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Abstract

With increased access to space, the challenge of space debris is becoming a more and more relevant topic.
To keep space usable for future generations, space debris has to be mitigated. The most effective mitigation
measure includes Active Debris Removal (ADR) of around 5 objects per year. This thesis investigates the
challenge of the Attitude Control System (ACS) in ADR. The problem here is that often the exact size, shape
and mass of the targeted debris objects are unknown. Furthermore, through the capturing process the mass
and inertia of the satellite system is changed, making it difficult for the ACS to maintain a stable position. In
this thesis an approach of Deep Reinforcement Learning (DRL) algorithm is investigated to solve this satellite
attitude problem. A DRL approach will help in coping with the unknown inertia and will enable the ADR to
handle diverse debris objects. Several different attitude control scenarios are investigated, with the complexity
increasing continuously.
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1 Introduction

In the last 10 years the landscape of space flight has changed drastically. Historically, only national and
supranational agencies like NASA [1] or ESA [2] were able to put a satellite into space. With companies
like SpaceX [3] offering rocket starts commercially, space has become more and more accessible. In 2021,
the start-up sector in space saw a significant increase in funding. Relative to 2020, capital investment grew
by a whopping 82% [4]. This offers several opportunities, but it also means that the number of players
and the number of objects in the popular regions of space like the low-earth orbit and the geostationary
orbit is increasing rapidly. Mega-constellations for commercial use by companies such as SpaceX, Amazon
[5] and OneWeb [6] further contribute to the rising number of satellites. As a consequence, space debris
has become a more and more relevant topic. To keep space usable for future generations, space debris has
to be mitigated. One mitigation measure is the so-called "passivation", i.e. making sure that post mission
break ups are minimized. This can be done by implementing measures for depleting the stored energy
(tanks, batteries) and assessing the risk for components that cannot fully be depleted of their energy. Another
important mitigation measure is the post mission disposal, where satellites de-orbit themselves after they have
successfully completed their mission. While these measures can help in mitigating space debris, they are only
feasible for satellites that are still command-able at the end of their life. If a mission is lost due to any reason
then the only measure left is the Active Debris Removal (ADR). ADR describes the process of removing a space
debris fragment through capturing this fragment and de-orbiting it. Fig. 1.1 shows that including ADR in
mitigation measures ensures for the most effective mitigation of space debris. The company ClearSpace [7]
has been tasked to do a first demonstration for an ADR. The ClearSpace-1 mission will target the Vespa (Vega
Secondary Payload Adapter). It is set to launch in 2025.

The challenge here is that often the exact size, shape and mass of the targeted debris objects are unknown.
Furthermore, through the capturing process the mass and inertia of the satellite system is changed. Classi-
cal attitude regulation systems are modeled to work in a known environment, with a known inertia. The
ClearSpace demonstration also involves just one object, where the size and mass are well known. If the ADR is
to be used widely, for around 5 objects per year, it is not feasible to build one dedicated satellite for each debris
object that is to be removed. In this thesis an approach of Deep Reinforcement Learning (DRL) algorithm is
investigated to solve this satellite attitude problem. A DRL approach would help in coping with the unknown
inertia and would enable the ADR to handle diverse debris objects.
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Figure 1.1: Comparison of different mitigation measures and their effect. The extrapolation of the current
behavior regarding space debris shows a significant increase in space debris (red). The most
effective mitigation measure includes ADR of around 5 objects per year (pink) [8].

DRL - and especially DRL for the spacecraft control applications - has been investigated in previous works.
An overview can be found in [9]. The partially known space environment, the time-varying dynamics and the
benefits of autonomy make it the perfect candidate for reinforcement learning. Allison et al. [10] investigated
the use of a Proximal Policy Optimization (PPO) algorithm to find an optimal control strategy for the spacecraft
attitude problem. The spacecraft was modeled as a rigid body and the state space is defined by the error
quaternion vectors. The control policy obtained was able to achieve a good performance for a range between
0.1 kg and 100, 000 kg. As a simulation environment the Mujoco physics engine was chosen. In this work the
Basilisk software [11] is used. This is an astrodynamic simulation software especially designed for spacecraft
applications. In reinforcement learning (RL) the learned policy is very dependent on the simulation used in
training. Choosing a simulator which closely reproduces the real dynamics helps to ensure that RL policies
operate well in real environments. Additionally, in this thesis the Soft Actor Critic (SAC) algorithm (see section
2.2) is chosen to train the agent. This has been shown to achieve better results in continuous action spaces and
encourages exploration. In this thesis the use of safety constraints will also be investigated. In RL, constraints
are usually modeled through the reward function [12]. This can introduce a large amount of trial and error in
the formulation of the reward function. In this work the proposal is to use constraints independent of the
reward function that the agent has to consider like in [13]. This can help in guaranteeing stability.
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2 Theoretical Background

This chapter lays the basis for the following discussions. In the subsequent sections, the theory behind
Reinforcement Learning and the Soft Actor Critic Algorithm (SAC) are discussed.

2.1 Reinforcement Learning

The idea of Reinforcement Learning (RL) is based on an interaction between an agent and an environment.
This can be compared to to how humans learn by trial and error. How this basic concept of learning can be
translated into a computational approach shall be discussed in this section. The section is based on [12].

2.1.1 The Reinforcement Learning Problem

The Reinforcement Learning Problem can be characterized through the interaction of the so-called agent with
an environment. The agent is the learner and decision maker, while the environment provides the background
and gives feedback to those decisions. In contrast to supervised learning the correct input/output pairs are
not given, nor are sub-optimal actions explicitly corrected. To describe this agent-environment interaction
more formally the "action", the "state" and the "reward" are defined:
The agent interacts with the environment in a discrete time step t through an action at. Afterwards the
agent receives feedback in the form of the state st+1, which contains information about the environment. To
evaluate the action the agent also receives a numerical reward rt+1 signal. The goal is to maximize the sum
of rewards in the long run. The sum of these rewards r is also called the return R.

Figure 2.1: The agent environment interaction. The agent observes the state st, takes an action at and
receives a reward rt+1 and the next state st+1 from the environment. Modified from [12].

7



2.1.2 Markov Decision Process

Mathematically, the RL problem can be represented as a Markov Decision Process (MDP). If an environment
satisfies the Markov property that generally means the present state is only dependent on the immediate
previous state. If the states are deterministic the next state can be predicted based on the current state and the
action taken in this state. If the states are non-deterministic a state probability distribution can be predicted.
In both cases the associated reward with the state or state distribution can be predicted. The MDP can then
be defined as

MDP := (S,A, T, P, r), (2.1)

with

S := State space, (2.2)
A := Action space, (2.3)
T ⊆ N := set of time steps, (2.4)
P : S ×A× T × S → [0, 1] := State-transition probability function, (2.5)
r : S ×A× T → R := Reward function. (2.6)

The action space includes all actions. A(st) is the set of available actions in state st at the time step t ∈ T . The
state-transition probability function P gives the probability of the transition from state st to the subsequent
state st+1, when taking action at . The reward function is the associated reward with this transition. If the
state and action space are finite then the MDP is also finite [12].

2.1.3 Discounted Rewards

As mentioned before, the goal of the agent should be to maximize the return and not only the immediate
reward. In the simplest case the return Rt is the sum of the future rewards until the terminal state T .

Rt = rt+1 + rt+2 + rt+3 + ...+ rT . (2.7)

Here, a distinction between episodic tasks and continuous tasks needs to be made. An episodic task is
characterized through repeated interactions, which have a fixed terminal state T . In continuous tasks the
interaction between agent and environment cannot naturally be broken into identifiable episodes. The final
time step here is T = ∞. As a result, the return itself could become infinite. In general, a balance needs to be
found between selecting an action that has a big immediate reward and selecting one which might provide a
bigger reward in the future. To achieve this it can be useful to introduce discounted rewards. A discount
factor γ is used to rate the future rewards and therefore, determine how these are considered:

Rt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑︂
k=0

γkrt+k+1, with 0 ≤ γ ≤ 1. (2.8)

The value of the discount factor γ determines how far-sighted the agent is. If γ = 0 the agent only takes the
immediate rewards into account. As γ approaches 1 the agent gives more and more weight to the future
rewards.
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2.1.4 Policies and Value Functions

To determine what action the agent should take next, an estimation is needed of how good it is to be in a
certain state in regards to the overall goal of maximizing the return. For this the policy π(at, st) can be
defined, as the probability of selecting action at in state st. To evaluate this the state-value function Vπ(s) is
defined. Informally, this is the expected (E) discounted return when starting in state st and following a policy
π.

V π(st) = Eπ[Rt|S = st] = Eπ

[︄ ∞∑︂
k=0

γkrt+k+1|S = st

]︄
. (2.9)

Furthermore, the action-value function Qπ(st,at) is defined. This is the expected return when starting in
state st and taking action at following a policy π.

Qπ(st, at) = Eπ[Rt|S = st, A = at] = Eπ

[︄ ∞∑︂
k=0

γkrt+k+1|S = st, A = at

]︄
. (2.10)

The state value function and the action value function can be defined recursively. These recursive definitions
are called the Bellmann equations

V π(st) = Eat∼π(·|S),st+1∼P (·|st,at) (rt+1 + γV π(st+1)) , (2.11)
Qπ(st, at) = Est+1∼P (·|st,at)

(︁
rt+1 + γEat+1∼π(·|st+1) (Q

π(st+1, at+1))
)︁
, (2.12)

where the notation π(·|S) refers to a function call the policy π takes from the states S. The "∼" symbolizes
that the action at is selected according to the policy π. The goal of the RL problem is to find an optimal policy.
To find this the optimal value functions are defined as

V ∗(st) = max
π

V π(st) ∀st ∈ S, (2.13)

Q∗(st, at) = max
π

Qπ(st, at) ∀st ∈ S, ∀at ∈ A. (2.14)

A policy is considered better or equal to another policy if the expected return is greater than or equal to that
of the other policy for all states. The expected return J(π) associated to a policy is given by

J(π) = Et∼P (·|π) {Rt} . (2.15)

The reinforcement learning problem then can be written as

π∗ = argmax
π

J(π), (2.16)

where π∗ describes the optimal policy. While there can be many optimal policies π∗, they all share the same
optimal state-value function V ∗(st) and action-value function Q∗(st, at). An optimal solution can be found by
employing the Bellmann equations 2.12 and using Eq. 2.10 and Eq. 2.9 to find the Bellmann optimality
equations

V ∗(st) = max
a

E {rt+1 + γV ∗(st+1) |S = st} , (2.17)

Q∗(st, at) = E
{︃
rt+1 + γmax

at+1

Q∗(st+1, at+1) |S = st, A = at

}︃
. (2.18)

Solving these equations leads to the optimal state-value or action-value function. Using these, an optimal
policy can be determined by maximizing the associated value function.
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2.1.5 Deep Reinforcement Learning

Classic RL solution methods are based on tabular methods. Tabular methods use tables, or arrays to represent
the value functions or policies. They explicitly store and update the value of each state or state-action space
in a table. This makes them well-suited for small state spaces but causes them to have a problem with
scalability. For large MDPs there are too many states and actions to visit all of them in training. Hence, the
state-value function becomes increasingly large for complex problems. Saving them in a tabular manner gives
rise to memory problems. A solution is to replace the value tables through using approximation methods.
With approximation methods the value function can be estimated via function approximation. In Deep
Reinforcement Learning (DRL) neural networks serve as non-linear function approximations. One of these
DRL methods is the Soft Actor Critic Algorithm, which will be discussed in the following section.

2.2 Soft Actor Critic Algorithm

The Soft Actor Critic (SAC) algorithm is an off-policy maximum entropy deep reinforcement learning algorithm
with a stochastic actor. The RL problem in Eq. 2.15 is extended by an entropy objective. The goal is to
maximize the expected reward and the entropy. SAC makes use of three major concepts.

• Actor critic with separate policy and value function networks,

• Off-policy algorithm and

• Entropy maximization.

These concepts and the implementation of SAC shall be discussed in the following. This section is based on
[14].

2.2.1 Actor Critic Algorithms

Actor critic algorithms are usually based on policy iteration. Policy iteration describes the alternation between
policy evaluation and policy improvement. In the policy evaluation step, the Q-value function is updated on
the basis of the actor. This is referred to as the critic. In the policy improvement step, the actor improves the
policy πϕ by updating its parameters ϕ in the direction provided by the critic.

2.2.2 Off-policy Algorithm

The off-policy algorithm helps in increasing the sample efficiency through the reuse of previously collected
data. The SAC algorithm makes use of an experience replay buffer, which is a set D of previous experience.
These are used to update the policy and the critic network.

10



2.2.3 Entropy Maximization

The reward term is extended by an entropy objective H(π(·|st)).

J(π) =
T∑︂

k=0

E(st,at)∼ρπ [r(st, at) + αH(π(·|st))] , (2.19)

where α describes the temperature parameter. This determines the relative importance of the entropy term
against the reward term. Therefore, it controls the stochasticity of the optimal policy. The ρπ(st) and ρπ(st, at)
term describe the state and state-action marginals of the trajectory distribution induced by a policy π(st, at).
The extension by the entropy objective has the advantage of incentivizing the policy to explore the state-action
space widely.

2.2.4 Implementation

In practice, SAC makes use of neural networks as function approximators for the parameterized soft Q-function
Qθ(st, at) and the tractable policy πϕ(at, st), where θ, ϕ describe the parameters of the neural networks. All of
these are optimized with stochastic gradient descent. For this derivation the temperature parameter α is
treated as constant, but later an extension of SAC is described which adjusts the temperature automatically to
match an entropy target. The soft Q-function is trained by minimizing the soft Bellmann residual error:

JQ(θ) = E(st,at)∼D

[︃
1

2

(︁
Qθ(st, at)− (r(st, at) + γEst+1∼p[Vθ̄(st+1)])

)︁2]︃
. (2.20)

The value function is implicitly parameterized through the soft Q-function through

V (st) = Eat∼π

[︁
Q(st, at)− α log π(at|st)

]︁
. (2.21)

The log term represents the entropy term H as the Shannon entropy. The Q-function is updated through the
gradient estimate:

∇̂θJQ(θ) = ∇θQθ(at, st)
[︂
Qθ(st, at)−

(︁
r(st, at) + γ [Qθ̄(st+1, at+1)− α log πϕ(at+1|st+1)]

)︁]︂
. (2.22)

The target network function, denoted by Qθ̄, is introduced to stabilize training in the algorithm. In order to
achieve this, a second network is used, which is updated through the use of polyak averaging, a technique that
involves computing a moving average of the Q-network. This is updated once per update of the main network,
and lags behind it. To prevent overestimation of the Q-values, two Q-functions are trained independently and
the minimum of their respective target networks are used to update the actor.

The policy parameters can be learned directly by minimizing the Kullback-Leibler Divergence (DKL).
The DKL measures how one probability distribution is different from a second. In SAC the distribution of the
policy function is compared to the distribution of the Q-function.

Jπ(ϕ) = Est∼D
[︁
Eat∼πϕ

[α log(πϕ(at|st))−Qθ(at, st)]
]︁
. (2.23)

To minimize this the reparametrization trick is used. The policy is reparameterized using an NN transformation:

at = fϕ(ϵt; st), (2.24)
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where ϵ represents an input noise vector sampled form a Gaussian distribution. The policy term then modifies
to:

Jπ(ϕ) = Est∼D,ϵt∼N [α log πϕ(fϕ(ϵt; st)|st)−Qθ(st, fϕ(ϵt; st))] . (2.25)

This again can be estimated using gradient descent

∇̂ϕJπ(ϕ) = ∇ϕ log πϕ(at|st) + (∇atα log πϕ(at|st)−∇atQ(st, at))∇ϕfϕ(ϵt; st). (2.26)

Automating Entropy Adjustment for Maximum Entropy RL

In the previous calculations the temperature parameter α was assumed to be constant. In practice, finding
the optimal temperature is not trivial and introduces a parameter that needs to be tuned. To counteract this,
the process is automated by formulating a different maximum entropy reinforcement learning objective. The
problem is formulated as a constrained optimization problem where the average entropy of the policy is
constrained.

max
π0:T

Eρπ

[︄
T∑︂
t=0

r(st, at)

]︄
s.t. E(st,at)∼ρπ [− log(πt(at|st))] ≥ H ∀t, (2.27)

where H is the desired minimum entropy. This can be rewritten through an (approximate) dynamic program-
ming approach solving for the policy backward through time

max
π0

(︃
E [r(s0, a0)] + max

π1

(︃
E[...] + max

πT

E[r(sT , aT )]
)︃)︃

. (2.28)

Starting from the last time step, the constrained maximization is changed to the dual problem.

max
πT

E(st,at)∼ρπ [r(sT , aT )] = min
αT≥0

max
πT

E [r(sT , aT )− αT log π(aT |sT )]− αTH, (2.29)

where αT is the dual variable. The optimal dual variable α∗
T can be solved for by

argmin
αT

E(st,at)∼π∗
t
[−αT log π∗

T (aT |sT ;αT )− αTH] (2.30)

Through using the recursive definition of the soft Q-function, subject to the entropy constraints and using the
dual problem the following equation can be determined

max
πT−1

(︃
E[r(sT−1, aT−1)] + max

πT

E[r(sT , aT )]
)︃

= (2.31)

min
α≥0

max
πT−1

(︁
E[Q∗

T−1(sT−1, aT−1)]− E[αT−1 log π(aT−1|sT−1)]− αT−1H
)︁
+ α∗

TH. (2.32)

In this way, the algorithm can proceed backwards in time and can recursively optimize Eq. 2.27. The optimal
dual variable α∗

t can be found similarly after solving for Q∗
t and π∗

t as

α∗
t = argmin

αt

Eat∼π∗
t

[︁
−α log π∗

t (at|st;αt)− αH̄
]︁
. (2.33)
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In summary, the solution to Eq. 2.33 and the policy and soft Q-function updates described previously
constitute the core of the SAC algorithm. In addition to learning the Q-functions and the policy the temperature
term α is also learned by minimizing the dual objective in Eq. 2.27. This is done by dual gradient descent.
The gradients for α are updated with the following objective

J(α) = Eat∼πt

[︁
−α log πt(at|st)− αH̄

]︁
. (2.34)

The SAC algorithm alternates between collecting experience from interacting with the environment and
updating the function approximators using stochastic gradients. These batches are sampled from the replay
buffer D. Through extending the reward by an entropy objective, SAC encourages exploration and stabilizes
training in respect to hyperparameters. Fig. 2.2 shows the pseudocode for the SAC algorithm.

Figure 2.2: The SAC algorithm. It makes use of target networks with the parameters θ̄i and alternates
between collecting experience from the environment, storing these in the replay buffer D and
updating the Q-function, the policy weights and the temperature through gradient descent from
batches sampled from the replay buffer D [14].
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2.3 Astrodynamic Framework

This chapter provides the physical background to simulate a spacecraft. It describes the assumptions made in
the simulation and gives an overview about the software used. For the astrodynamic framework the Basilisk
software [11] is used. This software provides Python modules written in C/C++. It is being developed by the
University of Colorado AVS Lab [15] and the Laboratory for Atmospheric and Space Physics (LASP) [16]. For
visualization the accompanying software Vizard is used [17].

2.3.1 Coordinate Frames

Before specifying the spacecraft dynamics a common reference frame needs to be defined. In the simulation
two different coordinate frames are used. The first one is the earth-centered inertial frame (ECI) N ,
displayed in Fig. 2.3. The center of its origin is at the center of the earth. For inertial coordinate frames a
fixed reference direction has to be defined. Here, the vernal equinox à is used. This describes the line of
intersection between the equator and the ecliptic plane. The sun passes this point twice per year. In the ECI,
the I axis points towards the vernal equinox, the J axis is 90◦C to the east in the equatorial plane and the K
axis extends through the North pole [18].

Figure 2.3: The earth-centered inertial frame N [18]. The center of its origin is at the center of the earth.
The vernal equinox à defines the fixed reference direction for the ECI. It describes the line of
intersection between the equatorial plane and the ecliptic plane.
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Another coordinate frame used is the spacecraft body frame B, displayed in Fig. 2.4. This describes a
reference frame that is fixed to the rigid body of the spacecraft [19]. The origin of the frame is denoted as B.
Bc describes the center of mass of the hub. rB/N describes the position of the spacecraft in reference to the
inertial ECI frame N .

Figure 2.4: The spacecraft body-centered frame B. Bc describes the center of mass of the hub. Modified
from [19].

The angular velocity ωB/N between the ECI N and the spacecraft body frame B is given by

ωB/N = [ω1, ω2, ω3]
T . (2.35)

2.3.2 Spacecraft Dynamics

In Basilisk the spacecraft is modeled as a rigid body. In the following the spacecraft is referred to as the "hub".
The rotational dynamics with respect to the body-centered frame B and the center of mass location BC follow
Euler’s law for a rigid body:

Hhub,B = [Ihub,BC
]ωB/N +mhubrBC/B × ṙBC/B, (2.36)

where Hhub,B describes the angular momentum of the hub, Ihub,BC
is the inertia matrix of the spacecraft hub,

mhub is the mass of the spacecraft hub, ωB/N is the angular velocity between the inertial and body frame as
defined in Eq. 2.35 and rBC/B and its derivative is the location and velocity of the point B in the body frame.
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Reaction Wheels

Satellites are often equipped with momentum exchange devices to perform rotational maneuvers. A common
choice for these are reaction wheels (RWs). A reaction wheel is a body fixed wheel, which is spun up or
down to exert a torque on the spacecraft. Due to conservation of angular momentum spinning up the reaction
wheel causes the spacecraft to counter rotate, thus changing the attitude. In the simulation, the reaction
wheels are connected to the rigid body hub according to Fig. 2.5.

Figure 2.5: The RWs and their respective frames. They are attached to the spacecraft rigid body hub. The
center of masses for the rigid body hub, for the reaction wheels and for the spacecraft including
the reaction wheels are denoted as BC , WCi and C , respectively [19].

The frame and variable definitions used for the problem are

Bc := center of mass of spacecraft, (2.37)
B := origin of the B-frame (2.38)

Nrw := Total number of RWs with center of mass labeled as WCi , (2.39)
B := {b̂1, b̂2, b̂3}, body-fixed frame, (2.40)

Wi := {ĝsi , ŵ2i , ŵ3i}, wheel-fixed frame of i-th RW, (2.41)
Mi := {m̂si , m̂2i , m̂3i}, body-fixed motor frame of i-th RW. (2.42)

The variable definition can also be seen in Fig. 2.5. ĝsi is aligned with the spin axis of the RW. This is denoted
by the si subscript. ŵ2i is perpendicular to ĝsi and points in the direction of the center of mass of the reaction
wheel WCi , ŵ3i completes the coordinate system according to the right hand rule. The Mi frame is defined as
being equal to the Wi frame at the beginning of the simulation and is offset by an angle of θi by the m̂si = ĝsi
axes. Variable di is the center of mass offset of the RW. The time derivative of a vector v as seen by the inertial
frame N is denoted as Ndv/dt = v̇ and with respect to the body-fixed frame B as Bdv/dt = v′. The point C
in the body hub defines the center of mass of the system sc including reaction wheels.
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The vector c is defined as pointing from the origin of the body frame B to the systems center of mass as

c =
1

msc

(︄
mBrBC/B +

Nrw∑︂
i=1

mWirWCi/B

)︄
. (2.43)

Considering reaction wheels, the angular momentum of the spacecraft sc in Eq. 2.36 is extended through the
angular momentum of the i-th reaction wheels:

Hsc,B = Hhub,B +

Nrw∑︂
i=1

Hrwi,B, with (2.44)

Hrwi,B = [Irwi,WCi
](ωB/N +Ωiĝsi) +mrwirWCi

/B × ṙWCi
/B, (2.45)

where Ωi is the wheel speed of the i-th RW. To develop the equation of motions the time derivative of the
angular momentum needs to be calculated

Ḣsc,B = Ḣhub,B +

Nrw∑︂
i=1

Ḣrwi,B. (2.46)

The hub and the reaction wheel angular momentum derivative can be found after some calculation according
to [19] as

Ḣhub,B = [Ihub,B]ω̇B/N + [ω̃B/N ][Ihub,B]ωB/N (2.47)
Ḣrwi,B = [IWi,B]

′ωB/N + [IWi,B]ω̇B/N + [ω̃B/N ][IWi,B]ωB/N (2.48)
+ [IWi,WCi

]′Ωiĝsi + [IWi,WCi
]Ω̇iĝsi (2.49)

+mWirWCi
/B × (diΩ̇iω̂3i − diΩ̇

2
i ω̂2i) (2.50)

+mWiωB/N × (rWCi
/B × r′WCi

/B). (2.51)

The tilde operator designates the skew symmetric matrix, i.e. [ω̃]v = ω × v. This notation has the benefit of
being frame independent and represents the cross product in a compact manner. The full rotational equation
of motion is

msc[c̃]r̈B/N + [Isc,B]ω̇B/N +

Nrw∑︂
i=1

Jsi ĝsiΩ̇i = −[ω̃B/N ][Isc,B]ωB/N −
Nrw∑︂
i=1

(ωB/N × JsiΩiĝsi) + LB, (2.52)

where LB is the torque about point B. The motor torque equation describes how the motor torque usi relates
to the wheel speed derivative Ω̇i and can be written as

Ω̇i =
usi
Jsi

− ĝT
siω̇B/N . (2.53)

Combining Eq. 2.52 and Eq. 2.53 yields

msc[c̃]r̈B/N + ([Isc,B]−
Nrw∑︂
i=1

Jsi ĝsi ĝ
T
si)ω̇B/N (2.54)

= −[ω̃B/N ][Isc,B]ωB/N −
Nrw∑︂
i=1

(ĝsiusi + ωB/N × JsiΩiĝsi)− [I ′sc,B]ωB/N + LB. (2.55)
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In this thesis the satellite is equipped with three balanced reaction wheels, each aligned with one spin axis
ĝsi . This enables each reaction wheel to control one spin axis, without influencing the others. The equations
of motions described above are used to model the rotational behavior in Basilisk. The problem that arises with
using reaction wheels is saturation. This phenomenon describes that the reaction wheels have stored more
momentum than their maximum wheel speed allows. This can happen either through external forces or if the
attitude control system exceeds the maximum wheel speed. As a consequence attitude control with reaction
wheels is no longer possible. The excess momentum needs to be dumped using a secondary attitude control
system [19, 20].

2.3.3 Modified Rodrigues Parameters

As an attitude representation Modified Rodrigues Parameters (MRP) are selected. The MRP vector σ is defined
in terms of the Euler parameters. The Euler parameters are defined with respect to the principal rotation Φ as

β0 =cos

(︃
Φ

2

)︃
, (2.56)

βi = ei sin

(︃
Φ

2

)︃
, i = 1, 2, 3. (2.57)

The MRP vector σ is then defined as

σi =
βi

1 + β0
, i = 1, 2, 3, (2.58)

with the inverse equations

β0 =
1− σ2

1 + σ2
, (2.59)

βi =
2σi

1 + σ2
. (2.60)

The MRP can be expressed in terms of the principal rotation elements as

σ = tan
Φ

4
ê. (2.61)

For small angles, the small angle approximation holds for the tangents. In comparison to the Euler parameters,
this improves the domain of linearity. The projection of the alternate Euler parameter vector −β results in
a distinct set of shadow images σS

i . Each MRP is an equally valid attitude description. Therefore, one can
switch between these two vectors by using

σS
i =

−βi
1− β0

=
−σi
σ2

. (2.62)
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Figure 2.6: The stereographic projection of the MRPs and its shadow images into the Euler Parameter unit
sphere. σ describes the attitude that is projected unto the point β = (−1, 0, 0, 0). As a 360◦ degree
principal rotation is approached (β0 → −1), the projection of the corresponding point on the
constraint sphere goes to infinity. But the projection of the alternate euler vector −β = (1, 0, 0, 0)
results in a distinct set of shadow images, avoiding the singularity. Each vector can be used as
an attitude description [20].

While the original MRP and the shadow MRP are both individually singular, combining these can avoid
singularity. The MRP and its shadow set have completely opposite singular behaviors. The original MRP has a
singularity at Φ = 360◦ the shadow set has its singularity at Φ = 0◦. One set defines the short rotation, while
the other one defines the long rotation. Implementing both of these, a complete 360◦ rotation can be described
without singularity. The only problem that needs to be addressed is the discontinuity when switching between
these. A typical switching surface is σ2 = 1. In general this behavior can be summarized by

|σ| ≤ 1 if Φ ≤ 180◦, (2.63)
|σ| ≥ 1 if Φ ≥ 180◦, (2.64)
|σ| = 1 if Φ = 180◦. (2.65)

Using this representation has several benefits: The MRP linearizes well for small angles. In the simulation, the
switching between these two sets happens seamlessly and the resulting attitude is always given as the shortest
rotational path. Therefore, the MRP has a bounded maximum norm of 1, which is very useful to interpret the
feedback gained from the attitude error [20].
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3 Scenarios

Before investigating the space debris scenario, where the mass changes, a few simpler scenarios are tested.
This is to study the feasibility of using a DRL and especially a SAC algorithm for the Attitude Control System
(ACS) of a satellite. After starting with the simplest scenario the complexity is increased continuously. In the
following chapter these different scenarios are presented and discussed.

3.1 Simulation Architecture

Simulation Task

spacecraft

simpleNav

inertial3D

attTrackingError

rwMotorTorque

RW0

RW1

RW2

gravityEffector
att | pos

Agent
att, att_rate

rw_speed

Python Task

SIM module

FSW module

Agent module

Interface path

MPI path

Agent-env interface

initialConditions

action

at

state st

reward rt

Figure 3.1: The simulation architecture and agent interface. The simulation (SIM) and flight software (FSW)
modules communicate through the message passing interface (MPI). The agent receives the
state st from the environment. The state contains the attitude σB/N , the attitude rate ωB/N and
the wheel speed Ω. The agent then gives an action at in the form of a torque vector into the
environment. The communication between agent and environment is based on an OpenAI Gym
interface. Modified from [21].
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In Fig. 3.1 the simulation architecture is shown. The spacecraft module describes the spacecraft as a rigid
body. The gravityEffector module provides the necessary orbital dynamics for a low earth orbit. The simpleNav
module provides the current attitude, attitude rate and position of the spacecraft. The inertial3D module
provides the attitude goal. In the attTrackingError module this is used to compute the difference between the
desired attitude and the current attitude. This is then given as a feedback to the agent. The agent provides a
torque input to the rwMotorTorque module, which maps these onto the three reaction wheels. The reaction
wheel speed Ω is then given as a feedback to the agent. Through the initialConditions module the different
scenarios described in the following can be implemented. The agent and the simulation communicate through
an OpenAI Gym interface. The agent is trained using the SAC algorithm from rllib [22]. The simulation
environment has no aerodynamic, gravitational, or solar radiation pressure effects.

3.2 Stabilizing the Satellite with Reaction Wheels

A satellite equipped with reaction wheels is simulated. These are the used for the attitude control. Three
reaction wheels are set up to control the three axes of the satellite. For describing the attitude tracking error
σB/N and the attitude rate ωB/N the MRPs described in section 2.3.3 are used. As action a the torque vector
u on the reaction wheels is used.

a = [u1, u2, u3]. (3.1)

The reaction wheels are modeled after a standard set of reaction wheels like the Honeywell HR16 [23]. In
compliance with this the action space boundaries are set to umin = −0.2Nm and umax = 0.2Nm.
The state s is defined, with the reaction wheel speed Ω as the following

s = [σB/N ,ωB/N ,Ω]. (3.2)

Constant Initial Attitude
This scenario is the simplest scenario. The satellite is given a constant, fixed initial attitude ofσB/N Init = [1, 0, 0]
and no initial attitude rate ωB/N Init = [0, 0, 0]. In inertial3D the desired attitude is set to σB/NDesired = [0, 0, 0].
Therefore, the agent has the goal to rotate the satellite by 180◦.

Vary Initial Attitude
In this scenario, instead of using a fixed initial attitude, different initial attitudes σB/N Init and attitude rates
ωB/N Init are sampled through the initialConditions module. The sampling happens uniformly: All values
within the given range have the same probability of being chosen. The goal state is σB/NDesired = [0, 0, 0]. The
agent has to handle several different initial attitudes and attitude rates, bringing the satellite to the desired
orientation each time.

Vary Initial Mass
In this scenario the same assumptions as in the scenario "From a Fixed Starting Position" are employed. Instead
of a fixed mass the mass is now sampled uniformly. This simulates the change of mass that occurs after the
capture of the space debris object. The agent has the goal to rotate the satellite by 180◦.
An overview of the different scenarios can be found in table 3.1.
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Table 3.1: Comparison of the different scenarios. The trained agents are named for a more convenient
reference in the rest of the work. Shown are initial and desired values and the mass of the
simulated satellite.
Scenario Agent σi

B/N Init σB/NDesired ωi
B/N Init[

rad
s ] Mass[kg]

Constant Init Att Constable [1, 0, 0] [0, 0, 0] [0, 0, 0] 330
Vary Init Att Spinny 0− 1 [0, 0, 0] 0− 0.1 330
Location Pointing Spinny [1, 0, 0] Time Dependent [0, 0, 0] 330
Vary Init Mass Massive [1, 0, 0] [0, 0, 0] [0, 0, 0] 10− 1000

3.2.1 Reward Modeling & RL Training Parameters

The main objective of the agent is to reach the desired orientation. For this purpose an attitude error is
defined, on which the reward is based on. The attitude error is defined as the difference between the desired
orientation and the current orientation of the satellite for each coordinate.

σB/N =
[︂
σ1
B/N , σ2

B/N , σ3
B/N

]︂
, with (3.3)

σi
B/N =

(︂
σi
B/NDesired − σi

B/NCurrent

)︂
. (3.4)

Using this definition the reward is

r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1, if |Ωi| ≥ Ωmax = 6000 rpm
−|σB/N |2 + 0.1, if σi

B/N < 0.05, ∀i
−|σB/N |2 + 0.05, if σi

B/N and σj
B/N < 0.05, ∀i ̸= j

−|σB/N |2, else.

(3.5)

The first term of the reward function is to avoid saturation of the reaction wheels, as described in section
2.3.2. The next objective is to minimize the norm of the attitude error −|σB/N |2. Empirically it could be
observed, that these two conditions alone did not achieve the desired orientation in each coordinate, since the
norm of the attitude error is in a similar small range, even if not all coordinates are near the desired location.
Therefore, conditions were added, which consider the coordinates separately and give additional incentive
to the agent to bring all coordinates below a certain threshold. The condition in the second row gives an
additional reward, if all coordinates are below 0.05. The condition in the third row gives a smaller additional
reward, if at least two coordinates are below the threshold.
With 0 ≤ |σB/N | ≤ 1 the minimum and maximum reward r can be calculated

−1 ≤ r ≤ 0.1. (3.6)

Using this definition and the number of steps in one episode the minimum and maximum return R for one
episode is

Rmax = rmax ·#steps = 0.1 · 60 = 6. (3.7)
Rmin = rmin ·#steps = −1 · 60 = −60. (3.8)

The reward function is the same throughout all scenarios. The RL hyperparameters used for the training are
shown in table 3.2.
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Table 3.2: The training parameters including the RL hyperparameters and the environment parameters. The
learning rates refer to three different learning rates: The actor network, the Q-Value network and
the α parameter. As activation function the rectified linear unit (ReLU) is chosen. This function
returns the input if the input is positive, and zero otherwise.

Parameter Value
learning rates 3 · 10−4

discount γ 0.99
replay buffer size 1000000
number of hidden units 256
entropy target −dim(A) = −3
nonlinearity ReLU
target update interval 1
target smoothing coefficient τ 5 · 10−3

time step 10s
episode length 600 s = 10min

3.3 Scenario: Constant Initial Attitude

In this scenario a fixed initial attitudes σB/N Init = [1, 0, 0] (rotation by 180◦) and attitude rates
ωB/N Init = [0, 0, 0] rads are set. The goal state is σB/NDesired = [0, 0, 0]. For future references the agent in this
scenario will be referred to as Agent Constable.

3.3.1 Training of Agent Constable

The Basilisk software is used to simulate the space environment. The training for Agent Constable revealed
problems with the underlying simulation software Basilisk. A slow but steady increasing memory consumption
during the training could be observed. The memory leak was confirmed by the developers of Basilisk but the
source could not yet be identified. As a consequence, it is not possible to train the agent continuously for
an extended period of time. As mitigation, checkpoints of the trained agent models are saved and used as a
starting point to continue the training. This has no influence on the final trained agent, but has an effect on
the RL metrics used to evaluate the training. In this case, using already trained models cause an overfitting in
the beginning. This means that the return starts rather high at the beginning of the training and then drops
due to the agent overfitting to the limited existing data. As the agent collects more experience the return rises
again. To better discuss the results, the return and mean Q-values are displayed for all checkpoints of the
training in Fig. 3.2. The Q-values represent the expected discounted return the Agent receives, when in a
state st and taking an action at, following a policy π. The Q-values are updated using the Bellmann optimality
equations (Eq. 2.18). When comparing them with the reward, they can provide valuable insights about the
training. Agent Constable was trained for 39058 episodes.
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Figure 3.2: The return and Q-value over the course of the 39058 training episodes. Due to the memory leak
the training was conducted in 3 sets: The first checkpoint is after 6982 episodes of training, the
second checkpoint after 23941 episodes of training. The Q-value is able to approximate the return
very accurately, even the dips in the return. The dips in the return are a sign that the agent was
exploring and also considering actions that might not lead to a high return immediately. After the
exploration phase the agent recovers and gradually brings the return up again.

In general, the Q-value is able to approximate the returns correctly. After the first checkpoint a peak in
the Q-values appear, while there is a simultaneous dip in the return. This indicates that the agent is not able
to approximate the expected return correctly yet. The agent is overestimating certain actions’ values. This
can indicate that the agent encountered something unexpected. The large negative return indicates that the
actions of the agent have saturated the reaction wheels. The Q-value function is still learning which actions
cause this saturation. After the first initial peak, the Q-value function also shows a large dip, indicating that
the Q-value function has learned from this experience. In the end both the return and the mean Q-values
converge.
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3.3.2 Evaluation of Trained Agent Constable

To evaluate the agent, the trained agent is tested in the environment for 100 episodes. The 100 episodes are
then evaluated on the basis of the following metrics:

Return R : The mean return reached in each episode, including the standard deviation.
|σB/Nfinal| : The mean norm and standard deviation of the final 3D attitude error vector.
σi
B/Nfinal : All final attitude vectors are transformed into one list by concatenating their components.

Then the mean and standard deviation of that list is calculated.
Confidence Interval (CI) for σi

B/Nfinal : Gives an indication of where the final attitude error

for all components will lie, with 95% confidence.
ωi
B/Nfinal : All final attitude rate vectors are transformed into one list by concatenating their components.

Then the mean and standard deviation of that list is calculated.

The results of the 100 episodes from the discussed metrics is listed in table 3.3.

Table 3.3: The evaluation of the trained Agent Constable tested for 100 episodes. The agent reaches a
consistent high return and the final attitude error σB/Nfinal lies between −3.3◦ and 3.1◦ with 95%
confidence. The attitude rate is also very stable at the end of the episode.

Return |σB/Nfinal| [◦] σi
B/Nfinal [

◦] CI for σi
B/Nfinal [

◦] ωi
B/Nfinal[

rad
s ]

3.730± 0.024 4.63± 0.21 0.6± 2.6 [−3.3, 3.1] (3± 30) · 10−5

The trained Agent Constable shows very good results for the constant attitude scenario. The final attitude
error norm is below 5◦, which demonstrates the agents ability to orient the satellite correctly. The final attitude
error for each component σi

B/Nfinal has a maximum deviation between [3.3, 3.1]◦ with 95% confidence. In
comparison to the value itself, the final attitude rate has a large standard deviation. It’s possible that the
agent finds the correct position, but is still rotating slowly around one axis. The value is very small though,
showing a stable and controlled satellite at the end of the simulation. To further evaluate and visualize the
trained agent, the learned model is tested in only one episode in the environment. The return reached here
is R = 3.71. In the accompanying visualization through the Vizard software the satellites behavior can be
observed. The initial and final position of the spacecraft can be seen in Fig. 3.3.
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(a) Initial spacecraft attitude (b) Spacecraft attitude after 10 minutes

Figure 3.3: The spacecraft at the beginning of the simulation and after a 10 minute episode. The final attitude
error is σB/Nfinal = [2.2, 2.4,−2.5]◦

The satellite quickly turns around and stabilizes at the desired position. The attitude rate is stable. At the
end the satellite is shifted almost 180◦ from it’s initial position, as can be seen in Fig. 3.3. The attitude error,
the attitude rate, the RW speeds and the applied motor torque in this single 10 minute episode can be seen in
Fig. 3.4.
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(a) Attitude error (b) Attitude rate error

(c) RW speeds (d) RW motor torques

Figure 3.4: The spacecraft attitude state information. The attitude error (a) describes the difference between
the desired and current attitude. In the beginning the agent overshoots the correction into the other
direction, but then corrects itself. After 100 s the final attitude is reached. In (b) the corresponding
attitude rate error can be seen. (c) shows that the reaction wheels are not saturated and their
speed stays centered around the initial speed. The torques the agent applies can be seen in (d).
The agent applies a large torque at the beginning, which shifts the agent almost 180◦ in the other
direction, after which the agent slowly brings the satellite into the desired position.

Agent Constable shows good performance in this one episode. The agent overcorrects at the beginning, but is
able to bring the satellite to the desired orientation after around 100 s. The agent does not saturate the reaction
wheels, or cause the satellite to spin uncontrollably. The final attitude error is σB/Nfinal = [2.2, 2.4,−2.5]◦. The
final attitude error is small and shows only a slight deviation from the desired orientation in each coordinate.

This agent was only trained for one constant initial attitude. The next complication is to vary the initial
attitudes and attitude rates. As a first step, Agent Constable is tested in 100 episodes again, but this time the
initial attitudes and attitude rates are sampled in each axis according to σi

B/N Init = [0, 1], ωi
B/Nmax = 0.1 rad

s .

The results are displayed in table 3.4.

Table 3.4: The trained agent tested for 100 episodes with the initial attitude and attitude rate sampled. The
agent reaches a low return and the final attitude error σB/Nfinal has a very high error. The CI for
the attitude error shows a large deviation from the desired attitude. The attitude rate is relatively
stable at the end of the episode, indicating that the satellite manages to detumble, but not reach
the desired attitude.

Return |σB/Nfinal| [◦] σi
B/Nfinal [

◦] CI for σi
B/Nfinal [

◦] ωi
B/Nfinal[

rad
s ]

−25.7± 8.5 122.8± 41.9 4.3± 74.9 [−151.7, 136.1] −0.0045± 0.076
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As demonstrated the agent cannot handle the random initial attitudes. The agent has only learned to orient
the satellite from one position. Even though the agent was able to collect a little experience of other attitudes
through applying exploration techniques and trying out random actions, catapulting the satellite to unknown
attitudes, this was not enough experience to be able to handle all of these different cases. The sampling of the
attitude and the attitude rate has to be included in the training already, to increase the amount of experience
the agent gains in training. This will be done in the next step.

3.4 Scenario: Vary Initial Attitudes

In this scenario different initial attitudes σB/N Init and attitude rates ωB/N Init are sampled through the initial-
Conditions module already during the training. The goal state is σB/NDesired = [0, 0, 0]. The initial attitude and
attitude rate are sampled according to σi

B/N Init = [0, 1], ωi
B/Nmax = 0.1 rad

s . The trained agent with random
initial attitude conditions is referred to as Agent Spinny.

3.4.1 Training of Agent Spinny

Agent Spinny is trained with a total of 101805 episodes. The return during the training is depicted in Fig. 3.5.
The return starts low at around -25 and then slowly rises. After the first checkpoint the return is at around
-10, but dropping shortly due to the overfitting to the existing limited data. After that initial drop the return is
approaching 0, but still shows a large drop after episode 40000. This large drop indicates that the reaction
wheels were saturated. Several more, smaller drops occur during the rest of training, but the drops get smaller,
until near the end the return is in a positive region.
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Checkpoints: (15263, 81798)

Figure 3.5: The return over the course of the 101805 training episodes. Due to the memory leak the training
was conducted in 3 sets: The first checkpoint is after 15263 episodes of training, the second
checkpoint after 81798 episodes. The total training episodes are 101805.
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3.4.2 Evaluation of Trained Agent Spinny

As before, the trained agent is tested in the environment. To test the robustness of the agent the initial
conditions are Monte Carlo sampled for 100 samples and the results are evaluated. As a first measure the
attitude error and attitude rate error for all components σi

B/Nfinal, ω
i
B/Nfinal at the end of the episode is

investigated for the 100 samples. In the ideal case the attitude error would be zero, when the episode is
finished, since the desired position is reached.

(a) Attitude error (b) Attitude rate error

Figure 3.6: The distribution of the final attitude error (a) and the final attitude rate (b) over 100 samples for
the vary init atts scenario. The mean and standard deviation σi

B/N = (1.1± 6.6)◦,
ωB/N = (8.17±110) ·10−5 rad

s are sketched in red and blue, respectively. The confidence interval is
sketched in grey. With 95% confidence the final attitude error σi

B/Nfinal lies between [−9.4, 14.5]◦.

This distribution shows that the attitude error is centered around zero, which is the desired behavior. The CI
still shows a relatively large deviation, lying between [−9.4, 14.5]◦. The final attitude rate shows a very stable
behavior. The satellite manages to detumble itself. As with Agent Constable, the standard deviation is very
large compared to the value itself. This indicates that the satellite still has a spin at the end of the episode.
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After evaluating these environment metrics, the RL metric of the return is evaluated. As discussed before,
the maximum return reachable is Rmax = rmax ·#steps = 0.1 · 60 = 6. The maximum return reached in the
100 samples is R = 5.5. The minimum return reached is R = −4. The mean return including the standard
deviation is R = 2.5± 1.9.

(a) (b)

Figure 3.7: In (a) the distribution of the return over 100 samples for the vary init atts scenario is shown.
The mean and standard deviation R = 2.5± 1.9 are sketched in red and blue, respectively. The
confidence interval is sketched in grey. With 95% confidence the return lies between [−2.4, 5.0].
In (b) the return over the initial attitude is displayed. The rotation is constrained to the x-axis. It
shows the relationship between the initial attitude and the return. The further away the satellite is
from the desired position at the beginning of the simulation, the lower the return.

In this scenario it is to be expected that the maximum return of R = 6 is not reached every time and that the
return varies depending on the starting position. The maximum return could be reached, if the start position
would be equal to the desired end position. It is expected that the further away from the desired position
the satellite is at the beginning, the lower the return, since time is needed for the control maneuver. This
phenomenon can be demonstrated by investigating the one-dimensional case. Instead of sampling the attitude
and attitude rate between any values, the rotation is constrained to the x-axis for simplicity. The desired
attitude is still σB/NDesired = [0, 0, 0]. Considering this simpler case will help to gain a better understanding of
the influence of the initial attitude on the return. In Fig. 3.7 (b) it is clearly visible, that initial conditions that
are close to the desired state yield the highest return. The further away the initial state is from the desired,
the lower the return. This is due to the fact that the return is a cumulative property of all rewards. If the agent
is in an unoptimal position in the beginning, the reward will be lower until the agent gets close to the desired
position. This is to be expected.

3.5 Comparison: Agent Spinny vs. Agent Constable

In this section, the Agents Spinny and Constable (section 3.3) are compared for two different scenarios: In
the first scenario the initial conditions are set to σB/N Init = [1, 0, 0] and the satellite has no initial attitude rate.
In the second scenario the attitude is sampled the same way as in section 3.4.
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Table 3.5: Comparison of Agent Spinny and Agent Constable in 100 samples in the environment for each
scenario.

Scenario Agent Return |σB/Nfinal| [◦] σi
B/Nfinal [

◦] CI for σi
B/Nfinal [

◦] ωi
B/Nfinal[

rad
s ]

Static Att Constable 3.730± 0.024 4.63± 0.21 0.6± 2.6 [−3.3, 3.1] (3± 30) · 10−5

Spinny 0.03± 0.20 17.4± 0.9 −2.9± 9.7 [−11.1, 11.8] (5.12± 110) · 10−5

Vary Att Constable −25.7± 8.5 122.8± 41.9 4.3± 74.9 [−151.7, 136.1] (−4.5± 76) · 10−3

Spinny 2.5± 1.9 9.3± 6.9 1.1± 6.6 [−9.4, 14.5] (8.17± 110) · 10−5

Agent Spinny shows little spread among the return in both scenarios, while Agent Constable demonstrates
a large spread of the return in the "Vary Att" scenario, while being very consistent in the "Static Att" scenario.
The return distribution of the Agents performing in this scenario is plotted in Fig. 3.8. Agent Constable shows
the best CI overall, in the scenario with a static initial attitude. The CI for Agent Spinny is bigger, but still the
final attitude deviation is still in a tolerable area. The strength of Agent Spinny is in generalizing and being
able to handle a wide array of initial conditions.

Figure 3.8: The spread of the return (shown on the y-axis) for the "Vary Att" and "Static Att" scenarios. Both
scenarios are tested with Agent Spinny and Agent Constable. Agent Spinny performs better
overall, but for the specific initial attitude of σB/N Init = [1, 0, 0], Agent Constable demonstrates a
slightly better performance.

For the specific initial attitude of σB/N Init = [1, 0, 0] Agent Constable is able to perform better than Agent
Spinny. This can be explained by several factors: The specific attitude of σB/N Init = [1, 0, 0] is very unlikely to
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be picked if every coordinate is sampled between 0 and 1. This is also demonstrated on the left hand side of
the plot: The return for Agent Constable starts very low, indicating that in the 100 samples used for evaluation
the state of σB/N Init = [1, 0, 0] and ωB/N Init = [0, 0, 0] was not present. The same thing likely occured in the
training of Agent Spinny, Agent Spinny never saw the specific state that Agent Constable was trained with.
With increased training time, Agent Spinny might achieve results close to Agent Constable. Still, Agent Spinny
achieves a good return and a CI of [-9.4,14.5]◦. To improve this performance it might also help to increase
the network capacity. This can be achieved by increasing the size of neurons in the hidden layers. When
varying both the attitude and the attitude rate, the space state is very large, since there are many different
combinations. Increasing the network capacity can help to better approximate the complicated functions.
If the network capacity is too low, overgeneralization can happen, which decreases performance. Overall,
Agent Spinny is able to handle this specific attitude, but performs slightly worse than Agent Constable. Agent
Spinny’s ability to deal with changing attitude conditions is also demonstrated in the next scenario that will
be discussed.

3.6 Scenario: Location Pointing with Two Spacecrafts

In this scenario there are two spacecrafts, where one spacecraft simulates the servicer and the other spacecraft
simulates a non-functioning debris object. The servicer is in orbit around the spacecraft, with the goal to get
more information about the debris object before attempting the capture. For this purpose there is a camera
attached to the servicer, which should be pointed at the debris objects during the orbit.

Figure 3.9: The location pointing scenario involving two spacecrafts. The debris object is being orbited by a
servicer. The simulation time is marked in orange. During the entire simulation time the servicer
should keep the debris object in its field of view.
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3.6.1 Simulation Architecture

Simulation Task
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MPI path
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Figure 3.10: The simulation architecture and agent interface. The simulation (SIM) and flight software (FSW)
modules communicate through the message passing interface (MPI). The agent receives the
state st from the environment. The state contains the attitude error σB/N , the attitude rate
ωB/N and the wheel speed Ω. The attitude error is calculated by the locationPointing module,
which takes the attitude from the servicer and the debris object into account, to calculate the
difference. The agent then gives an action at in the form of a torque vector into the environment.
The communication between agent and environment is based on an OpenAI Gym interface.

In the simulation the theoretical scenario is realized through adding a second debris spacecraft with spinning re-
action wheels, causing the spacecraft to spin freely, and a navigation module (simpleNav). The attTrackingError
module and the inertial3D module from the previous simulation (see Fig. 3.1) is replaced with a locationPoint-
ing module. The locationPointing module takes both the navigational data from the servicer and the debris
spacecraft as input and translates the difference directly into an attitude error, which is fed to the agent in the
state. The debris spacecrafts location in the inertial frame is given by rL/N . The vector rL/S pointing from the
satellite location rS/N to the debris object is then

rL/S = rL/N − rS/N . (3.9)

Let r̂L/S be the normalized heading vector to this location. p̂ denotes a body-fixed vector, which is to be
pointed towards the debris spacecraft. Thus, this module performs a 2-degree of freedom attitude guidance
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and control solution. The eigen-axis ê to rotate p̂ towards r̂L/S is then given by

ê =
p̂× r̂L/S

|p̂ · r̂L/S |
. (3.10)

The attitude tracking error is then given by

σB/N = − tan(ϕ/4)ê, with (3.11)
ϕ = arccos(p̂ · r̂L/S). (3.12)

In the previous scenarios, the desired attitude was always set to σB/NDesired = [0, 0, 0]. In this scenario the
desired attitude depends on the location of the debris spacecraft.

Table 3.6: The "Location Pointing" scenario in comparison to the "Vary Init Pos" scenario. Instead of a varying
initial attitude, the "Location Pointing" scenario has a time dependent desired attitude.
Scenario Agent σi

B/N Init σB/NDesired ωi
B/N Init[

rad
s ] Mass[kg]

Vary Init Pos Spinny 0− 1 [0, 0, 0] 0− 0.1 330
Location Pointing Spinny [1, 0, 0] Time Dependent [0, 0, 0] 330

The locationPointing module is further set up in such a way, that the side, where the camera is attached to,
should point at the debris object the entire time. For this purpose the body fixed vector p̂ that is to be aimed
at the location is set to the vector that the camera is attached to. The agent then calculates an action in the
form of a three dimensional motor torque [24].

3.6.2 Evaluation of Agent Spinny

It is tested if Agent Spinny can handle this new scenario without any further training. On the one hand, this
problem is more complicated than the scenario in section 3.4, since the attitude error is now time dependent.
On the other hand, the problem simplifies to a two dimensional case. Instead of having to reach the desired
attitude at the end of the simulation, the agent has to keep adjusting the satellite to have the debris object in
view at all times. Furthermore, the change in attitude is much more gradual, therefore the simulation time
is increased to 3600 s = 1 hour. This impacts the minimum and maximum return, which now lies between
−360 ≤ R ≤ 36. Agent Spinny is evaluated for this problem with 100 samples. The results are listed in table
3.7.

Table 3.7: Evaluation of Agent Spinny in the scenario with two spacecrafts.
Return |σB/Nfinal| [◦] σi

B/Nfinal [
◦] CI for σi

B/Nfinal [
◦] ωi

B/Nfinal[
rad
s ]

31.02± 0.11 1.3± 0.6 0.3± 0.7 [−1, 1.9] (−1.89± 1.51) · 10−3

Agent Spinny performs very well in the scenario with two spacecrafts. The CI for the final attitude error is
even smaller than in the previous scenarios. The final attitude error also shows a small value with a small
standard deviation. The attitude rate is higher than in previous scenarios, but the satellite also needs to be
constantly adjusted, since the target changes. For this reason it is vital to not only look at the final attitude
error, but to also investigate how the agent performs during one episode. For this purpose the Vizard software
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is used. One episode is visualized and the results are depicted in Fig. 3.12. Additionally, the state information
is evaluated in Fig. 3.11.

(a) Attitude error (b) Attitude rate error

(c) RW motor torques

Figure 3.11: The attitude error (a), attitude rate error (b) and RW motor torques (c). Since the problem
simplifies to two dimensions, σ2 is zero throughout the entire episode. The other two coordinates
are in a range between -20◦ and 20◦. Even though the problem does not require to control the
third axis of the satellite, in (b) it can be seen that the attitude rate error is around zero and the
satellite is very stable. The RW motor torques are shown in (c). The agent continuously applies
small torques to follow the debris object.
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Figure 3.12: The visualization of the beginning of the episode is shown in the top panel. The debris object is
in the middle, being orbited by the servicer. The camera is marked with a white dot and a yellow
cone around it, demonstrating the field of view. In the "spacecraft Instrument Camera1" panel
the view of the camera is visible. In the second panel the end of the episode is shown. In the
beginning of the episode the camera is pointed away from the debris object, at the end of the
episode the camera is pointed toward the debris object.
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At the beginning of the episode the camera is pointed away from the debris object towards empty space. At
the end of the episode the camera is pointed at the debris object and the debris object is clearly visible in the
camera panel. In conclusion, Agent Spinny is able to handle the time-dependent attitude error without any
further training. This demonstrates its capability to generalize and handle new unknown scenarios.

3.7 Scenario: Vary Initial Mass

In this scenario a fixed initial attitude σB/N Init = [1, 0, 0] (rotation by 180◦) and attitude rate
ωB/N Init = [0, 0, 0] rads are set. The goal state is σB/NDesired = [0, 0, 0]. For future references the agent in this
scenario will be referred to as Agent Massive. The mass is sampled uniformly between 10 kg and 1000 kg.

3.7.1 Training of Agent Massive

The agent is trained for 17593 episodes in total, in two sets. The return is depicted in Fig. 3.13. Before the
first checkpoint the return stays at around -20, even showing several dips. After the second checkpoint, the
return rises, only showing one dip. After episode 10000 the return converges. The agent has learned how to
maximize the return.

0 2500 5000 7500 10000 12500 15000 17500
Episode

40

30

20

10

0

Re
tu

rn
s

Checkpoints: 6404

Figure 3.13: The return over the course of the 17593 training episodes. The training is conducted in two
sets: The checkpoint is after 6404 training episodes. After this checkpoint the agent is able to
maximize the return.

3.7.2 Evaluation of Agent Massive

The trained Agent is evaluated in 100 episodes. In these 100 episodes the mass is uniformly sampled in the
same mass range, the agent was trained with, i.e. 10-1000 kg.
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The results of this evaluation is listed in table 3.8.

Table 3.8: The evaluation metrics for Agent Massive. The return shows a small standard deviation, the
attitude error for each component is small. As in the scenarios before the attitude rate shows a
large uncertainty.

Mass [kg] Return |σB/Nfinal| [◦] σi
B/Nfinal [

◦] CI for σi
B/Nfinal [

◦] ωi
B/Nfinal[

rad
s ]

10-1000 1.0± 0.7 4.9± 1.1 −2.0± 2.0 [−5.3, 1.2] (9.83± 740) · 10−5

The agent achieves good results, but a slight decrease in the return can be seen for higher masses, as can be
seen in Fig. 3.14. The confidence interval of the final attitude error is small, lying between [-5.40, 1.45]◦.

Figure 3.14: The return over the initial mass. For very low masses the agent shows a negative return, possibly
the agent is applying a force too strong for the small mass. The return is consistent for masses
between 150-500 kg. After that the return decreases slightly.

Agent Massive achieves consistent results for a mass range between 150-500 kg. Noticeably, the agent
is not able to handle masses between 10-100 kg. Since the agent has no way to extract the mass from the
observations, the agent tries to generalize and to optimize the actions for all masses. By doing this, the agent
has to find a balance between applying a force that is too small to move higher masses and applying a force
too strong for the low masses. In the end, the actions are slightly more optimized towards lower masses, since
the negative effect of wrong actions is stronger here. That is why in Fig. 3.14 the return drops slightly for
higher masses. For masses below 150 kg the force is still too strong, causing the satellite to oscillate around
the desired orientation. The effect on the higher masses will be discussed in more detail in the next section.

3.7.3 Testing Agent Massive with Masses > 1000kg

To investigate the phenomenon of the decreasing return with higher masses and the agents ability to handle
unknown masses, Agent Massive is also tested with masses higher than those the agent was trained with. Now,

38



the initial mass is varied between 1000-5000 kg. The results are displayed in table 3.9. The distributions are
also plotted in Fig. 3.15.

Table 3.9: The results of the evaluation of Agent Massive for two mass ranges. The return is significantly
lower for the mass range between 1000-5000 kg. The CI is also larger.

Mass [kg] Return |σB/Nfinal| [◦] σi
B/Nfinal [

◦] CI for σi
B/Nfinal [

◦] ωi
B/Nfinal[

rad
s ]

10-1000 1.0± 0.7 4.9± 1.1 −2.0± 2.0 [−5.3, 1.2] (9.83± 740) · 10−5

1000-5000 −3.1± 2.6 5.4± 3.5 −1.0± 3.6 [−9.6, 7.3] (5.26± 66) · 10−5

(a) Return distribution 10-1000 kg (b) Return distribution 1000-5000 kg

(c) Attitude error distribution 10-1000 kg (d) Attitude error distribution 1000-5000 kg
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(e) Attitude rate error distribution 10-1000 kg (f) Attitude rate error distribution 1000-5000 kg

Figure 3.15: The distribution of the evaluation metrics for 10-1000 kg and 1000-5000 kg mass ranges. In both
cases Agent Massive is tested for 100 samples in the environment.

On the left side of Fig. 3.15, the return, attitude error and attitude rate error distributions are plotted for
the mass range between 10-1000 kg. On the right side the same metrics are plotted for a mass range between
1000-5000 kg. At a first glance, the performance on the right hand side seems to be much worse than on
the left hand side. The return distribution shows a much larger spread and a lower average in general. But
when looking at the attitude error distributions, these are of the same magnitude with the 1000-5000 kg
attitude error having a slightly larger CI. The mean attitude error rate is even smaller for the larger masses,
though also showing a larger spread. Considering this from a logical standpoint, a higher mass is equal to a
higher moment of inertia. The higher moment of inertia translates into a slower acceleration of the object.
This explains both the lower attitude rate and the lower return, since the agent needs more time to move
the satellite to the correct orientation. This demonstrates the importance of not only looking at the return to
evaluate an agent. While the return is much lower for the higher masses, the attitude error is in similar order
of magnitude, therefore achieving equally good results, even for higher masses. It is also important to note
that the episode length of 10 minutes might not be enough to steer the heavy object to the required attitude.
To test this theory the agent is evaluated again, but this time with an episode length of 20 minutes. Therefore,
the maximum and minimum return reachable also increases by a factor two to Rmax = 12 and Rmin = −120.
The results of this evaluation are listed in table 3.10.

Table 3.10: The results of Agent Massive for different mass ranges and episode lengths. Agent Massive is
able to achieve a similar final attitude error for the higher mass range, when the episode length is
increased.

Episode Mass [kg] Return |σB/Nfinal| [◦] σi
B/Nfinal [

◦] CI for σi
B/Nfinal [

◦] ωi
B/Nfinal[

rad
s ]

10min 10-1000 1.0± 0.7 4.9± 1.1 −2.0± 2.0 [−5.3, 1.2] (9.83± 740) · 10−5

10min 1000-5000 −3.1± 2.6 5.4± 3.5 −1.0± 3.6 [−9.6, 7.3] (5.26± 66) · 10−5

20min 1000-5000 2.5± 2.6 5.0± 1.5 −2.0± 2.3 [−6.3, 2.3] (4.07± 30) · 10−5

When increasing the length of the episode, the final attitude error is almost exactly the same for both mass
ranges. The CI is also in the the same range.
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This confirms the hypothesis that when looking at higher masses, the agent needs more time to move the
satellite due to the high moment of inertia. In conclusion, Agent Massive is able to handle higher masses that
the agent was not originally trained with. This demonstrates the agents ability to generalize. For low masses
the agent does not achieve good results, since it applies forces that are too strong for the low mass. Currently,
the agent has no way to extract information about the mass from the state. To be able to handle lower masses
stacked observations could be implemented. Stacked observations describes the process of concatenating
several states into one observations. The purpose of this stack is to help the agent understand the temporal
dynamics of the environment. It provides the agent with a way to capture motion and can help in getting a
sense of the mass for the agent.

3.8 Comparison Agent Massive vs. Agent Constable

In this section Agent Massive is compared to Agent Constable (section 3.3). The agents are compared for two
scenarios: The first scenario employs a constant mass of 330 kg, while in the second scenario the mass is
varied between 10-1000 kg. In both scenarios the initial attitude is set to σB/N Init = [1, 0, 0] and the satellite
has no initial attitude rate. The results of the comparison are displayed in table 3.11 and in Fig. 3.16

Table 3.11: Comparison of Agent Massive and Agent Constable in 100 samples in the environment for each
scenario. In both cases the initial attitude is static and the agent is supposed to turn the satellite
by 180◦.

Scenario Agent Return |σB/Nfinal| [◦] σi
B/Nfinal [

◦] CI for σi
B/Nfinal ωi

B/Nfinal[
rad
s ]

Constant Mass Constable 3.730± 0.024 4.63± 0.21 0.6± 2.6 [−3.3, 3.1]◦ (3± 30) · 10−5

Massive 1.62± 0.04 5.3± 0.7 −2.2± 2.2 [4.2, 6.7]◦ (3.77± 0.46) · 10−3

Vary Mass Constable −1.5± 4.9 10.7± 23.3 0.4± 14.8 [−16, 13]◦ (−9.36± 389) · 10−4

Massive 1.0± 0.7 4.9± 1.1 −2.0± 2.0 [−5.3, 1.2]◦ (9.83± 740) · 10−5

In the first scenario "Constant Mass", Agent Constable achieves better results, which is evident in the
higher return and the smaller CI for the final attitude error. Agent Massive achieves similar results for both
scenarios. In comparison, Agent Constable performs significantly worse in the "Vary Mass" scenario. Here,
Agent Constable shows a large CI of [−16, 13]◦ and a negative return of R = −1.5± 4.9.
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Figure 3.16: Agent Constable vs. Agent Massive in two scenarios: In the "Vary Mass" scenario the mass is
varied between 10-1000 kg. In the "Constant Mass" scenario, the mass is set to 330 kg. Agent
Constable shows a large spread for the "Vary Mass" scenario, but shows better performance for
the "Constant Mass" scenario.

In Fig. 3.16 the spread of the return is evident. Agent Constable is able to handle some of the varying
masses, but shows negative returns. In contrast, Agent Massive has similar performance in both scenarios.
In the "Vary Mass" scenario Agent Massive achieves a higher return, but also shows a larger spread than the
same Agent does in the "Constant Mass" scenario. In the "Constant Mass" scenario Agent Constable clearly
performs better, but Agent Massive also shows good and consistent results. Agent Constable achieves better
results for the "Constant Mass" scenario, since Agent Constable was trained with this specific mass and thus
learned to handle this perfectly. Agent Massive learned a general approach, which will work for a wide mass
range, but it is not the perfect solution for the specific mass of 330 kg.
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4 Conclusion and Outlook

In this thesis the application of deep reinforcement learning to the satellite attitude problem was demonstrated.
Furthermore, the basis for the application to active debris removal was set. The satellite was modeled in the
Basilisk software and equipped with reaction wheels for the attitude control. An interface between the SAC
algorithm and the simulation was established through OpenAI Gym. The SAC algorithm was then trained on
different scenarios: Constant initial attitudes, varying initial attitudes and varying initial masses. An overview
of the different initial parameters of each scenario can be found in table 3.1. The results of the four scenarios
are listed in table 4.1.

Table 4.1: The four scenarios and the results the respective Agents achieved in 100 samples in their environ-
ment.

Scenario Agent Return |σB/Nfinal| [◦] σi
B/Nfinal [

◦] CI for σi
B/Nfinal

Constant Init Att Constable 3.730± 0.024 4.63± 0.21 0.6± 2.6 [−3.3, 3.1]◦

Vary Init Att Spinny 2.5± 1.9 9.3± 6.9 1.1± 6.6 [−9.4, 14.5]◦

Location Pointing Spinny 31.02± 0.11 1.3± 0.6 0.3± 0.7 [−1, 1.9]◦

Vary Init Mass Massive 1.0± 0.7 4.9± 1.1 −2.0± 2.0 [−5.3, 1.2]◦

All agents achieved good results for their respective scenario, but looking at the results in more detail gives
insight into the complexity of each scenario. The "Constant Init Att" scenario (section 3.3) served as the
starting point. It is the simplest scenario, which is demonstrated both in Agent Constable achieving the highest
return and the lowest final attitude error. Agent Spinny was trained with varying initial attitudes (section
3.4), but also achieved good results when the problem was switched to varying desired attitudes, but in two
dimensions (section 3.6). While in the "Vary Init Att" scenario Agent Spinny has the highest final attitude error,
in the "Location Pointing" scenario Agent Spinny achieves a very low final attitude error. This demonstrates
that constraining the problem to two dimensions greatly lowers the complexity. To further improve Agent
Spinny, the training duration and the network capacity could be increased, to cover the large state space. In
the scenario "Vary Init Mass" (section 3.7), the first step towards the active debris removal was achieved. For
active debris removal, the mass varies greatly after capture. This change in mass needs to be handled by the
attitude control to detumble the satellite successfully. In this thesis, the masses were varied in the training
between 10− 1000 kg. Concerning the final attitude error, Agent Massive achieves results similar to Agent
Constable. Varying the masses seems to be less complex than varying the initial attitudes. Agent Massive
also showed the ability to generalize to higher masses than the Agent was trained with, but performed badly
for masses below 150 kg. To mitigate this stacked observations could be implemented. This would help the
agent get a sense of the mass of the satellite. In all scenarios, the final attitude error rate ωB/Nfinal showed a
large uncertainty. Currently, only the attitude error is included in the reward modeling. Generally, this also
stabilizes the satellite at this position. The large uncertainty of the error rate could indicate that this is not
enough to fully stabilize the satellite. To improve this the attitude error rate could be included in the reward
modeling.
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In conclusion, the deep reinforcement learning approach achieves very good results for satellite attitude
control. The trained agent is able to handle a wide array of different initial attitudes, including time dependent
goal states. Furthermore, this thesis showed that the agent was able to develop a generalized approach for
varying masses. The agent was even able to handle unknown masses it was not trained with. This is exactly
what an attitude control system would have to do during an active debris removal. This demonstrates the
great promise this approach has for this use case. In the future it would also be interesting to create a scenario
that varies both the attitudes and the initial mass, to fully encapsulate the active debris removal scenario.
The interplay of two spacecrafts was already investigated in this thesis. To take this one step further the
rendezvous maneuver between the chaser and the target can be modeled. The chaser describes the satellite
which shall remove the debris fragment, while the target is the debris fragment. The challenge here is to
rendezvous with the target without crashing into it. Moreover, the translational motion has to be considered
as well as the rotational. Similarly as in the attitude problem, the exact rotational frequency, mass and other
parameters of the debris object are usually not known beforehand. Therefore, a DRL approach could prove
useful.
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