wiki.robotic.dlr.de/LRM
https://www.overleaf.com/project/6242ec321176b869f45aabc5
https://wiki.robotic.dlr.de/Cissy
https://rmc-github.robotic.dlr.de/moro/LRM_simulink
https://rmc-github.robotic.dlr.de/moro/LRM_communication
https://rmc-github.robotic.dlr.de/moro/LRM_ln_msgdef
https://rmc-github.robotic.dlr.de/moro/LRM_simulink_ln_msgdef
https://rmc-github.robotic.dlr.de/moro/LRM_gamepad_controller
 https://rmc-github.robotic.dlr.de/3rdparty/realsense-ros/tree/recipe/release/2.3.2
 https://rmc-github.robotic.dlr.de/3rdparty/realsense-ros/tree/recipe/release/2.3.2
https://rmc-github.robotic.dlr.de/rica-ad/lrm_pan_tilt_tf_publisher
https://rmc-github.robotic.dlr.de/3rdparty/rtabmap
https://rmc-github.robotic.dlr.de/3rdparty/rtabmap_ros
https://rmc-github.robotic.dlr.de/moro/rmc_gbr_navigation

APPENDIX A. RELEVANT LINKS AT DLR

• https://rmc-github.robotic.dlr.de/moro/rmc_local_mapping - RMC Local Map-
ping

• https://rmc-github.robotic.dlr.de/common/rostopic2ln - Rostopic2LN

Adrian Ricardez Ortigosa 75

https://rmc-github.robotic.dlr.de/moro/rmc_local_mapping
https://rmc-github.robotic.dlr.de/common/rostopic2ln

APPENDIX B. MISSION INSTRUCTIONS

Mission Instructions

B.1 Establishing The WiFi Connection

1. Turn on the rmc-lx0431 or any other available DLR laptop with 2,4/5GHz, and enter the
“offline option”.

2. Enter the hard disk password, which is “lr...e”

3. Get access with your user and your cached password.

4. Connect the WiFi station configuration as explained in 3.3, and wait for a couple of
minutes.

5. Connect the antenna module to the NUC and all other components as shown in Fig. 3.4.
To see in detail where to connect the PanTilt servos, or other power/data buses, please
check [13].

6. Grant access to the WiFi connection via the command:
$ nmcli connection up rmc-ap0105-5-102-ap

which should appear in the available networks.

7. Enter the password requested, which starts with “su...l”.

8. Once connected, and once all LEDs shown in 3.5 are turned on, you can proceed to execute:
$ ssh f_mobile@192.168.128.117

, which would be the fixed new IP address of the LRM.

9. As an alternative, if you want to run Rviz or other visual processes, it is always better to
run the vnc network with:
$ mrun vnc f_mobile@192.168.128.117

B.2 Running The Processes

Once inside, either via ssh or vnc, you can execute the command:
$ mrun ws run

76 Adrian Ricardez Ortigosa

APPENDIX B. MISSION INSTRUCTIONS B.2. RUNNING THE PROCESSES

to start the LN Manager.

The processes from top to bottom to be launched for a demo mission,manual and autonomous,
are:

1. gamepad control : runs the node that maps the GamePad commands

2. LRM simulink : launches the Simulink model

3. rover communication: controls the connection and commands to the MainBoard

4. Tf group : base link to camera and lrm pan tilttf publisher: it does the transformations
for the camera and body positions in the tf tree (for odometry)

5. realsense ros (it will automatically run roscore and rviz)

6. Visual Odometry group : rtabmap rgbd odometry params and rtabmap rgbd odometry

7. Local Mapping group : rmc local mapping params and rmc local mapping

8. Navigation group: all nodes at once

9. SLAM group : rtabmap slam and rtabmap slam params for creating a 3D-map of the
explored area

10. lrm1 rostopic2ln : converts the ROS topics into LN topics

Optional:

1. ros shell : to check rostopics or any other ROS features

2. gamepad control wifi : developed by another student, it is intended to work without the
Bluetooth distance limitation and work with the same WiFi setup

3. rtabmap database : opens the generated 2D and 3D maps IDE

4. rtabmap databaseVisualizer : the same as above, but with more nice features in the
RTAB-Map Visualizer

Remember to shut down the LRM every time it is disconnected, to avoid data corruption.
To do this, it is necessary to know the su root password, which can be provided by the main
project supervisor.

Adrian Ricardez Ortigosa 77

APPENDIX C. SIMULINK: DRIVING MODES

Simulink: Driving Modes

These Matlab scripts work only if the GamePad is the main controller. To integrate autonomous
navigation, one of the following two options is required:

1. Use the code from Appx. F

2. Do what is explained in Sec. 6.1.2

C.1 Ackerman mode script

function [steering_angle , speed] = func(angle , body_vel)

quadrant = 0; % from 1 to 4, 0 is undetermined , but

initialized

% 1 | 4

%-------

% 2 | 3

k = 0.7; % normal ackerman is abrupt , this is to smooth

the data a bit

w = 0.0; % initialization of body angular speed

% angle restriction for each quadrant to not more than 30

respectively

if(angle >= 30 && angle <= 90)

angle = 30;

elseif(angle >= 90 && angle <= 150)

angle = 150;

elseif(angle >= 210 && angle <= 270)

angle = 210;

elseif(angle >= 270 && angle <= 330)

angle = 330;

end

% assignment of quadrants depending on provided angle

if(angle >= 0 && angle < 90)

78 Adrian Ricardez Ortigosa

APPENDIX C. SIMULINK: DRIVING MODES C.1. ACKERMAN MODE SCRIPT

quadrant = 1;

elseif(angle >= 90 && angle < 180)

quadrant = 2;

elseif(angle >= 180 && angle < 270)

quadrant = 3;

elseif(angle >= 270 && angle < 360)

quadrant = 4;

end

%% Output Values

steering_angle = zeros (6,1);

speed = zeros (6,1);

%% LRM Parameters

D = 0.085; % distance to 1/2 Tread of vehicle

L = 0.102; % distance to 1/2 Wheel base of vehicle

%% Ackermann Geometry

% For more information see: DOI: 10.1109/ ICCAS .2008.4694549

if((angle > 2 && angle < 178) || (angle > 182 && angle < 358)

) % to prevent nan

R = L/tand(angle); %truning radius vehicle

w = body_vel/R; %angular velocity vehicle

r_fi = sqrt((R-D)^2 + L^2); %radius front inner

r_fo = sqrt((R+D)^2 + L^2); %radius front outer

r_ci = R-D; %radius center inner

r_co = R+D; %radius center outer

v_fi = r_fi*w; %speed front inner

v_fo = r_fo*w; %speed front outer

v_ci = r_ci*w; %speed center inner

v_co = r_co*w; %speed center outer

v_ri = v_fi; %speed rear inner

v_ro = v_fo; %speed rear outer

if(angle == 0)

phi_fi = 0;

phi_fo = 0;

phi_ri = 0;

phi_ro = 0;

else

Adrian Ricardez Ortigosa 79

C.1. ACKERMAN MODE SCRIPT APPENDIX C. SIMULINK: DRIVING MODES

phi_fi = atand(L/(R-D)); %steering angle front

inner

phi_fo = atand(L/(R+D)); %steering angle front

outer

phi_ri = phi_fi; %steering angle rear

inner

phi_ro = phi_fo; %steering angle rear

outer

% steering angle for center is zero

end

% wheel order in matlab: 1 = fr, 2 = cr, 3 = rr, 4 = rl,

5 = cl , 6 = fl

% wheel order in matlab: 0 = rl, 1 = rr, 2 = fl, 3 = cl,

4 = cr , 5 = fr

% wheel order in python:

% wheel order in python:

% depending on each quadrant , the angle logic is

different

if(quadrant == 1)

steering_angle (1) = phi_fo;

steering_angle (2) = 0;

steering_angle (3) = 360- phi_ro;

steering_angle (4) = 360- phi_ri;

steering_angle (5) = 0;

steering_angle (6) = phi_fi;

elseif(quadrant == 2)

steering_angle (1) = phi_fi;

steering_angle (2) = 0;

steering_angle (3) = 360+ phi_ri;

steering_angle (4) = 360+ phi_ro;

steering_angle (5) = 0;

steering_angle (6) = phi_fo;

elseif(quadrant == 3)

steering_angle (1) = 360- phi_fi;

steering_angle (2) = 0;

steering_angle (3) = phi_ri;

steering_angle (4) = phi_ro;

steering_angle (5) = 0;

steering_angle (6) = 360- phi_fo;

elseif(quadrant == 4)

80 Adrian Ricardez Ortigosa

APPENDIX C. SIMULINK: DRIVING MODES C.1. ACKERMAN MODE SCRIPT

steering_angle (1) = 360+ phi_fo;

steering_angle (2) = 0;

steering_angle (3) = phi_ro;

steering_angle (4) = phi_ri;

steering_angle (5) = 0;

steering_angle (6) = 360+ phi_fi;

end

% velocity multiplied by k to reduce it, because it is

too abrupt

% Max vel is 15000, and it is almost always giving 15000

if(quadrant == 1)

speed (6) = v_fi*k;

speed (5) = v_ci*k;

speed (4) = v_ri*k;

speed (3) = v_ro*k;

speed (2) = v_co*k;

speed (1) = v_fo*k;

elseif(quadrant == 2)

speed (6) = v_fo*k;

speed (5) = -v_co*k;

speed (4) = v_ro*k;

speed (3) = v_ri*k;

speed (2) = -v_ci*k;

speed (1) = v_fi*k;

elseif(quadrant == 3)

speed (1) = -v_fi*k;

speed (2) = -v_ci*k;

speed (3) = -v_ri*k;

speed (4) = -v_ro*k;

speed (5) = -v_co*k;

speed (6) = -v_fo*k;

elseif(quadrant == 4)

speed (1) = -v_fo*k;

speed (2) = v_co*k;

speed (3) = -v_ro*k;

speed (4) = -v_ri*k;

speed (5) = v_ci*k;

speed (6) = -v_fi*k;

end

else

for i=1:6

steering_angle(i) = 0; % if the angle is ~0, then

Adrian Ricardez Ortigosa 81

C.2. ROTATION MODE SCRIPT APPENDIX C. SIMULINK: DRIVING MODES

don 't do tangent , just do 0

end

% and the speed will only take the cosine (fwd and bckwrd

) to make it more logic

% and also , it is smoothed with the k factor

speed (1) = body_vel*cosd(angle)*k;

speed (2) = speed (1);

speed (3) = speed (2);

speed (4) = speed (3);

speed (5) = speed (4);

speed (6) = speed (5);

end

for i=1:6

C.2 Rotation mode script

function [steering_angle , speed] = func(body_vel)

% Rotation: Rover turns on the spot

% Positive body_vel (speed) = turn right

% Negative body_vel (speed) = turn left

%% LRM Parameters

D = 0.085; %distance to 1/2 Tread of vehicle

L = 0.102; %distance to 1/2 Wheel base of vehicle

r_f = sqrt(D^2+L^2); %radius front wheels to rover center

r_c = D; %radius center wheels to rover center

w = body_vel/r_f; %angular velocity

v_fl = body_vel; %speed front left

v_cl = body_vel; %speed center left

v_rl = body_vel; %speed rear left

v_fr = -body_vel; %speed front right

v_cr = -body_vel; %speed center right

v_rr = -body_vel; %speed rear right

% angles already set to rotate correctly

phi_fl = 360 -60; %steering angle front left

82 Adrian Ricardez Ortigosa

APPENDIX C. SIMULINK: DRIVING MODES C.3. CRABWALK MODE SCRIPT

phi_cl = 0; %steering angle center left

phi_rl = 60; %steering angle rear left

phi_rr = 360 -60; %steering angle rear right

phi_cr = 0; %steering angle center right

phi_fr = 60; %steering angle front right

%steering angle for center is zero

%% Output Values

steering_angle = zeros (6,1);

speed = zeros (6,1);

steering_angle (1) = phi_fr;

steering_angle (2) = 0;

steering_angle (3) = phi_rr;

steering_angle (4) = phi_rl;

steering_angle (5) = 0;

steering_angle (6) = phi_fl;

speed (1) = v_fr;

speed (2) = v_cr;

speed (3) = v_rr;

speed (4) = v_rl;

speed (5) = v_cl;

speed (6) = v_fl;

C.3 Crabwalk mode script

function [steering_angle , speed] = func(angle , body_vel)

%% Output Valuesfunction [steering_angle , speed] = func(angle

, body_vel)

%% Output Values

steering_angle = zeros (6,1);

speed = zeros (6,1);

if (angle < 0)

angle = 360-angle;

end

steering_angle (1) = angle;

steering_angle (2) = angle;

Adrian Ricardez Ortigosa 83

C.3. CRABWALK MODE SCRIPT APPENDIX C. SIMULINK: DRIVING MODES

steering_angle (3) = angle;

steering_angle (4) = angle;

steering_angle (5) = angle;

steering_angle (6) = angle;

speed (1) = body_vel;

speed (2) = body_vel;

speed (3) = body_vel;

speed (4) = body_vel;

speed (5) = body_vel;

speed (6) = body_vel;

% in crabwalk , all wheels are the same in speed and angle

for i=1:6

steering_angle(i) = angle;

speed(i) = body_vel;

end

steering_angle = zeros (6,1);

speed = zeros (6,1);

if (angle < 0)

angle = 360-angle;

end

steering_angle (1) = angle;

steering_angle (2) = angle;

steering_angle (3) = angle;

steering_angle (4) = angle;

steering_angle (5) = angle;

steering_angle (6) = angle;

speed (1) = body_vel;

speed (2) = body_vel;

speed (3) = body_vel;

speed (4) = body_vel;

speed (5) = body_vel;

speed (6) = body_vel;

% in crabwalk , all wheels are the same in speed and angle

for i=1:6

steering_angle(i) = angle;

speed(i) = body_vel;

end

84 Adrian Ricardez Ortigosa

APPENDIX D. GAMEPAD CONTROLLER CODE

gamepad controller code

This is the Gamepad LRM.py code. Please, always uncomment the joystick filter (4 lines of code)
which needs to be moved to the same indentation level as the “JOYSTICK FILTER” note.

#!/usr/bin/env python2

-*- coding: utf -8 -*-

"""

Created on Tue Jul 27 15:14:13 2022

@author: irrg_va and rica_ad

Description:

Script to connect (auto reconnect) to "Logitech Wireless Gamepad F710", read input events

and (process /) publish data to the ln-manager

@note Logging levels can be changed by pressing LB , default is: WARNING

@note DEBUG: show output of gamepad inputs

@note INFO: show all connection details and mode changes

@note WARNING: show critical connection details

@note ERROR: not used (output nothing)

"""

import sys

import os

import struct

import select

import re # regular expression

import math

import array

import time

import timeit

from collections import namedtuple

#import numpy as np

import links_and_nodes as ln

#import matplotlib.pyplot as plt

import logging

create subclass: "input_event_tuple" to be able to sort raw gamepad data

input_event_tuple = namedtuple("input_event", ["tv_sec", "tv_usec", "type", "code", "value"])

class input_event(input_event_tuple):

"""!

Returns raw gamepad data as "input_events", accessible via .type , .code , and .value

Example

~~~~~~~~~~~~~{. py}

a = input_event(data)

a.value

~~~~~~~~~~~~~

"""

def __str__(self):

return "input_event(type=%s, code=%s, value =%d)" % (

event_types_back.get(self.type , self.type),

self.code ,

self.value)

class input_reader:

"""!

Class to handle connection and event reading from gamepad

"""

def __init__(self):

self.clnt = ln.client(sys.argv[0], sys.argv [1:]) # links and nodes client

#self.port = self.clnt.publish (" GamePad", "md_GamePad ") # set up publisher

self.input_event_format = "LLHHi"

self.input_event_format_size = struct.calcsize(self.input_event_format)

self.fd = "" # file descriptor for gamepad -path

self.path = "" # selected gamepad -path

self.gamepad_dir = "/dev/input/by -id/" # path to search for gamepads

old gamepad id = 16AA985F , new gamepad id = CA4D91F4

self.connect_gamepad ()

self.ev_data = 0 # event values - data

Adrian Ricardez Ortigosa 85

APPENDIX D. GAMEPAD CONTROLLER CODE

def connect_gamepad(self):

"""

Search for available logitech F710 gamepads and try to connect/reconnect to them

"""

while (self.fd == ""):

try:

list_of_files = os.listdir(self.gamepad_dir) # list of files in the current directory

except:

logging.info("no gamepads connected")

time.sleep (3)

continue # try again

gamepads = []

for usb_dev in list_of_files:

if usb_dev.startswith('usb -Logitech ') and usb_dev.endswith(

"event -joystick"): gamepads.append(usb_dev)

if len(gamepads) == 0:

logging.info("no gamepad found")

elif len(gamepads) == 1:

try:

self.fd = os.open(self.gamepad_dir + gamepads [0], os.O_RDONLY)

self.path = self.gamepad_dir + gamepads [0]

logging.warning("gamepad: " + str(self.gamepad_dir + gamepads [0]) + " , connected")

except:

logging.info("could not connect to gamepad") # gamepad found but cant connect

time.sleep (3)

def check_events(self , timeout =0.01):

"""!

Read raw data from gamepad (if it is connected)

"""

while True:

try:

rfd , _, _ = select.select ([self.fd], [], [], timeout)

if not rfd:

return 0

ev = os.read(self.fd, self.input_event_format_size) # read controller inputs

self.ev_data = input_event (* struct.unpack(self.input_event_format , ev))

had_events = True

logging.debug ((" code: "+str(ev.code) + ", value: " + str(ev.value))

return ev

except:

pass

logging.warning("Connection lost , trying to reconnect ...")

self.fd = ""

self.connect_gamepad () # try to reconnect to gamepad

class gamepad_f710:

"""!

Class to convert gamepad event values to commands that work with the lrm controller interface

and publish data to links and nodes

"""

def __init__(self):

'''translate input types to input codes '''
self.input_names = [

"joy_left_lr",

"joy_left_ud",

"joy_right_lr",

"joy_right_ud",

################

"button_Y",

"button_B",

"button_A",

"button_X",

################

"joypad_lr",

"joypad_ud",

################

"button_lt",

"button_rt",

"button_lb",

"button_rb",

]

self.input_codes = [

0,

1,

3,

4,

################

308,

305,

304,

307,

################

16,

17,

################

2,

86 Adrian Ricardez Ortigosa

APPENDIX D. GAMEPAD CONTROLLER CODE

5,

310,

311

]

'''ud = up/down , lr = left/right '''
self.joy_left_lr = 0 # left and right

self.joy_left_ud = 0 # up and down

self.joy_left_change = 0 # 1 if values have changed

self.joy_right_lr = 0 # left and right

self.joy_right_ud = 0 # up and down

self.joy_right_change = 0 # 1 if values have changed

self.joypad_ud_last = "none" # what arrow was pressed last

self.joypad_lr_last = "none" # what arrow was pressed last

self.speed_range = 100.0 # speeds from 0 - speed_range

self.emergency_stop = 0

self.frequency = 100 # publish frequency in Hz

'''values for ln '''
self.vel_x = 0

self.vel_y = 0

self.steering_angle = 0

self.drive_mode = 1 # default = 1 = ackermann steering

self.rover_mode = 90 # error reset mode

self.controller_on_off = 1 # en -/ disable Bogie controller 1/0

self.pan = 139

self.tilt = 164

self.assume = 0

self.permission = 0

'''pan -/tilt '''
self.update_pan = 0

self.update_tilt = 0

self.last_update = 0

self.update_interval = 0.04 # seconds

'''calibration mode '''
self.prev_mode = 0 # previous selected mode

self.calib_enable = 0 # if calibration mode has been enabled

self.calib_interval = 0.1 # seconds (delay in between controller on/off and calibration)

self.calib_delay = 0 # to keep track of time

'''Links and Nodes connection '''
self.controller_num = 1 # controller channel number in simulink

clnt = ln.client(sys.argv[0], sys.argv [1:]) # create ln-client

self.portOUT = clnt.publish("Controller_1", "md_controller") # puplisher client

#self.portOUT = clnt.publish ("lrm1.gamepad_controller", "md_controller ")

""" Logging """

self.log_lvs = ["ERROR", "WARNING", "INFO", "DEBUG"]

self.log_lv = 1 # warning is default level

self.start_time = timeit.default_timer ()

def event_mapping(self , ev):

"""!

Function to convert event values from gamepad to LRM commands

joy_left_ud -> -

joy_left_lr -> -

joy_right_ud -> steering angle

joy_right_lr -> steering angle

joypad_ud -> tilt

joypad_lr -> pan

button_Y -> calibration mode

button_B -> error reset mode

button_A -> set permission for other controllers to get control

button_X -> emergency button

button_lt -> drive backwards

button_rt -> drive forwards

button_lb -> iterate logging levels

button_rb -> change drive mode

"""

if ev.code in self.input_codes:

current_event = self.input_names[self.input_codes.index(ev.code)]

not used

if current_event == "joy_left_ud":

self.joy_left_ud = (ev.value * -1 / (2 ^ 15) * 0.1) # correctly scale joystick value

self.joy_left_change = 1

if self.joy_left_ud > 1: # filter noise

logging.debug (("joy left ud: " + str(

round(self.constrain_angle(self.get_angle(self.joy_left_lr , self.joy_left_ud)), 0))))

not used

elif current_event == "joy_left_lr":

self.joy_left_lr = (ev.value * -1 / (2 ^ 15) * 0.1) # correctly scale joystick value

self.joy_left_change = 1

if self.joy_left_lr > 1: # filter noise

logging.debug (("joy left lr: " + str(

round(self.constrain_angle(self.get_angle(self.joy_left_lr , self.joy_left_ud)), 0))))

steering angle y

elif current_event == "joy_right_ud":

self.joy_right_ud = (ev.value * -1 / (2 ^ 15) * 0.1) # correctly scale joystick value

self.joy_right_change = 1

if self.joy_right_ud > 1: # filter noise

logging.debug (("joy right ud: " + str(

round(self.constrain_angle(self.get_angle(self.joy_right_lr , self.joy_right_ud)), 0))))

steering angle x

Adrian Ricardez Ortigosa 87

APPENDIX D. GAMEPAD CONTROLLER CODE

elif current_event == "joy_right_lr":

self.joy_right_lr = (ev.value * -1 / (2 ^ 15) * 0.1) # correctly scale joystick value

self.joy_right_change = 1

if self.joy_right_lr > 1: # filter noise

logging.debug (("joy right lr: " + str(

round(self.constrain_angle(self.get_angle(self.joy_right_lr , self.joy_right_ud)), 0))))

tilt

elif current_event == "joypad_ud":

if ev.value == -1:

logging.debug("arrow up")

self.joypad_ud_last = "up"

self.update_tilt = 1

if ev.value == 1:

logging.debug("arrow down")

self.joypad_ud_last = "down"

self.update_tilt = 1

if ev.value == 0:

self.update_tilt = 0

logging.debug("tilt value: " + str(self.tilt))

logging.debug("arrow " + self.joypad_ud_last + " released")

pan

elif current_event == "joypad_lr":

if ev.value == -1:

logging.debug("arrow left")

self.joypad_ud_last = "left"

self.update_pan = 1

if ev.value == 1:

logging.debug("arrow right")

self.joypad_ud_last = "right"

self.update_pan = 1

if ev.value == 0:

self.update_pan = 0

logging.debug("pan value: " + str(self.pan))

logging.debug("arrow " + self.joypad_ud_last + " released")

calibration for rover wheels

elif current_event == "button_Y":

if ev.value == 1:

self.calib_enable = 1

self.calib_delay = timeit.default_timer ()

self.prev_mode = self.rover_mode

self.rover_mode = 120

self.controller_on_off = 0

elif ev.value == 0:

self.calib_enable = 3

self.calib_delay = timeit.default_timer ()

self.rover_mode = 120

self.controller_on_off = 1

logging.debug ((current_event + str(ev.value)))

error reset

elif current_event == "button_B":

if ev.value == 1:

self.rover_mode = 90 # error reset mode

logging.info("Error reset (set mode: " + str(self.rover_mode) + ") enabled")

elif ev.value == 0:

self.rover_mode = 200 # normal (drive) mode

logging.info("Error reset (set mode: " + str(self.rover_mode) + ") disabled")

logging.debug ((current_event + str(ev.value)))

controller permission

elif current_event == "button_A":

if ev.value == 1:

if self.permission == 0:

self.permission = 1

logging.info("enabled - permission for other controllers to gain control")

else:

self.permission = 0

logging.info("disabled - permission for other controllers to gain control")

logging.debug ((current_event + str(ev.value)))

emergency button - no more data will be sent

elif current_event == "button_X":

if ev.value == 1:

if self.emergency_stop == 0:

self.portOUT.packet.vel_x = 0

self.portOUT.packet.steering_angle = 0

self.portOUT.packet.drive_mode = 1 # no need to change drive mode

self.portOUT.packet.rover_mode = 90

self.portOUT.packet.permission = 1

self.portOUT.write () # publish

self.emergency_stop = 1

logging.warning("Emergency stop !!!")

elif self.emergency_stop == 1:

self.emergency_stop = 0

logging.warning("Continue operation")

logging.debug ((current_event + str(ev.value)))

rover speed (backward)

elif current_event == "button_lt":

if ev.value > 0:

self.vel_x = -(((ev.value - 0.0) * float(self.speed_range)) / 255) /100 + 0

if self.vel_x > -0.4:

self.vel_x = 0

88 Adrian Ricardez Ortigosa

APPENDIX D. GAMEPAD CONTROLLER CODE

logging.debug("x_vel: " + str(self.vel_x))

logging.debug((current_event + str(ev.value)))

rover speed (forward)

elif current_event == "button_rt":

if ev.value > 0:

self.vel_x = (((ev.value - 0.0) * float(self.speed_range)) / 255) /100 + 0

if self.vel_x < 0.4:

self.vel_x = 0

logging.debug("x_vel: " + str(self.vel_x))

logging.debug((current_event + str(ev.value)))

change drive modes 1=ackermann , 2 = PointTurn , 3 = CrabWalk

elif current_event == "button_rb":

if ev.value == 1:

self.drive_mode = (self.drive_mode + 1)

if self.drive_mode > 3:

self.drive_mode = 1

logging.info("drive_mode: " + str(self.drive_mode))

logging.debug ((current_event + str(ev.value)))

change logging levels

elif current_event == "button_lb":

if ev.value == 1: # only on button press

self.log_lv = self.log_lv + 1

if len(self.log_lvs)-1 >= self.log_lv:

if self.log_lvs[self.log_lv] == "ERROR":

logging.getLogger ().setLevel(logging.ERROR)

logging.error("logging level set to " + self.log_lvs[self.log_lv])

elif self.log_lvs[self.log_lv] == "WARNING":

logging.getLogger ().setLevel(logging.WARNING)

logging.warning("logging level set to " + self.log_lvs[self.log_lv])

elif self.log_lvs[self.log_lv] == "INFO":

logging.getLogger ().setLevel(logging.INFO)

logging.info("logging level set to " + self.log_lvs[self.log_lv])

elif self.log_lvs[self.log_lv] == "DEBUG":

logging.getLogger ().setLevel(logging.DEBUG)

logging.debug("logging level set to " + self.log_lvs[self.log_lv])

else:

self.log_lv = 0

logging.getLogger ().setLevel(logging.ERROR)

logging.error("logging level set to " + self.log_lvs[self.log_lv])

logging.debug ((current_event + str(ev.value)))

elif current_event == "button_rb":

logging.debug ((current_event + str(ev.value)))

'''convert to steering angle '''
if self.joy_left_change == 1:

self.joy_left_change = 0

#if 1.0 - (timeit.default_timer () - self.start_time) < 0:

logging.info(" angle: " + str(self.steering_angle))

self.start_time = timeit.default_timer ()

elif self.joy_right_change == 1: # compute steering angle from joystick values

self.joy_right_change = 0

#print(" joy_right_lr: %d joy_right_ud: %d" %(self.joy_right_lr ,self.joy_right_ud))

--------------- JOYTICK FILTER by Adrian R. 2022 ----------------------

this will restrict the angle of the GamePad to make it softer when reached the edges

UNCOMMENT THIS AT THIS LEVEL!

#if abs(self.joy_right_lr) >= 230 or abs(self.joy_right_ud) >= 150:

self.steering_angle = round(self.constrain_angle(self.get_angle(self.joy_right_lr , self.joy_right_ud)), 0)

#elif (abs(self.joy_right_lr) + abs(self.joy_right_ud)) >= 300:

self.steering_angle = round(self.constrain_angle(self.get_angle(self.joy_right_lr , self.joy_right_ud)), 0)

def get_angle(self , y, x):

"""!

Convert a x and y pos of joystick into an angle (0 ->180 , 0 ->-180)

"""

return math.degrees(math.atan2(y, x)) # polar coordinates

def constrain_angle(self , angle):

"""!

constrain steering angle

"""

if angle > 180: angle = 360 - angle

if angle < 0: angle = 360 + angle

return angle

def calibration_update(self):

'''!
This function handles the calibration process of the rover

There are 3 stages to this:

1. Turn Bogie controllers off (controller off = 120)

2. Wait for wheels to be adjusted (calibration = mode 150)

3. Turn Bogie controllers back on (controller on = 120)

'''
if (self.calib_enable == 1) and ((timeit.default_timer ()-self.calib_delay) > self.calib_interval):

self.rover_mode = 150

self.calib_enable = 2

logging.info("Calibration (set mode: " + str(self.rover_mode) + ") enabled")

Adrian Ricardez Ortigosa 89

APPENDIX D. GAMEPAD CONTROLLER CODE

elif self.calib_enable == 2:

pass # do nothing until Y-button is released

elif (self.calib_enable == 3) and ((timeit.default_timer ()-self.calib_delay) > self.calib_interval):

self.rover_mode = self.prev_mode

self.calib_enable = 0

logging.info("Calibration (set mode: " + str(self.rover_mode) + ") disabled")

def pan_tilt_update(self):

'''!
set values for pan and tilt (0 -255 PWM)

'''
update = 0 # 1 if pan tilt values change

if self.update_tilt:

if self.joypad_ud_last == "up":

if (timeit.default_timer () - self.last_update) > self.update_interval:

self.tilt = self.tilt + 1

self.last_update = timeit.default_timer ()

if self.tilt > 255:

self.tilt = 255

elif self.joypad_ud_last == "down":

if (timeit.default_timer () - self.last_update) > self.update_interval:

self.tilt = self.tilt - 1

self.last_update = timeit.default_timer ()

if self.tilt < 0:

self.tilt = 0

if self.update_pan:

if self.joypad_ud_last == "left":

if (timeit.default_timer () - self.last_update) > self.update_interval:

self.pan = self.pan + 1

self.last_update = timeit.default_timer ()

if self.pan > 255:

self.pan = 255

elif self.joypad_ud_last == "right":

if (timeit.default_timer () - self.last_update) > self.update_interval:

self.pan = self.pan - 1

self.last_update = timeit.default_timer ()

if self.pan < 0:

self.pan = 0

return update

def send_data(self):

"""

Write controller data to ln-manager port and publish topic

"""

#self.vel_x = self.vel_x + 0.01

#self.steering_angle = self.steering_angle + 1

#if self.vel_x > 1.0:

self.vel_x = 0

#if self.steering_angle > 360:

self.steering_angle = 0

self.portOUT.packet.vel_x = self.vel_x

self.portOUT.packet.vel_y = self.vel_y

self.portOUT.packet.rotation = self.steering_angle

self.portOUT.packet.drive_mode = self.drive_mode

self.portOUT.packet.mode = self.rover_mode

self.portOUT.packet.controller_on_off = self.controller_on_off

self.portOUT.packet.Pan = self.pan

self.portOUT.packet.Tilt = self.tilt

self.portOUT.packet.Assume = self.assume

self.portOUT.packet.Permission = self.permission

self.portOUT.write () # publish

print variables hehe

print("vel_x: %f vel_y: %f angle: %f drive_mode: %d rover_mode: %d pan: %d tilt: %d permission: %d"

%(self.vel_x ,self.vel_y ,self.steering_angle ,self.drive_mode ,self.rover_mode ,

self.pan ,self.tilt ,self.permission))

def main(args):

"""!

main gamepad loop

"""

clnt = ln.client("GamePad", args) # ln client

ir = input_reader ()

gp = gamepad_f710 ()

send_period = 0

while True:

if ir.check_events(timeout =0.01):

gp.event_mapping(ir.ev_data)

if gp.emergency_stop == 0:

if send_period < timeit.default_timer ():

gp.send_data ()

send_period = timeit.default_timer () + (1.0 / gp.frequency)

gp.pan_tilt_update ()

gp.calibration_update ()

90 Adrian Ricardez Ortigosa

APPENDIX E. ROVER COMMUNICATION WITH SIMULINK

rover communication with Simulink

This Rover.py code works only if the GamePad is the main controller. To integrate the au-
tonomous navigation, one of the following two options is required:

1. Use the code from Appx. F

2. Do what is explained in Sec. 6.1.2

#!/usr/bin/python

-*- coding: utf -8 -*-

"""

Started on March 21 2022

@author: irrg_va

Finished on Jan 31 2023

@author: rica_ad

"""

LIBRARIES

import logging

import threading

import time

import array

import sys

import serial

import serial.tools.list_ports

import glob

import struct

import numpy as np

import math

import links_and_nodes as ln

import time

------------------------- Global Variables ---------------------------------

wheelDiam_m = 0.0534 # wheel diameter in meters old rover (black)

robot_rotationDiam_m = 0.27 # it is the distance from the center to the corner wheels

used to calculate Rotation mode velocity

body_w = 0.0 # initializer of the body angular velocity

bodyV_max_m_s = 0.115 # from experiments 09.11.2022 in lab , meters per sec

wheelV_max_value = 15000 # found experimentally , maybe til 16000, but better set to this one

calibrated_pantilt = [139 ,164] # experimentally set to get a good mapping 09.11.2022

communication_time = 1./1000. # to give time in secs to the controller to command the velocity

mapping_bodyV_max_m_s = 0.05 # TODO: to cross -check the value

mapping_bodyW_max_rad_s = 0.25 # TODO: to cross -check the value

mapping_bodyW_min_rad_s = 0.025 # TODO: to cross -check the value

Data Classes (@irrg_va)

class LRM_DataStruct:

def __init__(self):

self._lock = threading.Lock()

self.errorextern = 0 # errorvalue

self.seterror = 0 # errorclearvalue for bogies

self.bogie00 = self.Bogie (0,0) # create all the bogies

self.bogie01 = self.Bogie (0,1)

self.bogie10 = self.Bogie (1,0)

self.bogie11 = self.Bogie (1,1)

self.bogie20 = self.Bogie (2,0)

self.bogie21 = self.Bogie (2,1)

Adrian Ricardez Ortigosa 91

APPENDIX E. ROVER COMMUNICATION WITH SIMULINK

self.bogies =[] # put the bogies in a list

self.bogies.append(self.bogie00)

self.bogies.append(self.bogie01)

self.bogies.append(self.bogie10)

self.bogies.append(self.bogie11)

self.bogies.append(self.bogie20)

self.bogies.append(self.bogie21)

self.pantilt = self.PanTilt () # set the pantilt

class Bogie:

def __init__(self , Bogie_ID , Wheel_ID):

#set bogie data

default mode = normalmode

self.mode = 200

self.bogie_ID = Bogie_ID

self.wheel_ID = Wheel_ID

self.setangle = 0

self.setspeed = 0

#get bogie data

self.realangle = 0

self.realspeed = 0

self.anglebogie = 0 #only in bogiewheel X0 (X=0/1/2) -> see physical connection

self.motorcurrentsteer = 0

self.motorcurrentdrive = 0

self.magencodersteerinc = 0 # magnetic encoder steer increments

self.flagcounterdrive = 0

self.errorintern = 0 # gets send as ERRtemp

self.crc_check = 0

#status bogie

self.sendData = True

self.setControllerOnOff = 1

#PID controller data

self.PID_data = self.PID_Data ()

class PID_Data:

def __init__(self):

TODO: Note that these default values are also hard coded in the

bogie code and where determined purely experimentally (irrg_va)

self.DP_i = 36 #Drive Parameter P inner loop

Drive PIDinit: 36, 4, 0,11,0,0, 65000 ,65000, 4, 2

self.DI_i = 4 #Drive Parameter I inner loop

self.DD_i = 0 #Drive Parameter D inner loop

self.DP_o = 11 #Drive Parameter P outer loop

self.DI_o = 0 #Drive Parameter I outer loop

self.DD_o = 0 #Drive Parameter D outer loop

self.SP_i = 4113 #Steer Parameter P inner loop

SteerPIDinit: 4113,0,0 ,8912,0,0, 65000 , 65000 , 4, 1

self.SI_i = 0 #Steer Parameter I inner loop

self.SD_i = 0 #Steer Parameter D inner loop

self.SP_o = 8912 #Steer Parameter P outer loop

self.SI_o = 0 #Steer Parameter I outer loop

self.SD_o = 0 #Steer Parameter D outer loop

self.ScaleD_i = 4 #Drive Scaling inner loop

self.ScaleS_i = 4 #Steer Scaling inner loop

self.ScaleD_o = 2 #Drive Scaling outer loop

self.ScaleS_o = 1 #Steer Scaling outer loop

self.WD_o = 65000 #Drive Windup outer loop

self.WD_i = 65000 #Drive Windup inner loop

self.WS_o = 65000 #Steer Windup outer loop

self.WS_i = 65000 #Steer Windup inner loop

list PID parameter for systematic access: S= Steer , D = Drive , I/i = Inner Loop ,

O/o = Outer Loop #TODO:simpify parameter names

self.list_S_I = [self.SP_i , self.SI_i , self.SD_i , self.ScaleS_i , self.WS_i]

self.list_S_O = [self.SP_o , self.SI_o , self.SD_o , self.ScaleS_o , self.WS_o]

self.list_D_I = [self.DP_i , self.DI_i , self.DD_i , self.ScaleD_i , self.WD_i]

self.list_D_O = [self.DP_o , self.DI_o , self.DD_o , self.ScaleD_o , self.WD_o]

self.list_S_IO = [self.list_S_I , self.list_S_O]

self.list_D_IO = [self.list_D_I , self.list_D_O]

self.list_SteerDrive = [self.list_S_IO , self.list_D_IO]

class PanTilt ():

def __init__(self):

self.PanTiltset = 1

self.Pan = calibrated_pantilt [0]

self.Tilt = calibrated_pantilt [1]

Communication Class and Functions (@irrg_va)

===

class Communication:

def __init__(self):

self.ser = 0

self.selected_port = 0

def connect(self):

#get all the available ports and print them

if sys.platform.startswith('win'):
ports = ['COM%s' % (i + 1) for i in range (256)]

92 Adrian Ricardez Ortigosa

APPENDIX E. ROVER COMMUNICATION WITH SIMULINK

elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin '):
this excludes your current terminal "/dev/tty"

ports = glob.glob('/dev/tty[A-Za -z]*')
elif sys.platform.startswith('darwin '):

ports = glob.glob('/dev/tty.*')
else:

raise EnvironmentError('Unsupported platform ')
result = []

for port in ports:

try:

s = serial.Serial(port)

s.close()

result.append(port)

except (OSError , serial.SerialException):

pass

for lauf in result :

print(lauf)

self.selected_port = 0 # input (" Select Port: "), can be user input , but better set to 0

try:

self.ser = serial.Serial(result[int(self.selected_port)])

if self.ser.isOpen ():

print(self.ser.portstr + " is enabled !\n")

self.ser.baudrate = 230400

self.ser.timeout = 2

self.ser.bytesize = serial.EIGHTBITS

self.ser.parity = serial.PARITY_NONE

self.ser.stopbits = serial.STOPBITS_ONE

except:

print("could not connect to"+result[self.selected_port])

def disconnect(self):

try:

self.ser.close ()

print("disconnected" + "(COM" + str(self.selected_port) + ")")

except:

print("Error with COM -Port connection!")

def createmessage(self , datastruct):

datastruct._lock.acquire ()

#bogie modes

NormalMode = 200

ErrorSetMode = 90

CalibrationMode = 150

ControllerOnOff = 120

ControllerSet = 80

message = bytearray (0)

message.append (146) #select maintobogie protocol

message.append (0) #preserve the first two bytes for the message length

message.append (0)

#select mode dependent message for bogies

for bogie in range(len(datastruct.bogies)): #for every bogiewheel (6)

if datastruct.bogies[bogie]. sendData == True:

if datastruct.bogies[bogie].mode == NormalMode:

sendNormalMode(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.bogies[bogie].setangle ,

datastruct.bogies[bogie].setspeed ,

datastruct.errorextern)

elif datastruct.bogies[bogie].mode == ErrorSetMode:

sendErrorSetMode(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.seterror ,

datastruct.errorextern)

elif datastruct.bogies[bogie].mode == CalibrationMode:

sendCalibrationMode(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.errorextern)

elif datastruct.bogies[bogie].mode == ControllerOnOff:

sendControllerOnOff(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.bogies[bogie]. setControllerOnOff ,

datastruct.errorextern)

elif datastruct.bogies[bogie].mode == ControllerSet:

sendControllerSet(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.bogies[bogie].PID_data ,

datastruct.errorextern)

else:

print("Error: no/wrong mode selected")

raise ValueError

else:

message.append (0)

if datastruct.pantilt.PanTiltset == 1:

message.append (1)

Adrian Ricardez Ortigosa 93

APPENDIX E. ROVER COMMUNICATION WITH SIMULINK

message.append (130)

message.append (6)

message.append(datastruct.pantilt.Pan) #pan

message.append(datastruct.pantilt.Tilt) #tilt

message.append (0) #Error

message.append (0) #CRC

else:

message.append (1)

#last bits no data (for now)

message.append (0) #TODO: IMU

message.append (0) #Middle Board

message.append (0) #Error

message.append (0) # TODO: CRC

#determine message length

message [1] = ((len(message) & 255))

message [2] = ((len(message) >>8))

datastruct._lock.release ()

return message #return finished message

def SendData(self , data): #send LRM data

try:

self.ser.flushInput ()

for i in data:

self.ser.write(struct.pack('>B', i))

#print(i, end=" ")

print("")

except:

print("Error: Attempting to use a port that is not open")

def ReadData(self): #returns body message

print("")

===

ModeHandling Functions (@irrg_va)

===

def BogieModusSort(DataBogie ,bogie ,datastruct):

datastruct._lock.acquire ()

NormalMode = 200

ErrorSetMode = 90

CalibrationMode = 150

ControllerOnOff = 120

ControllerSet = 80

i = 0

modus = DataBogie[i] & 0xfe

i += 2 #skipp mode + length

if NormalMode == modus:

datastruct.bogies[bogie]. realangle = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. realspeed = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. anglebogie = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. motorcurrentsteer = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. motorcurrentdrive = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. magencodersteerinc = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. flagcounterdrive = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

elif ErrorSetMode == modus:

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

#datastruct.errorextern = DataBogie[i] #TODO: should be errorextern

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

elif CalibrationMode == modus:

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

elif ControllerOnOff == modus:

#ControllerOnOff same Data as with NormalMode

datastruct.bogies[bogie]. realangle = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. realspeed = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. anglebogie = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. motorcurrentsteer = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. motorcurrentdrive = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. magencodersteerinc = DataBogie[i] | (DataBogie[i+1] << 8)

94 Adrian Ricardez Ortigosa

APPENDIX E. ROVER COMMUNICATION WITH SIMULINK

i += 2

datastruct.bogies[bogie]. flagcounterdrive = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

elif ControllerSet == modus:

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

else:

logging.info("Error unknown mode received: " + str(modus))

datastruct._lock.release ()

===

SendModes Functions (@irrg_va)

===

def sendNormalMode(msg ,wheel ,angleint ,speedint ,ErrorExtern):

msg.append (1) #sendData == True

msg.append (200+ wheel)

msg.append (8)

msg.append(angleint & 255) #angle low byte

msg.append(angleint >> 8) #angle high byte

msg.append(speedint & 255) #speed low byte

msg.append(speedint >> 8) #speed high byte

msg.append(ErrorExtern)

msg.append (0)

def sendErrorSetMode(msg ,wheel ,SetError ,ErrorExtern):

msg.append (1) #sendData == True

msg.append (90+ wheel)

msg.append (6)

msg.append(SetError)

msg.append (0)

msg.append(ErrorExtern)

msg.append (0)

def sendCalibrationMode(msg ,wheel ,ErrorExtern):

msg.append (1) #sendData == True

msg.append (150+ wheel)

msg.append (4)

msg.append(ErrorExtern)

msg.append (0)

def sendControllerOnOff(msg ,wheel ,Controller_OnOff ,ErrorExtern):

msg.append (1) #sendData == True

msg.append (120+ wheel)

msg.append (5)

msg.append(Controller_OnOff) #1= controller on , 0= controller off

msg.append(ErrorExtern)

msg.append (0)

===

User Functions (@rica_ad)

===

def setangle(bogiewheel ,angle ,datastruct ,com):

set the error first before commanding angle

datastruct.bogies[bogiewheel].mode =90

com.SendData(com.createmessage(datastruct))

time.sleep(communication_time)

set the angle

datastruct.bogies[bogiewheel].mode =200

datastruct.bogies[bogiewheel]. setangle = angle

com.SendData(com.createmessage(datastruct))

time.sleep(communication_time)

def setspeed(bogiewheel ,speed ,datastruct ,com):

set the error first before commanding speed

datastruct.bogies[bogiewheel].mode =90

com.SendData(com.createmessage(datastruct))

showbogiedata(datastruct)

time.sleep(communication_time)

set the speed

datastruct.bogies[bogiewheel].mode =200

datastruct.bogies[bogiewheel]. setspeed = speed

com.SendData(com.createmessage(datastruct))

showbogiedata(datastruct)

time.sleep(communication_time)

def setstop(datastruct ,com ,delay):

it will only stop the speed , the angles keep the same value

for j in range (delay):

for i in range (6):

datastruct.bogies[i]. setspeed = 0

com.SendData(com.createmessage(datastruct))

time.sleep(communication_time)

Adrian Ricardez Ortigosa 95

APPENDIX E. ROVER COMMUNICATION WITH SIMULINK

#def showbogiedata(datastruct):

print(" bogienum:", datastruct.bogies[i].bogie_ID , end=" ")

print(" wheelnum:", datastruct.bogies[i].wheel_ID , end=" ")

print(" setangle:", datastruct.bogies[i].setangle , end=" ")

print(" setspeed:", datastruct.bogies[i].setspeed , end=" ")

print("pan:", datastruct.pantilt.Pan , end=" ")

print("tilt:", datastruct.pantilt.Tilt , end=" ")

print("v2 ",speed ," a2: ",angle ,"|v0 ",speed_wheels [1]," a0: ",angle_wheels [0])

print("v3 ",speed ," a3: ",angle_wheels [0],"|v1 ",speed_wheels [1]," a1: ",angle_wheels [0])

print("v5 ",speed ," a5: ",angle_wheels [0],"|v4 ",speed_wheels [1]," a4: ",angle_wheels [0])

print(" realangle:", datastruct.bogies[i].realangle , end=" ")

print(" realspeed:", datastruct.bogies[i].realspeed , end=" ")

print(" anglebogie :", datastruct.bogies[i].anglebogie , end=" ")

print(" currentsteer :", datastruct.bogies[i]. motorcurrentsteer , end=" ")

print(" currentdrive :", datastruct.bogies[i]. motorcurrentdrive , end=" ")

print(" magencsteerinc :", datastruct.bogies[i]. magencodersteerinc , end=" ")

print(" flagcounterdrive :", datastruct.bogies[i]. flagcounterdrive , end=" ")

print(" errorintern :", datastruct.bogies[i]. errorintern , end=" ")

print(" crc_check:", datastruct.bogies[i]. crc_check)

===

Threads Functions

===

def stopcom ():

global ComOnOff

ComOnOff = False

def startcom ():

global ComOnOff

ComOnOff = True

ISR_com = threading.Thread(target=ISR_COM , args =(1,))

ISR_com.start ()

===

MAIN Function

===

def main(args):

clnt = ln.client(sys.argv[0], sys.argv [1:]) # links and nodes client

for the gamepad msgs (Controller 1)

port_gamepad = clnt.subscribe("Controller_1", "md_controller")

for the Simulink model msgs

port_Bogie_Wheel = ["","","","","",""]

port_Bogie_Wheel [0] = clnt.subscribe("DataIN_Bogie0_Wheel0", "md_Simulink_to_LN_Wheel")

port_Bogie_Wheel [1] = clnt.subscribe("DataIN_Bogie0_Wheel1", "md_Simulink_to_LN_Wheel")

port_Bogie_Wheel [2] = clnt.subscribe("DataIN_Bogie1_Wheel0", "md_Simulink_to_LN_Wheel")

port_Bogie_Wheel [3] = clnt.subscribe("DataIN_Bogie1_Wheel1", "md_Simulink_to_LN_Wheel")

port_Bogie_Wheel [4] = clnt.subscribe("DataIN_Bogie2_Wheel0", "md_Simulink_to_LN_Wheel")

port_Bogie_Wheel [5] = clnt.subscribe("DataIN_Bogie2_Wheel1", "md_Simulink_to_LN_Wheel")

for the navigation msgs (Controller 2)

port_navigation = clnt.subscribe("lrm1.cmd_vel_autonomy", "gen/geometry_msgs/Twist")

for the pantilt msgs (to keep it separated for ROS for the tf tree)

portOUT_PanTilt = clnt.publish("lrm1.pantilt", "md_PanTilt")

print("Rover Communication initialized ...")

Initialization of some functions for the communication structure and connection

lrm = LRM_DataStruct ()

c=Communication ()

c.connect ()

Set to error , like a reset , to start the normal mode afterwards

for i in range (6):

lrm.bogies[i].mode =90

c.SendData(c.createmessage(lrm))

time.sleep(communication_time)

Set normal mode , ready to be commanded by gamepad or navigation stack

for j in range (20):

for i in range (6):

lrm.bogies[i].mode =200

lrm.bogies[i]. setangle = 0

lrm.pantilt.Pan = calibrated_pantilt [0]

lrm.pantilt.Tilt = calibrated_pantilt [1]

c.SendData(c.createmessage(lrm))

time.sleep(communication_time)

setstop(lrm ,c,10)

===

MAIN LOOP

===

while True:

obtain the gamepad parameters

port_gamepad.read()

#angle = int(port_gamepad.packet.rotation)

#body_vel = float(port_gamepad.packet.vel_x)

#rover_mode = int(port_gamepad.packet.mode)

96 Adrian Ricardez Ortigosa

APPENDIX E. ROVER COMMUNICATION WITH SIMULINK

pan = int(port_gamepad.packet.Pan)

tilt = int(port_gamepad.packet.Tilt)

drive_mode = int(port_gamepad.packet.drive_mode)

assume = int(port_gamepad.packet.Assume)

permission = int(port_gamepad.packet.Permission)

initializing values gotten from Simulink

steering_angle = np.zeros (6)

steering_angle_deg = np.zeros (6)

speed = np.zeros (6)

speed_m_s = np.zeros (6)

rover_mode = np.zeros (6)

initialization of navigation variables

nav_vx = 0.0 # linear velocity in x

nav_vy= 0.0 # linear velocity in y

nav_wz = 0.0 # angular velocity in z

initialization of calculated variables

body_w = 0.0 # body angular velocity (calculated , not provided)

body_vel = 0.0

wheelV_m_s = np.zeros (6)

wheelV_value = np.zeros (6)

wheelW_rad_s = np.zeros (6)

wheelAngle_degrees = np.zeros (6)

reception of values from Simulink

for i in range (6):

port_Bogie_Wheel[i].read()

steering_angle[i] = int(port_Bogie_Wheel[i]. packet.setAngle)

speed[i] = float(port_Bogie_Wheel[i]. packet.setMeterPerSecon)

rover_mode[i] = int(port_Bogie_Wheel[i]. packet.setMode)

auxiliary variables needed for technical issues

speed_m_s[i] = float(speed[i]* bodyV_max_m_s)

steering_angle_deg[i] = int(steering_angle[i])

Already , the calculated speed from the Simulink model

for i in range (6):

wheelV_m_s[i] = speed_m_s[i] # From the "Simulink model"

wheelAngle_degrees[i] = steering_angle_deg[i] # From the "Simulink model"

wheelV_m_s[i] = float(wheelV_m_s[i]) # Transformed it to float , coding purposes

wheelW_rad_s[i] = wheelV_m_s[i]/(wheelDiam_m /2) # Conversion to w for each wheel

Conversion from e.g. 1.0 to 15000 (and float to int)

wheelV_value[i] = int(wheelV_m_s[i]* wheelV_max_value/bodyV_max_m_s)

Restriction values

if wheelV_value[i] > wheelV_max_value:

wheelV_value[i] = wheelV_max_value

elif wheelV_value[i] < -wheelV_max_value:

wheelV_value[i] = -wheelV_max_value

If the value is negative , binary -complement (value to positive)

since the functions can't receive negative values

if wheelV_value[i] < 0:

wheelV_value[i] = int(bin (2**16+ int(wheelV_value[i]))[-16:] ,2)

Restricting values to dump the printing part for a nicer view

if abs(wheelW_rad_s[i]) < 0.1:

wheelW_rad_s[i] = 0.0

if drive_mode == 2:

----- Formulas to calculate the body angular velocity ------

body_w = (Vr_robot -Vl_robot/robot_rotatonDiam_m) or 2V/Drobot

V = w*r, meaning that: Vr_robot or Vl_robot = wheelR_rad_s *(wheelD_m /2)

then: body_w = 2* wheelR_rad_s *(wheelD_m /2)/robot_rotationDiam_m

finally:

body_w = wheelW_rad_s [0]* wheelDiam_m/robot_rotationDiam_m

printed values

print("W2: %d rad/s % d W5: %d rad/s % d \n"\

"W3: %d rad/s % d W4: %d rad/s % d \n"\

"W0: %d rad/s % d W1: %d rad/s % d \n"\

"drive_mode: %d rover_mode: %d pan: %d tilt: %d assume: %d permission: %d\n"\

"From GamePad / Navigation Stack: \n"\

"nav_vx: %0.3f m/s nav_vy: %0.3f m/s nav_wz: %0.3f rad/s \n"\

"Calculated :\n"

"body_vel: %0.3f m/s body_w: %0.3f rad/s\n"

%(wheelV_value [2], wheelAngle_degrees [2], wheelV_value [5], wheelAngle_degrees [5],

wheelV_value [3], wheelAngle_degrees [3], wheelV_value [4], wheelAngle_degrees [4],

wheelV_value [0], wheelAngle_degrees [0], wheelV_value [1], wheelAngle_degrees [1],

drive_mode ,rover_mode [0],pan ,tilt ,assume ,permission ,

nav_vx ,nav_vy ,nav_wz ,body_vel ,body_w))

writing into the Main Board

for i in range (6):

lrm.bogies[i]. setspeed = int(wheelV_value[i])

lrm.bogies[i]. setangle = int(wheelAngle_degrees[i])

Adrian Ricardez Ortigosa 97

APPENDIX E. ROVER COMMUNICATION WITH SIMULINK

lrm.pantilt.Pan = int(pan)

lrm.pantilt.Tilt = int(tilt)

PanTilt implementation for rostopic2ln , ln2ros

portOUT_PanTilt.packet.Pan = int(pan)

portOUT_PanTilt.packet.Tilt = int(tilt)

portOUT_PanTilt.write ()

Writing data

c.SendData(c.createmessage(lrm))

time.sleep(communication_time)

Have fun! :)

98 Adrian Ricardez Ortigosa

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

rover communication no Simulink

This Rover.py code works for both controllers: the GamePad and the autonomous navigation.

#!/usr/bin/python

-*- coding: utf -8 -*-

"""

Started on March 21 2022

@author: irrg_va

Finished on Jan 31 2023

@author: rica_ad

"""

LIBRARIES

import logging

import threading

import time

import array

import sys

import serial

import serial.tools.list_ports

import glob

import struct

import numpy as np

import math

import links_and_nodes as ln

import time

------------------------- Global Variables ---------------------------------

wheelDiam_m = 0.0534 # wheel diameter in meters old rover (black)

robot_rotationDiam_m = 0.27 # it is the distance from the center to the corner wheels

used to calculate Rotation mode velocity

body_w = 0.0 # initializer of the body angular velocity

bodyV_max_m_s = 0.115 # from experiments 09.11.2022 in lab , meters per sec

wheelV_max_value = 15000 # found experimentally , maybe til 16000, but better set to this one

calibrated_pantilt = [139 ,164] # experimentally set to get a good mapping 09.11.2022

communication_time = 1./1000. # to give time in secs to the controller to command the velocity

mapping_bodyV_max_m_s = 0.05 # TODO: to cross -check the value

mapping_bodyW_max_rad_s = 0.25 # TODO: to cross -check the value

mapping_bodyW_min_rad_s = 0.025 # TODO: to cross -check the value

Data Classes (@irrg_va)

class LRM_DataStruct:

def __init__(self):

self._lock = threading.Lock()

self.errorextern = 0 # errorvalue

self.seterror = 0 # errorclearvalue for bogies

self.bogie00 = self.Bogie (0,0) # create all the bogies

self.bogie01 = self.Bogie (0,1)

self.bogie10 = self.Bogie (1,0)

self.bogie11 = self.Bogie (1,1)

self.bogie20 = self.Bogie (2,0)

self.bogie21 = self.Bogie (2,1)

self.bogies =[] # put the bogies in a list

self.bogies.append(self.bogie00)

self.bogies.append(self.bogie01)

self.bogies.append(self.bogie10)

self.bogies.append(self.bogie11)

self.bogies.append(self.bogie20)

self.bogies.append(self.bogie21)

self.pantilt = self.PanTilt () # set the pantilt

Adrian Ricardez Ortigosa 99

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

class Bogie:

def __init__(self , Bogie_ID , Wheel_ID):

#set bogie data

default mode = normalmode

self.mode = 200

self.bogie_ID = Bogie_ID

self.wheel_ID = Wheel_ID

self.setangle = 0

self.setspeed = 0

#get bogie data

self.realangle = 0

self.realspeed = 0

self.anglebogie = 0 #only in bogiewheel X0 (X=0/1/2)

self.motorcurrentsteer = 0

self.motorcurrentdrive = 0

self.magencodersteerinc = 0 # magnetic encoder steer increments

self.flagcounterdrive = 0

self.errorintern = 0 # gets send as ERRtemp

self.crc_check = 0

#status bogie

self.sendData = True

self.setControllerOnOff = 1

#PID controller data

self.PID_data = self.PID_Data ()

class PID_Data:

def __init__(self):

TODO: Note that these default values are also hard coded in the

bogie code and where determined purely experimentally (irrg_va)

self.DP_i = 36 #Drive Parameter P inner loop

Drive PIDinit: 36, 4, 0,11,0,0, 65000 ,65000, 4, 2

self.DI_i = 4 #Drive Parameter I inner loop

self.DD_i = 0 #Drive Parameter D inner loop

self.DP_o = 11 #Drive Parameter P outer loop

self.DI_o = 0 #Drive Parameter I outer loop

self.DD_o = 0 #Drive Parameter D outer loop

self.SP_i = 4113 #Steer Parameter P inner loop

SteerPIDinit: 4113,0,0 ,8912,0,0, 65000 , 65000 , 4, 1

self.SI_i = 0 #Steer Parameter I inner loop

self.SD_i = 0 #Steer Parameter D inner loop

self.SP_o = 8912 #Steer Parameter P outer loop

self.SI_o = 0 #Steer Parameter I outer loop

self.SD_o = 0 #Steer Parameter D outer loop

self.ScaleD_i = 4 #Drive Scaling inner loop

self.ScaleS_i = 4 #Steer Scaling inner loop

self.ScaleD_o = 2 #Drive Scaling outer loop

self.ScaleS_o = 1 #Steer Scaling outer loop

self.WD_o = 65000 #Drive Windup outer loop

self.WD_i = 65000 #Drive Windup inner loop

self.WS_o = 65000 #Steer Windup outer loop

self.WS_i = 65000 #Steer Windup inner loop

list PID parameter for systematic access: S= Steer , D = Drive , I/i = Inner Loop ,

O/o = Outer Loop #TODO:simpify parameter names

self.list_S_I = [self.SP_i , self.SI_i , self.SD_i , self.ScaleS_i , self.WS_i]

self.list_S_O = [self.SP_o , self.SI_o , self.SD_o , self.ScaleS_o , self.WS_o]

self.list_D_I = [self.DP_i , self.DI_i , self.DD_i , self.ScaleD_i , self.WD_i]

self.list_D_O = [self.DP_o , self.DI_o , self.DD_o , self.ScaleD_o , self.WD_o]

self.list_S_IO = [self.list_S_I , self.list_S_O]

self.list_D_IO = [self.list_D_I , self.list_D_O]

self.list_SteerDrive = [self.list_S_IO , self.list_D_IO]

class PanTilt ():

def __init__(self):

self.PanTiltset = 1

self.Pan = calibrated_pantilt [0]

self.Tilt = calibrated_pantilt [1]

Communication Class and Functions (@irrg_va)

===

class Communication:

def __init__(self):

self.ser = 0

self.selected_port = 0

def connect(self):

#get all the available ports and print them

if sys.platform.startswith('win'):
ports = ['COM%s' % (i + 1) for i in range (256)]

elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin '):
this excludes your current terminal "/dev/tty"

ports = glob.glob('/dev/tty[A-Za -z]*')
elif sys.platform.startswith('darwin '):

ports = glob.glob('/dev/tty.*')
else:

raise EnvironmentError('Unsupported platform ')
result = []

for port in ports:

try:

100 Adrian Ricardez Ortigosa

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

s = serial.Serial(port)

s.close()

result.append(port)

except (OSError , serial.SerialException):

pass

for lauf in result :

print(lauf)

self.selected_port = 0 # input (" Select Port: "), can be user input , but better set to 0

try:

self.ser = serial.Serial(result[int(self.selected_port)])

if self.ser.isOpen ():

print(self.ser.portstr + " is enabled !\n")

self.ser.baudrate = 230400

self.ser.timeout = 2

self.ser.bytesize = serial.EIGHTBITS

self.ser.parity = serial.PARITY_NONE

self.ser.stopbits = serial.STOPBITS_ONE

except:

print("could not connect to"+result[self.selected_port])

def disconnect(self):

try:

self.ser.close ()

print("disconnected" + "(COM" + str(self.selected_port) + ")")

except:

print("Error with COM -Port connection!")

def createmessage(self , datastruct):

datastruct._lock.acquire ()

#bogie modes

NormalMode = 200

ErrorSetMode = 90

CalibrationMode = 150

ControllerOnOff = 120

ControllerSet = 80

message = bytearray (0)

message.append (146) #select maintobogie protocol

message.append (0) #preserve the first two bytes for the message length

message.append (0)

#select mode dependent message for bogies

for bogie in range(len(datastruct.bogies)): #for every bogiewheel (6)

if datastruct.bogies[bogie]. sendData == True:

if datastruct.bogies[bogie].mode == NormalMode:

sendNormalMode(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.bogies[bogie].setangle ,

datastruct.bogies[bogie].setspeed ,

datastruct.errorextern)

elif datastruct.bogies[bogie].mode == ErrorSetMode:

sendErrorSetMode(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.seterror ,

datastruct.errorextern)

elif datastruct.bogies[bogie].mode == CalibrationMode:

sendCalibrationMode(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.errorextern)

elif datastruct.bogies[bogie].mode == ControllerOnOff:

sendControllerOnOff(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.bogies[bogie]. setControllerOnOff ,

datastruct.errorextern)

elif datastruct.bogies[bogie].mode == ControllerSet:

sendControllerSet(message ,

datastruct.bogies[bogie].wheel_ID ,

datastruct.bogies[bogie].PID_data ,

datastruct.errorextern)

else:

print("Error: no/wrong mode selected")

raise ValueError

else:

message.append (0)

if datastruct.pantilt.PanTiltset == 1:

message.append (1)

message.append (130)

message.append (6)

message.append(datastruct.pantilt.Pan) #pan

message.append(datastruct.pantilt.Tilt) #tilt

message.append (0) #Error

message.append (0) #CRC

else:

message.append (1)

#last bits no data (for now)

Adrian Ricardez Ortigosa 101

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

message.append (0) #TODO: IMU

message.append (0) #Middle Board

message.append (0) #Error

message.append (0) # TODO: CRC

#determine message length

message [1] = ((len(message) & 255))

message [2] = ((len(message) >>8))

datastruct._lock.release ()

return message #return finished message

def SendData(self , data): #send LRM data

try:

self.ser.flushInput ()

for i in data:

self.ser.write(struct.pack('>B', i))

#print(i, end=" ")

print("")

except:

print("Error: Attempting to use a port that is not open")

def ReadData(self): #returns body message

print("")

===

ModeHandling Functions (@irrg_va)

===

def BogieModusSort(DataBogie ,bogie ,datastruct):

datastruct._lock.acquire ()

NormalMode = 200

ErrorSetMode = 90

CalibrationMode = 150

ControllerOnOff = 120

ControllerSet = 80

i = 0

modus = DataBogie[i] & 0xfe

i += 2 #skipp mode + length

if NormalMode == modus:

datastruct.bogies[bogie]. realangle = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. realspeed = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. anglebogie = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. motorcurrentsteer = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. motorcurrentdrive = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. magencodersteerinc = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. flagcounterdrive = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

elif ErrorSetMode == modus:

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

#datastruct.errorextern = DataBogie[i] #TODO: should be errorextern

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

elif CalibrationMode == modus:

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

elif ControllerOnOff == modus:

#ControllerOnOff same Data as with NormalMode

datastruct.bogies[bogie]. realangle = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. realspeed = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. anglebogie = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. motorcurrentsteer = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. motorcurrentdrive = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. magencodersteerinc = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. flagcounterdrive = DataBogie[i] | (DataBogie[i+1] << 8)

i += 2

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

elif ControllerSet == modus:

datastruct.bogies[bogie]. errorintern = DataBogie[i]

i += 1

datastruct.bogies[bogie]. crc_check = DataBogie[i]

102 Adrian Ricardez Ortigosa

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

else:

logging.info("Error unknown mode received: " + str(modus))

datastruct._lock.release ()

===

SendModes Functions (@irrg_va)

===

def sendNormalMode(msg ,wheel ,angleint ,speedint ,ErrorExtern):

msg.append (1) #sendData == True

msg.append (200+ wheel)

msg.append (8)

msg.append(angleint & 255) #angle low byte

msg.append(angleint >> 8) #angle high byte

msg.append(speedint & 255) #speed low byte

msg.append(speedint >> 8) #speed high byte

msg.append(ErrorExtern)

msg.append (0)

def sendErrorSetMode(msg ,wheel ,SetError ,ErrorExtern):

msg.append (1) #sendData == True

msg.append (90+ wheel)

msg.append (6)

msg.append(SetError)

msg.append (0)

msg.append(ErrorExtern)

msg.append (0)

def sendCalibrationMode(msg ,wheel ,ErrorExtern):

msg.append (1) #sendData == True

msg.append (150+ wheel)

msg.append (4)

msg.append(ErrorExtern)

msg.append (0)

def sendControllerOnOff(msg ,wheel ,Controller_OnOff ,ErrorExtern):

msg.append (1) #sendData == True

msg.append (120+ wheel)

msg.append (5)

msg.append(Controller_OnOff) #1= controller on , 0= controller off

msg.append(ErrorExtern)

msg.append (0)

===

User Functions (@rica_ad)

===

def ackerman(angle ,body_vel):

quadrant = 0 # from 1 to 4, 0 is undetermined , but initialized

1 | 4

#-------

2 | 3

k = 0.7 # normal ackerman is abrupt , this is to smooth the data a bit

w = 0.0 # initialization of body angular speed

Output Values initialization

steering_angle = np.zeros (6)

speed = np.zeros (6)

angle restriction for each quadrant to not more than 30 respectively

if angle >= 30 and angle < 90:

angle = 30

elif angle >= 90 and angle <= 150:

angle = 150

elif angle >= 210 and angle < 270:

angle = 210

elif angle >= 270 and angle <= 330:

angle = 330

assignment of quadrants depending on provided angle

if angle >= 0 and angle < 90:

quadrant = 1

elif angle >= 90 and angle < 180:

quadrant = 2

elif angle >= 180 and angle < 270:

quadrant = 3

elif angle >= 270 and angle < 360:

quadrant = 4

LRM Parameters

D = 0.085 # distance to 1/2 Tread of vehicle in m

L = 0.102 # distance to 1/2 Wheel base of vehicle in m

Ackerman Geometry

For more information see: DOI: 10.1109/ ICCAS .2008.4694549

if the angle is between these angles , calculate mathematically:

if (angle > 2 and angle < 178) or (angle > 182 and angle < 358): #to prevent nan

R = L/math.tan(math.radians(angle)) #truning radius vehicle

w = body_vel/R # body angular velocity

Adrian Ricardez Ortigosa 103

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

r_fi = math.sqrt((R-D)*(R-D)+L*L) #radius front inner

r_fo = math.sqrt((R+D)*(R+D)+L*L) #radius front outer

r_ci = R-D #radius center inner

r_co = R+D #radius center outer

v_fi = r_fi*w #speed front inner

v_fo = r_fo*w #speed front outer

v_ci = r_ci*w #speed center inner

v_co = r_co*w #speed center outer

v_ri = v_fi #speed rear inner

v_ro = v_fo #speed rear outer

if angle == 0:

phi_fi = 0

phi_fo = 0

phi_ri = 0

phi_ro = 0

else:

phi_fi = math.degrees(math.atan(L/(R-D))) #steering angle front inner

phi_fo = math.degrees(math.atan(L/(R+D))) #steering angle front outer

phi_ri = phi_fi #steering angle rear inner

phi_ro = phi_fo #steering angle rear outer

#steering angle for center is zero

wheel order in matlab: 1 = fr , 2 = cr, 3 = rr, 4 = rl , 5 = cl, 6 = fl

wheel order in matlab: 0 = rl , 1 = rr, 2 = fl, 3 = cl , 4 = cr, 5 = fr

depending on each quadrant , the angle logic is different

if quadrant == 1:

steering_angle [0] = 360- phi_ri # before phi_fo in matlab

steering_angle [1] = 360- phi_ro # before 0 in matlab

steering_angle [2] = phi_fi # before 360- phi_ro in matlab

steering_angle [3] = 0 # before 360- phi_ri in matlab

steering_angle [4] = 0

steering_angle [5] = phi_fo # before phi_fi in matlab

elif quadrant == 2:

steering_angle [0] = 360+ phi_ro # before phi_fi in matlab

steering_angle [1] = 360+ phi_ri # before 0 in matlab

steering_angle [2] = phi_fo # before 360+ phi_ri in matlab

steering_angle [3] = 0 # before 360+ phi_ro in matlab

steering_angle [4] = 0

steering_angle [5] = phi_fi # before phi_fo in matlab

elif quadrant == 3:

steering_angle [0] = phi_ro # before 360- phi_fi in matlab

steering_angle [1] = phi_ri # before 0 in matlab

steering_angle [2] = 360- phi_fo # before phi_ri in matlab

steering_angle [3] = 0 # before phi_ro in matlab

steering_angle [4] = 0

steering_angle [5] = 360- phi_fi # before 360- phi_fo in matlab

elif quadrant == 4:

steering_angle [0] = phi_ri # before 360+ phi_fo in matlab

steering_angle [1] = phi_ro # before 0 in matlab

steering_angle [2] = 360+ phi_fi # before phi_ro in matlab

steering_angle [3] = 0 # before phi_ri in matlab

steering_angle [4] = 0

steering_angle [5] = 360+ phi_fo # before 360+ phi_fi in matlab

velocity multiplied by k to reduce it, because it is too abrupt

max vel is 15000, and it was almost always giving 15000

TODO: maybe change this in matlab , this was done in python

if quadrant == 1:

speed [0] = v_ri*k

speed [1] = v_ro*k

speed [2] = v_fi*k

speed [3] = v_ci*k

speed [4] = v_co*k

speed [5] = v_fo*k

elif quadrant == 2:

speed [0] = v_ro*k

speed [1] = v_ri*k

speed [2] = v_fo*k

speed [3] = -v_co*k

speed [4] = -v_ci*k

speed [5] = v_fi*k

elif quadrant == 3:

speed [0] = -v_ro*k

speed [1] = -v_ri*k

speed [2] = -v_fo*k

speed [3] = -v_co*k

speed [4] = -v_ci*k

speed [5] = -v_fi*k

elif quadrant == 4:

speed [0] = -v_ri*k

speed [1] = -v_ro*k

speed [2] = -v_fi*k

speed [3] = v_ci*k

speed [4] = v_co*k

speed [5] = -v_fo*k

else:

104 Adrian Ricardez Ortigosa

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

for i in range (6):

steering_angle[i] = 0 # if the angle is ~0, then don't do tangent , just do 0

and the speed will only take the cosine (fwd and bckwrd) to make it more logic

and also , it is smoothed with the k factor

speed [0] = body_vel*math.cos(math.radians(angle))*k

for i in range (5):

speed[i+1] = speed [0] # since all wheels are going the same direction , assign it

for i in range (6):

steering_angle[i] = abs(steering_angle[i]) # negatives don 't exist , only 0-360

return steering_angle , speed , w

def rotation(body_vel):

D = 0.085 # distance to 1/2 Tread of vehicle in m

L = 0.102 # distance to 1/2 Wheel base of vehicle in m

r_f = math.sqrt(D*D+L*L) # Pitagoras

r_c = D

w = body_vel/r_f

v_fl = body_vel

v_cl = body_vel

v_rl = body_vel

v_fr = -body_vel

v_cr = -body_vel

v_rr = -body_vel

angles already set to rotate correctly

phi_fl = 360 -60

phi_cl = 0

phi_rl = 60

phi_rr = 360 -60

phi_cr = 0

phi_fr = 60

Output Values initialization

steering_angle = np.zeros (6)

speed = np.zeros (6)

TODO: maybe change this in matlab , this was done in python

steering_angle [0] = phi_fr

steering_angle [1] = phi_fl

steering_angle [2] = phi_rr

steering_angle [3] = 0

steering_angle [4] = 0

steering_angle [5] = phi_rl

TODO: maybe change this in matlab , this was done in python

speed [0] = v_fr

speed [1] = v_fl

speed [2] = v_rr

speed [3] = v_cr

speed [4] = v_cl

speed [5] = v_rl

return steering_angle , speed

def crabwalk(angle ,body_vel):

Output Values initialization

steering_angle = np.zeros (6)

speed = np.zeros (6)

if angle < 0:

angle = 360-angle # if the angle decreases more , then just add the 360

in crabwalk , all wheels are the same in speed and angle

for i in range (6):

steering_angle[i] = angle

speed[i] = body_vel

return steering_angle , speed

def setangle(bogiewheel ,angle ,datastruct ,com):

set the error first before commanding angle

datastruct.bogies[bogiewheel].mode =90

com.SendData(com.createmessage(datastruct))

time.sleep(communication_time)

set the angle

datastruct.bogies[bogiewheel].mode =200

datastruct.bogies[bogiewheel]. setangle = angle

com.SendData(com.createmessage(datastruct))

time.sleep(communication_time)

def setspeed(bogiewheel ,speed ,datastruct ,com):

set the error first before commanding speed

datastruct.bogies[bogiewheel].mode =90

com.SendData(com.createmessage(datastruct))

Adrian Ricardez Ortigosa 105

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

showbogiedata(datastruct)

time.sleep(communication_time)

set the speed

datastruct.bogies[bogiewheel].mode =200

datastruct.bogies[bogiewheel]. setspeed = speed

com.SendData(com.createmessage(datastruct))

showbogiedata(datastruct)

time.sleep(communication_time)

def setstop(datastruct ,com ,delay):

it will only stop the speed , the angles keep the same value

for j in range (delay):

for i in range (6):

datastruct.bogies[i]. setspeed = 0

com.SendData(com.createmessage(datastruct))

time.sleep(communication_time)

#def showbogiedata(datastruct):

print(" bogienum:", datastruct.bogies[i].bogie_ID , end=" ")

print(" wheelnum:", datastruct.bogies[i].wheel_ID , end=" ")

print(" setangle:", datastruct.bogies[i].setangle , end=" ")

print(" setspeed:", datastruct.bogies[i].setspeed , end=" ")

print("pan:", datastruct.pantilt.Pan , end=" ")

print("tilt:", datastruct.pantilt.Tilt , end=" ")

print("v2 ",speed ," a2: ",angle ,"|v0 ",speed_wheels [1]," a0: ",angle_wheels [0])

print("v3 ",speed ," a3: ",angle_wheels [0],"|v1 ",speed_wheels [1]," a1: ",angle_wheels [0])

print("v5 ",speed ," a5: ",angle_wheels [0],"|v4 ",speed_wheels [1]," a4: ",angle_wheels [0])

print(" realangle:", datastruct.bogies[i].realangle , end=" ")

print(" realspeed:", datastruct.bogies[i].realspeed , end=" ")

print(" anglebogie :", datastruct.bogies[i].anglebogie , end=" ")

print(" currentsteer :", datastruct.bogies[i]. motorcurrentsteer , end=" ")

print(" currentdrive :", datastruct.bogies[i]. motorcurrentdrive , end=" ")

print(" magencsteerinc :", datastruct.bogies[i]. magencodersteerinc , end=" ")

print(" flagcounterdrive :", datastruct.bogies[i]. flagcounterdrive , end=" ")

print(" errorintern :", datastruct.bogies[i]. errorintern , end=" ")

print(" crc_check:", datastruct.bogies[i]. crc_check)

===

Threads Functions

===

def stopcom ():

global ComOnOff

ComOnOff = False

def startcom ():

global ComOnOff

ComOnOff = True

ISR_com = threading.Thread(target=ISR_COM , args =(1,))

ISR_com.start ()

===

MAIN Function

===

def main(args):

clnt = ln.client(sys.argv[0], sys.argv [1:]) # links and nodes client

for the gamepad msgs (Controller 1)

port_gamepad = clnt.subscribe("Controller_1", "md_controller")

for the navigation msgs (Controller 2)

port_navigation = clnt.subscribe("lrm1.cmd_vel_autonomy", "gen/geometry_msgs/Twist")

for the pantilt msgs (to keep it separated for ROS for the tf tree)

portOUT_PanTilt = clnt.publish("lrm1.pantilt", "md_PanTilt")

print("Rover Communication initialized ...")

Initialization of some functions for the communication structure and connection

lrm = LRM_DataStruct ()

c=Communication ()

c.connect ()

Set to error , like a reset , to start the normal mode afterwards

for i in range (6):

lrm.bogies[i].mode =90

c.SendData(c.createmessage(lrm))

time.sleep(communication_time)

Set normal mode , ready to be commanded by gamepad or navigation stack

for j in range (20):

for i in range (6):

lrm.bogies[i].mode =200

lrm.bogies[i]. setangle = 0

lrm.pantilt.Pan = calibrated_pantilt [0]

lrm.pantilt.Tilt = calibrated_pantilt [1]

c.SendData(c.createmessage(lrm))

time.sleep(communication_time)

setstop(lrm ,c,10)

106 Adrian Ricardez Ortigosa

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

===

MAIN LOOP

===

while True:

obtain the gamepad parameters

port_gamepad.read()

angle = int(port_gamepad.packet.rotation)

body_vel = float(port_gamepad.packet.vel_x)

pan = int(port_gamepad.packet.Pan)

tilt = int(port_gamepad.packet.Tilt)

drive_mode = int(port_gamepad.packet.drive_mode)

rover_mode = int(port_gamepad.packet.mode)

#controller_on_off = port_gamepad.packet.controller_on_off

assume = int(port_gamepad.packet.Assume)

permission = int(port_gamepad.packet.Permission)

initialization of navigation variables

nav_vx = 0.0 # linear velocity in x

nav_vy= 0.0 # linear velocity in y

nav_wz = 0.0 # angular velocity in z

initialization of calculated variables

body_w = 0.0 # body angular velocity (calculated , not provided)

steering_angle = np.zeros (6)

speed = np.zeros (6)

wheelV_m_s = np.zeros (6)

wheelV_value = np.zeros (6)

wheelW_rad_s = np.zeros (6)

wheelAngle_degrees = np.zeros (6)

By default , green button A from gmpd is set to 0

if permission == 0:

---------> GAMEPAD COMMANDING

body_vel = body_vel*bodyV_max_m_s # Value coming from GamePad , 0.0 to 1.0

if drive_mode == 1:

steering_angle , speed , body_w = ackerman(angle ,body_vel)

elif drive_mode == 2:

steering_angle , speed = rotation(body_vel)

body_vel = 0 # because it is rotation and the rover doesn 't have any vx ,vy

----- Formulas to calculate the body angular velocity ------

body_w = (Vr_robot -Vl_robot/robot_rotatonDiam_m) or 2V/Drobot

V = w*r, meaning that: Vr_robot or Vl_robot = wheelR_rad_s *(wheelD_m /2)

then: body_w = 2* wheelR_rad_s *(wheelD_m /2)/robot_rotationDiam_m

finally:

body_w = wheelW_rad_s [0]* wheelDiam_m/robot_rotationDiam_m

elif drive_mode == 3:

steering_angle , speed = crabwalk(angle ,body_vel)

else:

---------> NAVIGATION STACK COMMANDING

obtain the navigation parameters

port_navigation.read()

nav_vx = float(port_navigation.packet.linear.x)

nav_vy = float(port_navigation.packet.linear.y)

nav_wz = float(port_navigation.packet.angular.z)

Conditioning of each driving mode from the navigation stack

if nav_vx != 0 and nav_vy == 0 and nav_wz != 0:

Ackerman mode

drive_mode = 1

elif nav_vx == 0 and nav_vy == 0 and nav_wz != 0:

Rotation mode

drive_mode = 2

elif nav_vx != 0 and nav_vy != 0 and nav_wz == 0:

Crab mode

drive_mode = 3

Locomotion calculation

if drive_mode == 1:

quadrant analysis based on the directions in ROS/Rviz:

+x

+y -y

-x

angle = nav_wz *180 # 180 is a K that I found to transform the wz into angle data

if angle < 0:

angle = angle +360 # if the angle is negative , just add 360

restricting the hardware linear velocity capabilities to map properly

s = 0.5 # to smooth a bit more the translation , to restrict the hardware capabilities

body_vel = nav_vx*s

steering_angle , speed , body_w = ackerman(angle ,body_vel)

elif drive_mode == 2:

s = 0.2 # to smooth a bit more the rotation , to restrict the hardware capabilities

nav_wz_smooth = nav_wz*s

to dump the navigation command to a min value , if not , the rotation gets stuck

if nav_wz_smooth > 0 and nav_wz_smooth < mapping_bodyW_min_rad_s:

nav_wz_smooth = mapping_bodyW_min_rad_s

elif nav_wz_smooth < 0 and nav_wz_smooth > -mapping_bodyW_min_rad_s:

nav_wz_smooth = -mapping_bodyW_min_rad_s

Adrian Ricardez Ortigosa 107

APPENDIX F. ROVER COMMUNICATION NO SIMULINK

body_w = nav_wz_smooth

steering_angle , speed = rotation(body_w)

body_vel = 0 # because it is rotation and the rover doesn 't have any vx nor vy

elif drive_mode == 3:

s = 0.45 # to smooth a bit more the translation , to restrict the hardware capabilities

body_vel = math.sqrt(pow(nav_vx ,2)+pow(nav_vy ,2))*s # Pitagoras

angle = int(math.degrees(math.atan(nav_vy/nav_vx))) # vy/vx

quadrant analysis to get the proper angle direction

if nav_vy > 0 and nav_vx < 0:

angle = angle + 180

elif nav_vy < 0 and nav_vx < 0:

angle = angle + 180

elif nav_vy < 0 and nav_vx > 0:

angle = angle + 360

steering_angle , speed = crabwalk(angle ,body_vel)

body_vel is the same as the commanded from the wheels

body_w = 0 # there is no body angular velocity since there is no rotation in crabwalk

Already , the calculated speed from the "Simulink model" in m/s

for i in range (6):

wheelV_m_s[i] = speed[i] # From the "Simulink model"

wheelAngle_degrees[i] = steering_angle[i] # From the "Simulink model"

wheelV_m_s[i] = float(wheelV_m_s[i]) # Transformed it to float , coding purposes

wheelW_rad_s[i] = wheelV_m_s[i]/(wheelDiam_m /2) # Conversion to w for each wheel

Conversion from e.g. 1.0 to 15000 (and float to int)

wheelV_value[i] = int(wheelV_m_s[i]* wheelV_max_value/bodyV_max_m_s)

Restriction values

if wheelV_value[i] > wheelV_max_value:

wheelV_value[i] = wheelV_max_value

elif wheelV_value[i] < -wheelV_max_value:

wheelV_value[i] = -wheelV_max_value

If the value is negative , binary -complement (value to positive)

since the functions can't receive negative values

if wheelV_value[i] < 0:

wheelV_value[i] = int(bin (2**16+ int(wheelV_value[i]))[-16:] ,2)

Restricting values to dump the printing part for a nicer view

if abs(wheelW_rad_s[i]) < 0.1:

wheelW_rad_s[i] = 0.0

if drive_mode == 2:

----- Formulas to calculate the body angular velocity ------

body_w = (Vr_robot -Vl_robot/robot_rotatonDiam_m) or 2V/Drobot

V = w*r, meaning that: Vr_robot or Vl_robot = wheelR_rad_s *(wheelD_m /2)

then: body_w = 2* wheelR_rad_s *(wheelD_m /2)/robot_rotationDiam_m

finally:

body_w = wheelW_rad_s [0]* wheelDiam_m/robot_rotationDiam_m

printed values

print("W2: %d rad/s % d W5: %d rad/s % d \n"\

"W3: %d rad/s % d W4: %d rad/s % d \n"\

"W0: %d rad/s % d W1: %d rad/s % d \n"\

"drive_mode: %d rover_mode: %d pan: %d tilt: %d assume: %d permission: %d\n"\

"From GamePad / Navigation Stack: \n"\

"nav_vx: %0.3f m/s nav_vy: %0.3f m/s nav_wz: %0.3f rad/s \n"\

"Calculated :\n"

"body_vel: %0.3f m/s body_w: %0.3f rad/s\n"

%(wheelV_value [2], wheelAngle_degrees [2], wheelV_value [5], wheelAngle_degrees [5],

wheelV_value [3], wheelAngle_degrees [3], wheelV_value [4], wheelAngle_degrees [4],

wheelV_value [0], wheelAngle_degrees [0], wheelV_value [1], wheelAngle_degrees [1],

drive_mode ,rover_mode ,pan ,tilt ,assume ,permission ,

nav_vx ,nav_vy ,nav_wz ,body_vel ,body_w))

writing into the Main Board

for i in range (6):

lrm.bogies[i]. setspeed = int(wheelV_value[i])

lrm.bogies[i]. setangle = int(wheelAngle_degrees[i])

lrm.pantilt.Pan = int(pan)

lrm.pantilt.Tilt = int(tilt)

PanTilt implementation for rostopic2ln , ln2ros

portOUT_PanTilt.packet.Pan = int(pan)

portOUT_PanTilt.packet.Tilt = int(tilt)

portOUT_PanTilt.write ()

Writing data

c.SendData(c.createmessage(lrm))

time.sleep(communication_time)

Have fun! :)

108 Adrian Ricardez Ortigosa

APPENDIX G. PANTILT TF PUBLISHER CODE

pantilt tf publisher code

This is the pan tilt tf publisher.py code. This serves as a communication between the links
and nodes world, to the ROS world to see the odometry of the d435i camera based on the
movement of the servos (only coming from the gamepad so far, but intended to be received from
the Simulink model too).

#!/usr/bin/env python

from __future__ import print_function

import math

import numpy as np

import threading

import rospy

#import tf

import tf2_ros

import tf_conversions

import geometry_msgs.msg

import links_and_nodes as ln

class FramePublisher:

def __init__(self):

rospy.init_node('lrm_pan_tilt_tf_publisher ')

#self.br = tf.TransformBroadcaster ()

self.br = tf2_ros.TransformBroadcaster ()

self.clnt = ln.client("lrm_pan_tilt_tf_publisher")

where the gamepad msg is stored:

self.port_gamepad = self.clnt.subscribe("Controller_1", "md_controller")

to receive the msg 'paralelly ':
self.ln_sub = threading.Thread(target=self.ln_subscriber)

self.ln_sub.daemon = True

self.ln_sub.start ()

print("ready")

rate = rospy.Rate (30)

def ln_subscriber(self):

first = True

while notr rospy.is_shutdown:

self.port_gamepad.read()

if first:

print("got first ln message.")

first = False

self.send_transform(self.port_gamepad.packet)

def send_transform(self , pkt):

pan_angle = np.deg2rad(int(port_gamepad.packet.Pan))

tilt_angle = np.deg2rad(int(port_gamepad.packet.Tilt))

t = geometry_msgs.msg.TransformStamped ()

t.header.stamp = rospy.Time.now()

t.header.frame_id = "base_link"

t.child_frame_id = "lrm_camera_mount"

t.transform.translation.x = 0.112 # red axis , taken from CAD

t.transform.translation.y = 0 # green axis

t.transform.translation.z = 0.2 # blue axis , taken from CAD

q = tf_conversions.transformations.quaternion_from_euler (0, tilt_angle , pan_angle)

t.transform.rotation.x = q[0]

t.transform.rotation.y = q[1]

t.transform.rotation.z = q[2]

Adrian Ricardez Ortigosa 109

APPENDIX G. PANTILT TF PUBLISHER CODE

t.transform.rotation.w = q[3]

self.br.sendTransform(t)

rate.sleep()

if __name__ == '__main__ ':
try:

node = FramePublisher ()

except rospy.ROSInterruptException:

pass

110 Adrian Ricardez Ortigosa

	Introduction
	Motivation
	Objectives and Scope
	Primary Objectives
	Secondary Objectives

	System Requirements
	Functional Requirements
	Design Requirements
	Validation Requirements

	Main Events
	Vulcano Summer School
	Festival der Zukunft

	Outline
	Use cases

	Literature Review
	System Overview
	High-level Hardware
	Low-level Hardware
	On-Board Computer Subsystem

	Software Framework
	Graphical User Interface
	Simulink
	Links and Nodes Manager
	Cissy

	Development
	Previous Rover Version
	New Electrical Power System
	Graphical Interconnection Diagram

	Communications System
	Algorithms for the OBC
	Driving Modes
	LN World: Breaking Down The Modules
	ROS World: Breaking Down The Modules
	Final Data LN-ROS Pipeline

	System Performance
	Electrical Behavior
	Communication Behavior
	Low-Level Data Handling Behavior

	Tests Results & Analysis
	Vulcano Summer School
	Driving Modes In Real Environments
	Mapping of the Dried ``Moon Lake"
	WiFi Connection Results
	Presentation

	Festival der Zukunft
	Mapping - Deutsches Museum Testbed

	Space Demo Mission
	Indoor Evaluation Setup
	Manual Mode
	Autonomous Navigation

	Conclusions
	Future Work
	Proposal for a Permanent Exhibition
	New Pipeline Version
	Migration to New Chassis

	Work Contribution
	GitHub Documentation

	Relevant Links at DLR
	Mission Instructions
	Establishing The WiFi Connection
	Running The Processes

	Simulink: Driving Modes
	Ackerman mode script
	Rotation mode script
	Crabwalk mode script

	gamepad_controller code
	rover_communication with Simulink
	rover_communication no Simulink
	pantilt tf publisher code

