

e-XPlore: A High-Pressure Solid Oxide Cell Electrolyser in a Sea Container for Offshore Power-to-X Applications

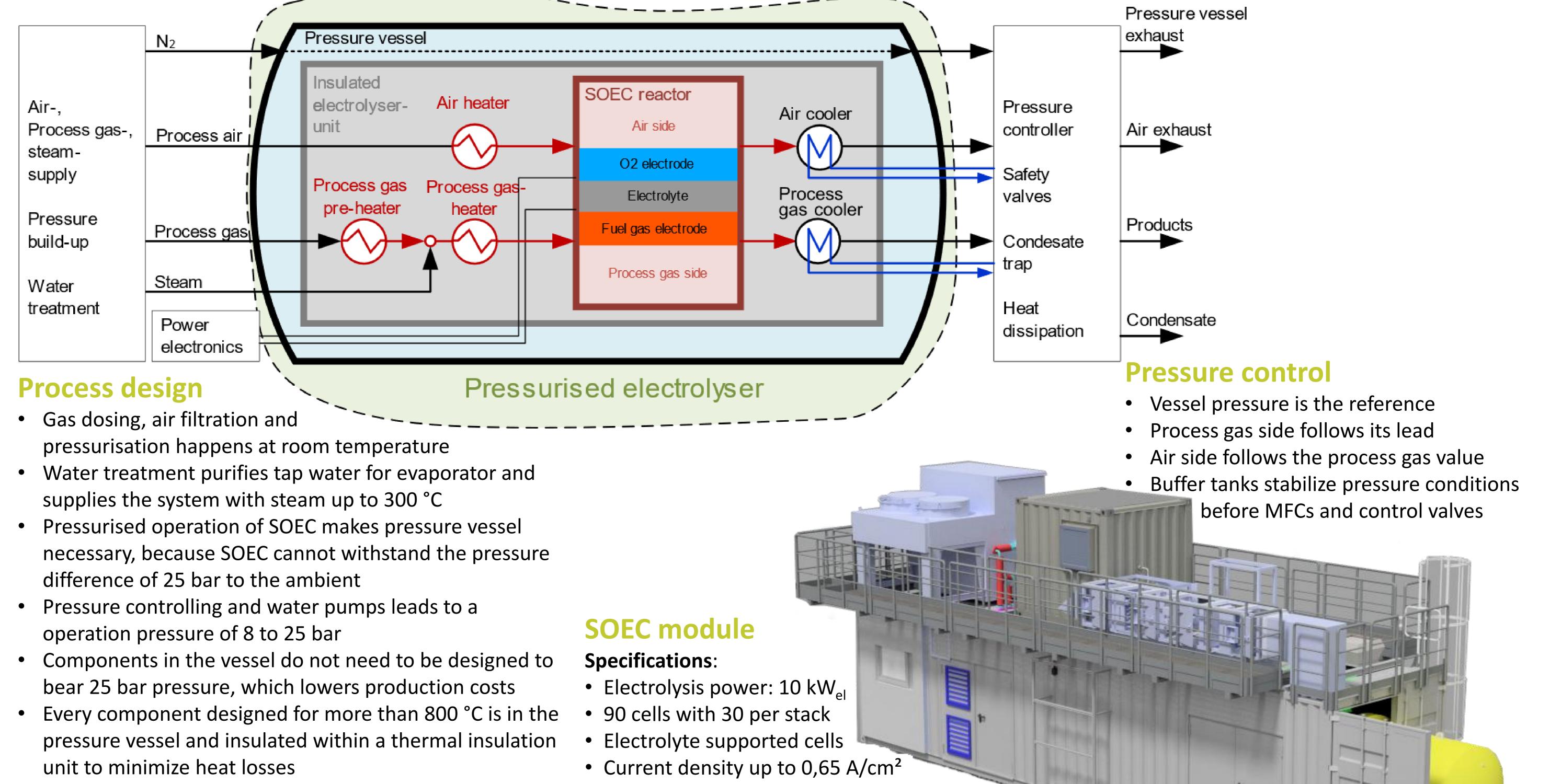
C. Schnegelberger^{*1}, M. Metten¹, M. Heddrich¹, A. Ansar¹

¹Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Engineering Thermodynamics | Energy System Integration | Stuttgart ^{*}christian.schnegelberger@dlr.de

High temperature electrolysis

- Chemical storage of electrical energy
- Carbon neutral synthesis gas production, when green energy is used
- Electrolysis is thermodynamically favorable at high temperature
- High temperature electrolysis can use CO₂ and

- H₂O (steam) as educts to produce synthesis gas
- Hydrogen production under pressure is advantageous for further processing e.g.
 Fischer-Tropsch-Synthesis benefits from elevated pressure to start with.


e-XPlore: The SOEC-System

- Customized 40 feet sea container
- Suitable for offshore operation
- 10 kW_{el} power input for electrolyser
- 8 to 25 bar operation pressure
- PLC for 24/7 operation without supervision
- Fresh air, water and cooling water supply is included in the system
- Container is moveable via crane and truck
- System will be operated on many different locations including offshore

H₂Mare PtX-Wind

- Experimental platform for proof of concept
- Challenging offshore environment
- DLR analyses synthesis gas production for Fischer-Tropsch (FT)
- FT will produce synthetic fuels for industry
- Production location is advantageous for ship transport → Lower investment costs than a pipeline
- Follow up with a concept for the research (5 MW_{el}) and production platform (100 MW_{el})

With the gases and air heat up and cooldown within the pressure vessel the maximum feed through temperature is around 300 °C
The exhaust air gets expanded to 0 bar and the product gases to 0 bar or from 8 to 15 bar for the Fischer-Tropsch supply at 300 °C
N2 flow through vessel gets check for hydrogen and carbon monoxide to detect leakages of the SOEC SPONSORED BY THE

Federal Ministry of Education and Research

SOC module voltage up to 135 V

- Operation temperature: circa 850 °C
- Manufacture of the stacks: sunfire

Modifications:

- Optimized air flow for pressure operation
 - Each cell gets the same amount of air (+- 2 %)
- Gas tight cover around stack tower prepared for pressure differences up to 100 mbar
 - For high pressure gradients due to operation failures or safety maneuver

