Molten Salt Batteries for Grid Storage

Wenjin Ding¹, Ralf Hoffmann¹, Alexander Bonk¹, Thomas bauer²

- 1. Institute of Engineering Thermodynamics, German Aerospace Center (DLR), Stuttgart, Germany
- 2. Institute of Engineering Thermodynamics, DLR, Cologne, Germany

BACKGROUND AND MOTIVATION

DLR

Energy storage classification and global capacity

Sodium–sulfur battery (NaS battery)

- Excellent storage performance as Li-ion batteries
- Low CAPEX cost of ≤100 USD/kWh
- Long lifetime of ≥10 years
- Commercial stationary grid storage plants (MWh-GWh)
- But durability and safety issues due to beta-alumina solid electrolyte

https://www.ngk-insulators.com/en/product/nas-solutions01.html

Sodium-sulfur battery (NaS battery)

Over 250 projects, the total capacity of 700 MW/4.9 GWh

https://www.ngk-insulators.com/en/product/nas-solutions.html

Liquid metal battery (LMB battery)

- Excellent storage performance as Li-ion batteries
- Low CAPEX cost of ≤100 USD/kWh
- Long lifetime of ≥10 years
- Commercial stationary grid storage plants (MWh-GWh)
- But durability and safety issues due to beta-alumina solid electrolyte

Liquid metal battery (LMB battery)

LMBs	Electrode	Electrolyte	T _m [°C]	T _w [°C]	Coulombic efficiency [%]	Energy efficiency [%]	self-discharge rate [mA/cm ² at full charge]	Capacity loss rate [%/cycle]
Li-LMB (MIT) ¹	Anode: Li; Cathode: Sb-Sn	LiF-LiCl-LiBr	440	500	>98	70-90	NA	0.006
Ca-LMB (MIT & Ambri) ²	Anode: Ca alloys; Cathode: Sb alloys	LiCI-NaCI-CaCl ₂	450	500	~100	>80	NA	<0.01
Na-LMB (ANL) ³	Anode: Na Cathode: Bi	NaF-NaCl-Nal (single-cation)	530	580	82	59	~20	NA
Na-LMB (HUST, DLR, KIT) ⁴	Anode: Na Cathode: Bi-Sb	LiCI-KCI-NaCI (59:5:36 mol%)	350	450	>97	~80	<1	Over 700 cycles no fade, estimated lifetime >15 000 cycles

1. K. Wang, K. Jiang, B. Chung, et al.. *Nature*, 2014, 514(7522): 348-350.

- 2. T. Ouchi, et al., *Journal of ECS*, 2014, 161(12): A1898-A1904, and <u>Technology: Ambri</u>
- 3. H. Kim, K. Wang, K. Jiang, D. Sadoway, et al., *Chem. Rev.* 113, 2075 (2013).
- 4. H. Zhou, W. Ding, A. Weisenburger, K. Wang, K. Jiang, et al., Ener. Stor. Mater., 2022, 50: 572-579.

DFG-NSFC research project: Study on Corrosion Control and Low-Temperature Electrolytes for Low-Cost Na-Based Liquid Metal Batteries (Na-LMB)

ZEBRA battery (Na-NiCl₂ battery)

- Excellent storage performance as Li-ion batteries
- Low CAPEX cost of ≤100 USD/kWh
- Long lifetime of ≥10 years
- Commercial applications in automobile, cellular base station, etc.
- Suitable for stationary grid storage (MWh-GWh)
- Ni has large share of the cell material cost (more than 60%)

R. C. Galloway and C.-H. Dustmann, ZEBRA Battery - Material Cost, Availability and Recycling, MES-DEA GmbH, EVS 20, 2003

ZEBRA battery (Na-NiCl₂ battery)

More than 40 000 Battery systems installed

https://drive.google.com/file/d/1yrmnzXKIolegXySwIu9-E5thOUHtb72k/view

How ZEBRA battery works

- Working temperature about 280-300 °C
- Na anode, NiCl₂-Ni cathode
- Beta Alumina solid electrolyte (BASE) with good Na⁺ ion conduction used
- Low melting point secondary electrolyte containing AICl₃(NaAICl₄ ~155°C) for high conductivity
- Molar ratio NaCI:AICl₃ >1 (basic nature*) in fully charged state for compatibility with BASE

*Kim, J., et al. (2016). Journal of the Korean Electrochemical Society, 19(3), 57-62

EU H2020 project SOLSTICE: Na-ZnCl₂ battery

- Replacing Ni with Zn*: Cell material cost reduced by 40 %, overall battery cost by 20 %
- Higher NaCl utilization: Eutectic ZnCl₂-NaCl (250 °C) lower than NiCl₂-NaCl (550 °C)
- Promising cell performance has been shown in literature*
- But complex reaction mechanism: Multiple reversible reactions (4 steps)
- Study on properties of ZnCl₂-NaCl-AlCl₃ salt electrolyte (melting temperature, phase change, vapor pressure, etc.) to improve the cell performance for commercial applications

2 NaCI + Zn discharge ZnCl₂ + 2 Na

METHODS AND RESULTS

DLR

Methods

- Target: To understand and optimize the ZnCl₂-NaCl-AlCl₃ salt electrolyte
 - Phase diagram (melting temperature, phase change) simulated with FactSage[™] and verified with Differential Scanning Calorimetry (DSC) & OptiMelt[™]
 - Phase diagram for salt electrolyte optimization and better cell performance
 - Salt vapor pressure for battery safety issue

Simulated phase diagram of ZnCl₂-(NaCl)₂-AlCl₃

- Increasing AICl₃, melting temperature of the salt electrolyte decrease fast
- Increasing NaCl during discharging (SOC from 100% to 0%), melting temperature decreases fast
- Next step: Cutting ternary phase diagram at constant AICl₃ mol.% for analysis of phase changes with SOC change

Binary phase diagram simulation

- Binary phase diagrams of AICl₃ = 0-50 mol% simulated
- Phase changes with SOC change simulated
- Voltage change with SOC change in the cell test could be explained with the phase changes
- Next step: DSC & OptiMelt to experimentally verify simulation results

*Lu, X., et al. Energy & Environmental Science 6 (2013): 1837-1843.

DSC[™] results

DSC results complying with simulation results

soc(%)	AICI ₃	ZnCl ₂	2NaCl	Factsage	DSC
300(78)	mol%	mol%	mol%	Transition Temperature(°C)	Start(°C)
100	34.89	47.67	17.44	155	152
				200	204
				300	303.7

16

OptiMelt[™] results

1000

900

800

700

600

500

400

300

200

100

Rocksalt + Salt-liquid

NaAICI, + Na,ZnCI, + Rocksalt

0.2

0.1

Na,ZnCl, + Salt-Iî Na,ZnCl, + Rocksalt + Salt-Iiquid

0.3

T(C)

Incl₂ - (NaCl)₂ - AlCl₃

AICI_/(ZnCI_+(NCI)_+AICI_) (mol/mol) = 0.25, 1 atm

Salt-liquid

Na.ZnCl. + Salt-liquid + ZnCl.

0.5

NaAICI, + Na,ZnCI, + ZnCI,

0.4

ZnCl₂/(ZnCl₂+(NaCl)₂+AlCl₃) (mol/mol)

GactSage

Salt-liquid + gas_ideal

Salt-liquid + S

-liquid#2

0.7

0.6

- Visual observation on salt melting
- OptiMelt results complying with DSC results
- More AICl₃ containing, more is the liquid secondary electrolyte at 160°C (above melting temperature of NaAICl₄), but higher salt vapor pressure

Sr No		ZnCl₂	2NaCI	
orinto.	mol%	mol%	mol%	
1	15	77.5	7.5	
3	25	62.5	12.5	
6	35	45	20	

Liquid phase in salt electrolyte at 300°C (simulation)

- Fully discharged state: 0 mol% ZnCl₂
- Full charge state: basic nature (NaCl:AlCl₃ \geq 1:1 or (NaCl)₂:AlCl₃ \geq 1:2)
- Salt cost for 1 kWh storage increases with increasing AICl₃
- But low AICl₃ concentration leads to low conductivity (low liquid phase wt.%) in fully discharged state

Vapor pressure vs. Salt composition

- High salt vapor pressure can lead to failure of e.g., BASE, sealing (safety issue)
- Maximum vapor pressure at high ZnCl₂ and AlCl₃ concentration
- Vapor pressure is below 1 atm for 300 °C at increasing mol% of AICI₃ till 50 mol%
- Pay attention on AICI₃ concentration, cell overcharge and temperature runaway

Vapor pressure vs. operating temperature

 Based on the worst-case scenario inside the battery (0 mol% NaCl in overcharged state, salt vapor pressure below 1 bar), allowed max. operating temperatures for batteries with different mol% AlCl₃ are suggested.

Summary

- Na-ZnCl₂ battery has similar structure as ZEBRA battery, but potentially **lower battery cost**
- To assist the battery improvement on e.g. battery operation and salt electrolyte composition, key salt properties such as melting temperature, phase changes, vapor pressure were studied with simulation and/or experiments.
- The experimental results with thermoanalysis are comparable to the simulation results.
- Voltage change with SOC change in the cell test could be explained with the phase changes.
- Battery safe operation: AICl₃ in the ZnCl₂-(NaCl)₂-AICl₃ salt electrolyte is suggested to not above 45 mol% (vapor pressure below 1 bar at 300°C). Pay attention on AICl₃ concentration, cell overcharge and temperature runaway
- **Salt cost** for 1 kWh storage increases with increasing AICl₃, but low AICl₃ concentration leads to low conductivity (low liquid phase wt.%) in fully discharged state

Thanks for your Attention!

Dr.-Ing. Wenjin Ding: Wenjin.Ding@dlr.de

Acknowledgement:

This Master thesis is part of the 'SOLSTICE' project which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 963599.

https://www.solstice-battery.eu/

Binary phase diagram simulation (AICI₃ = 0-50 mol%)

