V2X COMMUNICATIONS EVALUATION

Ibrahim Rashdan C2C Week 05.12.2023

Communication Requirements

Collective Perception Service (CPS): Packet size/reliability example

CPM: Send out detected objects including all vehicles on road, including VRUs on road and roadside. Up to 25 objects in Urban and 10 in Highway included. Security included.

Highway	Min	Max	average
Package size [byte]	400	850	625
Relevance distance [m]	m] 300 m @ 99,9% 500 m @ 80%		
Urban / suburban	Min	Max	average
Urban / suburban Package size [byte]	Min 400	Max 1450	average 925

Source: package sizes and package elements measured in IMAGinE Comparable message sizes, relevance distances also in 5GAA "C-V2X Use cases and Service Level Requirements Volume III"

Next step: Evaluate future communication technologies with the CPS and MCS requirements.

Communication Evaluation

Link-level evaluation

- Simulation environment: MATLAB
- Different packet sizes, modulation and coding schemes, Tx power, etc.
- Results: e.g. Packet error rate (PER), communication range
- Requires: realistic channel models

- Network and traffic simulators
- Different traffic and channel usage conditions, etc.
- Results: PER, end-to-end delay (E2E), channel busy ratio, etc.
- Requires: accurate PER and path loss models

Channel models

1. AWGN channel

2. Stochastic channels

- Example: Tapped-delay line (TDL)
- Relatively low complexity and easy to use.
- Assume WSSUS, and don't include geometry
- 3. Geometry-based stochastic channel models (GSCM)
 - Examples: WINNER II, and COST 2100
 - Well suited for non-stationary environments, e.g. vehicular
 - Include Tx, Rx, and scatterrers motion

TDL parameters

Scenario	Path Delays [ns]	Path Gains [dB]	Doppler Shift [Hz]
Urban LoS	[0, 117, 183, 333]	[0, -8, -10, -15]	[0, 236, -157, 492]
Jrban NLoS	[0, 267, 400, 533]	[0, -3, -5, -10]	[0, 295, -98, 591]

GSCM parameters

Parameters		Scenario 2	
		LoS	OLoS
SF [dB]	μ	0	0
	σ	1.80	1.80
Corr.distance [m]	$d_{\rm c}$	2.27	2.27
K-factor [dB]	μ	16.22	5.34
	σ	2.88	4.38
Corr.distance [m]	$d_{\rm c}$	4.42	30.58
DS $[\log_{10}(s)]$	μ	-8.19	-7.60
	σ	0.19	0.21
Corr.distance [m]	$d_{\rm c}$	4.42	70
ASD $[\log_{10} (\circ)]$	μ	0.86	0.86
	σ	0.39	0.39
Corr.distance [m]	$d_{\rm c}$	63.23	63.23
ASA $[\log_{10} (^{\circ})]$	μ	1.03	1.03
	σ	0.39	0.39
Corr.distance [m]	$d_{\rm c}$	66.17	66.17

Link-level Evaluation

System-level Evaluation

KPI

Update Delay (UD) is the time elapsed between two consecutive successfully received packets from specific Tx at specific Rx.

