
 Open Access. © 2023 bei den Autorinnen und Autoren, publiziert von De Gruyter. Dieses Werk ist lizenziert unter der Creative Commons Namens-
nennung 4.0 International Lizenz.

ABI Technik 2023; 43(3): 168–178

Fachbeitrag

Stephan Druskat, Oliver Bertuch, Alexander Struck

Towards Research Software-ready Libraries
Forschungssoftware in Bi blio theken

https://doi.org/10.1515/abitech-2023-0031

Abstract: Software is increasingly acknowledged as valid
research output. Academic libraries adapt to this change
to become research software-ready. Software publication
and citation are key areas in this endeavor. We present and
discuss the current state of the practice of software publica-
tion and software citation, and discuss four areas of activ-
ity that libraries engage in: (1) technical infrastructure, (2)
train ing and support, (3) software management and cura-
tion, (4) policies.

Keywords: research software, software citation, software
publication

Zusammenfassung: Software wird zunehmend als gültiges
Forschungsergebnis anerkannt. Wissenschaftliche Bi blio-
theken passen sich diesem Wandel an, um für Forschungs-
software gerüstet zu sein. Softwarepublikation und
-zitierung sind hierbei Schlüsselbereiche. Wir präsentieren
und diskutieren hier den aktuellen Praxisstand und heben
vier Bereiche hervor, in denen Bi blio theken aktiv werden
können, um für Forschungssoftware gerüstet zu sein: (1)
technische Infrastruktur, (2) Schulung und Support, (3) Ma-
nagement und Kuratierung von Software, (4) Richtlinien.

Schlüsselwörter: Forschungssoftware, Softwarezitierung,
Softwarepublikation

1  Introduction
In research, software fulfills two general roles: It is a
method to yield or enable research results, for example
through creating, measuring, processing, analyzing or vis-
ualizing data, but also through modeling and simulation.
Software is also an outcome of research that is developed,
implemented, and maintained. As such, it embeds research
knowledge1 and represents complex theoretical constructs

1 Anzt, Hartwig et al. “An Environment for Sustainable Research
Software in Germany and beyond: Current State, Open Challenges, and

that cannot be easily described in a paper.2 Therefore, re-
search software must be defined as a research output in
its own right.3 This is increasingly acknowledged across re-
search communities.4

Libraries in general, and academic libraries in particu-
lar, are responsible for recording and attesting research
output. Under this mandate, libraries are therefore also re-
sponsible for recording and attesting research software, as
a central building block to support scientific reporting and
improved findability and reuse, e.  g., through their index-
ing/cataloging efforts.

This responsibility is directly derived from the require-
ments of scientific reporting today, that call for “extensive
documentation of the hardware, software and input data”5
and for making accessible “data […], software, model pa-
rameters, workflow information, theoretical calculations,
and tests of the analysis and/or software”6. In order to fulfill
the requirement of making software accessible, libraries
support the practice of software publication. And in order to
enable the documentation of software and its use, libraries
enable software citation, e.  g., through safeguarding meta-
data quality, but also offer support via training services.

Call for Action.” F1000Research 9 (January 26, 2021): 295. doi:10.12688/
f1000research.23224.2.
2 Jay, Caroline et al. “The Challenges of Theory-Software Translation”
(F1000Research, October 2, 2020), doi:10.12688/f1000research.25561.1.
3 Jay, Caroline, Robert Haines, Daniel S. Katz. “Software Must Be
Recognised as an Important Output of Scholarly Research.” Interna-
tional Journal of Digital Curation 16,1 (April 26, 2021): 6. doi:10.2218/ijdc.
v16i1.745.
4 Smith, Arfon M. et al. “Software Citation Principles.” PeerJ Computer
Science 2,e86 (2016). doi:10.7717/peerj-cs.86; Doerr, Allison et al. (eds.).
“Giving Software Its Due.” Nature Methods 16,3 (March 2019): 207–207.
doi:10.1038/s41592-019-0350-x.
5 Borgman, Christine L., Jillian C. Wallis, Matthew S. Mayernik. “Who’s
Got the Data? Interdependencies in Science and Technology Collabo-
rations.” Computer Supported Cooperative Work (CSCW) 21,6 (August
2012): 489. doi:10.1007/s10606-012-9169-z.
6 Weitz, David A. et al. “NSF Workshop Systematic Approach to Robust-
ness, Reliability, and Reproducibility in Scientific Research.” Beckman
Center of the National Academy of Sciences and Engineering Univer-
sity of California, Irvine (2017): 11. Last checked 04.07.2023. http://www.
mrsec.harvard.edu/2017NSFReliability/.

Stephan Druskat et al.
Towards Research Software-ready Libraries

https://doi.org/10.1515/abitech-2023-0031
https://doi.org/10.12688/f1000research.23224.2
https://doi.org/10.12688/f1000research.23224.2
https://doi.org/10.12688/f1000research.25561.1
https://doi.org/10.2218/ijdc.v16i1.745
https://doi.org/10.2218/ijdc.v16i1.745
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.1038/s41592-019-0350-x
https://doi.org/10.1007/s10606-012-9169-z
http://www.mrsec.harvard.edu/2017NSFReliability
http://www.mrsec.harvard.edu/2017NSFReliability

Stephan Druskat et al., Towards Research Software-ready Libraries Fachbeitrag   169

In software publication, authors publish their software
together with relevant metadata (see section 2). In software
citation, authors that report research (results) also cite soft-
ware as they would cite a paper7 and in such a way that
allows the unique identification of a software version that
was used in the reported research. Software citation must
also enable access to that software version in an archive or
source code repository.

Software publication is integral to research software
practice:
1. It provides evidence of methods that were applied in re-

search. This is important to enable the reproducibility
of research results.

2. It provides identification and traceability for research
outcomes that are software. This is important for the
identification of previous work and provenance of re-
search results.

3. It records the software work that has been carried out
in research. This is important to evaluate the creation
of value in research processes.

These functions of software publication are activated
through the practice of software citation (see section 3).
Citation of software publications links research results to
applied methods, identifies software as part of the prov-
enance of research results, and provides attribution and
credit to software authors. Software citation can also enable
better software sustainability through incentivizing sus-
tain able development and advertising reuse.8

In this paper, we describe how software publication
and software citation in combination allow libraries to
fulfill their mandate to record and attest research outputs
with regard to research software. We also describe areas
of activity for libraries to engage in that support their own
work with research software, as well as the work of their
users. In short, we lay out a path for libraries to become
“research software-ready” in a way that supports the FAIR
Principles for Research Software (FAIR4RS9).

In the following sections, we describe the basics of soft-
ware publication (2) and software citation (3), as well as exist-
ing challenges. We then establish requirements for libraries
to become research software-ready (4) and activities that sup-
port this endeavor. Finally, we conclude with a summary (5).

7 Smith et al. 2019.
8 Druskat, Stephan, Daniel S. Katz, Ilian T. Todorov. “Research Soft-
ware Sustainability and Citation.” 2021 IEEE/ACM International Work-
shop on Body of Knowledge for Software Sustainability (BoKSS) (2021):
1–2. doi:10.1109/BoKSS52540.2021.00008.
9 Chue Hong, Neil P. et al. “FAIR Principles for Research Software
(FAIR4RS Principles) (1.0).” Research Data Alliance (May 24, 2022).
doi:10.15497/RDA00068.

2  Software Publication
We define software publication as the process of deposit-
ing software (versions) and metadata in a publication re-
pository, where the deposit is uniquely identified with a
machine-resolvable persistent identifier (PID), such as a
Digital Object Identifier (DOI). This is in contrast to other
practices sometimes also termed “software publication”
(see section 2.1). We understand software publication as an
active process, similar to other forms of research report-
ing, e.  g., paper publication. In this process, the recording
and provision of curated, rich metadata is the main factor
that supports FAIR research software10 and enables soft-
ware citation. Software publication records consist of the
machine-readable metadata pertaining to the published
software (version), as well as any archived software source
code or (executable) artifact snapshots of the version. Min-
imally, these metadata must include the information neces-
sary for software citation:11
– Unique identifier
– Software name
– Author(s)
– Version identifier12
– Publication/release date
– Location/source code repository

Further metadata should be supplied to increase FAIRness
and better support the evaluation of software for reuse.
These include for example license and legal informa-
tion, high-level descriptions, research domains, and soft-
ware-specific metadata such as programming languages,
dependency information, runtime requirements, and soft-
ware engineering metrics.13 Domain-specific repositories,
digital libraries or archives may suggest additional meta-
data, such as preferred citation method (e.  g. in http://ascl.
net) or classifications (e.  g. in https://swmath.org/). Soft-
ware metadata standardization efforts include the Citation
File Format (CFF14) and CodeMeta15 and are documented

10 Chue Hong 2022.
11 Smith et al. 2019: 6.
12 While it is good practice to provide a version identifier following
the software project‘s versioning scheme, it is not strictly required if
the unique identifier resolves to a specific version (see Katz et al. “Re-
cognizing the value of software: a software citation guide.” F1000Re-
search 9 (12 January 2021): 1257. doi:10.12688/f1000research.26932.2.).
13 Druskat, Stephan et al. “Software Publications with Rich Metadata:
State of the Art, Automated Workflows and HERMES Concept.” ArXiv
(January 22, 2022). doi:10.48550/arXiv.2201.09015.
14 Druskat, Stephan et al. “Citation File Format.” Zenodo (August 2021).
doi:10.5281/ZENODO.5171937.
15 Jones, Matthew B. et al. CodeMeta: An Exchange Schema for Soft-
ware Metadata. Version 2.0 (2017). doi:10.5063/schema/codemeta-2.0.

https://doi.org/10.1109/BoKSS52540.2021.00008
https://doi.org/10.15497/RDA00068
http://ascl.net
http://ascl.net
https://swmath.org
https://doi.org/10.12688/f1000research.26932.2
https://doi.org/10.48550/arXiv.2201.09015
https://doi.org/10.5281/ZENODO.5171937
https://doi.org/10.5063/schema/codemeta-2.0

170   Fachbeitrag Stephan Druskat et al., Towards Research Software-ready Libraries

in Christopherson et al.16 and Park and Wolfram.17 To make
these meta data consumable for humans, they are often
presented on landing pages for each software publication
record.

The inclusion of software source code and/or artifacts
in software publications is optional and depends on the soft-
ware governance and license. For open source software, the
source code and software metadata should be published in
a fully open access publication repository. The source code
for inner source software should be published in a publica-
tion repository with full accessibility for members of the
respective community, e.  g., within the institution in which
the source code may be shared. Additionally, even if the
software source code is not accessible to the general public,
the respective software metadata should still be published
open access to satisfy the FAIR4RS principles18 and to enable
software citation. Closed source software may not be made
publicly accessible due to legal reasons or export restric-
tions, yet the software metadata should be published openly
in the same way as for inner source software (see section
2.1).

Fig. 1: Software publication enables sustainability, reproducibility,
academic credit, and adheres to the FAIR4RS principles19 (adapted from
Druskat et al.20 under CC BY-4.0 Intl.)

Software publication as described above facilitates poten-
tials for software sustainability, reproducibility, and aca-
demic credit for software authors. It also asserts adherence
to the FAIR4RS principles.

Software publication facilitates software sustainability
by producing and providing archived records of software
versions together with metadata that describes them. This
descriptive long-term provision increases the “capacity

16 Christopherson, Allan et al. “Software Metadata Recommended
Format Guide.” Cornell University Library, 2022. doi:10.7298/XE9S-3B15.
17 Park, Hyoungjoo, Dietmar Wolfram. “Research Software Citation
in the Data Citation Index: Current Practices and Implications for Re-
search Software Sharing and Reuse.” Journal of Informetrics 13,2 (May
1, 2019): 576. doi:10.1016/j.joi.2019.03.005.
18 Chue Hong et al. 2022.
19 Chue Hong et al. 2022.
20 Druskat et al. 2022.

of the software to endure”21. Finding published software
records and being able to access and understand them
would make it possible to use the software and adapt it for
new use cases. Although the availability of software alone
is not enough to make it sustainable, software that is not
available cannot possibly be sustainable.

Published software records establish the basic build-
ing block to achieve “computational reproducibility”22
of research by providing methods applied in the original
research. Again, the availability of software alone is not
enough to enable even re-runability23 of the software, but
unavailable or undescribed software impedes reproducibil-
ity. The re-runability of software can be improved by pub-
lishing it with metadata pertaining to the complete runtime
environment as used during the research to be repro-
duced,24 or containers preserving the environment itself.25

Author information is an integral part of software pub-
lication metadata in the same way it is for other research
output formats such as papers or books (see section 3).
Therefore, software publication also transitively enables
academic credit for software authors, as the complete and
correct author metadata is made available for software ci-
tation (see section3).

Finally, published software metadata, either by itself or
published alongside software source code or artifacts, con-
tributes to compliance with the FAIR4RS principles.26

2.1  How is Software (Not) Published?

Unlike the publication of textual research outputs, which
has been in practice for centuries, software publication as
defined above is a relatively new concept. It is therefore not

21 S. Katz, Daniel. “Defining Software Sustainability.” Daniel S. Katz’s
Blog, September 13, 2016. Last checked 04.07.2023. http://web.
archive.org/web/20221012111742/https://danielskatzblog.wordpress.
com/2016/09/13/defining-software-sustainability/.
22 National Academies of Sciences, Engineering, and Medicine. Under-
standing Reproducibility and Replicability. National Academies Press
(US), 2019. Last checked 04.07.2023. https://www.ncbi.nlm.nih.gov/
books/NBK547546/.
23 Benureau, Fabien C. Y., Nicolas P. Rougier. “Re-Run, Repeat, Repro-
duce, Reuse, Replicate: Transforming Code into Scientific Contribu-
tions.” Frontiers in Neuroinformatics 11 (2018). Last checked 04.07.2023.
https://www.frontiersin.org/articles/10.3389/fninf.2017.00069.
24 The Turing Way Community. “The Turing Way: A Handbook for
Reproducible, Ethical and Collaborative Research.” July 27, 2022.
doi:10.5281/zenodo.7625728.
25 Nüst, Daniel et al. “Ten Simple Rules for Writing Dockerfiles for Re-
producible Data Science.” PLOS Computational Biology 16,11 (October
11, 2020): e1008316. doi:10.1371/journal.pcbi.1008316.
26 Chue Hong et al. 2022.

https://doi.org/10.7298/XE9S-3B15
https://doi.org/10.1016/j.joi.2019.03.005
https://danielskatzblog.wordpress.com/2016/09/13/defining-software-sustainability
https://danielskatzblog.wordpress.com/2016/09/13/defining-software-sustainability
https://www.ncbi.nlm.nih.gov/books/NBK547546
https://www.ncbi.nlm.nih.gov/books/NBK547546
https://www.frontiersin.org/articles/10.3389/fninf.2017.00069
https://doi.org/10.5281/zenodo.7625728
https://doi.org/10.1371/journal.pcbi.1008316

Stephan Druskat et al., Towards Research Software-ready Libraries Fachbeitrag   171

surprising that a “general lack of active preservation”27 of
research software has been observed.

The current insufficient practice of software publica-
tion leads to negative effects for software citability, find-
abil i ty, and accessibility.28 Instead of a formal reference to
the software itself (see section 3, Smith et al.29), software is
often only either informally mentioned or a paper is cited
instead of the software in the research literature.30 Addi-
tionally, software “is frequently inaccessible (15 %–29 % of
packages in any form; between 90 % and 98 % of specific
versions […])”31 which impedes peer review and replication
efforts. This situation also leads to a lack of possibility for
research software authors to receive credit for their work.

To alleviate this situation and bridge the gap between
the traditional system of text publication, journals dedicated
to publishing peer-reviewed software have been launched
in recent years, for example, Journal of Open Research Soft-
ware (JORS),32 Journal of Open Source Software (JOSS),33
and SoftwareX.34 These software journals offer a traditional
workflow for publishing a non-traditional research output
as software paper, and in some cases (most notably JOSS) use
peer review to assess the engineering and usability quality
of the software and documentation. At the same time, soft-
ware journals are conceptually unable to cater for a core
characteristic of software as a research output. They record
and describe – through an accompanying text document not
unsimilar to a traditional short paper – a single version of
a software. This may be sufficient for those software types
that have exactly one specific use case and for which only
one version exists (see section 2.2), but insufficient for soft-
ware for which many versions may be produced over their
lifecycle. Software papers almost instantaneously expire, as
they become out-of-date as soon as the next iteration of the

27 AlNoamany, Yasmin, John A. Borghi. “Towards Computational Re-
producibility: Researcher Perspectives on the Use and Sharing of Soft-
ware.” PeerJ Computer Science 4 (September 17, 2018): 19. doi:10.7717/
peerj-cs.163.
28 Struck, Alexander. “Research Software Discovery: An Overview.”
2018 IEEE 14th International Conference on E-Science (e-Science) (2018):
33–37. doi:10.1109/eScience.2018.00016.
29 Smith et al. 2019.
30 Druskat, Stephan et al. “Don’t Mention It: Challenges to Using Soft-
ware Mentions to Investigate Citation and Discoverability.” PeerJ Com-
puter Science, forthcoming.
31 Howison, James, Julia Bullard. “Software in the Scientific Lite-
rature: Problems with Seeing, Finding, and Using Software Mentio-
ned in the Biology Literature.” Journal of the Association for Infor-
mation Science and Technology 67,9 (May 13, 2015): 2137. doi:10.1002/
asi.23538.
32 Last checked 04.07.2023. https://openresearchsoftware.metajnl.com/.
33 Last checked 04.07.2023. https://joss.theoj.org/.
34 Last checked 04.07.2023. https://www.journals.elsevier.com/
softwarex.

published software is produced.35 This may lead to incorrect
citations of a software version if the version actually used in
research is not the software paper version, especially if soft-
ware authors give the software paper as preferred citation
of the software. Incorrect citations, in turn, make attempts
to reproduce reported research much harder. Despite this
central shortcoming, software journals currently represent
a useful bridge technology that pioneered an initial imple-
mentation of external software peer review.

Software has also been “published” under definitions
differing from our own (see section 2). While we do not
consider these practices software publication, it is useful to
briefly name them here for differentiation.

A common way of publicizing software is by publishing
a paper that describes the software. This has many disad-
vantages in comparison to real software publication:
1. Papers that describe software are paper publications,

not publications of software itself. This is insufficient
under the basic assumption that software is a valid re-
search output in its own right, on par with academic
articles.36

2. Papers that describe software may describe a specific
version of the software but cannot describe future ver-
sions. Thus, they are outdated as soon as development
of the described software continues.

Sometimes, developing software publicly is confused with
publishing software. Platforms such as GitHub37 or GitLab38
facilitate public access to source code and enable contri-
butions to the source code by others. They also allow for
the creation of releases: single source code snapshots can
be marked (tagged) as being of a specific stability, quality,
or level of completeness that warrants the distribution to
users. These snapshots can be promoted to “releases” which
can have their own landing page with, e.  g., a description
of the release or changes in comparison to past releases.
However, these snapshots are not frozen as they would be in
an archive. Releases can be deleted, renamed, and re-done
so that their identifiers (URLs) may change. Also, whole re-
positories made publicly accessible on the mentioned plat-
forms can be renamed and deleted, and often lack necessary
metadata as required in Smith et al.39 (see section 2). Given
this situation, publicly accessible source code, or releases
of the same, cannot be considered software publications.

35 Similarly, software papers cannot represent versions older than the
published one, although they may still be used in research.
36 Smith et al. 2019.
37 Last checked 04.07.2023. https://github.com.
38 Last checked 04.07.2023. https://about.gitlab.com.
39 Smith et al. 2019: 6.

https://doi.org/10.7717/peerj-cs.163
https://doi.org/10.7717/peerj-cs.163
https://doi.org/10.1109/eScience.2018.00016
https://doi.org/10.1002/asi.23538
https://doi.org/10.1002/asi.23538
https://openresearchsoftware.metajnl.com
https://joss.theoj.org
https://www.journals.elsevier.com/softwarex
https://www.journals.elsevier.com/softwarex
https://github.com
https://about.gitlab.com

172   Fachbeitrag Stephan Druskat et al., Towards Research Software-ready Libraries

2.2  Challenges in Software Publication

Research software publication as defined above (section 2)
includes the deposition of software version metadata and
artifacts in a publication repository, and the creation of
persistent identifiers for the deposits. Research software,
however, is very heterogeneous: it is developed and used
in different research domains for different use cases and
uses a variety of technologies and programming languages.
It is developed by people with different domain and profes-
sional backgrounds and levels of experience, within distinc-
tive contexts and with different aims.40 This heterogeneity
has an impact on how the software is being developed, its
quality and maturity, and ultimately its mode of publica-
tion.

Different models exist to provide classes for research
software and thus make it easier to understand the differ-
ent subsets that exist. Application classes, as put forward
in institutional software engineering guidelines,41 cluster
research software based on software quality that reflect
the needs of stakeholders. The Australian Research Data
Commons’ National Agenda for Research Software42 defines
three interdependent types of research software based on
their purpose: (A1) analysis code (or data-coupled code) that
captures research processes and methods; (A2) prototypes
that showcase a new idea, method, model or algorithm; and
(A3) research software infrastructure that provides estab-
lished ideas, methods or models.

Using similar terminology with a stronger focus on
concrete use cases, Felderer et al.43 suggest (B1) modeling,
simulation and data analytics [software] including data-cen-
tric uses such as data science/engineering/assimilation,
(B2) proof-of-concept software prototypes specifically in
engineering science, and (B3) infrastructure and platform
software, specifically research data and software manage-
ment systems. Additionally, they add (B4) embedded control
software for physical and chemical experiments and instru-
ments, which arguably has specific requirements, e.  g., in

40 Hettrick, Simon et al. “International RSE Survey 2022.” Zenodo (Au-
gust 22, 2022). doi:10.5281/zenodo.7015772; Hasselbring, Wilhelm et al.
“Open Source Research Software.” Computer 53,8 (August 2020): 84–88.
doi:10.1109/MC.2020.2998235.
41 Schlauch, Tobias, Michael Meinel, Carina Haupt. “DLR Software
Engineering Guidelines.” Zenodo (August 2018). doi:10.5281/ZENO-
DO.1344612; Bertuch, Oliver et al. “Guidelines for the Development and
Distribution of Software at Forschungszentrum Jülich.” (2022). Last che-
cked 04.07.2023. http://hdl.handle.net/2128/33259.
42 Australian Research Data Commons. “A National Agenda for Re-
search Software.” Zenodo (March 28, 2022). doi:10.5281/zenodo.6378082.
43 Felderer, Michael et al. “Toward Research Software Engineering Re-
search.” Zenodo (June 9, 2023). doi:10.5281/zenodo.8020525.

terms of safety and security, that may impact the software
development and maintenance process.

Hinsen,44 in contrast, separates different layers of re-
search software in a “scientific software stack” based on
their abstractive distance from computing hardware and
operating system, but also by application scope: (C1) non-sci-
entific infrastructure includes general purpose software
such as compilers, interpreters, software libraries, and data
management; (C2) scientific infrastructure includes infra-
structure software for domain-independent scientific pur-
poses such as mathematical libraries, scientific data man-
agement, and visualization tools; (C3) domain-specific tools
include software developed for application in a specific
research domain; and (C4) project-specific code includes
scripts, workflows or computational notebooks specific to
a research endeavor.

If we abstract over these four exemplary models, we
can say that in terms of software publication, different
approaches apply depending on the broadness of the ap-
plication scope and the level of maturity. Generally speak-
ing, if the software has a broad application scope and
high maturity, it is likely that a large number of versions
are published. Additionally, such software is more likely
to be engineered to a higher degree, and potentially more
modularized, so that different modules may be published
independently from each other and from their underlying
framework. At the other end of the spectrum, the more
narrow the application scope and the lower the maturity
level is – for example in the case of a script for a specific
analysis of a specific dataset – the more likely it is for the
software not to be published at all, which is the fundamen-
tal challenge, or to be published in its complete context. In
this case, a mixed content publication including code, data,
and textual output may be more suitable, as the specificity
of the software work is high and its size likely low. Simi-
larly, there may only be a single publication of this complex
research object,45 especially when used as a replication re-
source.46 It is obvious that determining the most suitable
publication practice for a given research software project
is non-trivial. It is important to note that despite this, re-
search software must be published in all cases where it rep-
resents a research result itself, or has been used to produce
research results.

44 Hinsen, Konrad. “Dealing with Software Collapse.” Computing in Sci-
ence & Engineering 21,3 (2019): 104–108. doi:10.1109/MCSE.2019.2900945.
45 Soiland-Reyes, Stian et al. “Packaging Research Artefacts with RO-
Crate.” Zenodo (August 13, 2021). doi:10.5281/ZENODO.5146228.
46 Trisovic, Ana. “Cluster Analysis of Open Research Data: A Case for
Replication Metadata.” International Journal of Digital Curation 17,1
(2022): 13. doi:10.2218/ijdc.v17i1.833.

https://doi.org/10.5281/zenodo.7015772
https://doi.org/10.1109/MC.2020.2998235
https://doi.org/10.5281/ZENODO.1344612
https://doi.org/10.5281/ZENODO.1344612
http://hdl.handle.net/2128/33259
https://doi.org/10.5281/zenodo.6378082
https://doi.org/10.5281/zenodo.8020525
https://doi.org/10.1109/MCSE.2019.2900945
https://doi.org/10.5281/ZENODO.5146228
https://doi.org/10.2218/ijdc.v17i1.833

Stephan Druskat et al., Towards Research Software-ready Libraries Fachbeitrag   173

Another challenge inherent to software publication is
quality assurance. Like software in general, research soft-
ware is often developed continuously. In contrast to papers,
software has no “final product” as such; it can be developed
further and new versions can be released and published.
Development may be highly dynamic, with new versions
being released regularly, sometimes in short intervals. It is
impossible to conduct quality assurance in the form of tra-
ditional peer review for each and all of these versions. This
is true not just due to the quantity of the output but also to
the depth in which software peer review would have to be
undertaken. Such reviews not only would have to cover the
scientific correctness and methodology for the representa-
tion of highly complex theoretical constructs and imple-
mentation of algorithms, the contributions to the state of
the art, and (ideally) the readability of the source code, but
also have to take into account the different dimensions of
software engineering: requirements engineering, architec-
ture and design, constructive quality, validation and verifi-
cation, documentation, development workflows, unfavour-
able code patterns, security concerns, etc. Some software
journals, most prominently JOSS, cover some of the latter
in their review process. Beyond that, however, software
reviews are embedded in software development as part of
change management, if at all.47 This is in stark contrast to
traditional practice in text publication, where the burden of
organizing peer review lies with the publisher – or rather
their editors – not with the authors themselves or their col-
laborators.

A better practice of software publication requires the
necessary technical infrastructure to be available, and
publication procedures to be established as standard or
default. This is not yet the case. In terms of infrastructure,
not all publication repositories are ready to ingest and rep-
resent software, for example because they miss a software
record type in their data model, or cannot represent soft-
ware metadata well. As for procedures, there is not yet a
commonly accepted definition of software publication (see
section 2), and therefore no suitably established proce-
dures.

Finally, software publication in many cases is – or
is perceived as – an arduous manual task that includes
typing metadata into web forms provided by the target
publication repository. Recently, technical solutions have
been developed to automate this process. The GitHub-Ze-

47 Eisty, Nasir U., Jeffrey C. Carver. “Developers Perception of Peer
Code Review in Research Software Development.” Empirical Software
Engineering 27,1 (October 27, 2021): 13. doi:10.1007/s10664-021-10053-x;
Petre, Marian, Greg Wilson. “Code Review For and By Scientists.” ArXiv
(2014). doi:10.48550/ARXIV.1407.5648.

nodo integration48 automates the publication of software
developed in a publicly accessible GitHub source code re-
pository whenever a release is created in the respective
repository. When the repository contains a Citation File
Format49 or a Zenodo specific file, the metadata it con-
tains is used to create the record on Zenodo.50 While the
latter approach only works for the combination of GitHub
and Zenodo, the project HERMES51 develops a concept52
and software (hermes53) that can be automatically run
in continuous integration systems. The software works
with any combination of source code repository and pub-
lication repository for which an implementation in the
hermes software exists. hermes is extensible via plugins;
it harvests and processes software metadata from dif-
ferent sources in the source code repository, including
metadata files, version control history, and platform
APIs.

3  Software Citation
Software publication is a prerequisite for formal software
citation as it provides a distinct set of metadata for software
versions, uniquely identifiable through a persistent identi-
fier. Software citation in turn makes good on the promise
of software publication to improve reproducibility through
persisted evidence of methods applied in research, and to
enable credit for software authors.

3.1  The Principles of Software Citation

The principles of software citation54 state that the software
itself must be formally cited (i.  e., like papers are cited). Ci-
tations should facilitate credit and attribution for authors
and provide persistent unique identification of software. Ci-
tation should further facilitate access to the software itself,
as well as to associated information that makes it reusable:
persistent metadata, documentation, data, etc. And finally,

48 Last checked 04.07.2023. http://web.archive.org/web/20230608105913/
https://docs.github.com/en/repositories/archiving-a-github-repository/
referencing-and-citing-content.
49 Druskat et al. 2021.
50 Last checked 04.07.2023. https://zenodo.org.
51 Last checked 04.07.2023. https://software-metadata.pub.
52 Druskat et al. 2022.
53 Meinel, Michael et al. “Hermes.” Python (2022; repr., March 16, 2023).
Last checked 04.07.2023. https://github.com/hermes-hmc/workflow.
54 Smith et al. 2019.

https://doi.org/10.1007/s10664-021-10053-x
https://doi.org/10.48550/ARXIV.1407.5648
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://zenodo.org
https://software-metadata.pub
https://github.com/hermes-hmc/workflow

174   Fachbeitrag Stephan Druskat et al., Towards Research Software-ready Libraries

software citations should be as specific as necessary with
regards to the exact version that was used55 or is cited.

When the software citation principles are followed,
software can become part of citation graphs of research
output, with a resolution up to single versions.56 This would
allow a better understanding both of how research was
conducted and how research results were obtained, which
in turn would enable better reproducibility of these results
and foster research software reuse. Additionally, bibliomet-
ric, authorship network and cooperation analyses and re-
porting should be extended to include software in line with
the growing recognition and support for the “San Francisco
Declaration of Research Assessment”57 (DORA).

To enable formal software citation, the complete and
correct citation metadata must be available for the software
(version) that is cited. Ideally, these metadata can be re-
solved from a PID to a software publication. As a prerequi-
site for publication under a PID, the metadata must first be
known, understood, and provided by the software project.
For text outputs, there are normative criteria that define,
for example, authorship.58 For software, this is still work
in progress.59 Meanwhile, the software projects themselves
are responsible for compiling and providing the correct and
complete citation metadata for each version of their soft-
ware. To support this effort, the Citation File Format (CFF60)
provides a schema for human- and machine-readable cita-
tion metadata files for software. The format is supported by
major platforms such as GitHub and Zenodo/InvenioRDM,
which automate the processing of the citation metadata for
human use, and for automated publication of software from
the source code repository. The free and open source refer-
ence managers Zotero61 and JabRef62 support import of the
metadata from CFF files.

55 User-facing software should be cited by users, while for its depen-
dencies, the cited software (publication) should provide citation me-
tadata, similar to cited publications in a references list of a paper. In
source code repositories, this can be done with metadata files in the
Citation File Format (Druskat et al. 2021).
56 Druskat, Stephan. “Software and Dependencies in Research Citation
Graphs.” Computing in Science & Engineering 22,2 (March 2020): 8–21.
doi:10.1109/MCSE.2019.2952840.
57 Last checked 04.07.2023. https://sfdora.org.
58 International Committee of Medical Journal Editors. “ICMJE Re-
commendations: Defining the Role of Authors and Contributors.” Last
checked 10.05.2019. http://web.archive.org/web/20190905080833/http://
www.icmje.org/recommendations/browse/roles-and-responsibilities/
defining-the-role-of-authors-and-contributors.html#two.
59 Leem, Deborah et al. “SORTÆD: Software Role Taxonomy and Au-
thorship Definition.” Zenodo (May 4, 2023). doi:10.5281/zenodo.7896456.
60 Druskat et al. 2021.
61 Last checked 04.07.2023. https://www.zotero.org/.
62 Last checked 04.07.2023. https://www.jabref.org/.

If research software is treated on par with traditional
outputs such as books or papers, this also means that soft-
ware should cite its own references, for example the soft-
ware packages it reuses and depends on. CFF supports the
provision of references for software. If software cites other
software in this way, this enriches research citation graphs
further, so that it becomes possible to trace dependencies
across software projects, identify critical projects for re-
search domains or research as a whole, and, finally, to cal-
culate transitive credit63 for software projects and versions
that are not used by researchers directly.

3.2  Challenges in Software Citation

The practice of software citation is still insufficient, with
software being “mentioned” rather than formally cited in
the majority of research reporting. These mentions range
from citing a paper describing the software instead of
citing the software itself, citations of project websites, URLs
in footnotes, instrument-like in-text mentions and in-text
mentions of just the software name to not even mention-
ing the name of the software64 (see also Schindler et al.65).
This situation is likely to change, as an increasing number
of publishers define software citation policies.66

Similarly, correct and complete citation metadata is not
yet provided by default in research software projects. For
compiling the authorship part of such metadata, it is not
yet defined what the criteria are for software authorship
(see section 3). Where they are provided, the form in which
they are provided does not always follow machine-read-
able standard formats such as the Citation File Format67 or
R CITATION files.

An issue for tracking software citations, and therefore
for evaluating software work based on citations, is the lack
of representation of PIDs for software in some of the most-
used indexing services, e.  g., Google Scholar68 and databases
(Web of Science, Scopus, Dimensions). At the time of writing,

63 Katz, Daniel. “Transitive Credit as a Means to Address Social and
Technological Concerns Stemming from Citation and Attribution of
Digital Products.” Journal of Open Research Software 2,1 (July 9, 2014):
e20. doi:10.5334/jors.be.
64 Druskat et al. forthcoming; Howison, Bullard 2014.
65 Schindler, David et al. “The Role of Software in Science: A Knowl-
edge Graph-Based Analysis of Software Mentions in PubMed Central.”
PeerJ Computer Science 8 (January 14, 2022): e835. doi:10.7717/peerj-
cs.835.
66 See https://www.chorusaccess.org/resources/software-citation-
policies-index/. Last checked 04.07.2023.
67 Druskat et al. 2021.
68 Last checked 04.07.2023. https://scholar.google.com.

https://doi.org/10.1109/MCSE.2019.2952840
https://sfdora.org
http://web.archive.org/web/20190905080833/http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html#two
http://web.archive.org/web/20190905080833/http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html#two
http://web.archive.org/web/20190905080833/http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html#two
https://doi.org/10.5281/zenodo.7896456
https://www.zotero.org
https://www.jabref.org
https://doi.org/10.5334/jors.be
https://doi.org/10.7717/peerj-cs.835
https://doi.org/10.7717/peerj-cs.835
https://www.chorusaccess.org/resources/software-citation-policies-index
https://www.chorusaccess.org/resources/software-citation-policies-index
https://scholar.google.com

Stephan Druskat et al., Towards Research Software-ready Libraries Fachbeitrag   175

the only notable example is DataCite Commons,69 a search
service for DataCite DOIs that can be queried for software
and link citation metadata.

There are additionally some fundamental challeng-
es,70 for example involving the different modes software
can take: as a concept or project, and as a version; as open,
closed, or inner source software; as published or un pub-
lished software. This leads to issues with the correct identi-
fication of software for citation: how can the unpublished
version 14.3 of the closed source SAS/STAT software71 be
formally cited?

Further practical issues relate to the correct mapping
of software metadata to metadata formats that do not
provide dedicated fields for software, or the lack of cita-
tion styles that cater for software72 and are supported by
publishers.

At the root of all these challenges is the need for a
change in culture and practice of how different stakehold-
ers in research accommodate research software and its ci-
tation. Therefore, the interaction with and between these
stakeholders in order to bring software citation into schol-
arly culture is central and should include libraries, discipli-
nary communities, publishers, repositories and registries,
indexers, research funders, and academic institutions.73 As
an example for a change in stakeholder policy for research
software, the Helmholtz Association of German Research
Centres has implemented an indicator to track citable soft-
ware publications.74 This indicator can potentially be used in
research evaluation to include and evaluate software work.

4  What can Libraries do to Become
“Research Software-ready”?

The acknowledgment of research software as an indispen-
sable part of research across disciplines, and a research
output in its own right, is increasing.75 Academic libraries

69 Last checked 04.07.2023. https://commons.datacite.org/.
70 Katz, Daniel S. et al. “Software Citation Implementation Challenges.”
ArXiv (May 21, 2019). http://arxiv.org/abs/1905.08674.
71 Last checked 04.07.2023. https://documentation.sas.com/doc/en/
pgmsascdc/9.4_3.3/statug/titlepage.htm.
72 A notable exception here is the biblatex-software package (Di
Cosmo, Roberto. “biblatex-software. Version 1.2-1.” LaTeX, June 1, 2020.
https://ctan.org/pkg/biblatex-software).
73 Katz et al. 2019.
74 Helmholtz-Gemeinschaft. “Helmholtz Open Science Policy. Version
1.0. Approved in the 119th General Assembly of the Helmholtz Associa-
tion on 20–21 September 2022.” (2022). doi:10.48440/os.helmholtz.056.
75 Jay, Haines, Katz 2021; Doerr et al. 2019.

can support this through a variety of measures that align
with their core mission and start to recognize research soft-
ware as something that is in their remit.

In the following, we identify areas of activity for librar-
ies to support research software.

4.1  Infrastructure

Academic libraries often provide technical infrastructure
through which their services are made accessible to their
users. Infrastructure is used in partnership with research-
ers over the life cycle of research projects, e.  g., to help
them fulfill mandates for archiving research outputs. As
these mandates shift to include research software along-
side research data (see the Code of Conduct for Good Re-
search Practice by Deutsche Forschungsgemeinschaft76),
libraries and their partners (e.  g., institutional IT de-
partments or computing centers) are required to adapt
their technical infrastructure to support the new man-
dates.

Infrastructure to support the publication and citation
of research software may include publication repositories
or software registries. Both types of system must be able to
ingest, and correctly and distinctively represent software
and software metadata. In particular, publication reposito-
ries have often been designed with research data in mind,
and must be evaluated/adapted for use with research soft-
ware. This is true especially with regard to their metadata
models, as software must be described with other meta-
data than data, e.  g., in the context of citation.77 Relevant
software metadata such as runtime requirements, depend-
encies, programming language, operating system or devel-
opment status do not apply for data at all. Other metadata
seem the same semantically, whereas their values may be
valid for one but not the other: license (software licenses
do not apply to data); legal status (unlike data, software
is creative work); different contribution roles; different
versioning schemes, etc. The CodeMeta78 community
standard is one example for such a descriptive software
metadata schema, along with multiple other options using
linked data and knowledge graphs (see Druskat et al.79).
In summary, publication repositories must be research

76 Deutsche Forschungsgemeinschaft. “Guidelines for Safeguarding
Good Research Practice. Code of Conduct.” Zenodo (April 20, 2022).
doi:10.5281/zenodo.6472827.
77 Katz, Daniel S. et al. “Software vs. Data in the Context of Citation.”
PeerJ Inc. (December 2016). doi:10.7287/peerj.preprints.2630v1.
78 Jones et al. 2017.
79 Druskat et al. 2022: 6.

https://commons.datacite.org
http://arxiv.org/abs/1905.08674
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.3/statug/titlepage.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.3/statug/titlepage.htm
https://ctan.org/pkg/biblatex-software
https://doi.org/10.48440/os.helmholtz.056
https://doi.org/10.5281/zenodo.6472827
https://doi.org/10.7287/peerj.preprints.2630v1

176   Fachbeitrag Stephan Druskat et al., Towards Research Software-ready Libraries

software-ready themselves if they are to be employed by
libraries to become research software-ready.

As some publishers have established data and soft-
ware management policies detailing how and where soft-
ware (and data) related to a paper publication should be
made available,80 libraries or their infrastructure partners
should ensure that accepted deposits can reference related
software.

It is important to note that libraries are not required
to provide and administrate all required technical infra-
structure themselves. They may just as well make use
of existing infrastructure provided elsewhere. A good
example of this would be the reuse of metadata from an
existing general purpose publication repository such as
Zenodo in a software registry provided by a library, where
the registry includes only the metadata for software that
has been produced with participation from members of
the library’s institution. This is the case with the instance
of Research Software Directory81 run by the Helmholtz
Association of German Research Centers at https://helm-
holtz.software. The catalogue collects software metadata
from source code repositories as well as from Zenodo, and
presents them in a way that makes the software more
findable (through search engine optimization), accessible
(through the presentation of relevant links to archived
versions), and reusable (through descriptions and other
metadata).

Regardless of what infrastructure is provided, interop-
erability with other systems should be assured and docu-
mented, so that metadata can be exchanged and deposited,
via directories such as re3data.org, and through standards
such as OAI-ORE, SWORD, and OAI-PMH. Furthermore, the
operation and administration of infrastructure services
should follow community standards, e.  g., Garijo et al.,82 for
software registries and publication repositories.

4.2  Training and Support

Academic libraries commonly conduct training courses
for students and researchers, teaching them how to use
the library’s services, including searching for research

80 See https://www.chorusaccess.org/resources/chorus-for-publishers/
publisher-data-availability-policies-index/. Last checked 04.07.2023.
81 Cahen, Ewan Jacov et al. “Research Software Directory (as a
Service).” GitHub (May 2023). https://github.com/research-software-
directory/RSD-as-a-service. Last checked 04.07.2023.
82 Garijo, Daniel et al. “Nine Best Practices for Research Software Re-
gistries and Repositories.” PeerJ Computer Science 8 (August 8, 2022):
e1023. doi:10.7717/peerj-cs.1023.

outputs and how to cite outputs used in research. Here,
the curricula should be extended to cover finding, re-
trieving, and working with research software, the prin-
ciples of software citations based on Smith et al.83, and
working with reference managers that support software
types. When educating users about further topics that
have relevance for research software, the contents pro-
vided by the library should include the software-relevant
information, e.  g., with regard to intellectual property,
applicable policies and good scientific practice, licensing,
etc.

Where libraries offer advanced training and support,
e.  g., around the research life cycle and research data man-
agement, these offers should also be extended to cover re-
search software. This can include, for example:
– helping users determine suitable software publica-

tion practices for their project, with regard to the
place of publication, the metadata that goes with the
publication, how to prepare software for publication,
and how to publish software in practice (see Druskat
et al.84);

– helping users make their software citable by pointing
them to relevant standard formats85 and tools86,87.

4.3  Software Management and Curation

One of the core competencies of libraries is the curation
and management of research outputs and their metadata.
Traditionally, these have mainly been textual outputs, until
research data management (RDM) was put into the scope of
librarianship decades ago,88 and has grown into an impor-
tant task for the academic library.

Libraries can support research software in this field
by transferring and applying their expert knowledge in
research data management and relevant infrastructure to
software. In advanced cases, libraries can curate research
software publications as digital objects including soft-
ware artifacts, and can help arrange for their long-term

83 Smith et al. 2019.
84 Druskat et al. 2022.
85 Druskat et al. 2021.
86 For example, cffinit, a webform to create files in the Citation File
Format, available at https://citation-file-format.github.io/cff-initializer-
javascript/. Last checked 04.07.2023.
87 Spaaks, Jurriaan H. et al. “Cffinit.” Zenodo (January 17, 2023).
doi:10.5281/zenodo.7543718.
88 Cook, Michael N. Numeric Data Products and Services: A SPEC
Kit. SPEC Kit,0160-3582;263. Washington, D.C.: Association of Re-
search Libraries, Office of Leadership and Management Services,
2001.

https://helmholtz.software
https://helmholtz.software
https://www.chorusaccess.org/resources/chorus-for-publishers/publisher-data-availability-policies-index
https://www.chorusaccess.org/resources/chorus-for-publishers/publisher-data-availability-policies-index
https://github.com/research-software-directory/RSD-as-a-service
https://github.com/research-software-directory/RSD-as-a-service
https://doi.org/10.7717/peerj-cs.1023
https://citation-file-format.github.io/cff-initializer-javascript
https://citation-file-format.github.io/cff-initializer-javascript
https://doi.org/10.5281/zenodo.7543718

Stephan Druskat et al., Towards Research Software-ready Libraries Fachbeitrag   177

availability in an archive, e.  g., Software Heritage89. In
any case, libraries can safeguard the quality of metadata
for software outputs through curation – with a particu-
lar focus on citability – as they advance their knowledge
base with research software specifics. These activities
are independent of whether the library provides relevant
infrastructure itself or not. Additionally, libraries can
develop or adapt, implement and mandate software man-
agement plans (SMPs) in analogy to data management
plans90.

4.4  Policies

Libraries are important stakeholders, and valuable imple-
mentation partners, for policies for research software in
the context of software publication and software citation,
but also academic evaluation based on research software
work (e.  g. at Helmholtz-Gemeinschaft91). They can provide
expert knowledge and infrastructure to assess and evaluate
research software outputs through scientometric informa-
tion systems, publication repositories, and software regis-
tries.

They should also be (or get) involved in the shaping
of policies that impact research outputs such as software.
This includes current and future challenges, such as han-
dling mixed-content deposits and publishing workflows in
a manner that enables reproducibility.92

Additionally, they can help build interfaces to related
communities, such as the cultural heritage GLAM com-
munity, to improve knowledge exchange (see Sufi et al.93;
Bouquin et al.94).

89 Di Cosmo, Roberto, Stefano Zacchiroli. “Software Heritage: Why
and How to Preserve Software Source Code.” IPRES 2017 – 14th In-
ternational Conference on Digital Preservation (Kyoto, Japan, 2017):
1–10. https://hal.archives-ouvertes.fr/hal-01590958. Last checked
04.07.2023.
90 Martinez-Ortiz, Carlos et al. “Practical Guide to Software Man-
agement Plans.” Zenodo (January 31, 2023). doi:10.5281/zenodo.
7589725.
91 Helmholtz-Gemeinschaft. 2022.
92 Soiland-Reyes et al. 2021.
93 Sufi, Shoaib et al. “Report on the Workshop on Sustainable Soft-
ware Sustainability 2019 (WOSSS19).” Zenodo (July 8, 2020). doi:10.5281/
zenodo.3922155.
94 Bouquin, Daina et al. “Advancing Software Citation Implemen-
tation (Software Citation Workshop 2022).” arXiv (February 15, 2023).
doi:10.48550/arXiv.2302.07500.

5  Conclusion
Academic libraries have a long history as caretakers for re-
search outputs and helping users find, use, and cite them.
Research data has been acknowledged as important re-
search artifacts that deserve the attention of and treatment
by librarians. Today, as research software is increasingly
acknowledged as valid research output in its own right,
libraries should broaden their focus and understand re-
search software as a type of research output they manage.
In practice, they can help users deal with software accord-
ing to good practice and raise awareness for the specific re-
quirements of research software in general.

In this paper, we introduced two important aspects of
what libraries’ engagement with research software should
focus and build on: software publication and software cita-
tion. We introduce the current understanding of software
publication as uniquely identifiable persistent metadata
and artifact deposition in publication repositories, software
citation as an adaptation of traditional citation practice to
meet the specific needs of software, and the intersection of
both practices and their significance for academic librar-
ies.

In order to become research software-ready, libraries
can engage with research software in a number of areas of
activity. They can provide and reuse technical infrastruc-
ture that caters to software as a research output and its
documentation in a library context. This includes mainly
publication repositories and/or software registries that can
ingest and represent research software artifacts and their
specific metadata.

Libraries can also extend their education and training
of researchers and other library users to include software
publication and software citation in theory and practice,
and their research data management and curation services
and support to include research software. The latter may
also include the development and support of software man-
agement plans.

Finally, libraries can engage with other stakehold-
ers in research software to create and implement policies
to further research software sustainability and the suc-
cessful adoption of the FAIR Principles for Research Soft-
ware.

Acknowledgments: We would like to thank Dr. Tom Honey-
man (Software Program Manager, Australian Research Data
Commons) and Dr. Daina Bouquin (former Head Librarian,
John G. Wolbach Library at Harvard Smithsonian Center for
Astrophysics, now Data Operations and Research Manager
at the US National Parks Conservation Association) for their
immensely helpful input in the early stages of writing this

https://hal.archives-ouvertes.fr/hal-01590958
https://doi.org/10.5281/zenodo.7589725
https://doi.org/10.5281/zenodo.7589725
https://doi.org/10.5281/zenodo.3922155
https://doi.org/10.5281/zenodo.3922155
https://doi.org/10.48550/arXiv.2302.07500

178   Fachbeitrag Stephan Druskat et al., Towards Research Software-ready Libraries

paper. SD and OB acknowledge funding from the Initiative
and Networking Fund of the Helmholtz Association via
Helmholtz Metadata Collaboration project HERMES (ZT-
I-PF-3-006). AS acknowledges the support of the Cluster
of Excellence “Matters of Activity. Image Space Material”
funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence
Strategy – EXC 2025 – 390648296.

Glossary
inner source software The application of open source

principles such as open communication, openness to
third-party contributions, open source governance
models, and self-management to software projects
exclusively within an organizational unit, e.g., an aca-
demic institution.

publication repository An archive that hosts digital ar-
tifacts and standardized metadata for the artifacts.
Each artifact is addressable with a unique identifier.
Publication repositories are usually instances of repos-
itory platforms such as Dataverse,95 InvenioRDM96 or
DSpace,97 and may be run internally by institutions, or
accessibly to the general public. A well-known example
of the latter is Zenodo,98 an open access general purpose
repository run by CERN.

software registry An index or catalogue of software meta-
data. In contrast to a publication repository, a registry
does not store software artifacts, only information
about them, to aid their discovery.99 Other terms – cur-
rently emerging in the research software infrastructure
community – for software registry are software cata-
logue and software directory.

95 King, Gary. “An Introduction to the Dataverse Network as an In-
frastructure for Data Sharing.” Sociological Methods & Research 36,2
(November 1, 2007) doi10.1177/0049124107306660.
96 Last checked 04.07.2023. https//inveniosoftware.org/products/rdm/.
97 Last checked 04.07.2023. https://dspace.lyrasis.org/.
98 European Organization For Nuclear Research and OpenAIRE.
 “Zenodo: Research. Shared.” (2013). doi:10.25495/7GXK-RD71.
99 Garijo et al. 2022.

source code repository A repository, often a version
control system repository, that hosts software source
code and other files, such as documentation and meta-
data files. Source code repositories may be hosted
publicly on a software development platform such as
GitHub, GitLab, or similar.

Author information
Stephan Druskat
Institute for Software Technology
German Aerospace Center (DLR)
Rutherfordstr. 2
12489 Berlin
stephan.druskat@dlr.de
https://orcid.org/0000-0003-4925-7248

Oliver Bertuch
Forschungszentrum Jülich GmbH, Central
Library
Jülich
o.bertuch@fz-juelich.de
https://orcid.org/0000-0002-2702-3419

Alexander Struck
Cluster of Excellence Matters of Activity
Humboldt-Universität zu Berlin
Alexander.Struck@hu-berlin.de
https://orcid.org/0000-0002-1173-9228

mailto:stephan.druskat@dlr.de
https://orcid.org/0000-0003-4925-7248
mailto:o.bertuch@fz-juelich.de
https://orcid.org/0000-0002-2702-3419
mailto:Alexander.Struck@hu-berlin.de
https://orcid.org/0000-0002-1173-9228

	_GoBack
	_zcu0spt9xwc6
	_Hlk138324728
	_kd45ltoluslh
	_jrpp5wakmi64
	_ry191d2ofnym
	_63zbdikr0pgv
	_8id5isqiwyau
	_3h5yekhlta81
	_tsagbe8efei4
	_lbit4ox1sg5e
	_kcmnoo58as7a
	_q6tnxumektvp
	_dit2kxt4ix02
	_dbdtsojyykpn
	_cdmflbiyk611
	_ejb3hgncujml
	_w1nx1hd6cbcf
	_Hlk137485997
	_Hlk137486017
	introduction
	_Ref137502273
	sec:software-publication
	acknowledgments
	pubrepo
	subsec:softpub-future
	_Ref137484744
	sec:software-citation
	subsec:software-citation:challenges
	sec:libraries
	subsec:libraries:infrastructure
	subsec:libraries:education
	subsec:libraries:software-management
	subsec:libraries:policies
	sec:conclusion
	innersource
	_Ref135674133
	_Ref135674761
	_Ref135730477
	_Ref135669756
	_Ref135669747
	_Ref135598334
	_Ref135598314
	_Ref135672629
	_Hlk138662906
	_Hlk138662821

