Untersuchung der Umsetzbarkeit eines aeroelastisch ähnlichen Halbmodells im European Transonic Windtunnel

Moritz Herberhold Technische Universität Braunschweig

Thomas Klimmek Deutsches Zentrum für Luft- und Raumfahrt Institut für Aeroelastik

Knowledge for Tomorrow

Inhaltsübersicht

- Motivation und Ziel
- Entwurfspunkt
- Modellbeschreibung
- Ähnlichkeit des statischen Strukturverhaltens
- Ähnlichkeit des Schwingungsverhaltens
- Zusammenfassung und Ausblick

Motivation:

- Modelluntersuchungen von
 Verkehrsflugzeugen im transsonischen
 Reiseflug sind und bleiben eine große
 Herausforderung
- Zur Validation aeroelastischer Methoden und zur Verfeinerung des physikalischen Verständnisses sind Modellversuche unersetzlich
- Besonders bei transsonische Phänomen mit stark nichtlinearen strukturellen oder aerodynamischen Einflüssen, wie Limit Cycle Oscillations oder transsonischem Buffeting

Zentrale Herausforderung:

Schaffen aeroelastischer Ähnlichkeit zwischen Modell und Original

Aeroelastische Ähnlichkeit bei transsonischer Strömung:

- Relevante physikalische Größen müssen im selben Verhältnis zueinander stehen
- Verhältnis wird mit dimensionslosen Kennzahlen beschrieben
- Ähnlichkeit der Strömung: Machzahl und Reynoldszahl
 - Transsonische Anströmgeschwindigkeiten, großes Modell, hohe Luftdichte, hohe Ruhedrücke und/oder tiefe Temperaturen
- Ähnlichkeit des statischen Strukturverhaltens: aeroelastische Cauchyzahl
 - Große Steifigkeiten
- Ähnlichkeit des dynamischen Strukturverhaltens: relatives Dichteverhältnis, reduzierte Frequenz
 - Sroße Massen, festes Verhältnis zwischen Eigenfrequenzen von Modell und Original

Ziel der Arbeit:

Untersuchung der Umsetzbarkeit eines aeroelastisch ähnlichen Halbmodells der D150-Konfiguration im transsonischen Reiseflug

Technische Universität Braunschweig

Entwurfspunkt

Betrachteter Flugzustand:

- 1g-Horizontalflug auf Reiseflughöhe mit maximaler Betriebsmachzahl M_{MO}
- Massenkonfiguration mit maximaler Startmasse und maximaler Treibstoffmasse

Parameter	Wert
Flughöhe	10.000 m
Machzahl M _{MO}	0,82
CL	0,47
Reynoldszahl	25,1·10 ⁶
Flügelmasse (Struktur+Systeme+Kraftstoff)	18730 kg
1. Biegung	2,718 Hz

Technische Universität Braunschweig

Entwurfspunkt

Entwurfspunkt:

Parameter	Original	Verhältnis	Modell
Temperatur	223 K	0,538	120 K
Ruhedruck	264 hPa	5,205	1374 hPa
Luftdichte	0,413 kg/m ³	9,34	3,857 kg/m ³
Anströmgeschwindigkeit	245,6 m/s	0,746	183,1 m/s
Staudruck	12456 Pa	5,191	64661 Pa
Auftrieb bei C _L =0,47	358 kN	0,0349	12,5 kN
Flügelmasse	18730 kg	5,144*10 ⁻³	96,34 kg
1. Biegung	2,718 Hz	11,092	30,15 Hz

- Niedrige Temperatur sorgt für hohe Luftdichte
- Hohe Luftdichte führt zu hohem Staudruck und somit hohen Flächenlasten
- Hohe Luftdichte führt über relatives Dichteverhältnis zu hoher Modellmasse

Modellbeschreibung

Modellflügel:

- ModGen-Halbmodell im Maßstab 1:12,2 ohne Rumpf
- Aufbau orientiert sich an Flügelmodell aus Projekt Figure CRP [4]
- Tragende Flügelhaut mit Schaumkern
- Häute werden durch Schalenelemente und
 Schaumkern durch Volumenelemente modelliert

- Einspannung über Fixierung der Endrippe
- Rippenpositionen und Lage der
 Lastreferenzachse f
 ür gleiche Lasteinleitung aus Original
 übernommen
- Strukturmechanische modelliert werden nur Endrippen

Modellbeschreibung

Optimierung und Materialaufbau:

- Faserverbundlaminat aus acht 0,5mm-Schichten mit symmetrischer Stapelreihenfolge [0° +45° -45° 90°]_S
- Implementiert in Form von PCOMP-Karten
- Drei Materialien implementiert:

Material	E ₁₁	ε _t	٤ _c
UD-Glasfaser	41,8 GPa	3 %	2 %
UD-Kohlefaser	155 GPa	1,075 %	0,323 %
UD- Aramidfaser	75 GPa	1,7 %	0,35 %

- Flügel ist in drei Designfelder unterteilt
- Hautdicken und Lagenaufbauten werden manuell angepasst

Designfelder:

Modellbeschreibung

Lasten:

- Luftkräfte werden mit Doublet-Lattice-Methode berechnet
- Vier Lastfälle mit festem Anstellwinkel
- Lastfall 2 und 3 sind Extremlastfälle die Festigkeit des Modells gewährleisten
- Lastfall 4 besitzt $C_L=0,47$ und ist somit äquivalent zu 1g-Referenzlastfall

Lastfall	Тур	Anstellwinkel	Anströmmachzahl
1	α_{fixed}	0,0°	Ma _{MO} =0,82
2	α_{fixed}	10,0°	Ma _D =0,9
3	α_{fixed}	-10,0°	Ma _D =0,9
4	α_{fixed}	2,5°	Ma _{MO} =0,82

Doublet-Lattice-Modell:

Vorgehen:

- Skalierung der Originalbiegelinie für den 1g-Referenzlastfall um den Maßstab 12,2
- 2. Vergleich der Biegelinien von Modell und Original
- Erhöhung der Schichtdicke der 0°-Schichten bis Biegelinien maximal 5% Abweichung besitzen

Biegelinien: 0.06 0.05 Verschiebung in z-Richtung [m] - Original skaliert ---Glasfaser 0.04 ---Kohlefaser Aramidfaser 0.03 0.02 0.01 0 -0.01 0.2 0.4 0.6 0.8 0 1 Relative Spannweitenposition [-]

Hautdicken der Modelle:
Designfeld Designfeld Designfeld
20,2 mmDesignfeld 2Designfeld 2Glasfaser20,2 mm9,4 mm6,6 mmKohlefaser10,0 mm3,8 mm4,2 mmAramidfaser16,4 mm6,6 mm5,2 mm

- Alle Modelle erreichen Ähnlichkeit der Biegelinie
- Glasfasermodell benötigt hierfür sehr hohe Hautdicken
- Die Hautdicken des
 Kohlefasermodells betragen etwa die Hälfte

Verwindung:

- Ähnlichkeit der Verwindung wird nicht erreicht
- Abweichungen bei Kohlefasermodell am größten
- Abweichung sorgt f
 ür Änderung der Auftriebsverteilung
- Nachbesserung notwendig

Anpassen des Vorgehens:

- Ziel: Modell, welches Ähnlichkeit der
 Verwindung und Biegelinie aufweist und den
 Festigkeitsanforderungen standhält
- Nur Glasfaser erfüllt Festigkeitsanforderungen
- Aufteilung des Designfeldes 3 in drei Designfelder
- Gleichzeitige Betrachtung von Verwindung und Biegelinie

Designfelder:

Glasfasermodell mit fünf Designfeldern: Biegelinie

Designfeld	Designfeld	Designfeld	Designfeld	Designfeld
1	2	3	4	5
18,2 mm	11,0 mm	7,0 mm	7,0 mm	3,8 mm

- Ähnlichkeit der Biegelinie konnte erneut erreicht werden
- Leicht größere Abweichungen
- Erneut hohe Hautdicken
- Nur an Flügelwurzel und Flügelspitze etwas kleinere Hautdicken

Glasfasermodell mit fünf Designfeldern: Verwindung

Designfeld	Designfeld	Designfeld	Designfeld	Designfeld
1	2	3	4	5
18,2 mm	11,0 mm	7,0 mm	7,0 mm	3,8 mm

- Ähnlichkeit der Verwindung konnte stark verbessert werden
- Keine Abweichungen >0,1°
- Modell genügt auch
 Festigkeitsanforderungen
- Ähnlichkeit der statischen Verformung gegeben

Massenverteilung: Strukturmasse ohne Zusatzmassen

Braunschweig

Eigenform	Original skaliert	Modell	Abweichun g
1. Biegung	30,15 Hz	65,74 Hz	+118%
2. Biegung	95,68 Hz	170,68 Hz	+78,4%

 Bei Strukturmasse von 25,11 kg ergeben sich deutlich zu hohe Eigenfrequenzen

echnische Iniversität Iraunschweig

Massenverteilung: Strukturmasse ohne Zusatzmassen

Eigenform	Original skaliert	Modell	Abweichun g
1. Biegung	30,15 Hz	65,74 Hz	+118%
2. Biegung	95,68 Hz	170,68 Hz	+78,4%

- Bei Strukturmasse von 25,11 kg ergeben sich deutlich zu hohe Eigenfrequenzen
- Skalierte Originalmasse von 96,34 kg muss im Modell nachgebildet werden
- Es fehlen Treibstoff und Systemmassen im Modell
- Hohe Zusatzmassen notwendig

20 -----Strukturmasse + 15 Maximale Zusatzmasse Masse [kg] 10 5 0 0.2 0.6 0.8 0.4 $\mathbf{0}$ Relative Spannweitenposition [-]

Massenverteilung: Maximale Zusatzmasse

Annahmen:

- Maximale 50% des Flügelvolumens können für Zusatzmassen genutzt werden
- Zusatzmassen aus Blei mit einer Dichte von 11340 kg/m³
- Zusatzmassen werden entlang der Lastreferenzachse an den Rippenpositionen angebracht und als Punktmassen mit Torsionsträgheit modelliert
- Triebwerksmasse von 17,78 kg wird als externe Zusatzmasse an der Triebwerksposition angebracht

Massenverteilung: Verschmierte Originalmasse

Fechnische Jniversität Braunschweig

Eigenform	Original skaliert	Modell	Abweichun g
1. Biegung	30,15 Hz	43,66 Hz	+44,8%
2. Biegung	95,68 Hz	109,33 Hz	+14,3%

- Mit der verschmierten Originalmasse von 96,34 kg sind die deutlich n\u00e4her, aber weiterhin zu hoch
- Für Ähnlichkeit der Eigenfrequenzen sind Trimmassen notwendig

Jniversität Braunschweig

Eigenform	Original skaliert	Modell	Abweichun g
1. Biegung	30,15 Hz	31,40 Hz	+4,1%
2. Biegung	95,68 Hz	94,64 Hz	-1,1%

- Im äußeren Flügelbereich werden
 Trimmmassen hinzugefügt bis Frequenzen
 übereinstimmen
- Frequenzähnlichkeit wird durch 3,34 kg an Trimmmassen erreicht
- Gesamtmasse erhöht sich um 3,5 % auf 99,68 kg
- Für Ähnlichkeit der Eigenfrequenzen sind Trimmassen notwendig

Zusammenfassung

- Vollständige und simultane Ähnlichkeit der Reynoldszahl, Machzahl, aeroelastischen Cauchyzahl und des relativen Dichteverhältnis wurde erreicht
- Für die Ähnlichkeit der reduzierten Frequenzen sind Trimmmassen notwendig, führen zur Abweichung vom relativen Dichteverhältnis und der Massenverteilung
- Die Konstruktionsweise der tragenden Häute und die getesteten Materialien waren nicht in der Lage ein real umsetzbares aeroelastisch ähnliches Modell für den ETW zu erzeugen
- Die größten Herausforderungen waren die notwendigen hohen Hautdicken, hohen Dehnungen und großen Zusatzmassen

Ausblick:

- Diese Arbeit zeigt Potential für die Umsetzbarkeit eines aeroelastisch ähnlichen Halbmodells
- Ein solches Modell befindet sich sehr nahe an der Grenze des technisch Machbaren

Fragen und Feedback

Vielen Dank für Ihre Aufmerksamkeit!

- Quellen:[1]Thomas Klimmek. "Statische aeroelastische Anforderungen beim
multidisziplinären Strukturentwurf von Verkehrsflugzeugflügeln". Diss.
Braunschweig: Technischen Universität Carolo-Wilhelmina zu
Braunschweig, 2015.
 - [2] John Green und Jürgen Quest. "A Short History of the European Transonic Wind Tunnel ETW". In: Progress in Aerospace Sciences 47.5 (Juli 2011), S. 319–368. issn:03760421. doi:10.1016/j.paerosci.2011.06.002.
 - [3] European Transonic Windtunnel GmbH. ETW Pushes the Limits. Broschüre. Köln, 2022, URL: <u>https://www.etw.de/uploads/pdfs/ETW_Information_E.pdf</u>
 - [4] Johannes Dillinger u. a. "Structural Optimization of an Aeroelastic Wind Tunnel Model for Unsteady Transonic Testing". In: CEAS Aeronautical Journal 13.4 (Okt. 2022), S. 951–965. issn: 1869-5582, 1869-5590. doi: 10.1007/s13272-022-00612-3.

Entwurfspunkt

Maximale möglicher Maßstab: 16,96m/1,4m≈12,2

Modellgeometrie

Lagenaufbau

Tabelle 4.1.: Dicke und Lagenaufbau der Designfelder der Glasfasermodells						
Designfeld 1 Designfeld 2 Designfeld						
Hautdicke	20, 2 mm	9,4 mm	6,6 mm			
Gesamtdicke 0°-Schichten	17,2, mm	6,4 mm	3,6 mm			
Gesamtdicke 90°-Schichten	1,0 mm	1,0 mm	1,0 mm			
Gesamtdicke +45°-Schichten	1,0 mm	1,0 mm	1,0 mm			
Gesamtdicke -45° -Schichten	1,0 mm	1,0 mm	1,0 mm			

Tabelle 4.3.: Dicke und Lagenaufbau der Designfelder der Kohlefasermodells

	Designfeld 1	Designfeld 2	Designfeld 3
Hautdicke	10,0 mm	3,8 mm	4,2 mm
Gesamtdicke 0°-Schichten	7,0, mm	1,6 mm	0,8 mm
Gesamtdicke 90°-Schichten	1,0 mm	1,0 mm	0,6 mm
Gesamtdicke $+45^{\circ}$ -Schichten	1,0 mm	0,6 mm	1,4 mm
Gesamtdicke -45° -Schichten	1,0 mm	0,6 mm	1,4 mm

Tabelle 4.5.: Dicke und Lagenaufbau der Designfelder der Aramidfasermodells

	Designfeld 1	Designfeld 2	Designfeld 3
Hautdicke	16,4 mm	6,6 mm	5,2 mm
Gesamtdicke 0°-Schichten	13,4, mm	3,6 mm	2,2 mm
Gesamtdicke 90°-Schichten	1,0 mm	1,0 mm	1,0 mm
Gesamtdicke +45°-Schichten	1,0 mm	1,0 mm	1,0 mm
Gesamtdicke $-45^\circ\text{-}\mathrm{Schichten}$	1,0 mm	1,0 mm	1,0 mm

Modell mit fünf Designfeldern

Tabelle 4.6.: Dicke	und	Lagenaufbau	der	Designfelder	der	Glasfasermodells	mit	fünf
Design	felder	n						

	Designfeld 1	Designfeld 2	Designfeld 3	Designfeld 4	Designfeld 5	
Hautdicke	18, 2 mm	11,0 mm	7,0 mm	7,0 mm	3,8 mm	
Gesamtdicke	16.0 mm	4.0 mm	4.0 mm	1.0 mm	2 1 mm	
0°-Schichten	16, 0, 11111	4,011111	4,011111	4,011111	3,411111	
Gesamtdicke	1.0 mm	1.0 mm	1.0 mm	1.0 mm	0.4 mm	
90°-Schichten	1,011111	1,011111	1,011111	1,011111	0,411111	
Gesamtdicke	0 (2.0 marra	1.0 marra	1.0 mana	0.0 mm	
$+45^{\circ}$ -Schichten	0, 6 mm	<i>5,</i> 0 mm	1,0 mm	1,0 mm	0,0 mm	
Gesamtdicke	0 (2.0 mama	1.0 marra	1.0 mana	0.0 mm	
-45° -Schichten	0, 6 mm	<i>5,</i> 0 mm	1,0 mm	1,0 mm	0,0 mm	

Tabelle 4.7.: Eigenfrequenzen der Glasfasermodells mit fünf Designfeldern für verschiedene Massenkonfigurationen

Figenform	Nur	Skalierte	Verschmierte	Getrimmte	Maximale
Eigemorm	Strukturmasse	Originalmasse	Originalmasse	Zusatzmassen	Zusatzmassen
1. Biegung	65,74 Hz	45, 55 Hz	43,66 Hz	31,40 Hz	29,84 Hz
2. Biegung	170,68 Hz	111, 34 Hz	109,33 Hz	94,64 Hz	89,11 Hz

Aeroelastische Ähnlichkeit:

- 1. Ähnlichkeit der Strömungsbedingungen
 - Entscheidende Kennzahlen: Reynoldszahl und Machzahl

Machzahl					
Ma —	V_{∞}				
mu –	a				

$$Reynoldszahl Re = \frac{V_{\infty} l \rho_{\text{lu}}}{\eta}$$

 V_{∞} Anströmgeschwindigkeit

- a Schallgeschwindigkeit
- charakteristische Länge
- $ho_{
 m lu}$ Luftdichte
- η dynamische Zähigkeit
- Transsonische Anströmgeschwindigkeiten, möglichst großes Modell, hohe Ruhedrücke und/oder tiefe Temperaturen notwendig

Aeroelastische Ähnlichkeit:

- 2. Ähnlichkeit des statischen Strukturverhaltens
 - Entscheidende Kennzahl: aeroelastische Cauchyzahl

aeroelastische Cauchyzahl

$$Ca_{\rm ae} = \frac{V_{\infty}^2 \cdot \rho_{\rm lu}}{E}$$

elastomechanische Cauchyzahl

$$Ca_{\rm el} = \frac{l^2 \cdot \omega^2 \cdot \rho_{\rm st}}{E}$$

- V_{∞} Anströmgeschwindigkeit
- $ho_{
 m lu}$ Luftdichte
- E Elastizitätsmodul
- *l* charakteristische Länge
- $ho_{\rm st}$ Strukturdichte
- ω Kreisfrequenz

Große Steifigkeit notwendig

Aeroelastische Ähnlichkeit:

- 3. Ähnlichkeit des dynamischen Schwingungsverhaltens
 - Entscheidende Kennzahlen: relatives Dichteverhältnis und reduzierte Frequenz

relatives Dichteverhältnis

reduzierte Frequenz

$$\mu = \frac{\rho_{\rm st}}{\rho_{\rm lu}}$$

$$\omega^* = \omega \cdot \frac{l}{V_{\infty}}$$

- V_{∞} Anströmgeschwindigkeit
- *l* charakteristische Länge
- $ho_{
 m lu}$ Luftdichte
- $\rho_{\rm st}$ Strukturdichte
- ω Kreisfrequenz

- Große Masse und höhere Eigenfrequenzen notwendig
- Anmerkung: Vollständige dynamische Ähnlichkeit benötigt auch die Ähnlichkeit der Strukturdämpfung und der elastomechanischen Cauchyzahl

Vorstudie

Entwurfspunkt:

Parameter	Original	Verhältnis	Modell
Temperatur	223 K	0,538	120 K
Ruhedruck	26,4 kPa	5,205	137,4 kPa
Luftdichte	0,413 kg/m ³	9,34	3,857 kg/m³
Anströmgeschwindigkei t	245,6 m/s	0,746	183,1 m/s
Halbspannweite	16,96 m	12,2	1,39 m
Flügelfläche	61,15 m ²	6,704*10 ⁻³	0,41 m ²
Flügelmasse	18730 kg	5,144*10 ⁻³	96,34 kg
Staudruck	12456 Pa	5,191	64661 Pa
Auftrieb bei C _L =0,5	380,8 kN	0,0328	12,5kN
1. Biegung	2,718 Hz	11,092	30,15 Hz

Vorstudie

Notwendiges Massenverhältnis für Ähnlichkeit der relativen Dichte

- Leitet sich aus Bedingung der gleichbleibenden relativen Dichte ab
- Massenverhältnis nimmt mit Kanaldruck ab
- Möglichst niedrigen Kanaldruck bzw. niedrige Kanaltemperatur wählen, um Modellmasse klein zu halten
- Entwurfspunkt bei 120 K und 1,374 bar

Vorstudie

Notwendiges Steifigkeitsverhältnis für Ähnlichkeit der aeroelastischen Cauchyzahl:

Toelastischen Cauchyzahl:
$$Ca_{ae} = \frac{V^2 \rho_{lu}}{E}$$

Steifigkeitsverhältnis: $\frac{EI_{Mo}}{E} = \frac{\rho_0 V_{\infty Mo}^2}{2}$

 $- \frac{1}{\rho_{10\mathrm{km}} \cdot \mathrm{V}_{\infty\mathrm{Or}}^2}$

 N^4

EI_{Or}

Steifigkeitsverhältnis und Staudruck sind linear von Kanaldruck abhängig

\Rightarrow Kein Optimum erkennbar

European Transonic Windtunnel

Modellmontierung:

Grundsätzliches:

- 1993 in Köln eröffnet
- Transsonischer kryogener hochreynolds Windkanal

Technische Daten:

- Machzahlbereich: 0,13 1,3
- Ruhedruckbereich: 1,15 bar 4,5 bar
- Temperaturbereich: 110 K 313 K

Maximale Spannweite:

- Halbmodelle: 1,4 m
- Vollmodelle: 1,56 m

Festigkeit

- Maximaler Versagensindex von 0,335
- Kein Versagen

- Maximaler Versagensindex von 1,58
- Kohlefaser besitzt zu geringes ϵ_c
- Modell versagt

- Maximaler Versagensindex von 1,54
- Aramidfaser besitzt zu geringes ε_c
- Modell versagt

Materialien

Tabelle 3.5	.: Materialei	genschaften	der u	nidirekt	ionalen Sc	hichten de	er verwe	endeten
	Faserverbu	ınde						
Material	E ₁₁	E ₂₂	G ₁₂	v_{12}	ρ	ϵ_{t}	$\epsilon_{\rm c}$	$\gamma_{ m s}$
CFK	155 GPa	8,5GPa	3,5 GPa	0,3	1500 kg/n	n^3 1,075 %	0,323%	1,351%
GFK	41, 76 GPa	12, 94 GPa	4,96 GPa	0,2637	1976,3kg/	m ³ 3%	2 %	2 %
AFK	75 GPa	6 GPa	2 GPa	0,3	1400 kg/n	1,7%	0,35%	3 %

Tabelle 3.6.: Materialeigenschaften des Schaumkerns

Е	G ₁₂	v_{12}	ρ
92 MPa	29 MPa	0,2637	75 kg/m ³

Eigenformen Glasfasermodell 1.Biegung

Modell: Glasfaser Massenkonfiguration: Getrimmte Zusatzmassen 1. Biegung: 31,69Hz

6.23-0

5.82-01

5.40-01

4.99-01

4.57-01

Eigenformen Glasfasermodell 2.Biegung

Modell: Glasfaser Massenkonfiguration: Getrimmte Zusatzmassen 2. Biegung: 73,39Hz

5.89-01

5.50-01

5.11-01

4.72-01

4.33-01

3.94-01

3.55-01

3.17-01

2.78-01

2.39-01

2.00-01

1.61-01

1.22-01

8.32-02

4,43-02

Eigenformen Glasfasermodell 1.Torsion

Originalmodell Hautdicken

Massenverteilung: Strukturmasse ohne Zusatzmassen

Eigenform	Original skaliert	Modell	Abweichun g
1. Biegung	30,15 Hz	65,74 Hz	+118%
2. Biegung	95,68 Hz	170,68 Hz	+78,4%

- Bei Strukturmasse von 25,11 kg ergeben sich deutlich zu hohe Eigenfrequenzen
- Skalierte Originalmasse von 96,34 kg muss im Modell nachgebildet werden
- Hohe Zusatzmassen notwendig

