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Abstract

The principal research focus of this thesis lies on highly correlated battery electro-
lytes in the bulk, and near electrified interfaces.

The bulk regime can be characterized as a mesoscopic continuum, which spans
over the length scale of a few hundred micrometers. In contrast, the electrochemical
double layer (EDL) is a microscopic effect. It is constituted by a charged electrolyte
region adjacent to an electrode, and decays towards the electroneutral bulk region
with increasing distance from the electrode, typically over some nanometers. As
consequence, our research focus spans over various length scales.

In this work, we derive a holistic continuum transport theory for highly correlated
electrolytes which captures mesoscopic transport effects of bulk electrolyte, i.e. mi-
gration, diffusion and convection, and the formation of the EDL in ionic liquids (ILs)
near electrified interfaces.

To address this goal, we use the framework of rational thermodynamics (RT),
which combines elements from non-equilibrium thermodynamics, mechanics and
electromagnetic theory to describe a wide class of materials. RT has a rigorous
physics-based foundation which is constituted by mutually coupled universal balanc-
ing laws, and the second axiom of thermodynamics. This description takes account
for the strong correlations between arbitrary many charged or uncharged electrolyte
species, and ensures that the description for the evolution of the system is thermody-
namically consistent. The method of Coleman and Noll allows a concise description
of the system in the form of constitutive equations via thermodynamic derivatives of
the Helmholtz free energy, which is the focal quantity of our constitutive modeling.
We obtain a consistent description for the thermodynamic fluxes via using an On-
sager approach. This coupling between the fluxes and forces closes our flux-explicit
transport theory.

Our manuscript is split into two main parts. In the first part, we present a
detailed derivation of our continuum transport theory for the bulk electrolyte. Here,
we treat the electrolyte as a continuum at liquid state, and neglect the particle
nature of the constituents. This implies that we do not account for microscopic
interactions explicitly, but use an averaged description based on macroscopic energy
contributions. As consequence, for the bulk, it suffices to focus on modeling the
Helmholtz free energy density of the system.

In addition to the balancing laws for mass, momentum, energy and charge, and
to the second axiom of thermodynamics, we make use of volume being an extensive



property and account for the volume-filling property of liquid electrolytes.

We use the resulting constraints and identify the independent set of species, fluxes
and transport parameters. This simplifies our description and rationalizes the trans-
port theory. Altogether, for an electrolyte mixture composed of N species, we obtain
a system of equations which consists of one transport equation for the charges, and
N-2 transport equations for the species concentrations. These transport equations
are supplemented by the Poisson equation and a heat equation. Because convection
plays an important role in electrolyte solutions with high amount of salt, we derive
an equation for the convection velocity as function of volume fluxes and local volume
productions due to chemical reactions. The set of independent transport parame-
ters follows from the Onsager matrix, and is determined by symmetry arguments,
flux constraints and thermodynamic consistency. We clarify the ongoing debate re-
garding the sign and magnitude of transport parameters via a rational discussion of
the frame dependence, and derive transformation rules between different reference
frames.

Our consistent coupling of thermodynamics, mechanics and electromagnetic the-
ory yields a constitutive equation for the forces, which accounts for electrostatic
forces, Lorentz forces in charged electrolyte regions, forces stemming from volume
penalties due to non-equal molar volumes of the species, dissipative friction forces
due to the viscosity of the electrolyte, and entropic forces due to concentration gra-
dients. These forces can be supplemented by non-ideal interactions via modification
of the thermodynamic factor.

We validate our bulk description for highly correlated electrolytes using numerical
methods, and apply it to a zinc ion battery which is based on an electrolyte composed
of an IL-mixture with water and salt. A comparison of the simulation results for
charging and discharging the battery with experimental results shows that both are
quantitatively in very good agreement.

In the second part of this manuscript, we focus on the description of the electro-
chemical double layer (EDL) of binary ILs and IL / salt mixtures. Typically, the
EDL spans over some nanometers, and thus constitutes a system at length scales
comparable to the size of the molecules, and the effective range of particle inter-
actions. As consequence, our continuum assumption of a structureless bulk liquid
must be relaxed, and we must account for non-local correlations between hardcore
particles in our EDL description. For this purpose, we generalize our constitutive
approach to modeling the free energy of the system as a functional, with contri-
butions stemming from non-local interactions. Although this does not affect the
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main structure of our transport theory, it yields constitutive equations in the form
of functional derivatives and there appear additional contributions in the transport
equations in the form of integrals. In principle, the resulting framework can be used
to incorporate a variety of different interactions. Here, we focus on the effect of
hardcore particles via modeling a short-ranged repulsive interaction potential.

In a first step, we apply this framework to binary ILs next to electrified interfaces.
In this case, the system is completely described by the Poisson equation and one
transport equation for the charge.

We show that short-ranged interactions can be approximated systematically by
expanding the interaction integral in higher order gradients of the species concen-
trations. This gradient description has the advantage that it is susceptible to an
analytic investigation of the EDL in stationary state, which parametrizes the EDL
description and rationalizes the appearance of higher order derivative operators in
modified Poisson equations, as recently proposed in this context in the literature.
Our analytic analysis of the stationary EDL shows that the charge distribution in
the EDL, i.e. the shape and width of the long-ranging screening profile, is com-
pletely determined by three competing energy scales. These energy scales describe
the electrostatic forces between ions, the molecular repulsion between all molecules,
and the thermal motion. Depending upon the relative magnitude of the three energy
scales, the EDL profile of the charge density can have three different shapes. For
negligible molecular repulsion, the screening profile is determined by the competition
between charge ordering (due to electrostatics) and thermal disordering, and decays
exponentially. However, in the case where the repulsion between molecules is com-
parable with the thermal energy and the Coulomb interactions, the EDL spans over
some ion diameters and is characterized by a nanostructured electrolyte region with
charge oscillations ("overscreening"). Finally, once the molecular repulsion becomes
dominant, the bulk electrolyte undergoes a phase transition into ionic layers, and the
EDL spans over the complete electrolyte region. Eventually, upon further increase
of molecular repulsion, the layered structure phase separates into pure ionic layers.
We confirm the instability onset of the stationary electrolyte via a linear stability
analysis of our dynamical description with respect to the electroneutral bulk state.

Depending upon the magnitude of the electrode polarization, the charge pro-
file saturates near the interface ("crowding"). However, in contrast to the effect of
overscreening, this is a "bulk effect" which happens independently from molecular
repulsion, and results from the assumption of finite molar volumes. The two char-
acteristic parameters of this crowding effect, i.e. the width of the saturation layer
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and the maximal charge density, are both predicted by our framework.

Our description allows the complete analytical reconstruction of the charge dis-
tribution in the EDL. In particular, it predicts the saturation width, the damping
parameter, the oscillation frequency and the exact phase boundaries between the
three screening phases as function of the energy scales. We validate our description
by comparing the EDL forces as obtained from our theory with experimental results
obtained from AFM measurements.

We also we apply our EDL formalism to a ternary electrolyte mixture composed
of a neat IL with a minor salt. Via an analytic discussion of the stationary state,
we predict the critical amount of salt additive, which is necessary to perturb the
interface screening by the IL ions, and validate our theoretical prediction using
experimental results.

Altogether, our theoretical description yields a rigorous multiscale methodol-
ogy from atomistic quantum chemistry calculations to phenomenological continuum
models. We identify the interaction contribution appearing in the chemical potential
with the pair correlation function used in atomistic frameworks and liquid state the-
ory. Also, we rationalize phenomenological continuum EDL models proposed in the
literature, e.g. the BSK approach, which are comprised in our framework as limiting
cases. Furthermore, macroscopic thermodynamic descriptions for ion correlations in
non-ideal electrolytes, e.g. the Flory Huggins approach, can be obtained from our
functional approach via the method of coarse graining.
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1 Introduction

The political and social demand for a transition of the energy landscape and of the
transportation systems has increased in the last few decades. The main driving
forces result from arguments based on climate change, and, recently, from geo-
political developments.

In Germany this trend has been picked up by legislation, and has become federal
law in the course of the so-called “Energiewende”. This national endeavour is em-
bedded in the “Energy Union Strategy” of the European Commission, with the goal
to reduce the emission of green house gases, and to transition the domestic energy
market towards so-called “renewable” and “alternative” energies, e.g. nuclear, solar
or wind power. This includes transportation, heat and electricity. [1]

Electromobility is one important pillar in this national strategy. It describes the
usage of vehicles which are powered fully or partially by batteries, in contrast to
vehicles based on combustion engines. An increase in electromobility can have a
positive effect on the release of green house gases.

The second pillar of the "Energiewende" is focused on increasing the fraction of
green energy sources. This includes conventional energy sources, e.g. sources based
on nuclear and gas, but also renewable energy sources, e.g. solar and wind. However,
the renewable energy sources have the disadvantage of a fluctuating production rate.
One strategy to address this problem is to develop an efficient infrastructure for the
flexible intermediate storage of electrical energy, which can help to balance energy
consumption and production. This requirement can be fulfilled by large scale battery
systems.

Thus, the legislative act of the "Energiewende" constitutes a huge stimulus for the
development of safe, ecologically friendly and high-performance batteries on multiple
scales.

Beneath the (geo-)political landscape, this demand becomes also visible in our
daily life. Many devices which are in practical use, such as laptops and cell phones,
are powered by batteries. Thus, their performance is limited by the electric energy
provided by the batteries.
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Basic battery set up Batteries are electrochemical devices which are constructed
with the purpose of being used only once (primary battery), or with the purpose
of being used many times (secondary batteries). In the context discussed above,
secondary batteries, i.e. rechargeable batteries, are the main focus. The basic
functionality of a battery is the conversion of potential energy, in the form of chemical
energy, into electrical energy.

Basically, the configuration of a battery cell consists of six components: two cur-
rent collectors, a positive and negative electrode separated by an electrically isolat-
ing, porous separator and an electrolyte solution. [2]

During discharge, the negative electrode is called anode, whereas the positive
electrode is called cathode. In standard lithium ion batteries (LIBs), both consist
of porous materials, which increase the effective surface area and capacity of the
electrodes. [3] The anode of LIBs is typically made of graphite, which is a soft form of
carbon, but also different materials have been commercialized, e.g. lithium titanate
oxide (LTO). Different commercialized cathode materials exist in LIBs, mainly based
on material compositions such as lithium manganese oxide (LMO), lithium cobalt
oxide (LCO), lithium iron phosphate (LFP) or lithium nickel manganese cobald
oxide (NMC). [4,5]

The electrolyte is immersed in the region between both electrodes and the sepa-
rator. The most widely used types of electrolytes in LIBs are based on Lithiumhex-
afluorophosphat (LiPF6), dissolved in a mixture of different aprotic solvents. [6] To
improve specific electrolyte properties, various additives are added to this solution. [7]

The main objective of the separator is to prevent electrical contact between the
electrodes ensuring ionic transport. Usually, these consist of porous membrane ma-
terials. [8]

Each of these components influences the performance of the complete cell individ-
ually, but also in conjunction with the other components. However, this manuscript
focuses on liquid electrolytes.

Electrolytes: Highly Concentrated Electrolytes And Ionic Liquids The electrolyte
plays a fundamental role for the performance of the battery. [9–18] There are two main
purposes of the electrolyte. First, it serves as a medium acting as an ion conductor,
but electron insulator, which should facilitate the transport of ions between pairs of
electrodes. Simultaneously, the electrolyte has to withstand the strong oxidizing and
reducing forces of the electrodes. These two properties constitute the major metrics
of electrolyte design. [13] However, this also involves a trade-off in the electrolyte
choice. For example, aqueous electrolytes are often highly conductive, whereas non-
aqueous electrolytes usually exhibit enhanced electrochemical stability. [19] For this
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1 Introduction

reason, non-aqueous electrolytes are mainly used in LIBs, with some compromise on
ionic transport properties. [20]

However, despite the property that electrolytes in LIBs do not participate in
Faradaic reactions at the electrodes, they contribute actively to the interfacial re-
gion and make a significant contribution to the performance of LIBs. Due to the
thermodynamic instability at the solid / electrolyte interface, a passivating layer is
formed ("SEI"), which stabilizes the interface kinetically. [21] The SEI formation is
crucial for the operation of LIBs, and depends strongly on the electrolyte composi-
tion. [22]

The novel class of superconcentrated aqueous electrolytes, so-called "water-in-
salt" electrolytes (WiSE) based on extremely high lithium salt contents (>21 mol
LiTFSI in 1 kg H2O), [23] constitutes a promising type of hybrid aqueous / non-
aqueous electrolyte, combining high safety and ionic conductivity of water with a
large electrochemical stability window. These electrolytes form an aqueous SEI on
various anode surfaces consisting of inorganic metal species.

Ionic liquids (ILs) (also, room temperature ionic liquids) are another class of
promising electrolytes. [24–34] From a continuum modeling perspective, ILs constitute
the extreme limit of highly concentrated electrolyte, where the amount of neutral
solvent vanishes. Although there is no clear definition of ILs, [35] they usually are
referred to as salts with melting points below 100 ◦C. [36] ILs share many properties
with molten salts, although molten salts are usually viewed as the high-temperature
analogons of ILs. They are typically composed of organic cations and inorganic
anions. [37,38] Strong correlations between the complex ions imply various beneficial
properties. Among them are a low volatility / negligible vapor pressure, low famma-
bility, high thermal and electrochemical stability (large electrochemical window),
high ionic conductivity, and the ability to solvate compounds of widely varying po-
larity. [39] Furthermore, there a exists a countless number of different configurations
of ILs, which allows to tailor-cut them into task specific electrolytes. [40]

ILs posses characteristic properties in the bulk and near electrified interfaces.
This makes them highly attractive from a fundamentals point of view. Due to their
high amount of salt concentration, convection plays an important role for transport
processes. As consequence, the dynamical description based on internal reference
frames can deviate significantly from the dynamics as described by an external frame.
This has led to some confusion regarding sign and magnitude of transport parameters
in ILs, [41–44] although the basic tenet was already well understood in the molten
salt chemistry some decades ago. [45–47] Near electrified interfaces, ILs form lang-
ranging charged structures, which can span up to several nanometers into the bulk
electrolyte. [48] This increased screening length of the electrochemical double layer
(EDL) depends upon the structure of the IL molecules, the system parameters,
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as well as on the boundary conditions. [48,49] In principle, these influences can be
used to tune the EDL such that the resulting kinetic hindrance stabilizes the bulk
electrolyte, eventually allowing for a control of the Faradaic processes occurring at
the interface, i.e. chemical reactions. [50–54]
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Figure 1.1: List of IL related publications per year and per discipline.

These features make ILs and molten salts highly interesting for a large variety of
applications, e.g. in energy science, catalysis, pharmaceutics, nuclear fuel reprocess-
ing, waste recycling to name just a few. [55–59] The increased interest in ILs over the
past few decades is shown in fig. 1.1, which illustrates the number of publications
related to ILs per year (upper figure) and per discipline (lower figure). Apparently,
the number of publications has increased almost exponentially over the period be-
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1 Introduction

tween 1995 and 2015, where the range of disciplines covered by these publications
spans from fundamental science to industry applications.

Modeling of Battery systems In industry and science there is a clear trend towards
more model-based and computer-aided analyses. Modeling can serve as a predictive
tool to improve the battery performance, e.g. via material recommendations, or
optimized geometries for the cell set-up.

However, electrochemical devices are complex systems, which involve effects span-
ning across multiple phases, and multiple-length scales. The relevant scales span
from the microscopic scale involving several atoms, e.g. nucleation or intercalation
processes, across the mesoscopic scale, e.g. transport through porous media, up
to the macroscopic scale, e.g. thermal management of battery packs. Accordingly,
depending upon the focus, different modeling approaches exist.

Because of limited computational resources the discretization of the battery ge-
ometry cannot be chosen such that all length scales are properly resolved. Thus,
there exists a plethora of different models which constitutes a multi-level and multi-
physical landscape of applications. Microscopic processes can be resolved by means
of quantum mechanical modelling, e.g. Density Functional Theory (DFT) or Ab
Initio Molecular Dynamics (AIMD). Meoscopic processes are mostly analyzed us-
ing continuum models based on thermodynamics, electrodynamics and mechanics.
Finally, macroscopic systems can be described by continuum theories or phenomeno-
logical theories, i.e. mean field theories and equivalent circuit models.

These different modeling methodologies vary in accuracy and effort. The pre-
dictability but also the computational costs of microscopic methods are very high.
In contrast, mesoscopic and macroscopic methods exhibit usually a limited pre-
dictability combined with the advantage of low computational cost. In addition,
they depend crucially on an accurate knowledge of system parameters, which serve
as input for evaluating the model. Thus, their applicability can be limited because
the experimental determination of such parameters is a challenging task.
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2 Methods: Continuum Modeling,
Rational Thermodynamics a nd
Computer Simulations

In this chapter we discuss the main theoretical methods used in this work. First,
in section 2.1, we discuss the principles of continuum modeling of physical systems
at liquid state. Next, in section 2.2, we give a brief summary of the framework of
rational thermodynamics which constitutes the theoretical basis for the derivation
of our transport theory. Finally, in section 2.3, we give a brief characterization of
computer simulations.

In addition, we discuss the numerical methods used in this work in great detail in
the appendix, see appendix A.

2.1 Continuum Modeling of Liquid Electrolytes

In this section, we describe the basic assumptions underlying the methodology of
continuum modeling for fluids and liquids.

The goal of this work is to derive a continuum transport theory for highly concen-
trated multi-component electrolytes, and ionic liquids, which applies to bulk effects,
and to the electrochemical double layer (EDL). The fundamental assumption un-
derlying our continuum modeling is the continuum hypothesis for liquids. [60,61] This
assumption applies to the description of physical systems on a mesoscopic or macro-
scopic scale, where all physical variables emerge from microscopic quantities via
averaging in a representative volume element dV of the system. [62] By assumption,
the continuum hypothesis neglects the particle nature of the system and erases mi-
croscopic discontinuities. The advantage of the continuum hypothesis lies in the
property that averaged quantities, e.g. free energy, temperature, density, pressure,
velocity, can be assumed to vary continuously in space. However, this requires that
the representative volume element dV must be large enough such that statistical
fluctuations do not lead to significant fluctuations of the averaged quantities. Yet,
at the same time, dV must be small enough to capture macroscopic variations,
e.g. velocity or concentration gradients. [63] Typically, such representative volume
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elements are assumed on the order of cubic microns. [61] This is in accordance with
the continuum description of bulk transport in electrolytes, where the typical length
scales are on the order of microns (1 µm=10−6 m). [64,65] As consequence, it suffices
for the modeling of bulk effects to focus on the subsystem of the electrolyte given
by the representative volume element dV .

The continuum hypothesis is widely used in fluid mechanics and was already
applied in the 18th century. According to L. Euler, [66] “Physical (fluid) properties
are assumed to vary continuously in space and each property is essentially a point
function. Discontinuities may only occur across interfaces separating two phases
and across shock waves. Differential calculus is applicable.”
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Scheme 2.1: Scheme of the Multi-Scale Methodology. Parts of figure first
published in a modified version in Ref. 67 under the license CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/.

We use the continuum approach in part II, where we derive our transport the-
ory for highly correlated electrolytes. Thus, our modeling approach for the bulk
electrolyte is based on the free energy density, and on differential calculus.

However, the continuum hypothesis becomes deficient for the description of phys-
ical systems at microscopic scales, where non-local interactions are dominant. [68]

The typical length scale of the electrochemical double layer (EDL) is on the order of
nanometers, [48,49] i.e. comparable to the diameter of the ions. Furthermore, strong
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2.2 Rational Thermodynamics

particle interactions play an important role for the formation of equilibrium struc-
tures. [69] As consequence, we relax our bulk description based on modeling the free
energy density for our description of the EDL, see part III. Instead, we focus on
the free energy as a functional, and apply variational calculus for our constitutive
modeling.

In Scheme 2.1, we sketch our multi-scale approach and illustrate the different scales
of resolution which can be applied when modeling a macroscopic system (here, a bat-
tery electrolyte). The resolution by which the system is examined depends upon the
effects on which the description is focused. A length bar is shown in the upper
subfigure which comprises different scales for the modeling of the real physical sys-
tem, which can extend over some millimeters. The continuum modeling of the bulk
electrolyte focuses on the micrometer scale, see the the intermediate region of the
length bar. This description applies to a representative volume, and is based on dif-
ferential calculus. However, an enhanced resolution is mandatory for the description
of microscopic effects, see the right region on the length bar. For this purpose, the
continuum assumption must be relaxed, and the system is better described model-
ing the free energy as a functional (hence, using the calculus of variations for the
derivation of the constitutive equations, which take the form of variational deriva-
tives). The lower subfigure in Scheme 2.1 illustrates a representative profile of a
macroscopic quantity (here, the ion concentration normalized to the bulk value) on
different length scales, i.e. different scales of resolution. Typically, profiles for the
ion concentrations vary smoothly on the macroscopic scale, i.e. on the µm-scale,
but exhibit fluctuations at the microscopic scale, i.e. the nanometer scale. Note the
colored segments of the two length bars on the upper and lower subfigure.

2.2 Rational Thermodynamics

In this section we give a brief overview over the framework of rational thermody-
namics, which constitutes the main theoretical description applied in our work.

Rational thermodynamics (RT) is a description of non-equilibrium thermodynam-
ics based on the concepts of continuum mechanics. [70] Pioneered by Trusdell, [71]

Coleman and Noll, [72,73] the framework of RT puts emphasis on mathematical rigour,
and exhibits an axiomatic basis from which the main results are oftenly derived via
Theorems and Lemmata. [74]

Universal balance equations, which follow from rigorous physical assumptions con-
stitute the basis for this framework, [75–78] and are strictly kept distinct from charac-
terizations of the material at hand. [79] However, these universal balance equations
are underdetermined and must be supplemented by constitutive equations, in or-
der to obtain a closed set of differential equations. [80] One characteristic property
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of RT is that the constitutive equations are not arbitrary, but are restricted by
material-independent axioms. [81] Most importantly, they are restricted by the laws
of thermodynamics ("thermodynamical consistency"), which are supposed to hold
at any time, and the universal principle of material symmetry. [74] Thermodynamic
consistency of the framework is implemented via the so-called entropy principle. [82]

Beneath these universal constraints, the constitutive equations are subject to
material-dependent axioms, which take the form of material laws and cast the yet
general framework to the description of classes of material. According to this de-
scription, each class of material is represented by constitutive equations which are
functions of a characteristic set of ("material") variables, which form the mate-
rial law. [80] Therefore, to any material is assigned a set of constitutive equations
(which replace the state equations appearing in canonical thermodynamics). Via
the method of Coleman and Noll, [73,83] the constitutive equations are determined
by one focal quantity, commonly the Helmholtz free energy density φH. As con-
sequence, the material function for φH, i.e. the precise model for φH, determines
the specific material representation of the constitutive quantities (which describe
the system). Usually, this constitutive approach is supplemented by a flux-explicit
Onsager-description, which closes the set of transport equations. This allows for a
consistent description of large classes of materials.

The framework of RT constitutes the methodological basis for the derivation of our
transport theory. In part II we highlight each logical step of RT in great detail, i.e.
the universal part where we derive the balance equations, the constitutive modeling
part where we derive the constitutive equations, and the part where we state our
material model for liquid electrolytes.

2.3 Computer Simulations From The Perspective of The
Philosophy of Science

Computer simulations based on our transport theory are a tool which we use in our
manuscript to supplement the theoretical framework. In this section, we discuss
the method of computer simulations and it’s relation to experiment and theoretical
models.

The application of computer simulations ("simulations") in the natural sciences
has gained tremendous significance. As consequence, there exists a plethora of dif-
ferent numerical methods and methodologies. It has even been argued that the rise
of computer simulations implies that the traditional dichotomy of experiment and
theory has become obsolete in the natural sciences. [84] However, performing simu-
lations is usually differentiated from experimental work, or purely analytical work.
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Scheme 2.2: Scheme of a so-called Sargent-cycle, which illustrates the relation be-
tween a scientific theory, computer simulations and experiment (real physical sys-
tem). Parts of figure first published in a modified version in Ref. 67 under the license
CC BY 4.0, https://creativecommons.org/licenses/by/4.0/.

This raises some fundamental questions, e.g. what is a simulation, what is the re-
lation to modeling and experiments, and how can the scientific value of a computer
simulation be assessed.

These questions are relatively new in comparison with the canonical problems
studied in the literature on the philosophy of sciences, e.g. the problem of induc-
tion, [85] or the problem of demarcation. [86] As consequence, they are not directly
discussed within seminal treatises of the scientific method, due to, e.g., Karl Pop-
per, [87] Thomas Kuhn, [88] or the Bayesian school of epistemology. [89] The situation
is complicated by the fact that simulations are used for a plethora of different pur-
poses, and in a plethora of different fields. Among others, simulations are used
for prediction (e.g., in the climate sciences), as explanation (e.g., in the material
sciences), for model validation (e.g., cosmology), and data analysis in experiments
(e.g., high energy physics)

Here, we take a somewhat minimalistic approach and state that a simulation
is the implementation of dynamical equations into a computer program with the
aim to solve them using numerical methods. As consequence, by construction, any
simulations represents merely a model, which is implemented into the computer
program. In this sense, the model is the more fundamental quantity. Traditionaly,
the significance of any given model is evaluated with respect to it’s ability to yield
analytical predictions, and in the validation of these predictions by comparison with
experiment. However, it is often not possible to derive predictions from the model
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analytically. In this case, the simulation is a vital tool for evaluating the significance
of a scientific model. Thus, a simulation can potentially restore the falsifiability of
a model, i.e. the criterion for a scientific theory to be predictive and testable. [87]

However, simulations themselves are not to be interpreted as being identical to
experiments, although both procedures generate data, which is often visualized and
analyzed in similar ways. In fact, there are conceptual differences between the two.
In contrast to experiments, simulations do not interact with the system which they
shall investigate. Furthermore, a simulation does not observe an external system,
as does an experiment, but relates to an artificial system which is completely deter-
mined by the pre-defined, and completely known, initial configuration and boundary
conditions. Thus, up to numerical issues discussed below, the outcome of a simula-
tion is pre-determined by the underlying assumptions. Finally, simulations cannot
be used to investigate systems which contain unknown dynamical laws.

The attempt to asses the credibility of a simulation is called validation. This
assessment usually involves the comparison of simulations results with experimental
data. By construction, the validation of a simulation also relates to the credibil-
ity of the underlying model and the parametrization of the model. Furthermore,
there exists another layer which influences the validation. Numerical issues can lead
to corrupt results for an otherwise "accurate" model. Also, undetected errors in
the implementation of the model equations into the computer program can lead to
corrupted results. Thus, it is in many cases difficult to separate "wrong" elements
from "correct" elements of the model and simulation ("opacity problem" [90]). For
this purpose, it can be beneficial to split the validation process into multiple steps.
The first step is to "verify" the numerical implementation. This can be done by
focusing on a specific, not necessarily realistic, effect which is well predicted by the
theory. If the simulation results are in accordance with these analytical predictions,
then this enhances the probability of a "correct" implementation. In a second step,
the computer program can then be used to simulate a scenario which relates to the
experiment. A comparison between the numerical results obtained from the verified
implementation, and the experimental result then allows to asses the theoretical
framework, i.e. to validate it. In Scheme 2.2 we illustrate this relation between the
experiment, theoretical model and simulations in a simplified "Sargent-cycle". [91]

In this publication, we supplement our theoretical findings by numerical simula-
tions. First, in chapter 6, we validate our bulk transport theory discussed in part II,
and apply it to the case of a secondary battery which was described in the liter-
ature. Second, in chapter 14, we validate our description for the electrochemical
double layer, derived in part III. For this purpose, we focus on experimental results
obtained from AFM measurements.
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3 Literature Review

In this chapter we review the literature with respect to the research topic of this
manuscript.

First, in section 3.1, we present an overview of the literature on the modeling of
electrolyte transport in batteries. Second, in section 3.2, we focus on the literature
with respect to the modeling of the electrochemical double layer (EDL). In part IV we
provide a detailed comparison of our theory with prominent alternative descriptions
from the literature.

3.1 Modeling of Battery Systems

Here, we review the literature on modeling electrolyte transport in batteries.
The most basic constitutive model for diffusive fluxes is Fick’s law. [92] According

to this description, the flux of a species is proportional to it’s concentration gradi-
ent (directed “against” it’s gradient). [93] The Nernst-Planck (NP) model provides
a description for electrolyte transport, where Fick’s diffusion is supplemented by
migration, i.e. species-fluxes due to gradients in electrical potential, and by motion
of bulk-material (convection). [94,95] The NP model is often solved along with the
Poisson-equation, yielding the so-called “PNP”-model. [96] Furthermore, since the
coupling of momentum to diffusion plays a fundamental role in concentrated solu-
tion theory, [97,98] the PNP-description is often supplemented by the Navier-Stokes
equation for viscous fluids. This results in the “PNP/NS”-model, which consti-
tutes what is sometimes called the “standard-model” for the mechanically coupled
PNP-based description. [99]

(P)NP-models are often used due to their similarity to Fick’s law, and due to the
property that transport is separated into migrational and diffusive terms. [100–103]

However, besides being inconsistent with basic requirements of irreversible ther-
modynamics, [70,104] they do not account for diffusional drags due to inter-species
correlations. Thus, these models are valid only in the limit of extreme dilution.
Cross-effects due to inter-species correlations are well known to appear in reality.
For example, in multicomponent mixtures, strong inter-species couplings can cause
“uphill-diffusion”, where a species diffuses up it’s own concentration gradient, [105]
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and not “down”, as stated by Fick’s law (such phenomena are well-described in
experimental works, see, e.g., the classical experiment by Duncan and Torr [106]).
Therefore, concentrated solution theories must take account for such effects. For a
detailed analysis of the underlying assumptions, and short-comings of the (P)NP-
models (and related models), we refer to Ref. 97

Onsager provided a more complete transport description for concentrated multi-
component mixtures. [107–109] According to this linear framework, the driving force
of each species is coupled to all species-fluxes via phenomenological coefficients.
As consequence, the Onsager-coefficients comprise the complete set of self-/ and
inter-species-correlations. The Onsager approach resolves a number of fundamental
problems of the NP-based models. Because the linear flux-force-relations take ac-
count for all couplings, the Onsager framework establishes entropic completeness.
Most importantly, thermodynamic consistency can be implemeneted into the On-
ager description via imposing restrictions on the Onsager-coefficients. Furthermore,
the Onsager description does not rely on the designation of a solvent-species, and
thus all species are based on the same conceptual footing.

However, it is sometimes argued that the Onsager flux-explicit approach does not
conclude on how to obtain realistic concentration-dependent diffusion matrices. [105]

An alternative approach is the Maxwell-Stefan approach. [110–112] The Maxwell-Stefan
equations for multi-component diffusion rely on the assumptions that the thermo-
dynamic driving forces are in local equilibrium with the friction forces between
the species, and that these mutual friction forces are proportional to the relative
species-velocities (differences of the species-velocities), and to the species concentra-
tions. [100,113–115] In addition to entropic completeness, the Maxwell-Stefan approach
complies with the physical criterion that the driving-forces for inter-diffusion shall
be invariant with respect to the choice of the reference-velocity. [116]

A drawback of this force-explicit framework is that the Maxwell-Stefan equa-
tions obfuscate the role of convective transport. [117] Also, the analysis of transport
processes by comparison with intuitive transport-concepts (Ohm’s law, Fick’s law,
Fourier’s law) is much easier in the flux-explicit Onsager-description, than in force-
explicit descriptions. [116] Thus, it is favorable to transform any given force-explicit
apporoach in order to to obtain flux-related transport equations. Although the prin-
ciple of driving-force-invariance (with respect to the reference-velocities) may yield
singular transport matrices, it is possible to invert the Stefan-Maxwell approach
to a flux-explicite description. [100,118] This procedure constitutes the basis for the
extended Stefan-Maxwell transport theory. [119,120] The so-called “Newman-model”
applies this theory to electrolytes, and has become a standard-framework for con-
centrated solutions. [113–115,121–125] A detailed discussion of the Newman-model is
given in Ref. 100. The Newman model is widely used in academia and was ex-
tended by various effects, e.g. solvent aspects, [126–128] convection [117,129], thermal
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aspects, [130–132], and was applied to the description of solid electrolytes. [133] Fur-
thermore, the Newman model is also used in industrial applications. [134–137]

Recently, the framework of rational thermodynamics (RT) [71,73] has been used for
the modeling of electrochemical systems. This development was mainly driven by
two working groups, Latz et al., [64,138,139] and Dreyer et al. [79,98,140,141] Our transport
modeling presented in this document is also based on the framework of RT, and we
present a detailed introduction to this framework in section 2.2.

Bazant et al. developed a theory for concentrated solutions based on non-equilibrium
thermodynamics and transition state theory. [99,142] Their rigorous approach states
modified electrokinetic equations, and provides a general framework for concentrated
solutions which takes account for finite-sized ions.

3.2 Modeling the Electrochemical Double Layer for Ionic
Liquids

In this section, we give a brief overview over the existing literaure regarding modeling
approaches of the electrochemical double layer (EDL).

Due to their complex molecular structure, ILs exhibit a plethora of characteristic
bulk-properties on the microscale (see Ref. 143 for an excellent overview). These
bulk-properties are supplemented by unique IL-structures, which form when sub-
jected to external agents, e.g. near electrified interfaces. [49] Thus, in addition to the
significant importance of electrode-electrolyte-interfaces for the operation of batter-
ies, [144] ILs are highly attractive both from fundamental and application points of
view. Depending upon the length-scale of interest, different theoretical frameworks
are available for the examination of ILs.

Prominent techniques among the microscopic models are density functional theory
(DFT), and molecular dynamics (MD). The nanometer-resolution of these methods
comprises atomistic scales, usually described by DFT simulations, up to molecu-
lar scales (MD). The atomistic resolution (classical, time-dependent DFT) deals
with microscopic particle-properties, and delivers detailed insights into the arrange-
ment of single molecules in the EDL, [145–150] but also describes bulk properties (like
ion-pair formation), [151] and even dynamic processes (like ion-diffusion) in small-
scale electrochemical systems. [149] MD simulations resolve the complete molecular
arrangement of anions and cations (e.g. length of alkyl chains, molecular segre-
gation into polar and non-polar parts, conformational properties, formation of neu-
tral/charged aggregates), and reveal the evolution of the nano-/ and meso-structured
bulk-landscape of ILs (formed by polar-/ and charge-ordering), [152–155] as well as the
influence of temperature, electric fields and pressure thereon. [156–158] Furthermore,
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dynamical bulk-processes like ion-pair-formation, [159,160] ionicity [151], and transport
properties [161–164] are also described in great detail. Also, MD applies to mixtures
of ILs, [165–168] and of ILs with water / water in salt mixtures, [169,170] which both
are of great interest for applications in electrochemistry. Besides bulk-properties of
ILs, the investigation of the EDL gained much attention in the MD community, and
contributed significantly to the understanding of fundamental processes. [171–180]

However, DFT/MD simulations at length-scales above the nanometer scale are
limited due to their computational costs. Thus, continuum-/ and mean-field-theories
for applying to the EDL provide a complimentary, valid methodology for the simu-
lation of transport processes, and dynamic simulations of larger systems where the
microscopic details can be neglected.

The simplest of such models describing concentration-profiles is based on the
assumption that the ions are in quasi-thermal equilibrium. [181] Hence, the concen-
tration profile around a bulk-ion is described by a Boltzmann distribution, i.e. the
concentration decays exponentially with the ratio eΦ/kBT between the electric po-
tential and the thermal voltage gauge. Via insertion into the Poisson equation, this
Ansatz can be used for a naïve description of the EDL, and constitutes the Poisson-
Boltzmann equation (PB). [144] The Debye-Hückel theory (DH) is based on this de-
scription, and assumes that the electric potential is much smaller than the thermal
voltage (at room temperature, Φ≪ kBT/e ≈ 25 mV). This DH-approximation pro-
vides the possibility to discuss the linearized Boltzmann distribution via an asymp-
totic analysis. [182,183] However, for symmetric binary electrolytes, the PB equations
can be solved analytically, as was done by by Gouy and Chapman (GC). [184,185] Ac-
cording to this description, the diffuse charge is confined in a compact region near the
solid surface (“double layer”), where the width of the charged region is given by the
Debye-screening length. [186] In principle, this description still represents our nowa-
days understanding of electrolytes subjected to electrified interfaces. However, the
description of the double-layer-width by the Debye-screening-length, as well as the
exponential concentration profile must be relaxed, taking more structural, chemical,
and dynamical aspects into account. [49,144]

The short-comings of dilute solution theories, comprised in Debye-Hückel theory
(DH), Gouy-Chapman theory (GC), the Poisson-Boltzmann (PB) equations and the
Poisson-Nernst-Planck equations (PNP) for dynamics of diluted solutions subject to
time- dependent applied voltages, were recognized already by Bikermann, [187] Eigen
et al. [188,189] and Freise [190] in the first half of the previous century. For example,
the supposition of a Boltzmann distribution for the counterionic species leads to
excessively high ion densities in the EDL. [102] Thus, the exponential profile must
be replaced by models which take steric-effects, like finite molar volumes, hydra-
tion processes, dissociation-/ and solvent-effects into account. These effects become
prevalent with increasing salt-concentration. In particular, the early literature on
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molten salts (solvent-free, purely ionic solutions) already used such constraints to
describe transport properties of solvent-free solutions, [45,191–193] correlations leading
to charge-oscillations (“overscreening”), [194] and metal-molten-salt interfaces. [195,196]

Unfortunately, these concepts did not gain much interest in the electrochemical com-
munity, and some confusion arose recently regarding effects, which are well-described
in these early works (e.g., the set of independent IL-transport-parameters). [41,44,197].

However, EDL effects in concentrated solution theory regained much attention
with the advent of electrochemical energy applications. [100,198] Mean field theories
(MFT) accounting for finitemolar volumes of the species were proposed as an ap-
proach to overcome the short-comings of the classical PNP theory for the description
of the EDL. [181,199–201]

In a series of papers, Kornyshev et al. systematically developed a phenomeno-
logical MFT for ILs. Their approach is based on a Poisson-Boltzmann lattice-gas
model, with modifications to account for finite ion size. [202] These steric effects
lead to ion-saturation in the EDL (“crowding”), and explains the recent experi-
mental observations of the anomalous differential-capacitance-shape of ILs (which
shows a bell-shape rather than the U-shape as predicted by dilute solution theory).
This approach was validated by MD-/ and and Monte-Carlo-simulations (MC) of
the MFT, [203,204] which also considered asymmetric ions. Subsequent MC simu-
lations [205] of the influence of cation shape asymmetry (differing lengths of alkyl
chains) on differential capacitance, and MD/DFT simulations on the influence of
water, [206,207] and molecular structure [208] on the EDL of pure ILs refined the re-
sults. The MFT was also used for the study of “underscreening”. [209,210]

In a widely recognized publication, [69] Bazant, Storey and Kornyshev (BSK) pro-
posed a phenomenological continuum framework based on a generalized Ginzburg-
Landau functional, to predict the structure of the EDL. BSK predict that, at large
voltages, steric constraints due to finite ion sizes prevail over short-ranged Coulomb
correlations, which results in charge saturation. In contrast, at small voltages,
Coulombic correlations are the dominant effect, which leads to charge oscillations
(“overscreening”). BSK is tailor-cut to describe binary ILs near electrified interfaces,
and assumes a structure-less bulk. Thus, it cannot explain transport properties, or
the emergence of bulk nanostructure.

The BSK-approach was rationalized and extended in a series of publications au-
thored by Yochelis et al. First, [211] they applied asymptotic methods of spatial
dynamics to a semi-phenomenological, modified PNP-framework. [212–214] Thereby,
Yochelis et al. identify the formation of temporally unstable patterns in the bulk,
which are stabilized by external agents, e.g. voltage. This explains a variety of
effects, including similarities of ILs to dilute electrolytes, [215–218] and the observa-
tion of charge-oscillations in confined ILs with no voltage applied [219]. Their work
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highlights that the bulk morphology of ILs influence the EDL. Thus, bulk properties
must be taken into account to obtain a complete EDL description. By modification
of the BSK-approach, [220] they identified how applied voltage, domain size, molecu-
lar packing, and short-range electrostatic correlations influence distinct diffuse layer
characteristics. Their model also describes ion-association/dissociation, and the for-
mation of ion-aggregates, similar to structures in block copolymers (like micelles and
co-networks). [221] Furthermore, Yochelis et al. rationalized the BSK-model, [222] by
coupling an Onsager Ansatz in the MFT of phase-separation (Cahn-Hilliard [223–225]

/Elliott [226]) to the Poisson-equation, in combination with a gradient-flow approach
(Flory-Huggins [227,228]). The corresponding extended, mechanistic model describes
the bulk-nanostructure of ILs composed of symmetric ions, and combines long-
ranged Coulomb interactions with short-range interactions of the ions. This ap-
proach is also applied to ILs composed of asymmetric ions. [229] This reveals the
spatial ordering of the bulk morphology and shows transition from isotropic to
anisotropic ordering, from bulk to EDL. Interestingly, this description bears sim-
ilarity to deblock copolymer theory in the Ohta-Kawasaki formalism. [230,231] The
formalism is consistent, as it reduces to BSK in the solvent-free limit. The nanoscale
bulk-morphology is due to (non-)linear bifurcations in a Ginzburg-Landau-type am-
plitude equation. In addition, they extended this formalism to ternary systems, and
identified non-monotonic variations of the EDL-structure with salt-concentration
(“underscreening”). [232] Methods of spatial linearization are used to investigate the
parameter space, which reveals three regions of different EDL/bulk morphologies.
Altogether, the Yochelis framework constitutes an effective, scaled formalism which
(i) bears tremendous potential for qualitative comparison with experiments, [233] (ii)
extends continuum IL-modeling from the EDL to the bulk, and, (iii) rationalizes
“phenomenological” arguments (BSK). Interestingly, this approach highlights that
ILs show dilute behavior under certain conditions, and hence relates modelling of
ILs to dilute solutions.

However, the transition from monotonic to non-monotonic (oscillating) charge
profiles was already described by Kirkwood in the 1930ies, using statistical meth-
ods (“Kirkwood line”). [234] Recently, Frydel et al. rationalized, and extended this
approach to EDLs, using “smeared out ions”. [235,236]

Another framework for the rigorous modelling of electrostatic interactions in
highly concentrated electrolytes was derived by Kjellander et al. [237–239] The frame-
works of “dressed-ions-theory”, and its extension, “dressed-molecule-theory”, [240–242]

are based on methods from statistical mechanics, and describe oscillatory (non-
monotonic), and monotonic charge-profiles via electrostatic interactions. [243]

For an excellent overview of ionic liquids at electrified interfaces, see Ref. 49. A
concise summary of theroretical investigations of ILs can also be found in Ref. 244.
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4 Outline

This manuscript is structured into four main parts.
First, in part II, we present a detailed derivation of our bulk transport theory,

see chapter 5, and validate our description by applying it to a zinc ion battery in
chapter 6 using numerical simulations. (Note that the derivation of our transport
theory is based on theoretical tools which are covered in two supplementary chapters
comprised in the appendix. Appendix B discusses symmetry arguments which are
necessary for the unification of thermodynamics, mechanics and electromagnetic
theory, where appendix C covers the universal form of balance equations for volumes,
as stated by the Leibnitz Reynolds Transport Theorems).

Second, in part III, we generalize this framework to account for non-local species
interactions. For this purpose, in chapter 8, we reformulate the bulk continuum
transport theory discussed in part II using a functional formalism. Next, in chap-
ter 9, we apply this description to binary IL electrolytes, and simplify the mathe-
matical structure by introducing a non-dimensional formulation. In chapter 10 we
make an asymptotic analysis and discuss the EDL description using a systematic
perturbation expsansion of the short ranged interactions. Next, we specify our de-
scription and incorporate hardcore particles in our model for the IL electrolyte in
chapter 11. Finally, we focus on the stationary description to study the formation
of structures formed in the electrochemical double layer (EDL) of binary ILs near
electrified interfaces in chapter 12. Next, in chapter 13 we use our EDL description
and consider the case of ternary electrolytes composed of a binary IL mixed with
minor amount of silver. We validate the cases of binary and ternary IL electrolytes
in chapter 14, where we compare our numerical results with experimental results.

In part IV we discuss our multiscale framework. First, in chapter 15 we compare
our theory with alternative methodologies proposed in the literature. Second, in
chapter 16, we show that our description of non-local species interactions can be
used to rationalize effective thermodynamic descriptions via the method of coarse
graining.

Finally, in part V, we conclude our manuscript with an outlook on further appli-
cations and modifications of our framework.
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Part II

Transport Theory For Highly
Correlated Liquid Electrolytes
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Thermodynamics is the much
abused slave of many masters.

Ingo Müller

In this part we derive our transport theory for highly correlated liquid electroly-
tes. The main scope is to describe variations of macroscopic quantities on the µm-
scale. In particular, because we do not resolve microscopic effects explicitly (only
via averaged contributions to the free energy), we can safely assume the continuum
hypothesis of liquids for our bulk description (see section 2.1). Furthermore, we
apply the methodology of rational thermodynamics (RT) using differential calculus
(see section 2.2).

To address this goal, we structure this part as follows. In chapter 5, we derive
our transport theory. This chapter is based on mathematical tools comprised in two
supplementary chapters in the appendix. First, the symmetry arguments underly-
ing the framework of RT and which are necessary for the unification of mechanics
with electromagnetic theory are covered in appendix B. Second, in appendix C we
discuss the general form of the universal balance equations which constitute the ma-
terial independent basis for the framework of RT. Finally, in chapter 6, we validate
our theoretical description and compare numerical results obtained from computer
simulations with experimental results.
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5 Transport Theory

Whether we like it or not, it is an
inescapable fact, that, from a
theoretical point of view, a
macroscopic body is not an
assembly of particles.

Attay Kovetz

In this chapter, we derive our transport theory for highly correlated electrolytes.
Because of the complex nature of highly correlated electrolytes, this involves the
consistent coupling of mechanics and electromagnetics within a thermodynamical
framework. This bears some conceptual difficulties. [74,79,81] In general, the motion
of a continuous medium is governed by the laws of mechanics. However, macroscopic
bodies exhibit some kind of irreversible behaviour, subject to thermodynamic laws,
which cannot be derived from mechanics. Thus, mechanics and thermodynamics
constitute two independent disciplines. Furthermore, due to effects of polarization
/ magnetization, electrodynamics must be taken account for as third independent
discipline. Thus, the correct continuum-description of macroscopic media requires
the unification of these three disciplines (see appendix B). Various approaches exist
for doing so, which differ in rigour (and phenomenology). However, in any frame-
work, the crucial point where the three disciplines meet first are the balance-laws.
Therefore, the universal balance laws for mass, energy, momentum, and the en-
tropy inequality, are of paramount importance for the fusion of the three different
branches. Although the balance laws arise from a rigorous basis, using only basic
physical assumptions, they exhibit a certain amount of ambiguity stemming from
non-unique modeling approaches. Due to mutual couplings between the balance
laws, these models cannot be chosen independently. Second, the precise formula-
tion of the balance-laws and the choice of electromagnetic variables impacts the
materials law and determines which variable will be defined by a constitutive equa-
tion. [245] Third, symmetry arguments can be exerted, demanding that the conserved
quantities be objective.

We structure this chapter as follows. First, in section 5.1, we discuss the universal
balance laws for mass, momentum and energy in a purely mechanical context, and
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5.1 Thermo-Mechanical Balance Laws

couple them with thermodynamics. This thermomechanical discussion provides a
rigorous framework, which serves as limiting case when electromagnetic effects are
incorporated. In section 5.2, we extend this toy model by electromagnetic contri-
butions, and derive the constitutive equations of our fully coupled transport theory.
Our procedure is based on the method of Coleman and Noll, which ensures con-
sistency with the axioms of thermodynamics. Next, in section 5.3, we close our
consistent description and determine the thermodynamic fluxes using an Onsager
approach. Yet, this constitutes the universal part of our framework, which describes
a large class of materials. In section 5.4, we specify this general description to liquid
electrolytes. In order to highlight the canonical structure of this model, we (first)
neglect thermal effects in this discussion. In section 5.5 we make a detour and dis-
cuss the role of the reference frame for our transport theory. For this purpose, we
present a frame-independent formulation, and derive transformation laws between
different reference frames. Finally, in appendix D.10 we incorporate thermal aspects
of our constitutive model into our theory.

5.1 Thermo-Mechanical Balance Laws

In this section we state the thermomechanical balance laws for mass, momentum,
and energy, and the entropy inequality for a highly correlated electrolyte composed
of N species, where we do not yet consider electromagnetic contributions. This
thermomechanical description serves as basis for section 5.2, where we supplement it
by electromagnetic effects and represents a limiting case of vanishing electromagnetic
fields for the complete balance laws.

To address this goal, we make use of the results presented in appendix C, where we
derived the universal form for local balance equations. For completeness, we restate
the local form of the local balance equations in the material and spatial formulation
(see eqs. (C.14) and (C.15)),

∂tψA = −∇ (ψA ⊗ v + ΞA) + PA, (5.1)
ψ̇A = −ψA (∇v)−∇ΞA + PA. (5.2)

5.1.1 Balance of Total Mass, Partial Masses and Charges

We assume an electrolyte mixture composed of N species. We denote the specific
mass densities by ρα ([ρ] = kg m−3), where the total mass density is defined by

ρ =
N∑

α=1
ρα. (5.3)
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5 Transport Theory

The molar masses Mα for each species have dimension kg mol−1, and relate to the
species concentrations cα via ρα = Mαcα. For each species we introduce an (aver-
aged) species velocity vα, and define the center-of-mass velocity (bulk momentum
per unit mass) by

ρv =
N∑

α=1
ραvα. (5.4)

This quantity plays a fundamental role for our transport theory, since we use it to
define the convection velocity. This choice determines the fluxes appearing in the
transport equations, and fixes the reference frame in the corresponding dynamical
description. We emphasize that the convection velocity can be defined differently,
e.g. via the volume flux (see section 5.5 for a detailed discussion regarding the role
of the reference frame, and how to transform between different reference frames).

Mass Conservation

A fundamental principle underlying our continuum modelling is the axiom of mass-
conservation, where ρ changes only due to convective mass-fluxes (i.e. P = 0 and
Ξ = 0 in eqs. (5.1) and (5.2)),

∂tρ = −∇ (ρv) , or ρ̇ = ∂tρ+ (v ·∇)ρ = −ρ ·∇v. (5.5)

Because our description of material bodies is represented by material points (see
appendix C), there exists an intricate connection between the dynamical continuum-
description of the medium in the form of coordinates, and the matter-field of the
body, [246] i.e. between the deformation tensor F and the total mass density ρ,

Lemma 1. The Lagrangian representation of mass conservation implies a coupling
between the deformation tensor and the total mass density,

ρ(X , t) · det F (X , t) = ρ0(X). (5.6)

Proof. Since there is no mass-production, the change of ρ in the Lagrangian de-
scription, as measured by an observer comoving with the fluid, is due to expansion
/ dilation alone. For this purpose, let V0 ba a volume element at t0, with homoge-
neous mass density ρ0 such that qthe mass comprised by the volume element ρ0V0
is a material invariant. At later times, the density of the deformed body is ρ, and
the deformed volume is V = V0 · det F . Because both are equal by assumption,
ρdet F = ρ0. □

For the local balance equations of field densities defined with respect to volume
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5.1 Thermo-Mechanical Balance Laws

averages, Ψ =
∫

dV ρψ̃, the LRTT eq. (C.10) yields

Ψ̇ = d
dt

∫
dV ρψ̃ =

∫
V (t)

dV ρ ˙̃ψ, (5.7)

where we used eq. (5.5). Thus, the time-derivative of ψ̃ suffices for the time-evolution
of ρψ̃. A similar result follows also from balance-eqs. (5.1) and (5.2) with respect to
ψ = ρψ̃, since then ψ̃ does not change due to convective-fluxes ρ ˙̃ψ = −∇Ξ + P.

Balance of Partial Masses

The evolution of each quantity ρα is described by one balance equation (see eq. (5.3)).
However, in contrast to the total mass density, the specific mass densities are not
conserved. Hence, they evolve due to convective fluxes ραv, non-convective mass
fluxes MαNα, and chemical reactions Mαrα,

∂tρα = −∇ (ραv +MαNα)+Mαrα, or ρ̇α = −ρ ·∇v−Mα∇Nα +Mαrα. (5.8)

Here, Nα are non-convective mass fluxes which measure the amount of substance of
species α transported through a unit surface area perpendicular to the direction of
the flux, and per unit time, relative to the center-of-mass motion,

Nα = nα − cαv = cα · (vα − v) . (5.9)

The corresponding mass-flux in the rest-frame is denoted by nα = cαvα. From mass
conservation (eq. (5.5)) follows a trivial flux-constraint,

N∑
α=1

Mα ·Nα = 0. (5.10)

and a trivial constraint on the bulk reactions,
∑N

α=1Mα · rα = 0.
Alternatively, balance of partial masses can be expressed via the N species con-

centrations c1, . . . , cN,

∂tcα = −∇ (cαv + Nα) + rα, or ċα = −cα ·∇v−∇Nα + rα. (5.11)
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5 Transport Theory

Charge Balance

We assume that the total charge density of the electrolyte ϱF is completely deter-
mined by the charge-carrying species,

ϱF = F
N∑

α=1
zα · cα. (5.12)

Here F is Faraday’s constant, and zα denotes the valence of species α, which can be
any integer number (positive or negative). In accordance with the definition of the
mass fluxes relative to the center-of-mass motion, eq. (5.9), we define the conduction
current density,

J F = F
N∑

α=1
zαNα = jF − ϱFv, (5.13)

which measures charge flux relative to the center-of-mass motion. Here, jF =
F
∑N

α=1 zαcαvα is the rest-frame electric current. Equation (5.12) implies that bal-
ance of partial masses, eq. (5.5) relates to balance of charge,

∂tϱF=F
N∑

α=1
zαrα−∇ (ϱFv+J F) , or ϱ̇F = F

N∑
α=1

zαrα−ϱF∇v−∇J F. (5.14)

5.1.2 Mechanics: Momentum Balance

In this section, we discuss balance of momentum and angular momentum. Both
concepts are fundamental to describe the mechanics of material bodies.

Any arbitrary volume element dV within the electrolyte is subject to forces which
tend to deform and dislocate it. To describe these effects, we thus need precise
definitions for the concepts of momentum, force, angular momentum and torque.

The mechanical concept of momentum relies only on the fundamental quantities
mass and center-of-mass velocity,

G =
∫

dM v =
∫

dV ρv. (5.15)

Usually, the total force acting upon a volume element dV of bulk matter in a
material body is split into short-ranged forces and long-ranged forces. Both are
characterized by their typical effective range. Long ranged forces are characterized
by the property that the extension of a typical volume element dV is negligible, when
compared to variations in these force. Thus, they penetrate into all of the fluid, and
act equally on all matter comprised in each fluid elements dV . As consequence,
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5.1 Thermo-Mechanical Balance Laws

Scheme 5.1: The left figure illustrates the components of the Cauchy stress tensor,
comprising surface-forces acting on the volume-element dV . The stresses appearing
at any surface element are decomposed along the three principal directions x1, x2,
x3. Here, σ · n̂A is the stress exerted by one mass element on another element
with surface area n̂A · dA , where n̂A is pointing outwards the latter mass element
(thus anti-parallel to the stress exerted). The right part of the figure illustrates the
principal stress-components along the x1-x3 plane. Note the Einstein summation
convention, i.e. σ2in̂i

A =
∑N

i=1 σ2in̂i
A.

these “body forces” are constant and can be assumed as being proportional to the
mass. We express the total body force acting upon the volume via∫

V
dV ρb. (5.16)

Gravitational forces constitute the most prominent example for such long ranging
body forces. Because they decay with the inverse of the squared distance, they are
long ranging when compared to intermolecular forces (e.g., van der Waals forces
which decay typically via power laws to the sixth order or higher), and can safely
be assumed as constant throughout the volume element. The second type of forces
is constituted by short-ranged forces (usually, of molecular origin), which decay
rapidly over the extensions of volume elements dV . Such surface forces are due to
momentum diffusion, i.e., transport of momentum between neighbouring fluid lay-
ers. For example, non-uniform convection generates momentum diffusion between
neighbouring fluid elements (note that Brownian motion implies that there is mo-
mentum diffusion between neighbouring particles even when the two fluid elements
are at rest relative to each other). Effectively, surface-forces have compact supports
over scales determined by molecular distances, and thus become important when
the boundaries of interacting fluid elements have mechanical contact to each other.
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The penetration depth of surface forces into volume elements is negligible compared
to the lateral dimensions of the boundary of the volume element. The surface forces∮

A
dAξn̂A , (5.17)

are determined by the surface-area of the boundary, and not by the volume of
the fluid element. Here, ξn̂A are stresses acting on surface elements dA along the
direction n̂A. Due to the directional dependence of the relative motion between
neighbouring fluid layers, the total of these stresses are comprised in the Cauchy-
stress tensor σ,

ξn̂A = σ · n̂A. (5.18)

Thus, σ comprises in its components the stresses along all directions. We illustrate
the components of the stress tensor and the of the stress vector in Scheme 5.1. Using
Stokes’ Theorem, we transfer the surface integral eq. (5.17) to a volume integral,∮
A dAξn̂A =

∮
A dA σn̂A =

∫
V dV ∇σ, where we use the convention

(∇σ)i = ∂σij/∂xj . (5.19)

The phenomenological distinction into body-/ and surface-forces is not always
well-defined and may lead to some confusion. [247] The categorization into long-
ranging forces and short-ranging forces should be defined relative to the extension
of a local volume element dV . It is mathematically possible to reformulate stresses
as sources, and vice versa. [247] Thus, the same quantity can be incorporated into
the universal balance laws either as source-terms or fluxes. [248] Arguably, the proper
description of surface forces is via the stress-tensor which has (in general) nine
independent coefficients, whereas the force-vector has only three independent com-
ponents. Hence, physical degrees of freedom may be lost when substituting surface
stresses by body forces. As consequence, the interpretation of some quantities being
either a flux-term or source-term differs in the literature. [249] For example, [247] the
Lorentz force is characterized as a body-force in Ref. 141, whereas it is classified as
a surface-force in Ref. 250 (Ref. 81 disputes the relevance of the Lorentz-force at
all). Altogether, the total force reads

F =
∫

V
dV ∇σ+

∫
V

dV ρb. (5.20)

According to Euler’s first law of mechanics there exist designated “inertial” frames,
in which momentum-change, i.e. acceleration, equals imbalance of forces, [251]

Ġ = F. (5.21)
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5.1 Thermo-Mechanical Balance Laws

We assume that all quantities appearing in G and F are smooth and use Stoke’s
Theorem to derive the local form of momentum balance. By substitution of eqs. (5.15)
and (5.20), this yields Cauchy’s first equation (“force-law”)

ρv̇ = ∇σ+ ρb. (5.22)

In this work, we do not consider surfaces across which the quantities are discon-
tinuous and for which suitable jump conditions must be formulated. [140]

We define the mechanical concepts of angular momentum L, and torque M point-
wise via local wedge-products between momentum and force,

Lp =
∫

dV (x− xp) ∧ ρv, (5.23)

Mp =
∮

dA (x− xp) ∧ (σ · n̂A) +
∫

dV (x− xp) ∧ ρb. (5.24)

Euler’s second law of mechanics states that, in an inertial frame located at xp, the
change of angular momentum equals torque-imbalance,

L̇p = Mp. (5.25)

However, the concepts of angular momentum and torque are usually of minor
importance for electrolytes. Nevertheless, Euler’s second law of mechanics bears a
surprising consequence for the stress tensor.

Lemma 2. Euler’s second law of mechanics, eq. (5.25), implies that the non-
electromagnetic stress-tensor is symmetric, σ = σT .

Proof. We define the vector of the rotation axis by x = x − xp, where ẋ = v and
∂ix j = δi

j . Furthermore, we define the tensor-valued wedge-product between a vector
X and a matrix M by

(X ∧M)ij = ϵiklX
kMl

j . (5.26)

Via this notation, it is easy to show that x ∧ (σ · n̂A) = (x ∧ σ) · n̂A. Hence, using
Stokes Theorem, the torque reads Mp =

∫
dV ∇(x∧σ)+x∧ρb. We evaluate the left

side of Euler’s second law using the LRTT for volumes (appendix C.3), the relation
ẋ = v, and Euler’s first law (eq. (5.22)), such that L̇p =

∫
dV [x ∧ (∇σ) + x ∧ ρb].

Thus, locally, Euler’s second law reads x ∧ (∇σ) = ∇(x ∧ σ). However, since

∇ (x ∧ σ) = x ∧ (∇σ)− (σ∇) ∧ x, (5.27)

Euler’s second law implies (σ∇)∧x=0. Component-wise, this condition is equivalent

29



5 Transport Theory

to ϵiklσij∂
jxk=0 for all components i, l. Because ∂jxk=δk

j , this becomes ϵiklσik=0
for all components l, which is equivalent to σ=σT . □

When internal rotational degrees of freedom (e.g., spin) are considered, [82] then
the definition of Lp based on the velocity v must be relaxed, and Euler’s second law
does not imply symmetry of σ (see Lemma 3).

5.1.3 First and Second Axiom of Thermodynamics: Energy and Entropy

We supplement the mechanical aspects discussed above by thermodynamics and
introduce the additional concepts energy of the system E , temperature T , heating
of a material body Q, powers of the forces acting on a system Π, and entropy S.

We assume that these quantities are for a given material body continuous functions
of the corresponding mass of the material body body, and can thus be associated to
the material points of the body.

The total energy E =
∫

dV ρε changes due to heating and due to forces acting
upon the system, which both contribute to the rate of change of E , although not
being time-derivative themselves. We split the heating of a body Q into a surface-
flux (“heat flux”) q, which describes heat conduction through the boundary, and a
source-term h, which measures local production of heat,

Q =
∫

dV ρh−
∮

dAq · n̂A. (5.28)

Heat production arises either from internal processes, e.g. radioactive decay, or from
heat-absorption of external long-ranging sources, e.g. radiation. The quantity Q can
be positive or negative (“cooling”). If Q = 0 over a period of time, then the body
undergoes an adiabatic process. Thermal insulators are defined by the property that
there arises no heat flux, q = 0, and heating is due only to production. In contrast,
Q = 0 corresponds to the case where a body is thermally insulated.

We comprise the mechanical forces acting upon a body in the so-called powers of
the forces. Because this quantity is of mechanical origin, it scales locally with the
bulk momentum v and the forces eq. (5.20),

Π(F,v) =
∮

dAv · (σn̂A) +
∫

dV v · (ρb) . (5.29)

Note that v · (σn̂A) = n̂A · (σT v) (which can easily be shown component-wise). We
use Stoke’s Theorem and transform the first integral on the right side into a volume
integral,

Π =
∫

V
dV ∇

(
σT · v

)
+
∫

V
dV ρvb. (5.30)
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This is the general form of Π, which is correct also for the electromagnetic extension.
Next, we transform the surface forces (using σT =σ see Lemma 2) , ∇(σ·v)=∇(σT ·

v)=
∑

i,j ∂i(σjivj)=
∑

i,j [(∂iσji)vj+σji(∂ivj)]=v·∇σ+σ: grad v=v·∇σ+σ:κ, and sub-
stitute ρb = ρv̇−∇σ,

Π(σ,b,v) =
∫

V
dV [v ·∇σ+ σ : κ + ρvb] =

∫
dV (σ : κ + ρvv̇) . (5.31)

The first axiom of thermodynamics states that the balance-law for the energy of
a body is determined by the imbalance of mechanical power and heating,

Ė = Π +Q. (5.32)

By assumption, all quantities appearing on the right side of eqs. (5.28) and (5.31)
are smooth. Thus, we obtain the local expression of energy balance,

ρε̇ = σ : κ + ρvv̇ + ρh−∇q. (5.33)

Next, we shift our focus from the evolution of ε to the energy itself. We define
the total energy density as the sum of the specific internal energy density, and the
kinetic energy density

ε = u+ v2/2 (5.34)

The characteristic property of the non-kinematic quantity u is that it cannot be
eliminated by a suitable observer-transformation. It’s thermomechanical Legendre-
transformed is the specific Helmholtz free energy density

φH = u− Ts. (5.35)

According to the principles of thermodynamics the quantity φH measures the max-
imum amount of energy, which can theoretically be extracted from u.

Next, we introduce the (abstract) concept of temperature T (x, t), and assume
that T is related to the material points of a body, and that there exists a lower
bound for T . In the literature, temperature is measured either in degrees of Celsius
or Kelvin, or in units of energy (high-energy-physics). Note that there exist various
“schools of thermodynamics”, which use different definitions of temperature. 74

Another important quantity in thermodynamics is the entropy S of the system,

S =
∫

V
dV ρs. (5.36)

Unlike for energy, mass and momentum no “true” balance-law for entropy ex-
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ists. However, the second law of thermodynamics, expressed in the Clausius-Duhem
formulation, [252] states that the entropy of a body increases at least at the rate

Ṡ =
∫

V
dV ρṡ ≥ −

∮
A

dA ξs +
∫

V
dV ρh/T . (5.37)

The non-convective entropic surface-flux ξs(q,µα,Nα) comprises q, and a chemical
surface-term

∑N
α=1 µαNα which is important for multi-component mixtures,

ξs = q/T −
N∑

α=1
µαNα/T . (5.38)

In higher-order theories (like the kinetic theory of gases), [253] ξs comprises viscous
contributions appear. [74]

During time-intervals where Ṡ = 0, the body is undergoing so-called reversible
processes (as opposed to irreversible processes where Ṡ , 0).

The axiom eq. (5.37) fixes the dimension of S because the product (S · T ) has
dimension of energy (Joule). Thus, if temperature is measured in units of energy,
then S is dimensionless, whereas if T is measured in degrees of Kelvin, then [S] =
J K−1. The local expression of the Clausius-Duhem inequality becomes

ρṡ ≥ ρh/T −∇ξs. (5.39)

In thermodynamic equilibrium, eq. (5.39) becomes an equation. Since ξs is not yet
determined by a constitutive equations, we assume that the residual expression

R = ρṡT − ρh+ T∇ξs, (5.40)

called entropy production rate, acts as source-term for entropy. Apparently, this
quantity measures the deviation from thermodynamic equilibrium, and R/T con-
stitutes the irreversible part of the entropy production. Furthermore, the second
axiom of thermodynamics implies that R is strictly non-negative. As we lay out
in the next sections, this quantity is of principal importance in our methodology,
since it serves as agent-provocateur for our constitutive modelling and the closure-
relations, and guarantees thermodynamic consistency.

5.2 Coupling to Electromagnetism

Here, we supplement the thermomechanical description derived in section 5.1 by
electromagnetic theory and incorporate electromagnetic effects into the balance-
laws.
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First, in section 5.2.1, we discuss electromagnetic theory in media, introduce the
concepts of polarization and magnetization, and motivate the Galilei-invariant for-
mulation of the Maxwell-equations in matter. In sections 5.2.2 and 5.2.3, we incor-
porate electromagnetic contributions step by step into the balance-laws, and derive
the constitutive equations using the method of Coleman and Noll. Finally, in sec-
tion 5.2.4 we discuss electrostatic limit.

5.2.1 Maxwell’s Equations in Matter

Here, we state Maxwell’s equations in matter. See Ref. 254 for a detailed discussion.
We already discussed the threedimensional Maxwell’s equations for the complete

collection of charges in appendix B.3 (see eqs. (B.4) and (B.5)). However, experi-
ments show that most material bodies respond when subjected to electromagnetic
fields via the emergence of induced charge -/ and current-distributions ϱR, jR. We
restrict to the least specific description, [81] and assign to the material-response the
derived potentials P (polarization), and M (Lorentz magnetization), which follow
from the material responses via ∇P = −∇ϱR and ∂tP + ∇ ∧M = jR. In addition,
so called “free” charge-current distributions ϱF, jF exist in material bodies, where we
define potentials DF = DT + P, called “electric displacement”, and HF = HT −M
which are associated to the quantities ϱF, R and jF, R via Maxwell’s equation in mat-
ter,

0 = ∇B, 0 = ∂tB + ∇ ∧E, (5.41)
ϱF = ∇DF, jF = −∂tDF + ∇ ∧HF. (5.42)

In appendix B.3 we show that the quantities DF,T,B,P are covariant with re-
spect to Galilei transformations, whereas E,M, jF,T,R and HF,T are not. Thus we
introduce the objective quantities

E = E + v ∧B, M = M + v ∧P, (5.43)
J F,T,R = jF,T,R − ϱF,T,Rv, HF,T = HF,T − v ∧DF,T, (5.44)

where E is the electromotive intensity, J F is the conduction current density, M
is the magnetization, and HF is the magnetomotive intensity. In an aether-frame
Faether (see appendix B.3), where DT = ε0E and B = µ0HT, the quantities are
mutually coupled to each other,

DF = ε0E + P, HF = B/µ0 −M, HF = B/µ0 − v ∧ ε0E−M. (5.45)

We make our our first constitutive modeling assumption, and assume linear dielectric
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and magnetic materials, i.e. P = ε0χE and M = B · χB/µ0 , such that

DF=ε0εRE, where εR=1 + χ, (5.46)
HF=B/µ0µR and HF=B/µ0µR − ε0εRE, where µR=(1− χB)−1. (5.47)

In appendix B.3, we showed that the transformation behaviour of the the Maxwell
equations follows naturally from the four-dimensional description in Minkowski space-
time. However, there exists a threedimensional formulation of Maxwell’s equations,
based on flux derivatives (see definition 7), [81] which is covariant with respect to
Galilei-transformations,

∇B = 0, ∇ ∧ E = −
∗
B, (5.48)

∇DF = ϱF, ∇ ∧HF =
∗
DF + J F. (5.49)

5.2.2 Unification of Mechanics, Thermodynamics and
Electromagnetism: Electromagnetic Entropy Inequality

In this section we extend the universal balance-laws derived in section 5.1 by elec-
tromagnetic effects. Most of the results remain valid when supplemented by elec-
tromagnetic theory. However, the Euler-law and the law of energy balance must be
modified. [81] As consistency check, we assume that generalized description reduces
to the thermomechanical description in the limit of vanishing electromagnetic fields.

In mechanics, the material velocity v describes momentum per unit mass. How-
ever, in order to account for the fact that electromagnetic fields carry momentum
too, [254] we introduce an abstract momentum g(v,E,B). This quantity replaces
the mechanical momentum v, to which it shall reproduce in the limit of vanishing
electromagnetic fields. We generalize Euler’s first law of mechanics (see eq. (5.22))
using the total momentum G =

∫
V dV ρg, viz.

Ġ = F, i.e. ρġ = ∇σ+ ρb, (5.50)

where σ is the complete stress tensor, comprising mechanical and electromagnetic
contributions (the same holds for b). Still, change of momentum equals imbalance of
applied forces. Yet, in contrast to thermomechanics, it does not equal acceleration.

Next, we define angular momentum, Lp =
∫

dV (x−xp)∧g, where the definition of
the torque, see eq. (5.24), remains valid. Thus, Euler’s second law of mechanics reads
L̇p = M. Still, imbalance of torque equals change of angular momentum. However,
in contrast to thermomechanics, changes in angular momentum are not directly
related to material acceleration. The electromagnetic fields break the symmetry of
thermomechanics (see Lemma 2).
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5.2 Coupling to Electromagnetism

Lemma 3. Locally, Euler’s second law of mechanics reads ρ[v⊗g+g⊗v]+[σ−σT ] =
0. Thus, the quantity ρv⊗ g + σ is symmetric.

Proof. For this proof, we use the same rationale as in the proof of Lemma 2, which
yields the result that v ∧ ρg + (σ∇) ∧ x = 0. This is equivalent to the requirement
that ρϵijk(vjgk + σjk) = 0 for all components i, which is true exactly if ρv⊗ g + σ
is symmetric. □

Although it becomes a function of the electromagnetic fields via σ and b, the
definition of Π remains unchanged (see eq. (5.30)). However, when we substitute
eq. (5.50) for the body force, ρvb(g) = ρvġ − v(∇σ), we find Π=

∫
V dV ρvġ−v ·

(∇σ) + ∇(σT v). We simplify this expression using ∇(σT v)=v·(∇σ)+σ: grad v (see
above), such that

Π =
∫

V
dV σ : grad v + ρvġ. (5.51)

This expression differs from the mechanical analogue because the stress tensor is not
automatically symmetric (i.e., σ : grad v , σ : κ).

Since the heating of a body Q must also be supplemented by electromagnetic
fields, we add an electromagnetic heat flux

∮
dAHF ∧ E (see appendix B.4), such

that
Q =

∫
dV ρh−∇(q + E ∧HF) (5.52)

The definition for the total energy remains unchanged (see eq. (5.32)), and the
local balance-law for energy follows from the modified quantities Π and Q (see
eqs. (5.51) and (5.52)).

ρε̇ = σ : grad v + ρvġ + ρh−∇q + ∇ (HF ∧ E) . (5.53)

Thus, even when thermally insulated (no heating) and at rest (no mechanical powers
acting), the energy changes when subjected to electromagnetic fields. Mass conser-
vation and the entropy inequality remain the same, such that

R = Tρṡ− ρh+ T∇ξs ≥ 0. (5.54)

We derive the electromagnetic entropy inequality by solving eq. (5.53) for ρh, and
substitute the result into eq. (5.54),

R = ρT ṡ− ρε̇+ σ : grad v + ρvġ−∇q −∇ (E ∧HF) + T∇ξs. (5.55)
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5.2.3 The Method of Coleman and Noll

Next, we derive the constitutive equations via the method of Coleman and Noll.
To address this goal, we bring eq. (5.55) in a form which allows to identify conju-

gate pairs of variables.
First, we reexpress the Poynting-flux ∇(HF ∧ E) = E(∇ ∧HF) −HF(∇ ∧ E)

appearing in eq. (5.55). Due to our linear constitutive model eq. (5.45) this can
be done in various ways, where each form for ∇(HF ∧ E) leads to a different set of
conjugate pair of electromagnetic variables. One choice is to focus on conjugate pairs
of covariant electromagnetic variables (see also appendix B.3) by using the covariant
Maxwell’s equations (see eqs. (5.48) and (5.49)). In appendix D.3 we show that this
yields, ∇(HF∧E) = EJ F +EḊF +HFḂ+[(EDF +HFB) Id−E⊗DF−HF⊗B] :
grad v, such that

R = −ρ [ε̇− T ṡ− vġ] + [σ+ (EDF + HFB) Id−E⊗DF −HF ⊗B] : grad v
+ EḊF + HFḂ−∇q + T∇ξs + EJ F (5.56)

The products ΨA · Υ̇B appearing in eq. (5.56) are similar to the total differentials of
thermodynamic potentials P (“characteristic functions”), which take the form

dP(Υ ) =
∑
A

∂P/∂ΥA · dΥA. (5.57)

where ΨA = ∂P/∂ΥB. The set of variables Υ = {ΥA, ΥB, . . .} forms the “materials’
law”, which determines the specific system described by P(Υ ), where pairs (ΨB =
∂P/∂ΥA, ΥA) determine the “conjugate variables”.

Thus, the choice of the electromagnetic variables for the material’s law Υ deter-
mines the electromagnetic conjugate pairs. This observation outlines the method of
Coleman and Noll, where the conjugate pairs appearing in the entropy inequality
determine the constitutive equations. However, symmetry arguments imply that not
all such pairs appearing in R can be resolved by this method (see the discussion in
chapter 15). Because we aim at P and M for the electromagnetic variables in the
materials law, we use (see appendix D.3)

∇(HF ∧ E) = d
dt
[
ε0E2/2 + EP + B2/2µ0 − ε0(E ∧B)v

]
+ EJ F −MḂ−

+ ε0(E ∧B)v̇−PĖ +
[(
ε0E2 + EP + (B/µ0 −M) B− ε0(E ∧B)v

)
Id−

− ε0E⊗E− E⊗P−B⊗B/µ0 + M⊗B− ε0(E ∧B)⊗ v
]

: grad v. (5.58)
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Thus, in an aether-frame and due to our linear constitutive model (eq. (5.47)),

1
2

d(ε0εRE2+B2/µ0µR )
dt =

([
ε0εRE⊗E+B⊗B/µ0µR−ε0εRE2+B2/µ0µR

]
Id

− [(ε0εRE∧v) B] Id−ε0εR (B∧E)⊗v
)
: grad v+v d

dt (ε0εRE∧B)

+∇ (HF∧E)−EJ F. (5.59)

Thus, in the limit v=0, the term ∇(HF∧E) describes the energy-flux of the electro-
magnetic fields, in accordance with the conservation of the electromagnetic energy-
momentum tensor ∂AT

AB=0 (see appendix B.4). We insert eq. (5.58) into eq. (5.55),

R=ρT ṡ−ρε̇+σ: grad v+ρvġ−∇q+ d
dt

[
ε0E2

2 +EP+B2/2µ0−ε0(E ∧B)v
]
−MḂ

+ε0(E ∧B)v̇−PĖ+
[(
ε0E2+EP+ (B/µ0−M) B−ε0(E ∧B)v

)
Id−ε0E⊗E

−E⊗P−B⊗B/µ0 +M⊗B−ε0(E ∧B)⊗v
]
: grad v+EJ F+T∇ξs. (5.60)

The quantity ε appearing in eq. (5.60) is a function of the internal energy or it’s
Legendre transformed, the Helmholtz free energy density, see eqs. (5.34) and (5.35).
Our next step is to model the electromagnetic generalization for φH. To address
this goal, we identify two constraints on φH. In eq. (5.60) the desired conjugated
pairs PĖ and MḂ are supplemented by electromagnetic terms comprised in the
time-derivative of the first bracked term. To ensure that PĖ and MḂ are the
only electromagnetic conjugate variables, we define φH such that the first bracked
term vanishes when we insert φH into eq. (5.55). Next, in section 5.1, we defined
u = ε−v2/2 such that φH = u−Ts, which now serves as limiting case for vanishing
electromagnetic fields. In accordance with both constraints, we define

φH = ε− vg + v2/2 − Ts−
[
ε0E2/2 + EP + B2/2µ0 − (ε0E ∧B) · v

]
/ρ . (5.61)

We evaluate the time-derivative of eq. (5.61), and substitute for ρε̇ in eq. (5.60),

R=τ: grad v−ρφ̇H−ρv [g−v− (ε0E∧B) /ρ ]−ρsṪ+EJ F−MḂ−PĖ−

−∇
N∑

α=1
µαNα−ξs∇T, (5.62)

where we collected all tensorial terms which are contracted with the velocity gradient
in the viscosity tensor,
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τ = σ+
(
ε0E2/2 + B2/2µ0 −MB

)
Id−ε0E⊗E− E⊗P−B⊗B/µ0 +

+ M⊗B− (ε0E ∧B)⊗ v. (5.63)

Equation (5.62) is the basis for a wide class of materials, and serves as restriction
on the constitutive equations. It depends on φ̇H via the material model φH(Υ ) via
the chain rule,

ρφ̇H = ρ
∑
ΥA

∂φH
∂ΥA

· Υ̇A, (5.64)

Note that definitions for φH different than eq. (5.61) are possible, which are all
equivalent in the non-relativistic case (see 245 for a detailed discussion). In partic-
ular, moving electromagnetic terms from to eq. (5.61) (and vice versa) modifies the
pair of conjugated electromagnetic variables and, hence, the constitutive equations
and the materials law. For example, moving MB from eq. (5.62) to φH yields a con-
stitutive equation for the magnetic field (instead of for M) B=∂(ρφH)/∂M (such
that M∈Υ ), and moving EP from φH to eq. (5.62) yields a constitutive equation
for the electric field (instead of for P) E=∂(ρφH)/∂P (such that P∈Υ ). However,
it shall be noted though that the energy is a gauge field, i.e. only variations d(ρφH)
can be measured (see eq. (8.11), and our discussion in section 15.1).

Next, we restrict the yet universal formalism by modeling the materials law Υ for
electrolytes (note that we showed in appendix B that symmetry arguments restrict
the material law Υ ), as viscoelastic (κ and Funi), multicomponent (cα), polarizable
(E), magnetizable (B) and heat-conducting (T and ∇T ) media at liquid state,

Υ =
{
c1, . . . , cN, T,∇T,E,B,κ,Funi

}
. (5.65)

Viscous liquids are described via κ, and extend to viscoelastic liquids via Funi. We
use the isochoric unimodular deformation Funi =(det F )−1/3 F instead of the defor-
mation because F is not an independent variable (F couples to the concentrations
via ρ̇+ρ tr(Ḟ ·F−1)=0, see Lemma 1). For ρφ̇H we use ċα = −cα Id : grad v−∇Nα,
see section 5.1.1, and ∂φH/∂ grad v: ˙grad v=∂φH/∂κ:κ̇. For matrix-quantities M

(like Funi and κ), we use the notation ∂φH/∂M:M =
∑

ij ∂φH/∂Mij :Mij . In ap-
pendix D.2 we show that

∂(ρφH)
∂ Funi : Ḟuni =

(
D− 1

3 trD · Id
)

: κ = Dtf :κ, (5.66)

where D = ∂(ρφH)/∂ Funi ·(Funi)T is a symmetric matrix. Thus Funi ∈ Υ ac-
counts for non-isotropic deformations, as only the trace-free part of it’s irreducible
decomposition contributes to φ̇H, whereas the derivatives ċα account for isotropic
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expansions. The remaining terms in φ̇H are trivial. Altogether, we find

R=
(
τ+ρ

N∑
α=1

cα∂φH/∂cα· Id−Dtf
)
: grad v−

N∑
α=1

Nα∇µα+
N∑

α=1
(ρ∂cαφH−µα) ∇Nα

+EJ F−ξs∇T−∂grad T (ρφH): ˙gradT−∂κ(ρφH):κ̇−ρ (s+∂TφH) Ṫ
− [P+∂E(ρφH)] Ė− [M+∂B(ρφH)] Ḃ−ρv̇ (g−v−ε0E ∧B/ρ ) . (5.67)

We determine the constitutive equations, by identification of the conjugate pairs,

s = −∂φH
∂T

, (5.68)

M = −∂(ρφH)
∂B , (5.69)

P = −∂(ρφH)
∂E

, (5.70)

0 = ∂(ρφH)
∂ gradT , (5.71)

0 = ∂(ρφH)
∂κ

, (5.72)

g = v + ε0E ∧B/ρ . (5.73)

From eq. (5.68)), and via the Legendre-transformation φH = u − Ts, we find a
constitutive equation for the internal energy density,

ρu = −T 2 · ∂(ρφH/T )/∂T. (5.74)

Next, we determine the constitutive equation for the chemical potentials from
the fifth term in eq. (5.67). Using the trivial flux constraint

∑N
α=1MαNα = 0 (see

eq. (5.10)), it follows that

N∑
α=1

(ρ∂φH
∂cα
−µα)∇Nα=

N∑
α=1

(∂(ρφH)
∂cα

−φHMα−µα)∇Nα (5.75)

=
N∑

α=1
(∂(ρφH)

∂cα
−µα)∇Nα−φH∇(

N∑
α=1

MαNα) (5.76)

=
N∑

α=1

(
∂(ρφH)
∂cα

−µα

)
∇Nα. (5.77)
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This suggests the canonic constitutive equation for the chemical potential,

µα = ∂(ρφH)/∂cα. (5.78)

However, the derivation of the constitutive equation eq. (5.78) from the entropy
inequality eq. (5.67) is not unique. We can add terms ξ ·Mα, where dim ξ = J kg−1,
to the brackets without changing the left side of eq. (5.75). Hence, the constitutive
equation for the chemical potential is ambiguous up to,

µξα = ∂(ρφH)/∂cα − ξ ·Mα. (5.79)

This ambiguity is an artefact from the fact that we have not yet identified the correct
set of independent material variables. As we will see, only N-1 species concentrations
are independent (Υ comprises all N quantities cα). Below, we resolve this ambiguity
and introduce a set of N-1 chemical potentials (see eq. (5.106)),

µ̃ξα = µξα −Mα/M1 · µξ1 = µα −Mα/M1 · µ1 = µ̃α. (5.80)

From the constitutive equations for the electromagnetic variables follows the im-
portant symmetry property that the material velocity cannot be a material variable.

Lemma 4. Because the electromagnetic variables in the materials law are covariant
under Galilei transformations, the material velocity cannot be a material variable.

Proof. Let us assume that v ∈ Υ . Then, the formal evaluation of φH(Υ ) via
eq. (5.64) would yield a contribution ∂ρφH/∂v to eq. (5.67), and modify the consti-
tutive equation for g according to (see eq. (5.73))

g = v + ε0E ∧B/ρ − ∂φH/∂v. (5.81)

However, this is in conflict with universal symmetry arguments. The constraint that
g shall reproduce the material velocity v in the absence of electromagnetic fields,
applied to the eq. (5.81), requires that

∂φH(Υ )/∂v|B,E=0 = 0. (5.82)

Both electromagnetic variables, P and M, are objective quantities, whereas the
material velocity is not (see Lemma 8). This implies for, e.g., the polarization,

0 = ∂P
∂v = − ∂

∂v
∂ρφH
∂E

= − ∂

∂E

∂ρφH
∂v = ∂

∂E

∂φH
∂v , (5.83)

since we may commute the partial derivatives. A similar argument holds for B.

40



5.2 Coupling to Electromagnetism

Thus, ∂φH/∂v is independent of E and B. Hence, the condition eq. (5.82) is inde-
pendent of the electromagnetic variables, such that ∂φH/∂v = 0 always. □

The first term appearing on the right side of eq. (5.67) yields the constitutive
equation for the stress tensor. However, we first note that

ρ
N∑

α=1
cα
∂φH
∂cα

=
N∑

α=1
cαµα − ρφH, (5.84)

which follows form the constitutive equation for the chemical potential eq. (5.78).
Thus, expanding the viscosity tensor as in eq. (5.63) yields for the stress tensor

σ = τ−
(
ε0E2/2 +B2/2µ0 −MB+

N∑
α=1

cαµα−ρφH
)

Id +Dtf +ε0E⊗E+E⊗P+

+ B⊗B/µ0 −M⊗B + (ε0E ∧B)⊗ v. (5.85)

Here, we assume that the viscosity tensor τ(κ) is a symmetric function of the
strainrate-tensor. [70] As outlined above, the contribution stemming from the uni-
modular deformation Dtf account for isochoric deformations. Since this quantity is
trace-free, it comprises only anisotropic stresses. In contrast, isotropic stresses due
to elastic expansion are comprised in the quantity

∑N
α=1 cαµα − ρφH which induce

elastic pressure-forces, see eq. (5.90) below.
All but the quantities P⊗E, M⊗B and the Minkowski-momentum (ε0E∧B)⊗v

appearing in eq. (5.85) are symmetric. Thus, due to these terms, the electromagnetic
stress tensor is not a-priori symmetric. However, we still must evaluate Euler’s
second law of mechanics (Lemma 3), which implies that the quantities g and σ
satisfy the constraint

ρv⊗ g− ρg⊗ v + σ− σT = 0. (5.86)

Since g and σ both follow from the free energy density φH via constitutive equations,
this constitutes a symmetry constraint on φH.

Lemma 5. Euler’s second law of mechanics implies that φH must be objective with
respect to the electromagnetic variables E and B.

Proof. Using the constitutive equation for g, eq. (5.73) and the stress tensor eq. (5.85)
we find for eq. (5.86)

0 = ρv⊗ g− ρg⊗ v + σ− σT = E⊗P−P⊗ E + M⊗B−B⊗M. (5.87)
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The Minkowski-term appearing in the constitutive equation for g and σ cancel each
other. Thus, the two quantities E⊗P and M⊗B are symmetric. However, since
E ⊗ P = E ⊗ ∂ρφH/∂E , and M ⊗B = B ⊗ ∂ρφH/∂B consist of conjugate pairs
(see eqs. (5.69) and (5.70)), Theorem 2 implies that φH is objective with respect to
the electromagnetic variables E and B. □

Thus, in the electromagnetic case, Euler’s second law of mechanics is equivalent
to the axiom of material frame indifference, discussed in appendix B.5. There, we
proved that such objective functions φH(E,B) can only be functions of the invariant
quantities E2, B2, E·B, or E∧B=E·B−E2B2, see eq. (B.45).

Furthermore σ is antisymmetric only due to the Minkowski-momentum (ε0E ∧
B) ⊗ v. However, when magnetic fields can be neglected, this term vanishes, and
the stress tensor becomes symmetric. This constitutes the electrostatic limit which
we discuss below (see section 5.2.4).

The total energy density follows from substituting g (eq. (5.73)) andφH (eq. (5.61)),

ε = φH + v2/2 + Ts+ [ε0E2/2 + EP + B2/2µ0 ]/ρ . (5.88)

Thus, due to the terms v2 and E2, the energy density ε is not objective with respect
to Galilei transformations. Likewise, the momentum density eq. (5.73), and the
stress tensor eq. (5.85) are also not Galilei-invariant.

The stress tensor determines the pressure via the isostropic stress forces, [255]

p = −tr (σ) /3 . (5.89)

The non-electromagnetic contributions are the viscous stresses, which lead to mo-
mentum dissipation (see section 5.3.2). Stresses due to the isotropic deformation∑N

α=1 µαcα − ρφH define the elastic pressure, [141]

Pel(Υ ) =
N∑

α=1
µαcα − ρφH. (5.90)

Both, p and Pel, depend on electromagnetic fields. In contrast to p, the quantity Pel

corresponds to the instantaneous pressure of the system. [255]

Note that gradients in the elastic pressure can be formally evaluated

∇Pel = ∇
( N∑

α=1
µαcα − ρφH

)
=

N∑
α=1

cα∇µα −
∑

ΥA,cα

(
∂(ρφH)
∂ΥA

∇
)
ΥA. (5.91)

Finally, we use the constitutive equations for σ and g and derive an equation of
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motion for the material velocity. For this pupose, we show in appendix D.4, that

∇σ = ∇τ−∇
( N∑

α=1
µαcα − ρφH

)
+∇Dtf +(M∇) B+M∧(∇ ∧B)+(P∇)E+

+ ϱFE + J F ∧B +
∗
P ∧B + ρ d

dt (ε0E ∧B/ρ ) , (5.92)

and substitute this result into eq. (5.50). Apparently, the last term in eq. (5.92)
also appears in the constitutive equation for g. Thus, we can solve for the Euler
equation with respect to the material acceleration,

ρv̇ = ∇τ−∇
( N∑

α=1
µαcα − ρφH

)
+∇Dtf +(M∇) B+M∧ (∇ ∧B)+(P∇)E+

+ ϱFE + J F ∧B +
∗
P ∧B + ρb. (5.93)

This equation of motion is covariant with respect to Galilei-transformations, and
can be viewed as the matter-related expression of Euler’s first law of mechanics. It
is totally equivalent to the expression eq. (5.50), except when discontinuities across
surfaces are considered. In such cases, the force-law eq. (5.50) must be complemented
by suitable jump-conditions. The contributions ϱFE+J F∧B in eq. (5.93) represent
forces which are independent of material properties. Thus, the Lorentz-force density
ϱFE emerges in our framework from the surface-forces (comprised in σ), and from
the constitutive modelling. This is different from alternative continuum approaches,
where the Lorentz force is incorporated as body-force in the balancing laws (for
a detailed discussion, see chapter 15 or, e.g. Ref. 247). This is also different from
theories of charged particles, where the Lorentz force is usually stated as axiom which
couples mechanics with electromagnetic aspects of the particle, and is mandatory
to define the electromagnetic SI-units. [81,254]. Due to ϱF = ∇DF and the aether-
relations, ϱFE acts on any space-charge present, including the electromagnetic self-
fields. Note that the contribution of Minowski-momentum, ε0E ∧B has completely
dropped out of this version of the force-law.

After evaluating the constitutive equations, the electromagnetic entropy inequal-
ity, eq. (5.67), reduces to a constraint on τ and the fluxes J F, ξs, Nα,

R = τ : κ + J F · E− ξs ·∇T −
N∑

α=1
Nα∇µα ≥ 0. (5.94)

Although J F ·E is an artefact of the electromagnetic energy flux E∧HF, and thus
no true heating-source, is is often called “Joule heating”.
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In section 5.3 we determine the fluxes J F, ξs and Nα using an Onsager-approach
instead of the constitutive modeling of Coleman and Noll.

5.2.4 Electrostatic Limit

As special case, we consider our viscous electrolyte model in the electrostatic limit
(see appendix D.1), where we neglect contributions stemming from magnetic fields,
temperature variations, and the unimodular deformation and where E = −∇Φ.
Thus, the material law reduces to Ῡ = {c1, . . . , cN,E,κ} (see eq. (5.65)), and the
electromagnetic entropy-inequality becomes

R = τ : grad v + J F ·E− ξs ·∇T −
N∑

α=1
Nα∇µα ≥ 0. (5.95)

In this limit, and using sing Pel =
∑N

α=1 µαcα − ρφH (see eq. (5.90)), the stress
tensor and the total pressure (see eqs. (5.85) and (5.89), simplify to

σ|Ῡ = τ+ E⊗ (ε0E + P)− ε0E2/2 · Id−Pel · Id (5.96)
p|Ῡ = −tr (τ) /3 + ε0E2/6 −EP/3 + Pel. (5.97)

Lemma 6. The stress tensor in the electrostatic limit, eq. (5.96), is symmetric.

Proof. In section 5.2.3, we showed that E ⊗ P is symmetric (since E ⊗ P = E ⊗
∂ρφH/∂E). Hence, since τ is symmetric, this completes the proof. □

In the electrostatic limit, the electromagnetic force-law (eq. (5.50)) reduces to the
material force-law (eq. (5.93)),

ρv̇|Ῡ = ∇σ|Ῡ = ∇τ−∇Pel + ϱFE + (P∇) E + ρb. (5.98)

Here, the expression ∇Pel can be evaluated according to eq. (5.91), and the remainder-
term becomes

∑
ΥA,cγ

[∂(ρφH)/∂ΥA ·∇]ΥA = −(P∇)E. Hence,

∇Pel
∣∣∣
Ῡ

=
N∑

α=1
cα∇µα + (P∇) E, (5.99)

such that

ρv̇|Ῡ = ∇τ−
N∑

α=1
cα∇µα + ϱFE + ρb. (5.100)
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Neglecting body forces, e.g. gravitation, and inertial terms i.e. assuming mechanical
equilibrium (v̇ ≈ 0), reproduces the Gibbs-Duhem relations (see section 5.4.5).

N∑
α=1

cα∇µα = ϱFE + ∇τ, or,
N∑

α=1
cα (∇µα + Fzα∇Φ) = ∇τ. (5.101)

5.3 Flux Densities

In this section, we determine the flux-densities J F, ξs and Nα. Note that these are
all defined relative to the center-of-mass velocity. From now on, we neglect magnetic
fields and assume the electrostatic limit described in section 5.2.4.

To obtain the thermodynamically consistent fluxes, we follow the same rationale as
for the derivation of the constitutive equations. The fluxes cannot take any arbitrary
form but must ensure positivity of R. Hence, we model the fluxes by taking account
for the thermodynamic flux constraints comprised in the electromagnetic entropy
inequality (see eq. (5.94)),

R = τ : κ + J F ·E− ξs ·∇T −
N∑

α=1
Nα ·∇µα ≥ 0. (5.102)

Apparently, all three flux-terms appearing on the right side are composed of the
product of fluxes (J F,N, ξs) and driving forces (E = ∇Φ,∇T,∇µα), where the
fluxes are yet to be determined by constitutive functions.

Here, we use the Onsager-formalism to determine the fluxes and assume that the
closure relations couple the fluxes with the driving forces (see also section 3.1). Be-
cause these couplings are subject to the constraint eq. (5.102), they constitute the
thermodynamic consistent material functions. Since we describe all fluxes relative to
the center-of-mass velocity, we obtain transport-parameters specific to this reference-
frame. In section 5.5, we discuss different reference-frames, and derive conversion-
relations between the transport parameters defined relative to the different frames.
Here, we restrict to linear flux-force couplings (including cross-couplings), which
are observed in experiments, and are suggested by results from statistical mechan-
ics. [70,74] Since we describe all fluxes relative to the center-of-mass velocity, we obtain
transport-parameters specific to this reference-frame. In section 5.5, we discuss dif-
ferent reference-frames, and derive conversion-relations between the transport pa-
rameters defined relative to the different frames. Note that the linear model is
insufficient for processes far from equilibrium (e.g., adsorption processes or chemical
reactions), which exhibit non-linear coupling-relations. [256,257]
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5.3.1 Linear Flux-Force-Couplings

Before we apply the Onsager method, we reduce the flux-force couplings appearing
in eq. (5.102) to the set of independent fluxes.

Beneath the thermodynamic constraint on the flux-force couplings (no-negativity
of R) we account for the trivial flux-constraint imposed by section 5.1.1

N∑
α=1

Mα ·Nα = 0. (5.103)

As consequence, only N-1 independent fluxes Nα exist in a N-component mixture.
We use this property and designate, by convention, the flux of the first species,

N1(N2, . . . ,NN) = −
N∑

α=2
Nα ·Mα/M1 . (5.104)

We reduce the flux-terms in the entropy inequality and introduce reduced sets of
N-1 valencies, N-1 chemical potentials and N-1 electrochemical potentials,

z̃α = zα − z1 ·Mα/M1 , (5.105)
µ̃α = µα − µ1 ·Mα/M1 , (5.106)
µ̃el

α = F z̃αΦ + µel
α (5.107)

We use these reduced parameters and expand the conduction current density and
the couplings of the mass-fluxes with the driving forces via

J F = F
N∑

α=1
zα ·Nα = F

N∑
α=2

z̃α ·Nα, (5.108)

N∑
α=1

Nα ·∇µα =
N∑

α=2
Nα ·∇µ̃α. (5.109)

The parameters eqs. (5.105) and (5.106) can lead to counter-intuitive properties.
For example, z̃1 = 0 even if z1 = 0, or z̃α,1 , 0 even if zα = 0. Altogether, we find

R = τ : κ− ξs ·∇T −
N∑

α=2
Nα · (∇µ̃α + F z̃α ·∇Φ) (5.110)

= τ : κ− ξs ·∇T −
N∑

α=2
Nα ·∇µ̃el

α ≥ 0. (5.111)
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We highlight the structure of the flux-force pairs, and define the “vector” of thermo-
dynamic forces X(α) (with components XA

(α)), and the “vector” of thermodynamic
fluxes Ψ(α) (with components ΨA

(α)),

X(α) = (∇µ̃el
2 , . . . ,∇µ̃el

N,∇T )T , (5.112)
Ψ(α) = (N2, . . . ,NN, ξs)T . (5.113)

The subscripts in brackets indicate that only the ionic contributions are species-
related. This description highlights the binary structure of the entropy inequality,

R = τ : κ−
∑
(α)

Ψ(α) · X(α) ≥ 0. (5.114)

We evaluate the flux-force constraint imposed by eq. (5.114), and transfer the prod-
ucts to quadratic-terms via a bilinear Onsager-matrix L,

Ψ(α) = −
N∑

β=2
L(α)(β) · X(β), (5.115)

or, using a matrix-notation,
N2
...

NN
ξs

 = −


L22 . . . L2N L2T
...

. . .
...

...
L2N . . . LNN LNT

L2T . . . LNT LT T

 ·


∇µ̃el
2
...

∇µ̃el
N

∇T

 . (5.116)

Thus, in this description, thermodynamic consistency (R ≥ 0) transfers to the
requirement that the Onsager matrix be semi-positive definite,

R = τ : κ + L(X ,X ) ≥ 0. (5.117)

The quadratic form above is non-negative if all diagonal elements are positive,
Lαα ≥ 0, and all cross-coefficients fulfill (Lαβ +Lβα)2 ≤ 4LααLββ . [74] Furthermore,
we assume that the thermodynamic forces can be evaluated independently, such
that LT T ≥ 0. Since all diagonal Lαα ≥ 0, the corresponding fluxes and forces
have opposite direction. This is characteristic of dissipative processes, which aim to
equilibrate the system (see section 3.1).

The symmetry of L depends on the parity of the forces X(α), [74] which is deter-
mined by their dimension [X(α)], [79] and on the presence of magnetic fields. In our
case, and because we neglect magnetic fields, [74] the Onsager matrix is symmetric
and has N(N+1)/2 independent components. The N(N+1)/2 independent Onsager
coefficients define N(N+1)/2 independent transport parameters. [258]
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To some extent, the Onsager coefficients can be interpreted using linear response
theory. [259] In dilute solutions, the Onsager matrix is effectively diagonal, and the
diagonal elements measure self-species correlations (e.g., cation-cation-/ and anion-
anion-correlations). The off-dagonal elements account for inter-species correlations,
e.g., cation-anion correlations, or electro-osmotic drag through a membrane, [260] or
asymmetric transference numbers. [261] Inter-species correlation become more domi-
nant with increasing salt-concentration, and experimental results suggest that these
can dominate self-species correlations in highly concentrated electrolytes. [262]

The Onsager approach implies that the fluxes are linear functions of gradients
of the electric potential, species-concentration, and temperature (via the forces),
which leads to migration, diffusion, and thermo-electricity. These physico-chemical
effects can be related to the Onsager coefficients via defining transport parameters.
As first step, we determine J F by substituting eq. (5.115) into eq. (5.108). This
suggests defining the electric conductivity κ, the Seebeck coefficient β the thermal
conductivity γ, and N-1 transference numbers tα,

κ = F 2
N∑

α,β=2
Lαβ z̃αz̃β, (5.118)

β = F

κ

N∑
α=2

LαT z̃α, (5.119)

tα = F 2z̃α

κ

N∑
β=2

Lαβ z̃β (5.120)

γ = TLT T (5.121)
such that

J F = −κ∇Φ− κ
N∑

β=2

tβ
F z̃β

∇µ̃β − κβ∇T. (5.122)

Because the Onsager matrix is positive semi-definite, κ and γ are positive, and all
tα are positive if the Onsager matrix is diagonal (e.g., for dilute solutions). By
construction, only N-2 of the N-1 transference numbers tα are independent

N∑
α=2

tα = 1. (5.123)

In section 5.5.5, we discuss binary electrolytes where the only independent transfer-
ence number is tN=2

2 = 1.
The Onsager coefficients and the transport parameters depend upon the choice

for the drift velocity and on the choice of the designated species. [263–265] We discuss
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5.3 Flux Densities

both topics in section 5.5 and appendix D.8.
We obtain a simple interpretation for the parameters tα when we formulate the

flux densities Nα, and the entropy flux density ξs, in terms of J F instead of Φ.
For this purpose, we substitute ∇Φ for J F using eq. (5.122), and transform the
expansion eq. (5.115),

Nα = tαJ F
F z̃α

−
(
LαT −

βκtα
F z̃α

)
∇T −

N∑
β=2

(
Lαβ −

κtαtβ
F 2z̃αz̃β

)
∇µ̃β, (5.124)

ξs = βJ F −
(
γ

T
− β2

κ

)
∇T −

N∑
β=2

(
LβT − β

κtβ
F z̃β

)
∇µ̃β. (5.125)

Thus, the parameters tα relate the fluxes Nα with J F, and the fluxes ξs with
J F, and the ratios tα/z̃α measure the sign and magnitude of the migration part
Nmigr

α = tα/z̃α · J F relative to the flux J F. Thus, if sign(tα/z̃α) = −1, then Nmigr
α

has opposite direction than J F, although Nα may still be directed along J F if the
thermal part / diffusion part (second and third term on the right side of eq. (5.124))
overcompensate migration. Thus, only the complete knowledge of tα and z̃α bears
physical insight. We discuss this topic in more detail in section 6.2.3.

Equations (5.118) to (5.121) constitute N+1 out of N(N+1)/2 independent trans-
port parameters. We determine the remaining parameters and define N(N+1)/2
coefficients of the symmetric diffusion matrix D,

Dαβ = Lαβ −
κtαtβ
F 2z̃αz̃β

, DαT = LαT −
βκtα
F z̃α

, DT T = γ
T
− β2

κ. (5.126)

The coefficient DT T is determined by γ,β and κ, and thus eqs. (5.118), (5.119),
(5.121) and (5.126) yield N(N+3)/2 transport coefficients. This exceeds the number
of N(N+1)/2 independent Onsager coefficients. However, the coupling eq. (5.108)
between J F and Nα implies further N constraints,

N∑
β=2
Dαβ z̃β = 0, and

N∑
β=2
DT β z̃β = 0. (5.127)

This suggests that we designate one further species. By convention we choose the
species related to α = 2,

D2α = −
N∑

β=3
Dαβ · z̃β/z̃2 , and D2T = −

N∑
β=3
DT β · z̃β/z̃2 , (5.128)
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where,

D22 =
N∑

β,γ=3
Dβγ z̃β z̃γ/(z̃2)2 . (5.129)

Thus, only N(N-1)/2 diffusion coefficients are independent. Altogether, in total,
we have introduced N(N+1)/2 transport parameters composed of N(N-1)/2 inde-
pendent diffusion coefficients, N-2 independent transference numbers, the electric
conductivity, and the Seebeck coefficient. Altogether, this constitute the complete
set of physically motivated free parameters.

In eq. (5.126), D−L measures the diffusion contribution stemming from electro-
static correlations. Depending on the sign of κtαtβ/F 2z̃αz̃β , these de-/ or increase
diffusion. However, for inter-species diffusion, where tα/z̃α = tβ/z̃β , diffusion is
mitigated by the Coulomb contribution, and the entropic and Coulombic effects
are in competition. For counterionic species which have both positive transference-
numbers, the Coulombic diffusion contribution enhances Dαβ, as the ions are at-
tracted and may even form ionic complexes (ion pairs or ion clusters). [44]

Note that in binary systems (N=2), DN=2
22 = 0 and DN=2

2T = 0, i.e. there is no
diffusion flux in Nα (except from the diffusion contributions comprised in J F), and
no diffusion coefficients are needed.

However, substituting the diffusion coefficients into eqs. (5.124) and (5.125) sug-
gests introducing the set of N-2 reduced chemical potentials defined relative to the
designated species α = 2,

˜̃µβ = µ̃β − µ̃2 · z̃β/z̃2 . (5.130)

Thus N-1 independent thermodynamic fluxes (N3, . . . ,NN, ξs) exist,

Nα = tα
F z̃α

J F −DαT ∇T −
N∑

β=3
Dαβ∇˜̃µβ, α ≥ 3 (5.131)

ξs = βJ F −DT T ∇T −
N∑

β=3
DβT ∇˜̃µβ, (5.132)

where N1 is determined by mass conservation (eq. (5.104)), and N2 is determined
by the electric flux (eq. (5.108))

N2 = t2
F z̃2

J F +
N∑

β=3
DβT

z̃β

z̃2
∇T +

N∑
β,γ=3

Dβγ
z̃β

z̃2
∇˜̃µγ . (5.133)

The electrolyte potential Φ is the electrostatic Maxwell potential which appears
in the Poisson equation, and relates to the electric field via E = −∇Φ. However, it
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can be beneficial to use the an alternative potential, [64,100]

φ(Φ,µ1,2,M1,2, z1,2) = Φ + µ̃2/F z̃2 = µ̃el
2 /F z̃2 , (5.134)

such that J F can be expressed analogous to the flux-densities Nα and ξs (see
eqs. (5.131) and (5.132))

J F = −κ∇φ− βκ∇T − κ
F

N∑
β=3

tβ
z̃β

∇˜̃µβ. (5.135)

If the designated species (α = 1) is neutral, then φ = Φ + µ2/Fz2 corresponds to
the electro-chemical potential of the second designated species.

Next, we define the reduced diffusion-matrix Dred = (D(α)(β))|α,β≥3 and reduced
sets of fluxes Ψred and of forces Xred,

Ψred = (N3−t3J F/F z̃3 , . . . ,NN−tNJ F/F z̃N , ξs−βJ F)T , (5.136)
Xred = (∇˜̃µ3, . . . ,∇˜̃µN,∇T )T , (5.137)

such that the transport eqs. (5.131) and (5.132) become,
Ψred = −Dred · Xred. (5.138)

In particular, the dissipation mechanisms which produce entropy become

R = τ : κ + J 2
F/κ + (∇˜̃µ3, . . .∇˜̃µN,∇T ) · Dred · (∇˜̃µ3, . . .∇˜̃µN,∇T )T (5.139)

= τ : κ + J 2
F/κ + X T

red ·Dred · Xred ≥ 0. (5.140)

Thus, entropy production comprises three contributions. The first term describes
mechanical dissipation due to internal friction. In section 5.3.2, we determine τ(κ)
by a linear constitutive Ansatz such that τ:κ≥0 always. The second term describes
Joule-heating due to migration. Since the electric conductivity is non-negative, this
contribution increases entropy, J 2

F/κ≥0. The last term describes entropy produc-
tion due to diffusion, heat conduction, and mixing of the electrolyte-composition.
Since thermodynamic consistency requires that Dred is semi-positive definite, it is
invertible, and (Dred)−1 is positive definite, [266] which allows to invert eq. (5.138),
and to solve for the forces Xred=−D−1

red·Ψred. This yields a flux-explicit form for R,

R = τ : κ + J 2
F/κ + ΨT

red ·D−1
red · Ψred ≥ 0. (5.141)

5.3.2 Viscosity Tensor

Equation (5.141) shows that all fluids exhibit internal dissipative processes, leading
to irreversible loss of momentum due to microscopic viscous friction stemming from

51



5 Transport Theory

the exertion of stress between fluid layers. Normal stress is imparted by random
thermal (Brownianian) motion, and is superposed on the mean drift of the bulk-fluid
(convection) as the individual molecules bounce against each other and generate an
average momentum transfer across surfaces of fluid layers. Shear stress emerges due
to velocity gradients in directions transverse to the convective bulk-flow.

In contrast to solids, fluids cannot resist shear stress, [267] and a relation between
stress and strain fails for fluids, However, in accordance with experiments, [268] we
assume a linear relation between rate of strain and rate of stress τ(grad v). The
Representation-Theorems of Isotropic Tensors, [269,270] uniquely determine the most
general linear form τ(ρ, T,κ)=α(ρ, T ) Id +λ(ρ, T ) tr(κ) Id +2η(ρ, T )κ, up to three
material parameters (see eq. (B.47)). Since we assume that τ vanishes in equilibrium
(α = 0), the symmetric, irreducible decomposition reads

τ = γ(ρ, T )∇v · Id +2η(ρ, T ) · κtf , (5.142)
where γ = λ+ 2η/3 is the “bulk viscosity” and η is the “shear viscosity”. [73,74] Both
are constrained by the second axiom of thermodynamics via (see eq. (5.141))

τ : κ = γ · (∇v)2 + 2η · κtf : κtf ≥ 0 (5.143)
and thermodynamic consistency requires that

γ ≥ 0, and η ≥ 0 or, λ ≥ −2η/3 and η ≥ 0. (5.144)

The viscosity tensor comprises viscous surface-forces in the stress tensor. Thus,
the isotropic components thereof contribute to pressure-forces via

pvisc = − tr τ/3 = −γ ·∇v. (5.145)

Since ∇v measures the expansion of a local volume element dV (see appendix D.6),
tr τ = 3γ∇v measures the amount of momentum-density consumed by isotropic de-
formation. Thus, larger bulk-viscosities γ imply a lesser amount of isotropic momen-
tum transferred into mechanical deformations, and larger amount of momentum is
irreversibly transferred into heat. A similar statement can be made for the shearing.

Equation (5.142) determines the viscous forces appearing in the force-law eq. (5.100)

∇τ = ∇ [(γ + η) ∇v] + ∇2 (ηv) . (5.146)

The linear assumption for τ(κ) is not realistic for rheological fluids, e.g. polymer
solutions, which exhibit large relaxation times due to their macromolecular structure.
In the corresponding non-linear viscoelastic models, γ, η depend on grad v. [74]
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5.4 Model For Correlated Liquid Electrolytes

The secret to modeling is not being
perfect.

Karl Lagerfeld

The transport equations of our electrolyte-model constitute a yet universal frame-
work, subject to specific forms of the free energy density φH. Once the model for
φH is specified, all transport equations follow from pure mathematics. Thus, the
free energy density epitomises the focal point of our modeling.

We structure this chapter as follows. First, in section 5.4.1, we define our electrolyte-
model φH. Second, in section 5.4.2, we introduce the Euler equation for the volume,
discuss incompressible electrolytes, and derive the partial molar volumes from the
stress tensor. In section 5.4.4, we derive the convection equation. Next, in sec-
tion 5.4.5, we evaluate our model, and derive the dynamic transport equations in me-
chanical equilibrium. In section 5.4.6, we discuss the most basic battery electrolyte
composed of a ternary system in electroneutral state. [100] Finally, in section 5.4.7,
we characterize electrolytes as “highly concentrated” based on the concentration and
molar volume of the salts.

5.4.1 Free Energy Density

In this section, we state our model free energy density φH. In the isothermal limit,
this closes our framework by evaluation of the constitutive equations.

Here, we assume the electrostatic limit discussed in section 5.2.4 for linear dielec-
tric electrolytes, where the materials law reduces to

Υ = {c1, . . . , cN, T,E,κ} . (5.147)

Furthermore, we neglect elastic contributions described by Funi, and temperature
gradients ∇T in the materials law. [64,141] In a local aether-frames, our linear model
P = ε0χE implies DF = ε0εRE = εRDT, where εR = 1+χ (see section 5.2.1). Hence,
the set of constitutive equations eqs. (5.68) to (5.73), (5.78) and (5.96) reduces to

s = −∂φH/∂T , (5.148)
P = −∂(ρφH)/∂E , (5.149)

0 = ∂(ρφH)/∂κ , (5.150)
µα = ∂(ρφH)/∂cα, (5.151)
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σ = τ+ E⊗DF − ε0E2/2 · Id−Pel(Υ ) · Id, (5.152)

where the elastic pressure is defined by Pel(Υ ) =
∑N

α=1 cαµα − ρφH =
∑N

α=1 cα ·
∂(ρφH)/∂cα − ρφH (see eq. (5.90)).

Our model for φH is restricted by symmetry arguments (see appendix B), and
must comply with Euler’s second law of mechanics (see Lemma 3). As consequence,
φH must be objective with respect to the electromagnetic material variables (see
Lemma 5). Altogether, because of material symmetry, and due to eq. (5.149),
the free energy is a function φH(E2) (see eq. (B.45)). Partly, the model free en-
ergy can be reconstructed from the constitutive equations by “integrating” them
up. [140]However, we choose a different approach and state our physically motivated
model free energy density,

ρφH = −ε0χ

2 E2 + K

2

(
1−

N∑
α=1

ν0
αcα

)2

+RT
N∑

α=1
cα · ln

(
cα

c

)
+ ρφint

H (cα) + ρφtherm
H .

(5.153)
The first term comprises the electrostatic energy-density of polarizable media, [254]

and satisfies material symmetry (see Lemma 5). Because we neglect a dependence
of the susceptibility on ion-concentrations, the chemical potentials do not depend
on polarization effects (see appendix D.10.2).

The second term comprises volumetric energy-contributions due to eladue to elas-
tic volume deformations, expressed relative to a stable reference state with partial
molar volumes ν0

α. K is the bulk-modulus which acts as a Lagrange-mutliplier in
the case of incompressible electrolytes (see section 5.4.2). This energy contribution
allows to easily transfer to incompresssible media, see section 5.4.2.We motivate this
term in appendix D.5.

The third term accounts for the entropy of mixture of non-interacting systems and
extremizes the energy via favouring an equal number of molecules for each species.
This contribution widely used for bulk electrolytes. [64,141] It neglects contributions
from inter-molecular interactions and can be derived in analogy to ideal gases using
statistical thermodynamics. [140,271] Densely packed systems are often described using
alternative statistics, e.g., the Flory-Huggins theory describes (see part III). [272]

The fourth term allows to phenomenologically account for non-ideal interactions
in ρφint

H (cα), and serves as a portal for extending and customizing our model. Of-
tenly, such contributions are captured in the activity coefficients f α. These account
for excess chemical potentials, which measure the deviation from ideal electrolytes
(where f αc = 1)

RT ln(f αc) = ∂(ρφint
H )

∂cα
(5.154)
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Here, φint
H (cα) contributes via the constitutive equations only to the chemical po-

tentials. If we would consider more general contributions φint
H (Υ ), then this would

lead to modified constitutive equations ∂[ρ(φbulk
H +φint

H )]/∂ΥA.
The last term comprises thermal energy contributions. We discuss these contri-

butions in appendix D.10, where we derive our thermal model relative,

ρφtherm
H = (T − TR − T lnT/TR)

N∑
α=1

Cαρα. (5.155)

Here, Cα are the specific heat capacities of the system in the reference configuration,
which follow from the free energy via

C =
∑

α

Cα = −T · ∂
2(ρφint

H )
∂T 2 = ρT · ∂s

∂T
= ρ · ∂u

∂T
. (5.156)

Next, we evaluate our model free energy and calculate the chemical potentials,
and the stress tensor. Using eq. (5.151), we find

µα = RT

[
ln
(
cα

c

)
+ ln(f αc)

]
+ 2Pvolν0

α

1 +
∑N

β=1 ν
0
βcβ

+
(1−

∑N
β=1 ν

0
βcβ)2

2
∂K

∂cα
−ε0E2

2
∂χ

∂cα
.

(5.157)
The first two terms in eq. (5.157) comprise entropic contributions due to mixing and
inter-molecular interactions. The third term stems from the elastic deformations,
and constitutes a pressure contribution to the chemical potential which follows from
the assumption of non-zero specific molar volumes, [271] where

Pvol = K ·

(∑N
β=1 ν

0
βcβ

)2
− 1

2 . (5.158)

Thus, the third term in eq. (5.157) reads K(
∑N

β=1 ν
0
βcβ−1)ν0

α=Kν0
α(
√

1+2Pvol/K−1).
The fourth and fifth term in eq. (5.157) measure the composition dependence of the
bulk modulus and of the susceptibility.

If thermal aspects are included (see appendix D.10), then eq. (5.157) is extended
via ,

µtherm
α = MαCα(T − TR − T · ln[T/TR]). (5.159)

Next, we derive the stress tensor via eq. (5.152). The only component of σ which
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depends upon the model free energy is the elastic pressure (see eq. (5.90)),

Pel =
N∑

α=1
µαcα−ρφH = ε0E2

2 χ̃+Pint+Pvol+
(1−

∑N
β=1 ν

0
βcβ)2

2

N∑
α=1

cα
∂K

∂cα
. (5.160)

where χ̃=χ−
∑N

α cα∂χ/∂cα, and

Pint =
N∑

α=1
cα ·

∂(ρφint
H )

∂cα
− ρφint

H = ρ
N∑

α=1
cα ·

∂φint
H

∂cα
. (5.161)

Note that the set of material variables for the free energy φH(c1, . . . , cN) can be
changed to φH(ρ, y1, . . . , yN), where yα = ρα/ρ (such that

∑N
α=1 yα=1). Then, using

∂/∂cα = Mα/yα ·∂/∂ρ, the elastic pressure Pel=
∑N

α=1 cαµα−ρφH is determined by
a constitutive relation, [273]

Pel = ρ2 · ∂φH
∂ρ

. (5.162)

Altogether, we find for the symmetric stress tensor,

σ = −
(
Pel + ε0E2/2

)
· Id +E⊗DF + τ (5.163)

= Σ+τ−
(
Pvol+Pint−ε0E2

2

N∑
α=1

cα
∂χ

∂cα
+

(1−
∑N

β=1 ν
0
βcβ)2

2

N∑
α=1

cα
∂K

∂cα

)
Id,

(5.164)

where the viscosity tensor is τ = γ∇v · Id +2η · κtf (see section 5.3.2), and where
the Maxwell stress tensor is Σ = E⊗DF − (EDF/2 ) Id (see appendix B.4).

Next, we derive the complete pressure p = − tr(σ)/3 (see eq. (5.89)), which com-
prises Pvol,Pel and Pint. Entropy, volume-deformation and the electrostatics yield
isotropic stress terms (in the aether-frames, E⊗DF is a symmetric matrix). Thus,
the non-isotropic parts in σ arise from viscous stresses comprised in κtf . Altogether,

p=EDF
6 −γ∇v+Pvol+Pint−ε0E2

2

N∑
α=1

cα
∂χ

∂cα
+

(1−
∑N

β=1 ν
0
βcβ)2

2

N∑
α=1

cα
∂K

∂cα
,

(5.165)
where tr(τ)/3 =γ∇v measures isotropic, viscous surface forces (see eq. (5.145)).
Because p depends upon the viscous contribution γ ·∇v, it is not time-reversible.
The corresponding reversible, “thermodynamic pressure” is

ptd = p+ γ ·∇v. (5.166)

In contrast to p, the thermodynamic quantity ptd usually relates to equilibrium
states of the system where the equation of state expresses the density as function of
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pressure (here, ptd) and temperature. Thus, ptd mimics the hypothetical quantity
which would exist if the system were, at given temperature and local density, in
equilibrium. Moreover, the discrepancy γ∇v between p and ptd measures the com-
petition between dissipation of momentum-density and mechanical deformation (see
section 5.3.2). This is in accordance with results derived from statistical mechanics,
which show that the difference between p and ptd depends on the rate at which the
fluid density is changing with time (beneath the molecular composition of the fluid,
comprised in γ). [255] However, in appendix D.6 we show that ∇v = trκ measures
the expansion of local volume-elements, see eq. (D.42) (note also balance of total
mass, ρ̇ = −ρ ·∇v). Thus, ∇v is the simplest invariant quantity which measures
the rate of density change with time. From the second axiom of thermodynam-
ics, follows that γ ≥ 0, see section 5.3.2. Therefore, the relation ptd = p + γ(∇v)
states that ptd > p when the volume increases (∇v > 0), i.e. when the mechanical
pressure decreases. Similar, when the mechanical pressure increases (∇v < 0), the
thermodynamic pressure is lower than p. Thus, ptd always “lags behind” p under
density-changes.

We substitute eq. (5.165) into eq. (5.157) and reexpress the chemical potentials
via the pressure

µα = RT ln(f αcα) + 2ν0
α

1+
∑N

β=1 ν
0
βcβ

(
p+ γ∇v− Pint − EDF

6

)
−

−

 N∑
γ=1

δγ
α−

2ν0
αcγ

1+
∑N

β=1 ν
0
βcβ

 · (ε0E2

2
∂χ

∂cγ
−

(1−
∑N

β=1 ν
0
βcβ)2

2 · ∂K
∂cγ

)
(5.167)

Apparently,

∂µα

∂p
= 2ν0

α

1 +
∑N

β=1 ν
0
βcβ

[
1− p/K

(1 +
∑N

β=1 ν
0
βcβ)

∑N
β=1 ν

0
βcβ

]
(5.168)

= 2ν0
α

1 +
√

1 + 2Pvol/K

1− 1

(K/p + 2Pvol/p )
√

1 + 2Pvol/K

 . (5.169)

As consequence, the pressure-dependence of the chemical potentials vanishes exactly
for vanishing ν0

α.
For hardly compressible electrolytes, i.e. K≫Pvol or K≫p, this reproduces the

well-known fact that the chemical potentials depend linearly on the pressure. [274]

To see this, we use the expansion
∑N

β=1 ν
0
βcβ=

√
1 + 2Pvol/K (see eq. (5.158)), such
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that

N∑
α=1

cα · ν0
α=

√
1+2Pvol

K
≈1+Pvol

K
, and 1

1 + +
∑N

β=1 ν
0
βcβ

≈ 1
2 −

1
8
Pvol

K
. (5.170)

In this limit, the contribution involving ∂K/∂cα in eq. (5.167) vanishes. Further-
more, up to the first order in Pvol/K , and if we assume ∂χ/∂cα=0 eq. (5.167)
becomes

µα≈RT ln(f αcα)+ν0
α

(
1−Pvol/4K

) (
p+γ∇v−Pint−EDF/6

)
. (5.171)

Thus, for hardly compressible electrolytes, eq. (5.169) becomes
∂µα/∂p ≈ ν0

α

(
1− 3Pvol/4K

)
. (5.172)

In the limit K→∞, this is reminiscent of a thermodynamic relation (see eq. (5.176)).

5.4.2 Excluded Volume Effects: Partial Molar Volumes and Euler
Equation for the Volume

Volume is among the most fundamental quantities describing the kinematic state of
a material system. [275,276] However, the volume of a multicomponent electrolyte is
realized by contributions from all electrolyte species. Thus, the volume depends on
the composition of the system. We assume that the volume is a function of

Υ V = {N1, . . . ,NN, p, T,E,B}, i.e. V (N1, . . . ,NN, p, T,E,B). (5.173)
Hence, the variation of the volume takes the canonical form [133]

dV = V · αV · dT −
V

KV
· dp+

N∑
α=1

να · dNα + ∂V

∂E
· dE + ∂V

∂B
· dB, (5.174)

where 1/KV =−1/V ·∂V/∂p|T,Nα,E is the inverse isothermal compressibility, and
αV =1/V · ∂V/∂T |p,E,Nα is the thermal expansion. Here, the partial molar volumes
are defined by

να(Υ V ) = ∂V

∂Nα

∣∣∣∣
Υ V \Nα

, (5.175)

and measure the change of volume of the solution under the variation of amount of
one of the solute species, [277] i.e. the contributions of the individual species volumes
to the overall material volume.

Beneath this thermodynamic perspective, να depends on microscopic inter-species
correlations between the solute species α and all other species, including solvation
effects (this helps explain the observation of negative partial molar volumes). [278–280]
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An alternative definition for the partial molar volumes is (see eq. (5.172)), [281]

να = ∂µα/∂p|Υ V \p . (5.176)

Volume is an extensive property, which is a homogeneous function of first degree
with respect to the (molar) particle numbers Nα. This basic observation implies
a fundamental relation constraining the volume fractions cανα of the electrolyte
species. From Euler’s homogeneous function theorem, [282] follows the volume-filling
property of the electrolyte mixture, i.e. the Euler equation for the volume, [98,190]

V =
N∑

α=1

∂V

∂Nα
· Nα =

N∑
α=1

να · Nα, (5.177)

or

1 =
N∑

α=1
να · cα, (5.178)

Hence, the species volumes Vα relate to the corresponding partial molar volumes
via Vα=ναNα, and constitute the overall volume, V=

∑N
α=1 Vα. Note that the Euler

equation for the volume is always true, i.e. for compressible and incompressible
electrolytes.

By construction, the partial molar volumes exhibit various symmetry properties.
To see this, we observe that the definition eq. (5.175) implies

∂να

∂Nβ
= ∂2V

∂Nβ∂Nα
= ∂2V

∂Nα∂Nβ
= ∂νβ

∂Nα
. (5.179)

This relation is supplemented by another symmetry property, which follows from
the extensitivity of the volume. Using eq. (5.177), we find

να= ∂V

∂Nα
= ∂

∂Nα

N∑
β=1
Nβνβ=

N∑
β=1

(
δβ

α·νβ+Nβ·
∂νβ

∂Nα

)
= να +

N∑
β=1
Nβ ·

∂νβ

∂Nα
. (5.180)

Comparing both sides, and using the symmetry property eq. (5.179), we find
N∑

β=1
Nβ ·

∂νβ

∂Nα
=

N∑
β=1
Nβ ·

∂να

∂Nβ
= 0. (5.181)

Next, we show that the variation of the volume, and the Euler equation for the
volume, imply a Gibbs-Duhem equation for the partial molar volumes. For this
purpose, we use eq. (5.177) such that dV =

∑N
α=1(Nα· dνα+να·dNα), and substitute

this result into the fundamental expansion of the volume, eq. (5.174). This yields
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the Gibbs-Duhem equation for the partial molar volumes

N∑
α=1

cα · dνα = αV · dT −
1
KV
· dp+ 1

V
· ∂V
∂E
· dE + 1

V
· ∂V
∂B · dB. (5.182)

However, because the partial molar volumes depend on the same set of variables
Υ V as the volume (see eq. (5.173)), i.e. να(N1,. . .,NN,p,T ,E,B), it follows that

dνα= ∂να

∂T

∣∣∣∣
Υ V \T

dT+ ∂να

∂p

∣∣∣∣
Υ V \p

dp+ ∂να

∂E

∣∣∣∣
Υ V \E

dE+ ∂να

∂B

∣∣∣∣
Υ V \B

dB+

+
N∑

β=1

∂να

∂Nβ

∣∣∣∣∣
Υ V \Nβ

dNβ. (5.183)

From the comparison of eqs. (5.182) and (5.183) follow various relations.

N∑
α=1

cα · ∂να/∂p|Υ V \p = 1/V · ∂V/∂p|Υ V \p = −1/KV , (5.184)

N∑
α=1

cα · ∂να/∂T |Υ V \T = 1/V · ∂V/∂T |Υ V \T = αV , (5.185)

N∑
α=1

cα · ∂να/∂E|Υ V \E = 1/V · ∂V/∂E|Υ V \E , (5.186)

N∑
α=1

cα · ∂να/∂B|Υ V \B = 1/V · ∂V/∂B|Υ V \B , (5.187)

N∑
α=1

cα · ∂να/∂Nβ|Υ V \Nβ
= 0. (5.188)

Equation (5.174) implies that if the volume does not depend on pressure, i.e.
∂V/∂p|Υ V \p = 0, then 1/KV → 0, or, equivalently, KV → ∞. However, this also
implies that

∑N
α=1 cα · ∂να/∂p = 0, see eq. (5.184). Thus, ∂να/∂p = 0 for all partial

molar volumes is a sufficient condition for that the volume does not vary under pres-
sure variations. This argument suggests defining incompressible electrolytes via the
condition that ∂pνα = 0 for all species α (since then ∂pV = 0, and the volumetric
bulk modulus diverges, i.e. KV→∞). The coefficient αV appearing in eq. (5.185)
is the thermal expansion. However, it is often argued that thermodynamic axioms
imply that ∂Tνα=0 for incompressible liquids, i.e. when ∂pνα=0. [283] This is the
core of the so-called Müller Paradox, [284–286] because it contradicts the experimen-
tally well-established Boussinesq-Approximation, [287] in which incompressible fluids
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exhibit thermal expansion. [288] Equations (5.186) and (5.187) measure the electric
and magnetic contributions to the expansion of the volume. Note that the Maxwell
equations in the aether frame imply that when dE is evaluated with respect to spa-
tial variations (∇E), then there appears a contribution involving the the charge
density in eq. (5.182), and if dE and dB are evaluated for time variations (∂tE and
∂tB), there appears a contribution from the electric current and from the rotation of
the electric field. The thermodynamic result eq. (5.188) reproduces our finding from
eq. (5.181). In addition, the variation of the trivial form of the Euler equation for
the volume (eq. (5.178)) also implies some useful relations. Using the Gibbs-Duhem
equation for the partial molar volumes, eq. (5.182), we find

0=d
( N∑

α=1
ναcα

)
=

N∑
α=1

να·dcα+
N∑

α=1
cα

[
∂να

∂T
·dT+∂να

∂p
·dp+∂να

∂E
·dE

]
. (5.189)

Evaluating the formal variation for spatial inhomogeneities yields

N∑
α=1

να∇cα= 1
KV

∇p−
N∑

α=1
cα

[
∂να

∂T
∇T+∂να

∂E

(
ϱF
ε0εR

− E

εR
∇χ

)]
, (5.190)

whereas the temporal variation yields an equation for the evolution of the pressure
1
KV

∂p

∂t
=

N∑
α=1

να
∂cα

∂t
+

N∑
α=1

cα

[
∂να

∂T

∂T

∂t
− ∂να

∂E

( jF
ε0εR

+ E

εR

∂χ

∂t

)
− ∂να

∂B (∇ ∧E)
]
.

(5.191)

In accordance with the property that the pressure is a macroscopic quantity, which
does not depend on the state of an observer, the transport contribution

∑N
α=1 να∂tcα

appearing in eq. (5.191) is objective, since it consists of objective scalars and time
derivatives of objective scalars (see Lemma 13). In particular,

N∑
α=1

να∂tcα=−
N∑

α=1
να ·∇ (cαvα) + rα, (5.192)

does not depend on convection (here we used that ∂tcα=rα−∇(cαvα), see eq. (5.11)).
However, eq. (5.192) can be reformulated via

∑N
α=1 να∇(cαvα) =

∑N
α=1[∇(ναcαvα)−

cαvα∇να], such that it does designate one particular frame of reference. Apparently,
the first term in brackets constitutes a reference frame which is defined by ψα=ναcα.
Indeed, this is exactly the volume averaged frame, where the corresponding convec-
tion velocity is defined by vVolume=

∑N
α=1 cαναvα. Hence,

N∑
α=1

να∂tcα = −∇vVolume +
N∑

α=1
cαvα ·∇να +

N∑
α=1

να · rα. (5.193)
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Frames based on different drift velocities vψ (where vψ=
∑N

α=1ψαvα) relate to this
description via vVolume=vψ+

∑N
α=1 ναN

ψ
α , where Nψ

α=cα(vα−vψ) (see section 5.5).
Hence, using any other frame of reference, eq. (5.193) becomes

N∑
α=1

να∂tcα = −∇vψ −
N∑

α=1
να ·∇Nψ

α + vψ ·
N∑

α=1
cα∇να +

N∑
α=1

να · rα. (5.194)

The two expansions constituted by eqs. (5.193) and (5.194) can both be used in the
equation for the pressure (eq. (5.191)). However, the expansion based on the volume
frame offers a convenient description of incompressible electrolytes. Altogether, the
evolution of the pressure reads (eq. (5.191))

1
KV

∂p

∂t
= −∇vVolume +

N∑
α=1

cαvα∇να + αV
∂T

∂t
−

N∑
α=1

cα
∂να

∂E

( jF
ε0εR

+ E

εR

∂χ

∂t

)
+

+
N∑

α=1
cα
∂να

∂B ·∇ ∧E +
N∑

α=1
ναrα. (5.195)

Note that in incompressible and isothermal electrolytes, the equation for the pressure
transfers to an algebraic equation for the convection velocity, which does not involve
time derivatives (see eq. (5.221)).

Finally, we derive a more canonical Gibbs-Duhem relation. The material law for
the free energy, Υ = {c1, . . . , cN,E,B, T}, and the constitutive equations imply

d(ρφH) = −P · dE−M · dB− ρs · dT +
N∑

α=1
µα · dcα. (5.196)

We substitute the variation of the elastic pressure Pel=
∑N

α=1 µαcα−ρφH into eq. (5.196),
which yields the canonical Gibbs-Duhem equation, [133,289]

N∑
α=1

cα · dµα = dPel −P · dE−M · dB− ρs · dT. (5.197)

Hence, using eq. (5.160) it follows that for constant susceptibilities, and if magnetic
and thermal veriations are neglected, the Gibbs-Duhem equation becomes

N∑
α=1

cα · dµα = dPvol + dPint. (5.198)

Next, we show that that in our theory the partial molar volumes follow from the
surface forces acting upon the material volume, i.e. the stress tensor. To derive this
result, we assume a homogeneous system, where viscosity can be neglected.Thus, the
complete pressure reduces to the thermodynamic pressure p = ptd, see eq. (5.166),
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and is a function of concentrations cα, temperature T , and electric field E via the
stress tensor (see eq. (5.164)),

p = ptd = f(cα, T,E). (5.199)

Above, we used molar particle numbers Nα and V instead of concentrations cα in
the materials law, such that eq. (5.199) implicitly determines the volume as function
of Nα, p, T , and E via V (Nα, p, T,E). We use implicit differentiation to obtain an
expression for the molar volumes,

0= ∂f

∂Nα

∣∣∣∣
p,T,E

=
N∑

β=1

∂f

∂cβ

(
∂cβ

∂Nα
+∂cβ

∂V

∂V

∂Nα

)∣∣∣∣
p,T,E

=
N∑

β=1

∂f

∂cβ

(
δα

β

V
−Nβ

V 2
∂V

∂Nα

)∣∣∣∣∣∣
p,T,E

= 1
V
·

 ∂f

∂cα

∣∣∣∣
p,T,E

− να ·
N∑

β=1
cβ ·

∂f

∂cβ

∣∣∣∣∣
p,T,E

 . (5.200)

This implies that the partial molar volumes are determined by the stress tensor,

να = ∂V

∂Nα

∣∣∣∣
p,T,E

= ∂f/∂cα∑N
β=1 cβ · ∂f/∂cβ

∣∣∣∣∣
p,T,E

. (5.201)

Note that this result is independent from the free energy model.
Next, we evaluate this result and calculate the partial molar volumes following

from our model for the free energy density. We restrict to the case where the
material parameters χ and K do not depend on composition, and neglect interaction
contributions. Thus, we find

να = ν0
α∑N

β=1 ν
0
βcβ

= ν0
α√

1 + 2Pvol/K
(5.202)

such that
∂να/∂p = −να/(K + 2Pvol) . (5.203)

Hence, the partial molar volumes decrease with increasing pressure. We substitute
this result into eq. (5.184) and relate K to KV ,

KV −K = 2Pvol. (5.204)

Thus, K is indeed a bulk-modulus. From eq. (5.202), we obtain

∂να

∂E = να

3K ·
Eε0εR

1 + 2Pvol/K
, (5.205)
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such that the pressure equation becomes (see eq. (5.195))
1
K

∂p

∂t
=
(
1 + 2Pvol

K

)
·
(
−∇vVolume +

N∑
α=1

cαvα∇να

)
− jFE

3K +
N∑

α=1
ναrα. (5.206)

Furthermore, the spatial variation of the pressure force reads (see eq. (5.190))
1
K

∇p = ϱFE
3K +

(
1 + 2Pvol

K

) N∑
α=1

να∇cα, (5.207)

whereas the gradient of the partial molar volumes follows from eqs. (5.183) and (5.205)

∇να = να

K + 2Pvol ·
(
ϱFE

3 −∇p

)
= − να

K + 2Pvol ·∇
(
Pel + Pint − trτ

3

)
. (5.208)

Substituting eq. (5.208) into eq. (5.206) yields
1
K

∂p

∂t
=−

(
1+2Pvol

K

)(
∇vVolume+ vVolume

K+2Pvol ∇
[
Pvol+Pint+pvisc

])
− jFE

3K +
N∑

α=1
ναrα.

(5.209)

The contribution jFE appearing in eq. (5.206) is the Joule heating. It is an arte-
fact from the momentum of the electromagnetic fields (comprised in the Poynting
vector) which is transferred to the polarizable medium (and appears also in the
electromagnetic entropy inequality). Furthermore, the quantity ϱFE appearing in
eq. (5.207) is the Lorentz force density, which plays an important role in highly
confined regions of the electrolyte (note that eq. (5.207) follows from eq. (5.208)).
However, we emphasize that eqs. (5.202) to (5.208) are true only in the case where
the susceptibility and the bulk modulus do not depend on composition, and must
be extended by additional contributions in the more general case.

In section 5.2.4 we showed that the force law can be expressed via pressure forces
when body forces are neglected

ρv̇ = ∇σ = ∇Σ + ∇τ−∇Pel, (5.210)
where (recall that Pvol=

∑N
α=1 cαµα−ρφH)

∇Pel=
N∑

α=1
cα∇µα−

∑
ΥB,cα

∂(ρφH)
∂ΥB

∇ΥB=
N∑

α=1
cα∇µα+(P∇)E. (5.211)

Note that eq. (5.211) reproduces our thermodynamical finding for the Gibbs-Duhem
equation from above, see eq. (5.197). Furthermore, ∇Σ = ϱFE + (P∇)E

ρv̇ = ∇τ−
N∑

α=1
cα ·∇µα − ϱF ·∇Φ. (5.212)

The chemical forces are

64



5.4 Model For Correlated Liquid Electrolytes

∇µα=
(1−

∑N
β=1 ν

0
βcβ

K

∂K

∂cα
+ 2ν0

α

1 +
∑N

β=1 ν
0
βcβ

) ∇Pvol∑N
β=1 ν

0
βcβ

+RT∇ ln(f αcα)+

+
(1−

∑N
β=1 ν

0
βcβ)2

2 ∇ ∂K

∂cα
−ε0E

(
∇E · ∂χ

∂cα
+E

2 ·∇
∂χ

∂cα

)
(5.213)

However, in many cases the dependence of the dielectric susceptibility and the
bulk modulus on the composition is neglected. Hence, when we assume ∂χ/∂cα = 0
and ∂K/∂cα = 0, then eq. (5.167) reduces to

µα = RT ln(f αcα) + 2ν0
α

1 +
∑N

β=1 ν
0
βcβ

(
p+ γ∇v− Pint −EDF/6

)
. (5.214)

Furthermore, the elastic pressure becomes Pel=ε0χE2/2 +Pint+Pvol (see eq. (5.160)),
such that σ=Σ+τ−(Pvol+Pint−ε0χE2/2 ) Id and p=EDF/6−γ∇v+Pvol+Pint. How-
ever, the chemical forces reduce to (see eq. (5.213))

∇µα = RT∇ ln(f αcα) + 2ν0
α

( N∑
β=1

ν0
βcβ[1 +

N∑
β=1

ν0
βcβ]

)−1
·∇Pvol, (5.215)

such that
N∑

α=1
cα∇µα = RT

N∑
α=1

cα ·∇ ln(f αc) + 2 ·
(
1 +

N∑
β=1

ν0
βcβ

)−1
·∇Pvol, (5.216)

where we used that
∑N

α=1 cα∇ ln(cα/c )=0. The pressure forces ∇Pvol appearing in
the chemical forces depend on the bulk modulus via Pvol=K[(

∑N
β=1 ν

0
βcβ)2−1]/2.

5.4.3 Incompressible Electrolytes And Mechanical Equilibrium

From now on, we consider incompressible electrolytes where ∂να/∂p = 0 for all
species α. Because of eqs. (5.203) and (5.204), our definition of incompressibility
implies that the bulk moduli diverge, K → ∞ and KV → ∞. The latter property
implies that the volume V becomes independent of pressure. In addition, it follows
from eq. (5.208), that the actual partial molar volumes equal the partial molar
volumes of the reference configuration, and are constant,

να = ν0
α, such that

N∑
α=1

cαν
0
α = 1, and ∇να = 0. (5.217)
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Furthermore, incompressibility implies that (see eq. (5.172))
N∑

α=1
να ·∇cα = 0, (5.218)

and that for isothermal electrolytes in electroneutral state, eq. (5.207) becomes
∂µα/∂p = να. (5.219)

Thus, in the incompressible limit, the Euler equation for the volume, constitutes
an incompressibility constraint on the system. As consequence, the quantity Pvol

cannot be defined via eq. (5.158) anymore, and the thermodynamic definition of
pressure as in eq. (5.166) is not valid anymore. Incompressibility thus implies that
the role of pressure transitions from a thermodynamic quantity into a purely me-
chanical quantity, ensuring continuity (mass conservation). [255] Below, we resolve
this ambiguity and determine the elastic volumetric contributions in the chemical
potentials by assuming mechanical equilibrium (see eq. (5.237)).

5.4.4 Convection Equation

The Euler equation for the volume imposes a constraint on electrolyte transport.
Because eq. (5.178) must always be fulfilled, local volume variations are balanced by
volume transport of bulk electrolyte. Thus, volume redistribution leads to bulk con-
vection. However, local imbalance of volume (as described by ∇v (see appendix D.6)
may also result from Faradaic volume-effects, i.e. species reactions.

In the incompressible limit, this follows directly from the equation for the pres-
sure, eq. (5.206), which constitutes an equation for the determination of the volume
averaged convection velocity without involving time-derivatives (note that ∇να=0
and that terms weighted by 1/K vanish),

∇vVolume =
N∑

α=1
ναrα, (5.220)

or, in the center of mass frame,

∇v = −
N∑

α=1
να ·∇Nα +

N∑
α=1

να · rα. (5.221)

In section 5.5 we show that such an equation can be stated for any choice of the
convection velocity, i.e. ∇vψ = −

∑N
α=1 να · ∇Nψ

α +
∑N

α=1 ναrα. The left side
of eq. (5.221) measures the local, isotropic volume expansion (since ∇v = tr(κ),
see appendix D.6), whereas the right side comprises transport of bulk volume, and
volume expansion due to chemical reactions of species with different molar volumes.
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We use the Euler equation for the volume and the expansion ϱF=F
∑N

α=1 cαzα

and reduce the number of independent species concnetrations,

c1(c3, . . . , cN, ϱF) = (1− ν2c2 −
N∑

α=3
ναcα)/ν1 , (5.222)

c2(c3,. . .,cN,ϱF)=
(
z1−ν1ϱF/F−

N∑
α=3

cα[ναz1−ν1zα]
)
/ (ν2z1−ν1z2) . (5.223)

We use this reduced description and derive the independent formulation of the con-
vection equation (using eqs. (5.103) and (5.108)).

∇v = − ν̃2
F z̃2

·∇J F −
N∑

α=3

˜̃να ·∇Nα +
N∑

α=1
να · rα, (5.224)

where
ν̃α = να −Mα/M1 · ν1, and ˜̃να = ν̃α − z̃α/z̃2 · ν̃2. (5.225)

In section 5.5, we show that the quantities ν̃α transform the center-of-mass drift
to the volume averaged drift velocity. For an electrolyte in electroneutral state
(∇J F = 0), we find ∇v = −

∑N
α=3 ˜̃να ·∇Nα +

∑N
α=1 να · rα.

In the absence of reactions, eq. (5.221) implies that the volume averaged drift
velocity vVolume =

∑N
α=1 cαναvα (see section 5.5) is conserved,

∇
N∑

α=1
ναcαvα|rα=0 = 0. (5.226)

Hence, the LRTTs for volumes (see eq. (C.10)) imply that V̇ (Ω(t)) = d/dt
∫

Ω(t) dV =∫
Ω(t) dV ∇v =

∮
A=∂Ω dAv · n̂A. where n̂A is the unit surface-normal pointing “out-

wards”. Thus, the isotropic volume-evolution is described by the surface of the
moving boundary: if the surface is moving “outwards” (v · n̂A > 0), then the vol-
ume increases, and vice-versa. Locally this corresponds to ∇v > 0 (∇v < 0),
see appendix D.6. The case of a homogeneous liquid composed of only one species
constitutes a special case. Here, the trivial flux constraint

∑N
α=1 NαMα = 0 (see

eq. (5.103)) implies that N1 = 0. Thus, the drift velocities of the center of mass and
the species are equal, v = v1, and, due to eq. (5.221), ∇v = 0.

5.4.5 Isothermal Equations of Motion

In this section we close our system of equations, and state the complete system of
equations.
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In principle, the force law can be used to determine the convection velocity, and the
equation for the pressure (eq. (5.206)) can be used to determine the bulk modulus.
However, the force law takes the form of a Navier Stokes equation involving inertial
effects, which can be challenging to solve. [290]

We do not consider gravitational body forces in our description for highly vis-
cous media, and assume that the system quickly relaxes towards a stationary state.
Hence, to a good approximation, we can neglect inertial terms, ρv̇=∇σ≈0, viz.

N∑
α=1

cα∇µα = ∇Pvol + ∇Pint = −ϱF∇Φ + ∇τ, (5.227)

defines mechanical equilibrium (see eq. (5.212)). Here, ∇Pvol = K
∑N

β=1 νβ∇cβ and
∇Pint =

∑N
α=1 cα∇∂(ρφint

H )/∂cα. Because the stress tensor is continuous at elec-
trochemical surfaces only when the equilibrated surface stress vanishes, this trivial
equilibrium condition does not transfer to electrochemical surfaces (used for stress-
measurements in polarizable liquids. [291]) As consequence, it is indeed the total stress
σ, which is susceptible to experiments and shall therefore be used in the force law
(and not, e.g. the “elastic stress tensor”, or the Maxwell stress tensor). [141]

Still, our description is not yet completely closed, due to the unsusceptible bulk-
modulus in the chemical potentials (see eq. (5.214))

µα=RT ln(f αcα)+Kνα(
N∑

α=1
ναcα−1)/2 , (5.228)

and in the forces eq. (5.215)

∇µα = RT∇(ln cα/c ) + ∇∂(ρφint
H )/∂cα + Kνα

N∑
β=1

νβ∇cβ. (5.229)

Therefore, instead of solving the dynamical force law, we solve the trivial force
force law for the unsusceptible quantity appearing in eqs. (5.228) and (5.229),

∇Pvol = K

N∑
β=1

νβ∇cβ = ϱFE + ∇τ−∇Pint. (5.230)

Hence, when viscous forces and interaction contributions φint
H are neglected, me-

chanical equilibrium implies the balance between steric-/ and electrostatic forces, [271]

∇σ = 0 ⇒ ∇Pvol = −ϱF∇Φ. (5.231)

Thus, strong pressure gradients are to be expected in charged regions of the elec-
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trolyte, e.g. in the electrochemical double layers where the Lorentz force density
ϱF∇Φ is balanced by strong pressure gradients ∇Pvol (see eq. (10.46) and sec-
tion 9.2 and chapter 14). Note that in the incompressible limit, eq. (5.158) is not
a valid definition for the steric pressure Pvol, and p is also not well-defined. How-
ever, this is fixed in mechanical equilibrium via the local force-balance expressed by
pressure-force ∇Pvol. We substitute eq. (5.230) into eq. (5.229), such that

∇µα =
N∑

β=1

(
δβ

α − ναcβ

)
·∇∂(ρφint

H )
∂cβ

+RT∇ ln
(
cα

c

)
+ να (ϱFE + ∇τ) , (5.232)

where ∇τ = ∇([γ+η]∇v)+∇2(ηv) (see eq. (5.146)). However, the forces appearing
in the fluxes are the electrochemical forces ∇µel

α = ∇µα + Fzα∇Φ, which satisfy
the Gibbs-Duhem relation

N∑
α=1

cα ·∇µel
α = ∇τ. (5.233)

The electrolyte is in chemical equilibrium if ∇µα = 0 for all species α, and is in
mechanical equilibrium if ∇σ = 0. However, equilibrium of the system corresponds
to a stationary state where all fluxes vanish. Hence, due to our Onsager Ansatz (see
eq. (5.115)) and eq. (5.221), equilibrium equals vanishing electrochemical forces, i.e.

0 = ∇µel
α =

N∑
β=1

[
δβ

α − ναcβ

]
∇[FzβΦ + ∂(ρφint

H )/∂cβ] +RT∇ ln cα/c , (5.234)

where we used ϱF=
∑N

α=1 Fzαcα. In equilibrium, the Gibbs-Duhem relation becomes
trivial, and only N-1 equations ∇µel

α=0 are necessary to describe equilibrium. For
non-interacting electrolytes (φint

H =0), the equilibrium-condition becomes

∇ ln [cα/c] = (ναϱF − Fzα)/RT ·∇Φ. (5.235)

Usually, the first two mixing terms in eq. (5.232) are comprised in the so-called
thermodynamic factor. We relate to this description, and use the activity coefficients
f α and the relation ∂ ln(f βc0)/∂(cγ/c0 )=∂ ln(f βc0)/∂ ln(cγ/c0 )·1/cγ to define

TDF αγ =
N∑

β=1

(
δβ

α − ναcβ

)
·
(
δ

γ
β + ∂ ln(f βc0)

∂ ln(cγ/c0 )

)
. (5.236)

Here, c0 is some constant concentration which non-dimensionalizes the logarithmic
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terms (usually set to c0 = 1 mol L−1). Thus, the chemical forces become

∇µα = RT
N∑

γ=1
TDF αγ(∇cγ)/cγ + ναϱFE + να[∇([γ + η]∇v) + ∇2(ηv)]. (5.237)

Our definition for the thermodynamic factor differs from the canonical expression
in the literature, [292] TDF lit

αγ = δαγ + ∂ ln(f αc0)/∂ ln(cγ/c0 ) ), and extends the non-
ideal contributions by steric penalties due to excluded volume effects. Thus, even
for “ideal” electrolytes (f αc = 1), our expression for the thermodynamic factor

TDF αβ|ideal = δβ
α − ναcβ, (5.238)

leads to inter-species couplings in the mixing terms, when the species have different
molar volume,

∇µmixing
α

∣∣∣
ideal

= RT

(∇cα)/cα +
N∑

β,α

[νβ − να] ∇cβ

 . (5.239)

To obtain a better understanding of the volumetric contributions comprised in
the thermodynamic factor, we consider two limiting cases. First, weassume that
one first species is much larger than all others, i.e. ν1 ≪ να. Then, if the species
composition of the mixture is not pathological, this implies that 1 ≈ c1ν1 (see
eq. (5.178)). Thus, the components of TDF with respect to the large species consist
entirely of cross-couplings with the smaller species,

TDF 11 =− ν1

N∑
γ,1

cγ ·
∂ ln f γ

∂ ln c1
, and TDF 1β|β,1 =− ν1cβ −

N∑
γ,1

cγ ·
∂ ln f γ

∂ ln cβ
. (5.240)

Thus, the chemical forces related to the designated species are due only to correla-
tions with species of minor volume, and there is no self-correlation

∇µ1 = −ν1RT
N∑

β,1
∇cβ − ν1RT

N∑
β,γ,1

cγ

cβ
· ∂ ln f γ

∂ ln cβ
·∇cβ. (5.241)

This pertains even to the ideal case (ln f γ = 0). In contrast, the components of the
thermodynamic factor related to the species of minor volume become canonical,

TDF αβ|α,β,1 = TDF lit
αβ = δαγ + ∂ ln(f αc0)/∂ ln(cγ/c0 ) ), (5.242)

and the forces acting on the smaller species decouple in the ideal case.
Second, we assume the ideal case eq. (5.239) for a mixture composed of equally

sized species, να ≡ ν for all species α = 1, . . . ,N. Then, 1 = cν, such that ∇(cν) =
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0. This implies that all species decouple from each other, and exhibit ideal behaviour,
∇µmixing

α = RT ·∇cα/cα.
We close the set of equations by coupling Φ with ϱF via Poisson’s equation,

ϱF = −εRε0∆Φ, (5.243)

∂ϱF
∂t

= −∇J F −∇ (ϱFv) +
N∑

α=1
Fzαrα, (5.244)

∂cα

∂t
= −∇Nα −∇ (cαv) + rα, α ≥ 3, (5.245)

∇v = − ν̃2
F z̃2

·∇J F −
N∑

α=3

˜̃να ·∇Nα +
N∑

α=1
ναrα. (5.246)

Apparently, eq. (5.245) comprises N-2 equations for the set of N-2 independent
concentrations c3, . . . , cN. Alternatively, eqs. (5.243) to (5.248) can be expressed
using a matrix-formulation (see appendix D.7). We restate the fluxes (where φ =
Φ + µ̃2/F z̃2, see eq. (5.134)),

Nα = tα
F z̃α

J F −DαT ∇T −
N∑

β=3
Dαβ∇˜̃µβ, (5.247)

J F = −κ∇φ− βκ∇T − κ
F

N∑
β=3

tβ
z̃β

∇˜̃µβ. (5.248)

We supplement the set of isothermal equations (eqs. (5.243) to (5.246)) by an
equation for temperature (“heat equation”) in appendix D.10.

5.4.6 “Standard Electrolyte”: Ternary System with Neutral Solvent

Electrolytes consisting of a neutral solvent species and two ionic species, are among
the most commonly used electrolyte systems in commercial applications and con-
stitute the standard-electrolyte for lithium ion batteries. [6,293] In this section, we
discuss this standard electrolyte in isothermal, electroneutral state.

Electroneutrality implies that α = 3 = Li is the only independent species. We
denote the common concentration of the two ion-species cLi such that

z2 = −z3, and cLi = c2 = c3. (5.249)
Using eqs. (5.222) and (5.223), we find

c1(cLi) = [1− cLi (ν2 + νLi)] /ν1 . (5.250)
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such that
cLi ˜̃νLi = 1− ν1ρ/M1 = 1− ν1c1ρ/ρ1. (5.251)

Three independent transport parameters exist in a ternary electrolyte, κ, tLi and
DLi. The independent variables Φ,v, cLi are determined by (see section 5.4.5)

0 = −∇J F +
3∑

α=1
Fzαrα, (5.252)

∇v = −ν̃2/F z̃2 ·∇J F − ˜̃νLi∇NLi +
3∑

α=1
ναrα, (5.253)

∂tcLi = −∇NLi −∇ (cLiv) + rLi. (5.254)

We set z1=0 for the neutral solvent, [64]) i.e. z̃α=zα and assume that only Li reacts,

r1 = 0, and r2 = 0. (5.255)

As consequence, eq. (5.252) becomes ∇J F = FzLirLi. We substitute this expression
for ∇J F into eq. (5.253) and use the relation eq. (5.251),

∇v = (νLi + ν2 − ν1 ·M2/M1) · rLi − ˜̃νLi ·∇NLi (5.256)
=
(˜̃νLi + ν1 ·MLi/M1

)
· rLi − ˜̃νLi ·∇NLi. (5.257)

With this result we reexpress eq. (5.254), and solve eq. (5.256) for

∇NLi = −1/˜̃νLi ·∇v + [M1(νLi + ν2)− ν1M2]/˜̃νLiM1 · rLi, (5.258)
and substitute for ∇NLi in eq. (5.254), viz.

∂tcLi = 1
˜̃νLi

(
∇
[(

1− cLi ˜̃νLi
)

v
]
− MLi
M1

ν1rLi

)
= ν1

M1 ˜̃νLi
(∇ [ρv]−MLirLi) . (5.259)

Because the right side of eq. (5.258) equals total mass-balance (∂tρ = −∇(ρv), see
eq. (5.5)), the evolution of all concentrations is determined by the variation of the
center-of-mass motion

∂tcLi = −ν1/M1 ˜̃νLi · ∂tρ. (5.260)

Thus, the evolution of the ion-species equals (up to a constant prefactor) the evo-
lution of the total mass-density of the electrolyte. This is a direct consequence of
the assumption of electroneutrality, which prevents the formation of charge-profiles.
Hence, migration and diffusion of the two species are mutually coupled, and the
cations cannot move freely from the anions (and vice versa). This result can also be
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motivated from the fact that c2 = c3 ≡ cLi and c1 = 1/ν1− (ν2 + νLi)cLi/ν1. Hence,

∂tρ =
N∑

α=1
Mα∂tcα =

[
M2 +MLi −

M1(ν2 + νLi)
ν1

]
∂tcLi = −

˜̃νLiM1
ν1

· ∂tcLi. (5.261)

This argument relies heavily on the condition of electroneutrality, and that there are
only two ionic species. In particular, this result does not hold in the case of more
than two ionic species, and / or a non-neutral solvent species.

Next, we determine the fluxes J F and NLi, see eqs. (5.247) and (5.248). However,
we first use the non-trivial Gibbs-Duhem equation (see eq. (5.101)),

∑3
α=1 cα(Fzα∇Φ+

∇µα) = ϱF∇Φα+
∑3

α=1 cα∇µα =
∑3

α=1 cα∇µα = ∇τ, where ∇τ = ∇[(γ+η)∇v]+
∇2(ηv) are the viscous stress-forces (see eq. (5.146) in section 5.3.2). This allows to
eliminate the chemical force of the designated species,

∇µ1 = (∇τ−cLi∇µternary) /c1 , such that ∇˜̃µLi=ρ/ρ1 ·∇µternary−(M2+MLi)/ρ1 ·∇τ,
(5.262)

where the independent binary chemical potential is defined by
∇µternary = ∇µ2 + ∇µLi. (5.263)

Furthermore, we introduce the canonical reference-electrochemical potential φN de-
fined relative to the second species (usually Li+, see, e.g. Eq.(A9), Ref. 294),

∇φN = ∇Φ + ∇µ2/Fz2 . (5.264)

This expression differs from the corresponding quantity ∇φ = ∇Φ + ∇µ̃2/F z̃2,
appearing in our formalism (see eq. (5.134)). However, both are related via

∇φ = ∇φN + ρ2/Fz2ρ1 ·∇µternary −M2/ρ1Fz2 ·∇τ (5.265)

Thus, we find for the fluxes (see eqs. (5.247) and (5.248)),

J F = −κφN + κ

Fz2

ρtLi − ρ2
ρ1

∇µternary + κ

Fz2

M2 − tLi(M2 +MLi)
ρ1

∇τ, (5.266)

∇NLi = − [tLirLi + ∇DLi (ρ/ρ1 ·∇µternary − (M2 +MLi)/ρ1 ·∇τ)] . (5.267)

Altogether, we find for the complete set of transport equations for this ternary
electrolyte in electroneutral state,

0 = −∇J F + FzLirLi, (5.268)
∇v = (νLi + ν2 − ν1 ·M2/M1 ) rLi − ˜̃νLi ·∇NLi, (5.269)

∂tcLi = ν1/M1 ˜̃νLi ·∇ (ρv) , (5.270)
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where the flux J F and the quantity ∇NLi are given by eqs. (5.266) and (5.267).
Equation (5.269) allows to examine how relevant convective effects are in the pres-
ence of a dominant neutral solvent species. For this purpose, we use

˜̃νLi = (1− c1ν1)/cLi − ν1(ρ− ρ1)/cLiM1 . (5.271)

Therefore, in the limit where the solvent dominates electrolyte mass and volume,

ρ1 ≈ ρ, and c1ν1 ≈ 1, we find ˜̃νLi ≈ 0. (5.272)

Hence, eq. (5.269) reduces to ∇v ≈ ν1MLi/M1·rLi. Thus, the limit eq. (5.272) implies
that the convection velocity is completely determined by the boundary conditions.
However, in the limit eq. (5.272) the identity eq. (5.258) becomes ill-defined, and the
transport equation for mass must be expressed in the canonical form (eq. (5.254)).

Many theoretical descriptions of this standard electrolyte do not consider convec-
tion. [64,142] In this case, our description reduces to

0 = −∇J F|v=0 + FzLirLi, (5.273)
∂tcLi|v=0 = −∇NLi + rLi, (5.274)

Above, we derived that, in the limit eq. (5.272), the convection profiles becomes
constant. The corresponding set of transport equations for this case, eqs. (5.273)
and (5.274), must be supplemented by the corresponding set of flux-expressions,

J F|c1ν1≈1
ρ/ρ1≈1

=κtLi/Fz2 ∇µternary + κ[M2 − tLi(M2 +MLi)]/Fz2ρ1 ∇τ−κφN, (5.275)

∇NLi|c1ν1≈1
ρ/ρ1≈1

=− [tLirLi + ∇ (DLi∇µternary)−∇((M2 +MLi)/ρ1 ) ·∇τ] (5.276)

In section 15.2 we compare our description with the literature .

5.4.7 Characterization of Highly Concentrated Electrolytes

Our hypothesis is that an electrolyte is “highly concentrated” if effects due to inter-
species correlations become dominant, and if convection becomes comparable to
diffusion and migration. In this section, we show that the initial electrolyte configu-
ration specified by να, ρα and Mα suffices to probe both propperties and to classify
a given electrolytes as being “highly concentrated”.

The “ideal” chemical potential of dilute solutions, [100] µα = RT ln cα, does not
couple to other species, [181] and must be supplemented by inter-species couplings
when increasing concentrations are assumed. Usually, the corresponding “excess”
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contributions are comprised in the activity coefficient f α, or in the thermodynamic
factor, [292] TDF lit

αβ = δαβ + ∂ ln f α/∂ ln cβ , which leads to inter-species couplings in
the chemical forces (the “ideal case” quantity reads TDF lit

αβ = δαβ).
The thermodynamic factor derived in section 5.4.5 extends the canonical expres-

sion by inter-species-correlations due to excluded volume effects, (see eq. (5.236)),

TDF αγ =
N∑

β=1
(δαβ − ναcβ) · (δβγ + ∂ ln f β/∂ ln cγ) . (5.277)

Even in the “ideal” case (f α=0), TDF αβ|ideal=δβ
α−ναcβ, i.e. inter-species correla-

tions appear, and the ideal forces depend on species asymmetry (see eq. (5.239)),

∇µmixing
α

∣∣∣
ideal

= RT (∇cα/cα +
N∑

β,α

[νβ − να]∇cβ). (5.278)

This suggests that the relative magnitudes of the specific molar-volumes να serve as
measure for “non-ideality”, hence for the classification of “concentrated electrolytes”.

Next, we examine the relevance of convection transport in multi-component electro-
lytes. The condition ∇v=0 is often used for complex electrolyte-mixtures. [65,141,295]

We argue that this can be a bad approximation. In section 5.4.6 we derive a limiting-
criterion for the relevance of convective effects in the ternary standard electrolyte
(see eq. (5.272)), where

∇v = [(1− c1ν1)/cLi − (ρ− ρ1)/cLiM1/ν1 ] ·∇NLi (5.279)

Here, c1 denotes the concentration of the neutral solvent species, and cLi = c3 is the
only independent species. The right side vanishes if the solvent species dominates
mass and volume of the electrolyte, ρ ≈ ρ and c1ν1 ≈ 1.

We supplement this argument by estimating the significance of convective trans-
port versus non-convective transport and compare the variation of the convective
flux density with the variation of the non-convective flux density. We neglect reac-
tions, ∇v = ˜̃νLi ·∇NLi (see eq. (5.253)), and multiply with cLi,

|c3∇v/∇N3 | =
∣∣cLi · ˜̃νLi

∣∣ = |1− c1ν1ρ/ρ1 | . (5.280)

Thus, the ratio of the two variations on the left side is determined by the relative
mass density of the neutral solvent species (ρ/ρ1 ), and the volume fraction of this
species (c1ν1). Convection is constant for dominant solvent species, if ρ1≈ρ and
c1ν1≈1. In contrast, the right side is large if the solvent mass is negligible (ρ1≪ρ),
which implies that the center-of-mass flux dominates over the relative variation of the
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salt-flux. Thus, the quantities ρ1/ρ and c1ν1 suffice for the electrolyte classification.
In the case of an electroneutral ternary electrolyte composed of two salts with one

common species, we find for the crucial factor

c3 ˜̃ν3 = c3 · [ν3 − (M̃3 − z3χ) · ν] = c3ν · [γ3 − (M̃3 − χz3)] (5.281)

appearing in the evaluation of |c3∇v/∇N3| = |c3 ˜̃ν3|, where we introduced ν =
ν1 + ν2- γα = να/ν, M̃α = Mα/(M1 +M2) and χ = M̃1γ2 − M̃2γ1. The convection
in this system is constant if c3ν3 ≪ 1 and 2c3 ≪ (c1 + c2) (i.e. c3ν≪ 1).

In addition to bulk-convection due to volume fluxes, we discuss the convection
induced by Faradaic reactions involving species of unequal molar volumes occur-
ring at the electrode-electrolyte interfaces, where the non-convective species fluxes
Nα + cαv = cαvα are subject to flux boundary-conditions (FBCs). By modelling
reaction source-terms via interfacial currents, the FBCs follow from the fixed-frame
description at the interface Γ via the condition 0 = ∂tcα = −∇(cαv + Nα) + rΓ

α ν
Γ
α .

Here νΓ
α denote the stoichiometries of the particular interface reaction. Upon inte-

gration, we find for the interfacial flux boundary conditions

cαvα|Γ = RΓ
αν

Γ
α , (5.282)

where RΓ
α =

∫
dxrΓ

α /ν
Γ
α . The FBCs eq. (5.282) relate the interfacial current with

the center-of-mass convection. To see this, we multiply both sides with the specific
molar masses and sum over all species, RΓ

α = ρv/
∑N

α=1Mαν
Γ
α , and substitute this

for the reaction rate in eq. (5.282). Thus, for each species which participates in
interface-reactions, we can state the ratio of mass-/ and convective fluxes,

|Nα/cαv | = |1− ρ/ρα ·Mαν
Γ
α /

N∑
β=1

Mβν
Γ
β |. (5.283)

Equation (5.283) constitutes the relevance of convective fluxes due to interface-
reactions. Like for bulk-convection, the crucial parameter is the mass-ratio ρα/ρ.

Altogether, we conclude that the mass densities, the volume fractions, and the
relative magnitudes of the molar volumes can be used to probe the relevance of
inter-species correlations and of convection. Therefore, we suggest that these mate-
rial parameters can be used for the classification of electrolytes into “highly concen-
trated”. In section 6.3, we validate this classification-scheme for a specific electrolyte.
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5.5 Frame Independent Formulation

5.5.1 Introduction

In this section we discuss the fundamental role which the the convection velocity
plays for our transport theory.

Because the fluxes appearing in our transport theory are functions of the species
velocities, they satisfy a universal flux constraint when they are defined relative to
some convection velocity. It is beneficial to use these fluxes in the formulation of the
transport theory, since the resulting constraint reduces the number of independent
fluxes. However, the specific choice for the convection velocity constitutes an “in-
ternal” reference for the fluxes, and for the definition of the transport parameters in
our Onsaager approach. This property becomes most apparent in solutions where no
neutral solvent is present, and has been a well-established fact in the early literature
for molten salts. [45–47,191,192,296–298] Besides this technical aspect, convection plays
an important role as transport process in highly concentrated electrolytes, [126,299,300]

see also the discussion in section 5.4.7.
We structure this section as follows. First, in section 5.5.2, we discuss the gen-

eral definition for the convection velocity, and formulate the transport theory with
respect to this arbitrary choice. Next, in section 5.5.3, we derive the exact trans-
formation rules between different reference frames. In section 5.5.4, we apply these
findings and discuss three different frames. We discuss the binary electrolyte in sec-
tion 5.5.5. Finally, in section 5.5.6, we discuss the relation to experimental methods
for measuring the transference numbers.

5.5.2 Universal Convection Velocity

The reference frame in Eulerian description is defined using the “external” coordi-
nates of a fixed laboratory set-up. In contrast, in the Lagrangian description, the
reference frame is defined with respect to “internal” coordinates comoving with some
dynamical bulk-quantity. [301,302] Note that the macroscopic behaviour of the system
is invariant with respect to the choice of reference frame.

There exists a plethora of dynamical electrolyte quantities which can be used to
define a convection velocity. However, it can be beneficial to choose the reference
frame in accordance with the set-up of the physical system, and with the boundary
conditions. As consequence, there exist many different choice for the bulk con-
vection velocity in the literature, [133] including the mass average velocity, [303,304] the
volume average velocity, [275,276,301,302] and some more exotic candidates as the mole-
averaged velocity and the enthalpy velocity. [305,306] Another prominent candidate is
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to choose the species velocity of some abundant bulk species, e.g. a solvent species,
as reference. [100]

Since convection is fundamentally related to the species fluxes, i.e. to the species
velocities vα, it must be a linear combination of the species velocities, [307]

vψ =
N∑

α=1
ψαvα. (5.284)

This defines the “ψ”-frame of reference, and vψ is the “ψ”-averaged convection
velocity. Because the non-dimensional coefficients are normalized

N∑
α=1

ψα = 1, (5.285)

only N-1 independent quantities ψα exist. Usually, the choice for the electrolyte
quantity ψα is motivated by the experimental set-up, or boundary conditions, and
it defines a derivative operator which describes the evolution of some electrolyte
quantity relative to vψ,

Dψ

dt = ∂

∂t
+ vψ ·∇. (5.286)

Note that the Eulerian time-derivative ∂/∂t, which measures the evolution of a quan-
tity with respect to fixed external coordinates, does not depend upon the reference
frame and is invariant under changing the reference frames. In the reference frame
defined by vψ, species transport is measured by frame-dependent fluxes

Nψ
α = cα

(
vα − vψ

)
. (5.287)

By construction, in all reference frames, there exists a universal flux constraint

N∑
α=1

ψα

cα
·Nψ

α = 0. (5.288)

which is related to local balance of the quantities ψα. Thus, only N-1 independent
fluxes Nψ

α are independent. Species transport ∂tcα=∇(cαvα) becomes,

Dψ

dt cα=−cα∇vψ−∇Nψ
α+rα. (5.289)
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The electric flux associated with fluxes Nψ
α of charged species is given by

J ψ
F =

N∑
α=1

Fzαcαvα − ϱFvψ =
N∑

α=2
F z̃ψαN

ψ
α .J

ψ
F =

N∑
α=2

F z̃ψαN
ψ
α , (5.290)

where we introduced N-1 valencies

z̃ψα = zα −
c1ψα

cαψ1
· z1. (5.291)

Thus, in electroneutral systems (ϱF = 0), the electric current is the same in all
reference frames, i.e. invariant with respect to transformations between reference-
frames.

In section 5.4.4, we made use of the Euler equation for the volume,
∑N

α=1 ναcα = 1,
to derive an equation for the center-of-mass convection velocity vCMF. Next, we show
that such an equation for vψ can be derived in any frame. To address this goal, we
use that for incompressible electrolytes, the variation of the Euler equation for the
volume becomes (since δνα=0, see eq. (5.189)) 0 =

∑N
α=1 να · dcα. Thus, we can

evaluate dcα for the time evolution, using any frame derivative, δcα → Dψcα/dt via
eq. (5.289),

∇vψ = −
N∑

α=1
να ·∇Nψ

α +
N∑

α=1
να · rα. (5.292)

Because the right side does not vanish in general, the assumption that ∇vψ = 0
for incompressible electrolytes maybe a bad approximation, see also section 5.4.7.
However, the appearance of the (generalized) molar volumes on the right side of
eq. (5.292) highlights the special role of the volume averaged reference frame de-
fined by ψα = cανα. In this frame, the universal flux constraint eq. (5.288) becomes∑N

α=1 ναN
Volume
α = 0, which implies that

∑N
α=1 να∇NVolume

α = −
∑N

α=1 N
Volume
α ∇να.

Thus, if there are no reactions occurring (rα=0) the volume averaged velocity is spa-
tially constant,

∇vVolume =
N∑

α=1
NVolume

α ·∇να = 0. (5.293)

Hence, vVolume is a constant, and is completely determined by the boundary condi-
tions. Thus, if vVolume vanishes at some point, it vanishes everywhere. In particular,
in the case where vVolume = 0, the volume averaged description becomes equal to
the lab-frame description based on an external, fixed reference frame. We emphasize
that the equivalence of ∇vVolume = 0 and incompressibility is a unique feature of
the volume based description, which is not true automatically in all other frames.

Finally, we observe that the expansion eq. (5.292) involves redundant fluxes. To
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obtain the independent form, we use the constraint eq. (5.288)

∇vψ = −
N∑

α=2
ν̃ψα ·∇Nψ

α + ν1

N∑
α=2

Nψ
α ·∇(ψαc1/ψ1cα ), (5.294)

by introducing reduced generalized molar volumes
ν̃ψα = να −ψαc1/ψ1cα · ν1. (5.295)

Alternatively, the expansion eq. (5.294) can be expressed by the current J ψ
F and

N-2 fluxes Nψ
α using the relation eq. (5.290). This form may be beneficial for the

description of electroneutral systems. [67]

We encountered the designated role played by the volume frame when we derived
the pressure equation (see eq. (5.195)). By construction, it follows straightforwardly
that the quantity

∑N
α=1 να · ∂tcα appearing in the pressure equation is equal in

any frame, and is given exactly by the variation of the volume averaged convection
velocity up to variations of the partial molar volumes,

N∑
α=1

να · ∂tcα = −∇vVolume +
N∑

α=1
cαvα∇να +

N∑
α=1

να · rα. (5.296)

Next, we express the entropy production rate via the universal fluxes

R = −
N∑

α=1
NCMF

α ·∇µel
α = −

N∑
α=1

Nψ
α ·∇µel

α −
(
vψ − vCMF

)
·∇τ (5.297)

= −
N∑

α=2
Nψ

α ·∇µ̃el;ψ
α −

(
vψ − vCMF

)
·∇τ, (5.298)

(see section 5.3.1), where we introduced a reduced set of N-1 chemical potentials

∇µ̃el;ψ
α = F z̃ψα ∇Φ + ∇µ̃ψα , and ∇µ̃ψα = ∇µα − c1ψα/cαψ1 ∇µ1, (5.299)

where the chemical forces are ∇µα = −ναϱF∇Φ + RT
∑N

β=1 TDF αβ ·(∇cβ)/cβ +
να∇τ. However, the viscous forces can be expressed alternatively using the Gibbs-
Duhem relation

∑N
α=1 cα∇µel

α = ∇τ see eqs. (5.297) and (5.298), such that

R = −
N∑

α=1
Nψ

α · ∇µel
α

∣∣∣
∇τ=0

−
(
vVolume − vCMF

)
·∇τ (5.300)

= −
N∑

α=2
Nψ

α · ∇µ̃el;ψ
α

∣∣∣
∇τ=0

−
(
vVolume − vCMF

)
·∇τ. (5.301)
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Surprisingly, the volume averaged convection velocity defined by ψα = cανα ap-
pears as designated reference-frame in the explicit viscous-expansion eqs. (5.300)
and (5.301). This is reminiscent of the intimate relation between the rate-of-strain
tensor, which measures volume-evolution, and the volume-flux. Note that the crucial
mathematical property here is the universal relation

N∑
α=2

Nψ
α · ν̃ψα = vVolume − vψ. (5.302)

This rationalizes the introduction of quantities ν̃ψα , which emerge naturally in the
derivation of the independent form of the convection velocity in the CMF-frame.
Apparently, these quantities are exactly the transformation from the mas fixed de-
scription to the volume fixed description.

From now on, we set the forces ∇τ to zero and examine the Onsager Ansatz for
the fluxes J ψ

F and Nψ
α ,

Nψ
α =

N∑
β=2

L
ψ
αβ ·∇µ̃

el;ψ
β for α ≥ 2. (5.303)

The frame-dependent quantities L
ψ
αβ constitute the N(N-1)/2 independent coeff-

cients of the symmteric Onsager matrix in the ψ-frame. We define N-1 transference
numbers

Nψ
α |α≥2 = t̃ψα /F z̃

ψ
α ·J

ψ
F , (5.304)

which satisfy the normalization constraint
N∑

α=2
t̃ψα = 1, (5.305)

i.e. only N-2 quantities t̃ψα are independent. Note that we have shifted the notation,
when compared with section 5.3. Throughout this chapter, we use the notation that
the transference numbers which are weighted by the tilded quantities z̃ψα are also
tilded. As consequence, the transference numbers appearing in the main derivation
of our transport theory are tα → t̃CMF

α .
In addition to the quantities t̃ψα , we introduce N transference numbers tψ for each

species α = 1, . . . ,N,
Nψ

α = tψ/Fzα ·J ψ
F . (5.306)

By construction, for all species α ≥ 2 the quantities tψα and t̃ψα are related to each
other via “flux-ratios”,

τψα = tψα/zα = t̃ψα /z̃
ψ
α . (5.307)
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Hence, for α ≥ 2, the parameters tψα and τψα are derived quantities which follow
directly from t̃ψα , i.e. from the Onsager coefficients. However, in contrast to the co-
efficients t̃ψα , there exist parameters tψ1 and τψ1 for the designated first species. These
follow from the Ansatz N

ψ
1 = tψ1 /Fz1 ·J ψ

F , and evaluating eqs. (5.290) and (5.304),

tψ1 =
N∑

α=2

ψαc1z1t̃
ψ
α

ψαc1z1 −ψ1cαzα
=

N∑
α=2

t̃ψα ·
(
1− ψ1cαzα

ψαc1z1

)−1
. (5.308)

Charge conservation and the universal flux constraint eq. (5.288) reduce the numebr
of independent quantities t̃ψ to N-2. These constraints transfer to the quantities tψα
and N quantities τψα ,

Charge continuity:
N∑

α=1
zατ

ψ
α =

N∑
α=1

tψα =
N∑

α=2
z̃ατ

ψ
α = 1, (5.309)

Flux constraint:
N∑

α=1

ψα

Fcα
· τψα =

N∑
α=1

ψα

Fzαcα
· tψα = 0. (5.310)

Thus, only N-2 independent flux-ratios τψα , and N-2 independent quantities tψα exist
in a N-component electrolyte.

As consequence, the binary electrolyte constitutes a somewhat exceptional sys-
tem, because there does not exist an independent transference number and the only
transference number is fixed, t̃ψ2 = 1. However, we still can assign parameters tψ1
and tψ2 to the binary system (see eq. (5.308)). If ψ2,0 (note that z1=−z2),

tψ1 = (1 +ψ1c2/ψ2c1)−1 , and tψ2 = 1− tψ2 = (1 +ψ2c1/ψ1c2)−1 . (5.311)

In section 5.5.5 we discuss the binary case in more detail.
Altogether, we have introduced three different sets of quantities which measure

some type of fractional current carried by each species. It remains to discuss how
these different quantities relate to the intuitive understanding of a transference num-
ber.

In principle, the transference number of an ion species is defined as the fraction
of current carried by the molar flux NLF

α of the respective species, with respect to
the overall current Itotal,

tLF
α = NLF

α /Itotal (5.312)

According to this description, the fluxes and currents are measured relative to an
external rest-frame, usually the fixed laboratory. As consequence, the corresponding
transference numbers are also defined relative to the external coordinates. In our
description, the ratio of current carried by the molar flux of an ion-species with
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respect to the overall current J ψ
F is (assuming chemical equilibrium),

FNψ
α/J

ψ
F = t̃ψα/z̃

ψ
α = tψα/zα = τψα . (5.313)

Thus, the intuitive understanding of transference numbers from above, see eq. (5.312),
relates best to the quantities τψα , because the two other quantities are weighted by
the valencies zα and z̃ψα . It has to be noted though, that the fluxes Nψ

α = NLF
α −cαvψ

and the current J ψ
F = Itotal − ϱFvψ differ from the rest frame fluxes NLF

α = cαvα

and Itotal =
∑N

α=1 Fzαcαvα via convective corrections. Thus, in the case where the
quantities Nψ

α/cαvψ and J ψ
F/ϱFvψ are not negligible, the internal flux ratios τψα

deviate from the ratios FNLF/Itotal . In section 5.5.6 we supplement these three
types of transference numbers by the species mobilities, which can be determined
from eNMR experiments.

5.5.3 Transformation of Reference Frame

Here, we derive simple transformation rules between different frames of reference
from eq. (5.285), and the universal flux-constraint, eq. (5.288).

The transformation rule for the convection velocity follows from the normalization
condition via vψ̃ − vψ =

∑N
α=1 ψ̃αvα − vψ =

∑N
α=1 ψ̃α(vα − vψ). We express the

bracked term via fluxes Nψ
α , and repeat the same calculation with respect to the

ψ-frame. Altogether,

vψ̃ − vψ =
N∑

α=1
ψ̃α/cα ·Nψ

α = −
N∑

α=1
ψα/cα ·Nψ̃

α . (5.314)

This expansion can be reduced by substitution of Nψ
1 ,

vψ̃ − vψ =
N∑

α=2

(
ψ̃α

ψα
− ψ̃1
ψ1

)
ψαN

ψ
α

cα
=

N∑
α=2

(
ψ1

ψ̃1
− ψα

ψ̃α

)
ψ̃αN

ψ̃
α

cα
. (5.315)

We define frame transformation matrices between the reference frame ψ̃ and the
reference frame ψ,

Uψ̃ψα = ψ̃α/cα ·
(
ψ1/ψ̃1 −ψα/ψ̃α

)
, U ψ̃ψαβ = δβ

α + cαU
ψ̃ψ
β . (5.316)

By construction, the inverse transformation, i.e. from ψ to ψ̃, is

Uψψ̃α =
(
Uψ̃ψα

)−1
= −ψ̃1/ψ1 ·Uψ̃ψα , and Uψψ̃αβ =

(
U ψ̃ψαβ

)−1
= δβ

α +cαU
ψψ̃
β . (5.317)

83



5 Transport Theory

The latter relation can easily be checked by verifying that
∑N

β=2(δβ
α + cαU

ψ̃ψ
β )(δγ

β +
cβU

ψψ̃
γ ) = δγ

α. Thus, we find that

vψ − vψ̃ = −
N∑

β=2
U
ψ̃ψ
β ·Nψ̃

β . (5.318)

This allows to derive the transformation rule for the fluxes between two reference
frames,

Nψ
α = Nψ̃

α + cα ·
(
vψ̃ − vψ

)
=

N∑
β=2
U ψ̃ψαβ ·N

ψ̃
β . (5.319)

Note that this relation holds for all species-fluxes Nψ
α (i.e., α = 1, . . . ,N). From this

we derive the transformation behaviour of the electric currents (see eq. (5.290)),

J ψ
F = J ψ̃

F + ϱF

N∑
β=2

U
ψ̃ψ
β N

ψ̃
β (5.320)

This reproduces our finding from above, that the currents are the same in all frmaes
in the electroneutral case.

Each reference frame leads to a specific set of transport parameters defined by
the Onsager-coefficients appearing in the corresponding Onsager-expansion Nψ

α =
−
∑N

β=1 L
ψ
αβ ·∇µel

β .
Above, we showed that charge conservation (eq. (5.290)), and the universal flux-

constraint (eq. (5.288)) reduce the set of independent fluxes, where the independent
flux expansion was based on quantities z̃ψα and ν̃ψ (see eqs. (5.291) and (5.295)). In
order to derive the transformation rules for these quantities, we use that

z1 = ψ1
c1
·
(
ϱF −

N∑
α=2

cαz̃
ψ
α

)
and ν1 = ψ1

c1
·
(
1−

N∑
α=2

cαν̃
ψ
α

)
. (5.321)

Furthermore, we use that z1 = z̃ψα +ψαc1z1/cαψ1. Finally, we obtain
z̃ψ̃2
...

z̃ψ̃N

=
(
U ψ̃ψ

)T


z̃ψ2
...

z̃ψN

− ϱF


U
ψ̃ψ
2
...

U
ψ̃ψ
N

 and


ν̃
ψ̃
2
...

ν̃
ψ̃
N

=
(
U ψ̃ψ

)T


ν̃
ψ
2
...

ν̃
ψ
N

−

U
ψ̃ψ
2
...

U
ψ̃ψ
N

 ,
or, in components,

z̃ψ̃α =
( N∑

β=2
δβ

α+cβU
ψ̃ψ
α

)
z̃ψβ−ϱFU

ψ̃ψ
α and ν̃ψ̃α=

( N∑
β=2

δβ
α+cβU

ψ̃ψ
α

)
ν̃
ψ
β−U

ψ̃ψ
α . (5.322)
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Next, we calculate the transformation rule for the reduced set of electrochemical
forces. A straightforward calculation shows that ∇µ̃el;ψ

α = ∇µ̃el; ψ̃
α +Uψ̃ψα ·c1∇µel

1 /ψ1.
However, the quantity ∇µel

1 is not independent. Using the Gibbs-Duhem equation,

c1∇µel
1 = ψ̃1 ·∇τ− ψ̃1 ·

N∑
α=2

cα∇µ̃el; ψ̃
α . (5.323)

Altogether, the transformation rule of the electrochemical forces reads

∇µ̃el;ψ
α =

N∑
β=2

(
δβ

α + cβU
ψψ̃
α

)
·∇µ̃el; ψ̃

β − Uψψ̃α ·∇τ (5.324)

=
N∑

β=2

(
Uψψ̃αβ

)T
·∇µ̃el; ψ̃

β − Uψψ̃α ·∇τ (5.325)

=
N∑

β=2

[(
U ψ̃ψαβ

)−1]T ·∇µ̃el; ψ̃
β − Uψψ̃α ·∇τ. (5.326)

This transformation seems to be in conflict with the transformation rule found for
the valencies z̃ψα , see eq. (5.322). We show that the transformation rules eqs. (5.322)
and (5.326) are consistent with each other, and expand ∇τ =

∑N
β=1 cβ ·∇µ̃el

β , and
split eq. (5.326) into it’s electric and chemical part,

∇µ̃el; ψ̃
α =

( N∑
β=2
U ψ̃ψβα F z̃

ψ
β−U

ψ̃ψ
α ϱF

)
∇Φ +

N∑
β=2
U ψ̃ψβα ∇µ̃el;ψ

β −Uψ̃ψα

N∑
γ=1

cγ∇µγ . (5.327)

The first bracked term reproduces exactly the transformation behaviour of the va-
lencies z̃ψα , which we derived above, see eq. (5.322). The second and third term
determine the transformation behaviour of the chemical forces ∇µ̃ψα .

The transformation behaviour of the fluxes determines the transformation be-
haviour of the transport parameters. A simple calculation shows that

τψα ·J
ψ
F =

N∑
β=2

[
δαβ + cαU

ψ̃ψ
β

]
· τψ̃β ·J

ψ̃
F . (5.328)
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Next, we transform the electric current on the left side using eq. (5.320), such that

τψα =

N∑
β=2

[
δαβ + cαU

ψ̃ψ
β

]
· τψ̃β

N∑
α=1

Fzα

N∑
β=2

[
δαβ + cαU

ψ̃ψ
β

]
· τψ̃β

=

N∑
β=2

[
δαβ + cαU

ψ̃ψ
β

]
· τψ̃β

1 + ϱF

N∑
β=2

U
ψ̃ψ
β τ

ψ̃
β

. (5.329)

Thus, in the electroneutral case, the transformation behaviour of the transference
numbers between different frames reads

τψα =
N∑

β=2

[
δαβ + cαU

ψ̃ψ
β

]
τ
ψ̃
β = τψ̃α + cα

N∑
β=2

U
ψ̃ψ
β · τψ̃β =

N∑
β=2
U ψ̃ψαβ · τβ (5.330)

or, in matrix form (
τ
ψ
2 , . . . , τ

ψ
N
)T = U ψ̃ψ ·

(
τ
ψ̃
2 , . . . , τ

ψ̃
N
)T (5.331)

Next, we derive the transformation behaviour of the elctrolyte electric conductiv-
ities. For this puprose, we assume that ∇µ̃el;ψ

α = F z̃α∇Φ, and use the expansions
J ψ

F = F
∑N

α=2 z̃
ψ
αN

ψ
α and Nψ

α = −
∑N

β=2 L
ψ
αβF z̃

ψ
β ∇Φ, such that

κ
ψ = κψ̃ + ϱF

N∑
α,β=2

Uψ̃ψα F z̃βL
ψ̃
αβ. (5.332)

Thus, if ϱF=0, the electrolyte electric currents are the same in all frames.
Finally, we derive the transformation behaviour of the Onsager coefficients. For

this purpose, we use the Onsager Ansatz −
∑N

β=2 L
ψ
αβ∇µ̃el;ψ

β = Nψ
α , and transform

the fluxes on the right side to the ψ̃ -frame. Next, we express the fluxes Nψ̃
α via the

corresponding Onsager expansion (setting ∇τ ≈ 0) , such that the transformation
of the Onsager matrix becomes

Lψ = U ψ̃ψ ·Lψ̃
(
U ψ̃ψ

)T
. (5.333)

The transformation behaviour of the Onsager matrix determines the transformation
behaviour of all transport parameters. In particular, eqs. (5.329) and (5.333) con-
stitute implicitely the transformation behaviour of the diffusion coefficients Dψαβ =
L
ψ
αβ − κψtψαt

ψ
β /F

2zαzβ . As consistency check, we calculate the transformation of
the flux ratios from the transformation rule of the Onsager matrix, eq. (5.333) in
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electroneutral case,
τ
ψ
2
...

τ
ψ
N

=F 2

κ
Lψ


z̃ψ2
...

z̃ψN

=F 2

κ
U ψ̃ψLψ̃(U ψ̃ψ)T (U ψ̃ψ)−T


z̃ψ2
...

z̃ψ̃N

=U ψ̃ψ


τ
ψ̃
2
...

τ
ψ̃
N

 . (5.334)

This reproduces exactly the transformation rule which we found above, see eq. (5.331).

5.5.4 Internal And External Frames of Reference

The set of reference frames can be split into “internal farmes”, which depend on the
dynamics of the electrolyte, and “external frames”, which are independent of the
internal electrolyte dynamics.

The internal description makes use of the universal flux constraint (eq. (5.288)),
and it is beneficial to choose the internal frame in accordance with the boundary
conditions of the physical set up. Hence, there exist many definitions for internal
frames in the literature, [133]), which apply to different systems.

Here, we discuss three different reference-frames which are related by simple trans-
formation rules, where we assume thermal equilibrium, and neglect viscous forces
and chemical reactions.

Our main transport theory is based on the center of mass velocity, ψα = Mαcα/ρ,
where vCMF =

∑N
α=1 ραvα/ρ. The universal flux constraint eq. (5.288) in this frame

is
∑N

α=1MαN
CMF
α = 0.

Another example of an internal frame is the volume averaged frame defined by
ψα = cανα, where vVolume =

∑N
α=1 cαναvα. The universal flux constraint eq. (5.288)

becomes
∑N

α=1 ναN
Volume = 0, and is reminiscent of the Euler equation for the

volume (
∑N

α=1 ναcα = 1). Because ψαc1/ψ1cα = να/ν1,

z̃Volume
α =zα−z1να/ν1 , ν̃Volume

α =να−ν1να/ν1 =0, µ̃Volume
α =µα−µ1να/ν1 .

(5.335)
As shown in section 5.5.2, the volume averaged description has the unique prop-
erty that the convection equation becomes trivial for incompressible electrolytes,
∇vVolume = 0.

Another example is the so-called solvent frame, or internal velocity reference-
frame (IVRF), which designates one species velocity as reference. This can be a
good approximation for electrolytes with an excess solvent species, e.g. aqueous
electrolytes or polymer electrolytes. In this case ψIVRF

α = δα
1 such that vIVRF = v1.

The universal flux constraint reads NIVRF
1 = 0, and, by construction, tIVRF

1 = 0.
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Because ψαc1/ψ1cα = δα
1 ,

z̃IVRF
α |α≥2 = zα, ν̃IVRF

α |α≥2 = να, µ̃IVRF
α |α≥2 = µα. (5.336)

Next, we derive the transformation rules between these internal reference frames
in the electroneutral case, see eq. (5.329). As shown in section 5.5.3, these depend
upon the transformation matrices Uψ̃ψα defined by eq. (5.316). We find for the
transformation between the center of mass description and the volume averaged
description,

UCMF;Volume
α = −ν̃CMF. (5.337)

This reproduces our finding from above (eq. (5.302)), that the quantities ν̃CMF trans-
form the mass fixed description to the volume fixed description. Thus,

τVolume
α = τCMF

α − cα

N∑
β=2

ν̃CMF
β · τCMF

β . (5.338)

Therefore, the transference numbers in both frames are similar if
∑N

β=2 ν̃β ·τCMF
β ≪ 1,

e.g., if all products satisfy ναM1 ≈ ν1Mα.
For the transformation between the center of mass description and the solvent

frame, i.e. the IVRF description, we find UCMF;IVRF
α = Mα/M1c1 , such that

τIVRF
α = τCMF

α − cα/c1 · τCMF
1 . (5.339)

Thus, the transference numbers in the two descriptions coincide in the limit where
the solvent is the bulk excessive species, c1 ≫ cα|α≥2, or if τCMF

1 = 0.
In table 5.1 we summarize the different examples for internal reference frames

which we discussed above.
We compare these formulations based on internal frames with the external de-

scription. For this purpose, we define the fluxes in the laboratory frame (LF) via

NLF
α = Nψ

α + cαvψ = cαvα, and J LF
F = J ψ

F + ϱFvψ = Fzαcαvψ, (5.340)

and the LF-frame transference numbers by NLF
α = tLF/Fzα · J LF

F . The normaliza-
tion condition

∑N
α=1 t

LF
α = 1 implies that only N-1 transference numbers tLF

α are
independent. A simple calculation shows that, assuming chemical equilibrium,

Nψ
α= tψαJ ψ

F
Fzα

=NLF
α −cαvψ= tLF

α J ψ
F

Fzα
−cα

N∑
β=1

ψβvβ=
N∑

β=1

tLF
β J ψ

F
Fzβ

(
δβ

α−
ψβcα

cβ

)
. (5.341)
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In the last step we substituted vβ = NLF
β /cβ = tLF

β J LF
F /Fzβcβ. Because J ψ

F = J LF
F

in the electroneutral case, we find that

tψα =
N∑

β=1

zα

zβ
·
(
δβ

α −ψβcα/cβ

)
· tLF

β (5.342)

Thus, the difference between the transference numbers in the ψ-frame and the trans-
ference numbers in the LF-frame depends on the ion concentrations. Furthermore,
we find that the electric conductivity in the LF description equals the corresponding
quantity in the ψ- description in the case of electroneutrality,

κ
ψ = κLF − ϱFvψ ·E/E2 . (5.343)

Frame ψα vψ Flux constraint Systems

CMF
ρα

ρ vCMF=
N∑

α=1

ραvα

ρ

N∑
α=1

MαN
CMF
α =0

ILs / Concentrated
Electrolytes

Volume cανα vVolume=
N∑

α=1
cαναvα

N∑
α=1

ναN
Volume=0

ILs / Concentrated
Electrolytes

IVRF δα
1 vIVRF=v1 NIVRF

1 =0 Aqueous / Polymers

Table 5.1: Summary of the different examples for internal reference frames discussed
in section 5.5.4.

Interestingly, the discrepancy between the external and internal descriptions de-
pend upon the relative orientation between the center-of-mass motion, and the elec-
tric field. For example, in the highly artificial case where the reference-velocity is
normal to the electric field (vγ⊥E and v⊥E), all electrolyte conductivities are equal.

In particular, the relation between the solvent frame and the external frame is
given by (note that tIVRF

1 = 0),

tIVRF
α |α≥2 = tLF

α − zαcα/z1c1 · tLF
1 . (5.344)

Thus, in the case where the solvent species is much larger than the other species,
cα|α,1 ≪ c1, the transference numbers are approximately the same.

The relation of the transference numbers between the CMF description and the
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LF description is

tCMF
α = (1−Mαcα/ρ ) tLF

α −
∑
β,α

zα/zβ ·Mβcα/ρ · tLF
β . (5.345)

Hence, in the case where there exists a dominant solvent species, Mα∗cα∗ ≈ ρ, the
transference number of the solvent species in the CMF description is completely
determined by the external transference numbers of the minor species, tCMF

α∗ ≈
−
∑

β,α∗ zα∗Mβt
LF
β /zβMα∗ , whereas the transference numbers of the minor species

are tCMF
γ,α∗ ≈ tLF

γ,α∗ −
∑

β,α∗ zγcγMβt
LF
β /zβMα∗cα∗ .

Note that similar results hold for the relation between the Volume description and
the LF description, where the masses are to replaced by the molar volumes.

5.5.5 Comment on Transference Numbers in Binary Electrolytes

Because only N-2 independent transference numbers exist in a N-component elec-
trolyte mixture (see section 5.5.2), the concept of transference numbers in a binary
electrolyte becomes somewhat arbitrary. In particular, t̃ψ1 =0 and t̃ψ2 =1. Neverthe-
less, there exist completely fixed transference numbers tψ1 and tψ2 , see eq. (5.311).

In the center of mass description, the transference numbers are completely deter-
mined by the mass ratio of the two ionic species(“Sundheim’s Golden rule”), [298]

tCMF
1 = (1 +M1/M2 )−1 , and tCMF

2 = (1 +M2/M1 )−1 , (5.346)
whereas the transference numbers in the volume averaged description are completely
determined by the ratio of the two molar volumes ,

tVolume
1 = (1 + ν1/ν2 )−1 , and tVolume

2 = (1 + ν2/ν1 )−1 , (5.347)
and, in the the solvent frame (see eq. (5.308))

tIVRF
1 = 0, and tIVRF

2 = 1. (5.348)

5.5.6 Relation to Experiments

There exist many different definitions for transference numbers in the literature.
This bears the potential for confusion, and relates also to the experimental de-
termination of transference numbers. Recently, there is an ongoing debate in the
literature, regarding the sign and magnitude of transference numbers for highly con-
centrated electrolytes, and ILs. [41,43,44]

A reporting of transference numbers should be accompanied by a complete char-
acterization of the underlying concepts. In particular, the number of independent
parameters, and the reference-frame should be stated clearly. Also, the knowledge
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of the parameters tα does not comprise much physical insight, unless the quantities
z̃α are known (see the discussion in section 6.2.3). In this sense, the ratios tα/z̃α

are the more fundamental transport parameters. In section 5.5.4, we discussed dif-
ferent reference-frames. These relate to differing experimental set ups, and must be
probed in agreement with experiments. However, experimental methods must take
account for all inter-species correlations, including the formation of ionic clusters and
ion-aggregates. [308] Thus, the experimental measurement of transference numbers is
challenging.

For concentrated electrolytes, the applicability of NMR/PFG-NMR experiments
for the determination of transport parameters is limited, due to various problems.
First, this method neglects the formation of ionic complexes. Second, transfer-
ence numbers are derived from diffusion coefficients via Nernst-Einstein relations,
which are valid only for ideal electrolytes. Third, this method provides only av-
eraged values. [261,262,308] Another prominent experiment is based on non-blocking
electrodes, [261] but is limited to metal ions. [43] A novel experiment for measuring
ion mobilities is electrophoretic NMR (eNMR), [41,43,309,310] which applies to a wide
variety of concentrated electrolytes, neat ILs and IL-mixtures.

Depending upon the experimental method, internal and external flux-descriptions
can be useful. For example, IVRF-descriptions relate naturally to “Hittorf”-type
measurements of transference numbers, [117,192] whereas the CMF- and LF description
relates to the moving-boundary method. [191,296] In addition, the volume averaged
Volume-description relates to the determination of transference numbers based on
experiments using electrophoretic-NMR (eNMR). [44,310]

Finally, we discuss the relation to ionic mobilities, as measured in eNMR experi-
ments. For this purpose, we assume the limiting case where eq. (5.304) is valid (i.e.
all chemical potentials and the temperature gradients vanish). Then, J ψ

F = κE.
In eNMR experiments, a uniform electric field Eext is applied externally for a very
short period of time upon the electrolyte. This external field polarizes the liquid
electrolyte, and induces a constant force upon the ions. However, the resulting ac-
celeration of the ions is quickly dissipated by friction forces, and the ions reach a
constant drift velocity vdrift

α which is, to a good approximation, proportional to the
external electric field (in accordance with linear response theory). We define the
corresponding species mobilities mα via vdrift

α = mαEext. Thus, by construction,
the species mobilities are frame-independent, i.e. invariant under frame transfor-
mations. Next, we identify the drift velocity of the ion species with the species
velocities, vdrift

α = vα = τψαE/cακ
ψ + vψ, and obtain a relation between the species

mobilities and transport coefficients,

τψαEκψ/F = Eextmαcα + vψcα. (5.349)
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Assuming vdrift=vα, and using eq. (5.284), we find

Eext ·
N∑

α=1
mαψα = vψ, (5.350)

which corresponds to the universal flux constraint eq. (5.288). Hence, in the case
where the convection velocity vanishes, vψ=0, this implies

∑N
α=1 mαψα = 0. In

addition, charge conservation (eq. (5.309))

E · κψ = Eext ·
N∑

α=1
Fmαcαzα + ϱFvψ. (5.351)

Thus there exist only N-2 independent species mobilities. However, the precise form
for the independent parameters mα depends crucially upon the boundary conditions,
since these determine the relation between the applied external agent Eext and the
electrolyte electric field E. In addition, in the case of electroneutrality or in the case
where the convection velocity vanishes, the constraint eq. (5.351) implies E · κψ =
Eext ·

∑N
α=1 Fmαcαzα. In the approximation E = Eext, i.e. when the polarization

of the electrolyte is ideal, and if the convection velocity vanishes, then eq. (5.349)
implies

mα = τψακ
ψ/Fcα , (5.352)

and
N∑

α=1
mαψα = 0, such that κ

ψ = F
N∑

α=2
mαcαz̃

ψ
α . (5.353)

Hence, in a binary electrolyte at electroneutral state, where z+ = −z−, and the bulk
concentration cb = 1(ν+ + ν−), we find that in the volume description

m+ = κν2/Fz1 , and m− = κν1/Fz2 , (5.354)
whereas in the mass description,

m+ = κM2/Fz1ρ , and m− = κM1/Fz2ρ . (5.355)
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6 Validation: Quaternary IL-mixture as
Electrolyte in a Zinc-Ion Battery

Here, in this chapter. we validate our transport-theory for a battery-system based
on a highly-concentrated electrolyte. In section 6.1, we introduce the cell-set-up
and electrolyte-composition, and state the transport equations and the reactions.
Next, in section 6.2, we present the simulation results of our numerical investiga-
tion. Finally, in section 6.3, we classify the electrolyte as highly concentrated (see
section 5.4.7) using the as-discussed electrolyte. We provide additional information
in the appendix, see appendix D.9.

6.1 Electrolyte Transport Equations and Electrolyte
Composition

In order to validate our transport theory, we model a secondary zinc-ion battery
(ZIB) with IL-water mixture as electrolyte which was described experimentally in
Refs. 311,312.

The ZIB consists of a porous zinc-anode (zinc powder), and a Prussian-blue-
analogue (PBA) cathode, which allows a reversible Zn2+ insertion into the host
structure FeFe(CN)6. [311] The electrolyte is composed of [Ch]OAc with 30 wt % wa-
ter, and minor amount of zinc acetate (Zn(OAc)2) (despite the high amount of water,
this electrolyte can still be viewed as “highly concentrated”, [311] see section 6.3).

6.1.1 Reactions and Electrolyte Species

We assume a complete dissociation of the electrolyte into Ch+, OAc– , [Zn(OAc)3]– ,
Zn2+, and water according to the bulk-reactions (see table D.2)

[Ch]OAc⇌ Ch+ + OAc−, (6.1)
3 Zn(OAc)2 ⇌ Zn2+ + 2 [Zn(OAc)3]−, (6.2)

Zn(OAc)2 ⇌ Zn2+ + 2 (OAc)−. (6.3)
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Scheme 6.1: Scheme of the zinc ion battery. Figure first published in Ref. 67.

Beneath 6.2, zinc-complexes also form via the secondary bulk-reaction

Zn2+ + 3 OAc− ⇌ [Zn(OAc)3]−. (6.4)

We assume that, zinc ions in the bulk electrolyte occur mainly via the complex-
ified species [Zn(OAc)3]– , [313] and that the reactions producing the zinc-complex
Zn(OAc)2 are very fast. Beneath the bulk-reactions, heterogeneous reactions at
the electrolyte-electrode interphases occur. Zinc gets deposited at the zinc-anode
during charging of the cell, and dissolves from the zinc-anode during discharg-
ing the cell, Zn ⇌ Zn2+ + 2 e– . However, the dissolved Zn2+-ions complexify
via eq. (6.4), where we neglect the inverse reaction. Likewise, during charging
the cell, zinc-ions are extracted from the cathodic PBA-structure, and inserted
into the host-structure of the cathode during discharging the cell, Zn2+ + 2 e– +
[Fe(III)(CN)6] ⇌ [ZnFe(III)(CN)6]. Altogether, the resulting reactions are

Zn + 3 OAc− ⇌ 2 e− + [Zn(OAc)3]−, (6.5)
[Zn(OAc)3]− + 2 e− + [Fe(III)(CN)6] ⇌ 3 OAc− + [ZnFe(III)(CN)6]. (6.6)

Note that the ionic choline-species only participates in the dissociation reaction
eq. (6.1), and is thus modelled non-reactive in our approach. We illustrate the elec-
trolyte composition and the species reactions in Scheme 6.1 (see also appendix D.9
for more details).
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6.1.2 Model Equations

Here, we state the complete set of electrolyte-transport-equations using porous elec-
trode theory. For supplemental material, see appendix D.9.

The electrolyte is composed of water, Ch+, OAc– , and [Zn(OAc)3]– . Here, we
choose water as first species, i.e. z̃α = zα (section 6.2.3 for different choices).
Because of electroneutrality, i.e. ϱF = 0, the charge density is not a free variable.
Hence, we discard the Poisson equation and replace ∂tϱF = 0 by ∇J F = 0. By
assumption, temperature appears only as constant parameter and we neglect non-
ideal contributions (f αc = 1) such that φint

H = 0, and we assume a constant viscosity
(λ = 25.3 mPa s and η = 0). [314] The two independent concentrations c3 and c4
determine c1 and c2 via eqs. (5.222) and (5.223) (where ϱF = 0).

According to porous electrode theory, we modify the set of transport equations,
eqs. (5.244) to (5.246)). [315] ,

∂t (εcα) |α=3,4 = −∇ (εcαv)−∇
(
εβNα

)
+ rα, (6.7)

0 = ∇
(
εβJ F

)
= −∇ (εϱFv) +

4∑
α=1

Fzαrα, (6.8)

∇ (εv) =
4∑

α=1
να · rα −

ν̃2
F z̃2

·∇
(
εβJ F

)
−

4∑
α=3

˜̃να ·∇
(
εβNα

)
. (6.9)

where ε = V l/V is the volume-fraction of the liquid phase relative to the overall vol-
ume (often called “porosity”) and the material parameter β is the so-called Brugge-
mann coefficient, which phenomenologically accounts for the specific microstructure.

We neglect bulk reactions and model the chemical reactions occuring at the elec-
trodes, eqs. (6.5) and (6.6), as source-terms for eqs. (6.7) to (6.9) via

rα =
∑

k

aΓ · ν Γ
k;α · iΓk . (6.10)

Thus, the species reactions rα include all reactions k of species α at all electrodes
Γ . Each species-reaction contributes via a stoichiometric factor ν Γ

k;α. The specific
electrode-surfaces aΓ measure the surface to volume ratio of the electrode Γ . The
quantity iΓk is the surface-reaction rate, which comprises the interface-conditions
between the electrodes and the electrolyte via a Butler-Vollmer Ansatz. [316]
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6.2 Simulation Results

In this section, we discuss the results of our numerical simulations. First, in sec-
tion 6.2.1, we simulate galvanostatic discharge and charge of the ZIB by applying a
moderate discharge current, and compare the results for the specific capacities and
cell voltage with experimental observations, and study the evolution of the spatial
profiles for the species concentrations and the convection velcoity. In section 6.2.2,
we probe for increased discharge dynamics . Finally, in section 6.2.3, we show sim-
ulation results for discharging the cell using different reference frames.

6.2.1 Electrolyte Dynamics: Diffusion, Migration and Convection

We apply an external current density of I = 0.1 mA cm2 and study the galvanostatic
discharge and charge of the ZIB. Subfigure a) in fig. 6.1 illustrates the specific cell
capacities and the cell voltage during discharging and charging the cell, where the
results of simulations and experiment are in good agreement. Because our model
does not capture atomistic processes in the solid phase, it cannot reproduce the two
discharge-phases (with transition at roughly 20 mA h g−1) in experimental curve,
which can be attributed to two different electro-reactivities of the PBA-material,
stemming from distinct spin-phases of Fe(III). [311]

Next, we discuss the interplay between the transport mechanisms migration, diffu-
sion and convection with electrode reactions, and the influence on cell performance.
For this purpose, we designate characteristic moments of discharge. Subfigure b)
in fig. 6.1 shows the cell voltage versus time of discharge, and all designated mo-
ments highligting the initial phase (t = 250 s, 420 s, 520 s), the intermediate phase
(t = 15 000 s, 25 000 s), and the moment of complete cell-discharge (t = 48 000 s).
We show that the dynamical quantities v, vα, cα, Φ at these moments reveal all
significant discharge-processes during cell-operation.

Figure 6.2 shows the evolution of the convection velocity (subfigure a), and the

Species z̃α c0
α / mol m−3 ρ0

α/
∑4

α=1 ρ
0
α να / m3 mol−1 c0

ανα/−
H2O 0 19.43·103 0.25 1.8·10−5 0.35
Ch+ 1 5.00·103 0.39 7.0·10−5 0.35
OAc– −1 4.00·103 0.18 5.5·10−5 0.22
[Zn(OAc)3]– −1 1.00·103 0.18 8.0·10−5 0.08

Table 6.1: Initial electrolyte composition and effective species-valences in the
reference-frame where water is the designated species (α = 1).
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a)                                                    b)

Figure 6.1: a) Cell voltage versus specific capacities during galvanostatic discharging
and charging the cell (applied external current density I = 0.1 mA cm2). b) Cell
voltage during discharge versus discharge time. The bullets illustrate designated
moments during the discharge-process. The inset highlights the designated moments
in the initial discharge-phase. Figures first published in Ref. 67.

a)                                                    b)

Figure 6.2: Temporal evolution of the convection profile (subfigure a), and the electric
potential (subfigure b). Apparently, the convection velocity changes direction during
discharge, and the cathode is more electronegative than the anode. Figures first
published in Ref. 67.

electric potential (subfigure b). Both exhibit a similar behaviour: the initial phase is
characterized by major changes in the profile, which quickly relax towards station-
arity, whereas, at later times, the profiles remain effectively constant. This suggests
that the initial phase constitutes a transient phase, during which the electrolyte
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exhibits strong dynamics and relaxes towards a quasi-stationary state.
The convection velocity changes it’s direction from towards the anode (negative

sign), to towards the cathode (positive sign) during the transient phase (see subfigure
a) in fig. 6.2). At all later times, the convection velocity is directed towards the
cathode. In contrast, the electrolyte electric potential Φ exhibits roughly a constant
gradient from anode to cathode (∆Φ ≈ −0.1 mV) at all times during discharge
(see subfigure b in fig. 6.2). Thus, the cathode is more electronegative than the
anode, which implies that migration pulls OAc– -ions and [Zn(OAc)3]– -ions towards
the anode, and Ch+-cations towards the cathode. Thus migration hinders the cell-
operation, which relies on the cathode reactions involving the [Zn(OAc)3]– -ions, see
eq. (6.6). As consequence, diffusion and convection must overcompensate migration
to sustain cell operation.

Figure 6.3 shows the evolution of the volume-fractions cανα, i.e. of the species
concentrations (since the partial molar volumes are constant). Similar to the be-
haviour of v and Φ (fig. 6.2), the concentration-profiles exhibit an initial dynamical
phase, where concentration differentials from anode to cathode grow, followed by a
quasi-stationary phase.

Dynamics t/s Direction vH2O vCh+ vOAc− v[Zn(OAc)3]−

Transient phase
250 chaotic/mixed cathodic anodic cathodic
420 chaotic/mixed cathodic anodic mixed
520 chaotic/mixed cathodic anodic cathodic

Quasi-stationary
15000 anodic anodic anodic cathodic
25000 anodic anodic anodic cathodic
48000 anodic anodic anodic cathodic

Table 6.2: Species veolicities vα at different moments of discharge. “Anodic” direc-
tion: negative velocity-profile; “cathodic”: positive velocity-profile.

Table 6.2 summarizes the directions of the species-velocities vα during discharge.
The motion of the OAc– -ions towards the anode, and of the [Zn(OAc)3]– -ions to-
wards the cathode both favor the crucial electrode reactions eqs. (6.5) and (6.6)
which thus sustains cell operation. In contrast, the velocities of water and the Ch+-
ions exhibit change direction. The direction of water is highly non-uniform during
the transient phase, and relaxes towards an averaged anodic direction at later times.
Likewise, the direction of the non-reacting Ch+-velocity switches from towards the
cathode to towards the anode after the transient phase.

Because of the mutually coupled transport equations, see eqs. (6.7) to (6.9), sim-
ilar dynamical behaviour and common transient times of v, Φ, cα and vα is to be
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a)                                                      b)

c)                                                      d)

Figure 6.3: Temporal evolution of the volume fractions of all species. Since να are
constant, these figures illustrate the time-evolution of the species-concentrations.
See table 6.1 for the values of c0

α, and να. Figures first published in Ref. 67.

expected from an analytical point of view, and suggests that there exists common
initiation-mechanism. Initially, the electrolyte is in equilibrium, where all quantities
v, Φ, cα, vα are homogenously constant (see table 6.1). The application of external
discharge currents pushes the electrolyte out of this equilibrium state, where spon-
taneous electrode reactions drive the interface-dynamics, and the system variables
experience a dynamical phase. The electrolyte evolves towards a quasi-stationary
state (for the constant discharge currents), and, after some transient time, the quan-
tities remain almost constant.

In the following, we give a detailed analysis of the evolution of each electrolyte
species, and derive a rational interpretation of the electrolyte behaviour.

We first discuss the dynamics of the reacting species, i.e. [Zn(OAc)3]– and OAc– ,
which sustain cell-operation via the electrode reactions eqs. (6.5) and (6.6). The
concentration of the nagative zinc-complex increases at the anode and decreases
at the cathode at all times during discharging the cell (see fig. 6.3d)). However,
the formation of the concentration gradient is in competition with the net flux of
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[Zn(OAc)3]– towards the cathode at all times (see table 6.2). Thus, the net increase
of [Zn(OAc)3]– -concentration at the anode during the transient-phase implies that
the process of [Zn(OAc)3]– -production via the dissolution of zinc near the anode
(see eq. (6.5)) dominates over transport towards the cathode. This favors cell-
operation, as it ensures a sufficient supply of [Zn(OAc)3]– -ions for transport towards
the cathode (which is crucial for the operation of the cell, see eq. (6.6)). After this
transient phase, transport and species production are balanced and the concentration
profile of [Zn(OAc)3]– becomes quasi-stationary. Nevertheless, there is a net flux of
[Zn(OAc)3]– -ions towards the cathode at all times (see table 6.2). This suggests that
[Zn(OAc)3]– -diffusion towards the cathode, due to stark concentration gradients (see
subfigure d in fig. 6.3), dominates over the migrational pull of the[Zn(OAc)3]– -anions
towards the more electro-positive anode (see fig. 6.2).

We make a similar observation for the dynamics of the OAc– -ions. Initially, during
the transient phase, the concentration of OAc– -ions increases near the cathode and
decreases near the anode, see fig. 6.3c). Due to the net flux of OAc– -ions towards
the anode at all times (see table 6.2), local production of OAc– -ions at the cathode
via eq. (6.6) dominates over the anodic flux of OAc– -ions. As for the [Zn(OAc)3]– -
ions, both competing processes are in quasi-equilibrium after the transient-phase.
In contrast to the [Zn(OAc)3]– -ions, the negative OAc– -flux is a combined result
of diffusion and migration, which both push the OAc– -ions into the same direction
towards the anode.

During the transient phase, concentration gradients of Ch+-ions are formed. At all
times, the concentration of Ch+-ions at the more electronegative cathode is higher
than at the anode (see fig. 6.3b)). During the initial phase, the pulls of migration
of the Ch+-ions towards the cathode is supported by a net flux directed towards
the cathode (see table 6.2). Once the system becomes quasi-stationary, the net-flux
of Ch+-ions reverses it’s direction towards the anode. Together with diffusion, it is
then in equilibrium with the migrational pull of the Ch+-ions towards the cathode.

In contrast to the charged species, the neutral water exhibits a highly non-
homogeneous velocity-profile during the transient phase (see table 6.2). This sug-
gests that water serves as local supply for volume-compensation due to volumetric
redistributions, and effectively balances local volume-inhomogeneities. After relax-
ation of the system, the velocity of water is directed towards the anode. Note that,
in our model, water has by far the lowest partial molar volume , and is abundant
compared to the ionic species (see table 6.1).

Next, we evaluate the influence of the electrode-reactions on convection (see
eqs. (6.5) and (6.6)). A simple balancing shows that, although [Zn(OAc)3]– -ions
have the largest partial molar volume, OAc– -ions are the dominant species with re-
spect to volume-production (see table 6.1). The consumption of one [Zn(OAc)3]– -ion
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a)                                                    b)

Figure 6.4: a) Normalized concentration profiles at end-of-discharge. b) Convective
versus non-convective species-transport at end-of-discharge. The inset illustrates the
conduction current density at end-of-discharge. Figures first published in Ref. 67.

per cathode reaction ( eq. (6.6)) produces three OAc– -ions at the cathode, and thus
consumes a net-molar-volume of 3νOAc−−ν[Zn(OAc)3]− > 0. Thus, near the cathode,
“molar volume is produced”, which pushes bulk electrolyte towards the anode. The
same, “inverse” process (per reaction) occurs at the anode, where a net volume (oc-
cupied by three OAc– -ions) is at disposal for replacement of bulk-electrolyte. Thus,
in each anode-reaction, a net amount of “available” volume is produced, which is
then compensated by bulk electrolyte. Therefore, during the transient phase, where
the electrode-reactions are dominant, both processes induce anodic convection. This
is in agreement with subfigure a) in fig. 6.2, which shows a “negative” convection
during the initial phase. As discussed above, after the initial phase, the reactions
are in equilibrium with transport. Then, convection is the delicate trade-off between
the transient currents.

Subfigure a) in fig. 6.4 illustrates the normalized concentration profiles of all elec-
trolyte species at end-of-discharge. Water and Ch+-ions exhibit moderate gradients.
Because water is electrically neutral, it is not susceptible to migration. Thus, the
concentration profile is formed via diffusion and convection. As explained above,
positive Ch+-ions acumulate near the more electronegative cathode, whereas the
concentration gradient throughout the cell is not very pronounced. Although OAc– -
ions and [Zn(OAc)3]– -ions are both negatively charged, their concentration gradients
have opposite direction. This property is mandatory for cell-operation. Large con-
centration gradients of the [Zn(OAc)3]– -ions imply that diffusion towards the anode
overcompensate migration towards the more electropositive anode, which sustains
cell operation via eq. (6.6). Likewise, a net transport of OAc– -ions towards the
anode is mandatory (see eq. (6.5)), which is constituted by the collaboration of
migrational, and diffusion (due to the small concentration gradient).
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a)                                                    b)

Figure 6.5: a) Cell voltage versus specific capacity under increased discharge cur-
rents. b) Convection profiles at end-of-discharge under increased discharge currents.
Figures first published in Ref. 67.

Subfigure b) in fig. 6.4 illustrates the relevance of convective versus non-convective
transport for all electrolyte species. The inset shows the center-of-mass electric
current εβJ F at end-of-discharge. The quantity εβNα = εβcα(vα − v) measures
flux-densities within the center-of-mass system, whereas the quantity εcαv measures
the mass flux of species α induced by the center-of-mass velocity. As consequence,
the ratio |εβNα/εcαv| is larger than one (roughly one), if convection is negligible
(dominant) for the transport in the corresponding species. However, beneath the
magnitude of this ratio, it’s sign also bears important data. The positivity of v at
end-of-discharge (see fig. 6.2) implies that negative (positive) ratios correspond to
species-fluxes Nα towards the anode (cathode). We shall first evaluate the (absolute)
magnitudes of the flux-ratio |εβNα/εcαv|. Apparently, convective flux contributions
are negligible for the two negative species. In contrast, convection plays a significant
role for the dynamics of water, and the Ch+-ions. Thus, convection is important
for those species that do not contribute to the half-cell reactions. This endorses
our interpretation from above, that water serves as local “volume-supply”, which
balances volumetric redistributions as consequence of electrode-reactions. Next, we
infer from the sign of the flux-ratio εβNα/εcαv that, at end-of-discharge, OAc– -
ions move towards the anode, whereas [Zn(OAc)3]– -ions move towards the cathode.
The latter property confirms our previous finding that diffusion of [Zn(OAc)3]– -ions
overcompensates migration.
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6.2.2 Increased Electrolyte Dynamics

In this section, we study how increased external discharge currents affect the elec-
trolyte dynamics. This investigation illustrates the power-limiting mechanisms of
the IL electrolyte.

Figure 6.5a) illustrates the cell performance under increased discharge currents.
Apparently, for moderately increased discharge currents (up to 2 mA cm−2), the
discharge curves preserve their shape, despite being shifted to decreased discharge
capacities. At higher discharge currents (3 mA cm−2 to 10 mA cm−2), steep voltage
drops lead to strong capacity fades. This suggests that, under increased discharge
currents, diffusion becomes too slow, as to supply the cathodic interfacial reaction
mechanism with sufficient amount of [Zn(OAc)3]– -ions. We confirm this assumption
below, which is typical for highly viscous electrolytes. [317]

Figure 6.5b) illustrates the profiles for the convection velocity at end-of-discharge
for each discharge current. Apparently, for all but the highest current, the convection
velocities are directed towards the cathode (at end-of-discharge). However, for the
limiting discharge current I = 10 mA cm−2, we observe a heterogeneous profile for
the convection velocity, which changes it’s direction across the cell. Notably, a steep
decrease can be observed between the separator and the cathode (at 15 µm). Ap-
parently, convection velocity pushes bulk electrolyte towards the anode everywhere,
except for the separator-region. We discuss this anomalous behaviour below.

Figure 6.6 shows the normalized species concentrations at end-of-discharge for all
discharge currents. For all but the highest current, the concentration-gradients in-
crease with increasing currents. Hence, for these currents, increasing the electrolyte
dynamics leads to more pronounced. However, subfigures a) and b) illustrate that,
even for the limiting discharge currents, the dynamics of the non-reacting species wa-
ter and Ch+-ions is not dramatically affected. Although the concentration gradients
increase, enhancing the dynamics does not lead to cell regions where these species
are effectively depleted. This is in contrast to the reacting species OAc– -ions and
Zn(OAc)2-ions. Except for the limiting discharge current (I = 10 mA cm−2), increas-
ing the dynamics favors OAc– -depletion near the anode, and [Zn(OAc)3]– -depletion
near the cathode. This confirms our explanation from above, that diffusion becomes
too slow as to supply the interfacial reaction-mechanisms with sufficient amount of
salt-species (increasing the discharge current increases the interfacial reaction-rates).

Finally, we shall investigate the anomalous electrolyte profiles appearing for the
limiting discharge current. Figure 6.7 illustrates the electrolyte dynamics for the dis-
charge current I = 10 mA cm−2. We follow the rationale from section 6.2.1 and desig-
nate characteristic moments during discharge of the cell, see subfigure a). Compared
to the capacities obtained by moderate discharge currents (see fig. 6.5), the capacity
of the cell is highly reduced, approximately from 50 mA h g−1 to roughly 7 mA h g−1.
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a)                                                      b)

c)                                                     d)

Figure 6.6: Normalized species-concentrations at end-of-discharge under increased
discharge currents. See table 6.1 for the initial species-concentrations cα. Figures
first published in Ref. 67.

This sggests that the enhanced electrolyte dynamics leads to a premature breakdown
of cell-operation. Subfigure b) shows the normalized concentration profiles at the
designated moments. Apparently, at end of discharge, the [Zn(OAc)3]– -species gets
completely depleted at the cathode and the cell-operation cannot be sustained any-
more (see eq. (6.6)). As consequence, the discharging process stops. The inset in
subfigure b) in fig. 6.7 illustrates the profile for the convection velocity at the des-
ignated moments. At all times, the profiles exhibit a highly non-uniform shape.
However, towards the end-of-discharge, convection stops at the cathode. We sug-
gest that this is also due to reactand depletion. Following our argument from above
(see section 6.2.1), the Faradaic convection-stimulus stops, when no more OAc– -ions
are formed anymore due to the breakdown of the interface reaction eq. (6.6). The
premature breakdown of cell-operation also explains the concentration profiles near
the interfaces for the highest discharge current (see fig. 6.6). Diffusion limitation
stops cell-operation before a quasi-stationary state can be established.

Altogether, increased discharge dynamics lead to enhanced electrolyte-profiles.
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a)                                                     b)

Figure 6.7: a) Cell voltage for limiting discharge current I = 10 mA cm2, and des-
ignated moments. b) Normalized concentration profile for the [Zn(OAc)3]– -species.
The inset illustrates the convection profile at the designated moments. Figures first
published in Ref. 67.

However, this trend is restricted by diffusion limitation. Once the dynamics be-
come too fast, the interplay between the different transport mechanisms (diffusion,
migration and convection) becomes unstable and cell operation breaks down.

6.2.3 Consistency Check: Varying Reference Species

In this section we probe the consistency of our framework by varying the designated
reference species. For this purpose, we simulate discharging of the battery with
I = 0.1 mA cm−2 in two different frames. based on charged ion-species as reference-
species, see table 6.3.

Because the representations of the Onsager matrices in the different frames cannot
be chosen independently, the differing descriptions are not independent. In a mixture
of N species, a total of N(N+1)/2 transport parameters exist (see section 5.3.1).
All follow from L, which is defined relative to the designated species. However,
L comprises the complete set of inter-species correlations, including correlations
involving the designated species. This follows directly from the closure-relation
for the independent mass-fluxes eq. (5.115), which implicitely determine N1 via
eq. (5.103). Thus, the Onsager-matrices with respect to different designated species
are mutually coupled, and cannot be stated independently from each other. In
appendix D.8, we derive simple conversion relations, which allow to transfer Onsager-
coefficients (eq. (D.84)) and transference numbers (eqs. (D.89) and (D.91)) between
the different choices of reference species. In appendix D.8, we derive the exact
transformations, see eqs. (D.104) to (D.106).
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Reference Species z̃α tα tα/z̃α Nmigr
α ↕↕ J F

W
at

er

Water 0 n.d. n.d. n.d.
Ch+ 1 0.166 0.166 Nmigr

α ↑↑ J F
OAc– −1 0.129 −0.129 Nmigr

α ↑↓ J F
[Zn(OAc)3]– −1 0.705 −0.705 Nmigr

α ↑↓ J F

C
h+

Water −0.170 −1.549 9.112 Nmigr
α ↑↑ J F

Ch+ 0 n.d. n.d. n.d.
OAc– −1.570 0.203 −0.129 Nmigr

α ↑↓ J F
[Zn(OAc)3]– −3.330 2.346 −0.704 Nmigr

α ↑↓ J F

[Z
n(

O
A

c)
3]

–

Water 0.074 0.665 8.986 Nmigr
α ↑↑ J F

Ch+ 1.430 0.237 0.166 Nmigr
α ↑↑ J F

OAc– −0.757 0.098 −0.129 Nmigr
α ↑↓ J F

[Zn(OAc)3]– 0 n.d. n.d. n.d.

Table 6.3: Spatially averaged results for the transference-numbers tα, with re-
spect to different reference-frames. In each reference frame,

∑N
α=2 tα = 1, and no

transference-numbers for the designated species (α = 1) exist (n.d., not defined).

In order to probe consistency at different length scales, we first discuss simulation
results for the cell-voltage and the concentration of the [Zn(OAc)3]– -ions, which both
must not depend upon the choice of reference species, and, next, discuss simulation
results for the frame dependent transference numbers (see also appendix D.8).
Invariant Elelctrolyte Quantities: Cell Voltage and Species Concentra-
tions

Figure 6.8a) shows that the discharge curves in the three different reference-frames
agree. Since the cell-voltage is a mesoscopic observable, which is easily accessible to
experimental measurements, this proves consistency. Next, we compare simulation
results for microscopic quantities. Figure 6.8b) shows that the results for c[Zn(OAc)3]−
at end of discharge, and for two different frames of reference, agree. This proves
microscopic consistency (note that the [Zn(OAc)3]– -ions serve as designated species
in the second frame, see table 6.3). The inset shows that the relative error between
the results lies within numerical accuracy of the simulations (see appendix D.9).

Altogether, we conclude that our framework produces consistent results, indepen-
dent of the choice of designated species for different length scales.
Non-invariant Electrolyte Quantities: Transference Numbers

Transport parameters, e.g, transference numbers, depend on the choice of refer-
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a)                                                   b)     

Figure 6.8: Comparison of simulation results using different physical species as ref-
erence. Subfigure a) shows the discharge curve for three different reference-species.
Subfigure b) shows the concentration profile of the [Zn(OAc)3]– -ions at end of dis-
charge in two different reference frames. The inset in subfigure b) shows the relative
error of the [Zn(OAc)3]– -concentrations. See table 6.3 for the definitions of the dif-
ferent reference-frames. Figures first published in Ref. 67.

Reference H2O

Reference Ch+

Figure 6.9: Transference numbers with respect to the indicated reference-frames.
Figure first published in Ref. 67.

ence species (see appendix D.8). Here, we discuss the simulation results for the
transference numbers at end-of-discharge for the three different reference species.

In this quaternary electrolyte, only two out of the three transference numbers are
independent. When we use a charged reference-species, then z̃α , zα , i.e. neutral
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water becomes effectively charged and contributes to the center-of-mass flux J F.
In fig. 6.9, we show the transference numbers for two different reference-frames.

This figure is supplemented by table 6.3, which summarizes the spatially averaged
tα-values for all three reference-frames at end-of-discharge, and where the valences
z̃α in the three frames are stated (note that z̃α , zα if z1 , 0). Furthermore, ta-
ble 6.3 comprises the quantities tα/z̃α in the different frames. These ratios relate the
migration-part Nmigr

α of the mass-flux Nα to the current-flux J F via (see eq. (5.131))

Nmigr
α = t/F z̃α ·J F. (6.11)

Thus, if the quantity tα/z̃α is negative (positive), then Nmigr
α and J F have opposite

(like) direction. However, in the case tα/z̃α < 0, the “complete” mass-flux can
still be directed along the flux J F, if the diffusion-part in Nα overcompensates
the migration-part ( this is the case for the [Zn(OAc)3]– -species). Furthermore,
the absolute values |tα/z̃α| serve as measure for the overall current-contribution of
the species. In this sense, the quantities tα/z̃α comprise more physical data than
the transference-numbers tα. In other words, sign and magnitude of a transference
number is meaningless, if the quantities z̃α are not known.

In accordance with our analytic finding in appendix D.8, we observe in fig. 6.9
that sign and magnitude of transference numbers for like species differ between the
frames. Thus, the transference numbers depend on the reference species.

Intuitive choice for the reference-species is the setting where water serves as des-
ignated species. In this setting, the signs of transference numbers endorse our in-
terpretation of the overall electrolyte dynamics, discussed above. Apparently, at
end-of-discharge, the migration-part of the mass-flux, Nmigr

[Zn(OAc)3]− , and the current
J F have opposite direction, see table 6.3. However, we infer from the inset in
fig. 6.4 that J F is directed towards the cathode, and from fig. 6.2b), and fig. 6.4b),
that the complete mass-flux N[Zn(OAc)3]− is directed towards the cathode. Thus,
diffusion dominates over migration and is the main driving force for cell operation.
In the reference-frames defined by Ch+, and [Zn(OAc)3]– , water acquires an effec-
tive charge and contributes to the electric current. The corresponding transference
number is negative in the Ch+-frame, and positive in the [Zn(OAc)3]– -frame. In-
terestingly, tOAc− is almost similar in the neutral frame, and the frame defined by
Ch+. In contrast, a significant discrepancy is observed for t[Zn(OAc)3]− .

Next, we probe these numerical results by comparison with our analytical findings
for the conversion relations for transference numbers between different reference-
frames derived in appendix D.8.

For this purpose, we use the numerical results for the transference numbers in
the frame where water is the designated species, and calculate the corresponding
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transference numbers in the two other (charged) frames via eqs. (D.89) and (D.91).
Then, we compare these analytical results with the numerical results in these frames.
However, we first clarify the notation, and state the conversion relations (derived in
appendix D.8),

t
(A)
B |B,A,C = z̃

(A)
B /z̃

(C)
B · t(C)

B , (6.12)

t
(A)
C |C,A = −

∑
D,C

MD

MC
· z̃(A)

C /z̃
(C)
D · t(C)

D = 1−
∑

D,A,C

t
(A)
D . (6.13)

Here, the bracked superscripts specify the designated species. Thus, we set the
designated species appearing on the right side of eq. (6.12) to C = H2O, and calculate
the corresponding parameters t(A)

B,A for the cases A = Ch+, and A = [Zn(OAc)3]−
(since these define the two different, charged frames). Since the designated species
is neutral (C = H2O), the effective valences equal the physical valences, z̃(H2O)

B = zB

(for the three species B , H2O). Using the data for z̃
(Ch+)
B , z̃([Zn(OAc)3]−)

B and
t
(H2O)
B,A comprised in table 6.3, we find for the transference numbers relative to the

designated species A = Ch+

t
(Ch+)
OAc− = 0.129 · (−1.570) · (−1) = 0.203, (6.14a)

t
(Ch+)
[Zn(OAc)3]− = 0.705 · 3.330 = 2.350, (6.14b)

t
(Ch+)
H2O = 1− t(Ch+)

(OAc−) − t
(Ch+)
[Zn(OAc)3]− = −1.560, (6.14c)

and for the transference numbers relative to the designated species [Zn(OAc)3]−,

t
([Zn(OAc)3]−)
Ch+ = 0.166 · 1.430 = 0.237, (6.14d)

t
([Zn(OAc)3]−)
OAc− = −1 · 0.129 · (−0.757) = 0.098, (6.14e)

t
([Zn(OAc)3]−)
H2O = 1− t([Zn(OAc)3]−)

(OAc−) − t([Zn(OAc)3]−)
Ch+ = 0.665 (6.14f)

The values obtained in eqs. (6.14a) to (6.14f) coincide almost exactly with the nu-
merical results comprised in table 6.3. The small discrepancies arise from the fact
that the numerical results comprised in table 6.3 are stated as cell-averaged values.
This validates our numerical results, and proves consistency of the framework.
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6.3 Electrolyte-Classification

In this section, we discuss the interpretation of the as-modelled electrolyte being
“highly concentrated”, using the rationale described in section 5.4.7.

For this purpose, we evaluate the interface-relation eq. (5.283) using the parame-
ters comprised in tables 6.1 and D.4, which yields∣∣∣εβNα/εcαv

∣∣∣
α=[Zn(OAc)3]−

≈ 0.05, and
∣∣∣εβNα/εcαv

∣∣∣
α=OAc− ≈ 0.06, (6.15)

Both values suggest that convection is relevant, but not dominant. Hence, we con-
clude that electrolyte is right above the threshold to a concentrated electrolyte.

We probe this interpretation and calculate the mass-ratios between the salt species
and water, i.e. ρOAc−/ρwater and ρOAc−/ρwater (see table 6.1). In both cases, the
mass fraction of water is comparable to the mass fraction of the salt-species, but
not negligible. Thus, the argument given below eq. (5.280) also suggests that our
electrolyte is highly concentrated. We compare the analytic finding eq. (6.15) (based
on material parameters) with our numerical results, using the data comprised in
subfigure b) of fig. 6.4,

εβNα/εcαv |[Zn(OAc)3]−≈0.05, and εβNα/εcαv |[Zn(OAc)3]−≈0.06. (6.16)

This is consistent with the analytic finding eq. (6.15), for which we used the mass
ratios and the stoichiomnetries of the electrode reactions.
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  Battery                Bulk Electrolyte                Interface

L     mm                               μm                                nm  
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dV + FF= H
intdVF=Free Energy F H

HdV

Scheme 7.1: Scheme of the modeling framework.

In part II, we derived our continuum transport theory for strongly correlated elec-
trolytes. This description was based on modelling the free energy density ρφH(Υ ),
with the energy F =

∫
dV ρφH. The free energy density is a function of the ma-

terial variables Υ , which specifies the model to material specific properties. As
discussed in section 2.1 this approach is based on the continuum hypothesis for
liquids, which constitutes the canonical continuum description for bulk electrolytes
on a macroscopic scale (e.g. on the µm- scale). However, the continuum approach
becomes deficient for the description of crowded environments in microscopic sys-
tems. At length scales comparable to the size of the constituents, i.e. the ions, non
local particle interactions become important, and must be resolved in the model
explicitely. This is in contrast to the macroscopic scale, where these interactions are
described via averaged quantities. As consequence, the continuum description for
such non-local interactions is based on the free energy functional F [Υ ], and the bulk
framework which is based on differential calculus must be generalized to the calculus
of variations. Scheme 7.1 illustrates the applicability of the different methodologies
on different length scales.

The relevance of strong ion correlations on the microscopic scale applies to biology,
chemistry and physics, [318–320] and these correlations account for a plethora of phe-
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nomena like the compaction of genetic material in viruses via DNA packing, [321,322]

cytoskeleton organization, [323] ion channels in the human body, [324] or the thermo-
dynamic stability of plasmas and charged colloidal suspensions. [325–328] Hence, the
derivation of a universal description for such non-local correlations promises a broad
range of applicability, and offers an interdisciplinary description for these complex
phenomena.

However, here we focus on ionic liquids (ILs). Because ILs consist only of posi-
tive and negative ions, the EDL structures formed by ILs near electrified interfaces
constitute the archetype for such crowded environments, where strong electrostatic
correlations play a pivotal role. These correlations lead to characteristic proper-
ties near electrified interfaces, [329] but also in the electroneutral bulk region, [330,331]

which makes them highly attractive from both fundamental and applied perspec-
tives. [57,332–339]

In our bulk description derived in part II, we account for the non vanishing molar
volume of the ion species via imposing the condition of local volume-filling of the
electrolyte, i.e. the Euler equation for the volume. This implies a constraint on
the electrolyte, which stabilizes the bulk structure against Coulomb collapse, due
to unbalanced ion-attraction. [63] Furthermore, it restricts the available volume for
the ions, which leads to charge-saturation near electrified interfaces. Hence, the ion
concentration of the counter species is bounded by the inverse volume of the species.
This resolves the deficiencies of the classical Poisson-Boltzmann (PB) theory. Since
the PB theory does not account for finite molar volumes, it predicts unrealistically
high interface-concentrations. [102] In addition, we saw in part II that the assumption
of finite molar volumes leads to a pressure dependence of the chemical potentials. [340]

However, our bulk-framework from part II cannot describe the emergence of long-
range structures in ILs near electrified interfaces. Hence, we supplement the mean
volume effect from part II by an additional volume effect. In particular, we incor-
porate molecular volume exclusion due to hardcore particles into our model. The
hardcore repulsion constitutes a repulsive correlation between the ions which scales
with the ion sizes.

For this purpose, we generalize our local bulk description to a functional approach,
where we model the free energy of the complete system via modeling the energy
functional. This holistic continuum framework thus couples dynamic transport pro-
cesses occurring in the bulk-electrolyte with interfacial electrochemical processes,
and bridges the length-scales from nano-meters (the EDL), to millimeters (battery
cells), see Scheme 7.1. Thereby, our framework connects the continuum description
with atomistic modeling approaches.

We structure the EDL part of this document as follows. First, in chapter 8,
we derive a thermodynamically consistent transport theory based on a functional

113



7 Introduction

approach. We find that our dynamical theory yields a description of the non-local
correlations via integral equations. However, we show that this description can
be approximated by a gradient expansion for short ranged non-local correlations.
Next, in chapter 9, we apply our framework to the case of binary ILs near electrified
interfaces. In order to better understand the influence of the system parameters
on the screening profiles, we supplement this description by an asymptotic analysis
based on the gradient expansion of the transport equations in stationary state in
chapter 10. In chapter 11, we specify our model for non-local correlations to the
case of hardcore particles via a Gauss-shaped interaction functional. Finally, in
chapter 12, we perform numerical simulations of binary ILs near electrified interfaces.
In addition, in chapter 13, we study the formation of EDL structures of ternary IL
based electrolytes. We derive the transport equations for this system, discuss the
stationary state and perform numerical simulations. We supplement these results
by a discussion of the limiting case of minor salt additives. Finally, in chapter 14,
we compare our results with experiments, and validate our EDL model.
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8 Modeling Non-Local Interactions in
Liquid Electrolyte Transport Theories

In this chapter we derive our model for the electrochemical double layer (EDL)
based on a functional approach. We structure this chapter as follows. In section 8.1,
we state the universal balance laws from a global perspective, and derive the (local)
constitutive equations. Next, in section 8.2, we state our universal energy functional,
based on the bulk free energy described in section 5.4. However, we do not yet specify
the interaction functional, as to keep the framework general. This determines the
forces appearing in our description. However, in section 8.3 we restrict our formalism
to certain types of non-local interactions based on convolution integrals. Finally, in
section 8.4 we discuss the limiting case of our theory where the interactions can be
approximated using a gradient expansion.

8.1 Generalized Transport Theory: Functional Formalism

In this section, we extend our continuum transport theory from chapter 5 to also
account for non-local interactions. To address this goal, we generalize our approach
from above to a functional description for the universal balancing laws. Our deriva-
tion follows the same rationale as used for the derivation of the “bulk” framework.
However, we use a global perspective to obtain the universal balance equations, and
replace the field densities for momentum, energy, and entropy, appearing in the bulk
description, by functional expressions.

As first step, we state the global form of the force law of mechanics (see eq. (5.50)),

Ġ = Ġint +
∫

dV (ρb + ∇σ) =
∫

dV
(
δGint

δt
+ ρb + ∇σ

)
. (8.1)

Here, G is the complete momentum, which consists of the “bulk” part described sec-
tion 5.1 supplemented by an interaction contribution Gint, where Ġint =

∫
dV δGint

δt .
Next, we formulate the global form for energy balance, see eq. (5.53), as the sum
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8 Modeling Non-Local Interactions in Liquid Electrolyte Transport Theories

of the powers of the forces acting on the system and heating,

Ė = Π +Q. (8.2)

SinceΠ(G) is a function of the total momentum, we extend it’s definition from above,
see eq. (5.51), by an additional term, viz. Π = Π int +

∫
dV [ρbv + ∇(σT v)]. In

contrast, we assume that the heating of the system remains unchanged (eq. (5.52)),
Q =

∫
dV ρh−∇(q + E ∧HF).

We use these definitions and evaluate the couplings of momentum-balance and
energy-balance, (see eqs. (8.1) and (8.2)) with respect to the non-kinematic energy

U̇ = Ė − Ġ. (8.3)

Thus, we substitute the momentum equation for the body force-term
∫

dV ρb and
make use of the relation ∇(σT v) = v(∇σT ) + σ : grad v, such that

U̇ = Π int +
∫

dV [−δG
int

δt
· v + σ : grad v−∇(q + E ∧HF) + ρh] (8.4)

We ensure thermodynamic consistency of our extended framework by proceeding
as in section 5.1.3. For this purpose, we generalize our formulation of the second
axiom of thermodynamics. Let S = Sint +

∫
dV ρs denote the entropy of the system,

such that eq. (5.39) becomes

Ṡ =
∫

dV
[
ρṡ+ δSint

δt

]
≥
∫

dV
(
−∇ξs + ρh

T

)
. (8.5)

The right side measures the deviation from equilibrium due to the entropy-flux ξs,
and due to the heating-process ρh/T . The corresponding irreversible loss of energy
T · S, must be taken account for in the balance law of energy. To measure the rate
of irreversible entropy production, we define∫

dV R = T Ṡ +
∫

dV [T∇ξs − ρh] (8.6)

= T Ṡ− U̇ +Π int +
∫

dV
(
T∇ξs −

δGint

δt
· v + σ : gradv−∇q+

+ ∇ (HF ∧ E)
)
.

(8.7)

Here, we assumed that the temperature of the system is constant, such that
T · S = T · Sint +

∫
dV ρsT , and substituted

∫
dV ρh using eq. (8.4). Note that the
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8.1 Generalized Transport Theory: Functional Formalism

right side eq. (8.6) suggests the identification

Π int =
∫

dV (δGint/δt · v). (8.8)

Focal quantity in our framework is the Helmholtz free energy, which is the Legen-
dre transformed quantity with respect to internal energy, i.e. F = U− TS. Hence,
we aim to reexpress U̇ by Ḟ in eq. (8.6),∫

dV R = −Ḟ − ṪS +
∫

dV (T∇ξs + σ : gradv−∇q + ∇ (HF ∧ E)) . (8.9)

Here, we used eq. (8.8). This is the global form of the entropy inequality corre-
sponding to eq. (5.55). Therefore, eq. (8.9) determines the constitutive equations
of the model subject to the form of Ḟ , i.e. subject to the materials law Υ , which
restrict the formalism to classes of materials described by F [Υ ]. However, in order
to account for molecular interactions, we expand the free energy of the system via

F [Υ ] = F int[Υ ] + F b(Υ ) = F int[Υ ] +
∫

dV ρφH. (8.10)

We supplement the canonical materials law which, is defined by the hydrodynamic
description for the energy of polarizable liquids [289]

δF =
∫

dV E · δDF + HF · δB + ρs · δT +
N∑

α=1
µα · δcα + ρφH ·∇v, (8.11)

by the strain-rate tensor κ, which constitutes the liquid state of our system. Thus,
we set Υ = {DF,B, T, cα,κ}.

Next, we derive the constitutive equations comprising contributions from the non-
local quantities F int. For this purpose, we evaluate Ḟ in eq. (8.9) according to the
scheme eq. (5.57) with respect to the material law Υ . Also, we use mass-balance
ċα = −∇Nα − cα∇v (see eq. (5.11)), substitute eq. (5.58) for ∇ (HF ∧ E), and use
T∇ξs = −ξs∇T + ∇q −∇

∑N
α=1 µαNα. This allows to identify the generalized

constitutive equations for entropy density s, electric field strength E, magnetic field
HF, and chemical potentials µα via functional-derivatives

ρs = −ρ∂φH
∂T
− δF

int

δT
, (8.12)

E = ρ
∂φH
∂DF

+ δF int

δDF
, (8.13)

HF = ρ
∂φH
∂B + δF int

δB , (8.14)
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8 Modeling Non-Local Interactions in Liquid Electrolyte Transport Theories

µα = ∂(ρφH)
∂cα

+ δF int

δcα
. (8.15)

Equations (8.12) to (8.15) are supplemented by ∂φH/∂κ=δF int/δκ=0, and by the
generalized constitutive equation for the stress tensor,

σ=τ−
( N∑

α=1
cα

[
∂(ρφH)
∂cα

+δF
int

δcα

]
−ρφH+EDF+HFB

)
Id +E⊗DF+HF⊗B.

(8.16)
Here τ is the viscosity tensor discussed in Section 5.3.2, see eq. (5.143).

Apparently, all constitutive equations are supplemented by functional derivatives
with respect to the conjugate material variables.

For the remaining part of this discussion, we assume that temperature is constant,
and assume the electrostatic limit (where B = 0 and HF = 0, see section 5.2.4).
This determines the electric field E = E by the electrostatic potential, E = −∇Φ.
Finally, the residual expression for the entropy inequality, see eq. (8.9), after the
evaluation of the constitutive equations can be expressed locally

∫
dV R =

∫
dV [−J F∇Φ−

N∑
α=1

Nα∇µα − ξs∇T + τ : κ]. (8.17)

8.2 Model for Interacting Liquid Electrolytes

Next, we state the Helmholtz free energy F = F int[cα]+
∫

dV ρφH for liquid electro-
lytes which accounts for non-local interactions. We split F into a bulk part dV ρφH
and an energy functional F int. We model the bulk part of the free energy as above,
see eq. (5.153), with the only difference that we use an alternative mixing entropy,

F=F int[cα]+
∫

dV

EDF
2 +K

2

[
1−

N∑
α=1

ν0
αcα

]2

+RT
N∑

α=1
cα ln(cανα)

 . (8.18)

The last term in eq. (8.18) describes mixing entropy according to the “Flory-Huggins”-
approach. [341,342] This description expresses entropy of mixture via volume fractions
cα · να, instead of mole fractions cα/c. This entropy thus favours equal volumes
for each species instead of equal numbers of molecules, and accounts for the aver-
aged impact of short ranged repulsion on particle distributions. The Flory-Huggins
approach is often used to model liquid systems exhibiting solid-like-, or crystalline
behaviour, e.g. polymers. [343,344] However, since we incorporate the interaction con-
tributions into the functional F int, we neglect all Flory-Huggins-parameters χ, see
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8.2 Model for Interacting Liquid Electrolytes

also the remark at end of section 8.3. This mixing-entropy is related to the mixing-
entropy of ideal gases used in section 5.4, via bulk activity coefficents f α = να. The
electric field in eq. (8.18) is E = DF/ε0εR, and K constitutes a bulk-modulus (see
section 5.4).

Furthermore, we restrict the materials law to Υ int = {cα} such that F int[cγ ]. This
implies that only the chemical potentials and the stress tensor experience non-trivial
constitutive equations, see eqs. (8.15) and (8.16).

Similar to the description in section 5.4, the chemical potentials corresponding to
the modified bulk-model eq. (8.18) still depend on unspecified elastic properties,

µα = RT (1 + ln cανα) + δF int[cγ ]/δcα −Kνγ · (1−
N∑

β=1
cβ · ν0

β). (8.19)

However, this poses no problem, since we assume incompressible electrolytes K→∞.
Hence, the diverging bulk modulus, enforces the Euler equation for the volume
eq. (5.178), viz.

∑N
α=1 cανα = 1.

Next, we determine the forces ∇µel
α = ∇(µα +Fzα∇Φ). Because we lack a consti-

tutive equation for the bulk-modulus, the chemical potentials are underdetermined
and the force-equations cannot be closed,

∇µel
α = Fzα∇Φ +RT∇ ln [cανα] + ∇δF int[cγ ]

δcα
+ Kνα

N∑
β=1

νβ ·∇cβ. (8.20)

We encountered the same problem for the bulk-theory in section 5.4. There, we
used the assumption of mechanical equilibrium to substitute for the unknown term
appearing in the forces eq. (8.20). Here, we follow the same rational. For vanish-
ing body-forces, the assumption of mechanical equilibrium, Ġ ≈ 0, allows to solve
eq. (8.1) for

∫
dV ∇σ = −

∫
dV δGint[cγ ]/δt . The left side of this expression can be

substituted using the constitutive equation for σ, eq. (8.16), subject to our model
free energy eq. (8.18). Thus, we find

K

N∑
β=1

νβ ·∇cβ = −ϱF∇Φ−RT ·∇c−∇
N∑

β=1
cβ ·

δF int

δcβ
+ δGint

δt
+ ∇τ. (8.21)

Finally, we substitute eq. (8.21) into eq. (8.20) and obtain the following expression
for the electrochemical forces appearing in our description,

∇µel
α=

N∑
β=1

(
δβ

α−ναcβ

)
·∇

(
FzβΦ+δF

int

δcβ

)
−να

 N∑
β=1

δF int

δcβ
∇cβ−

δGint

δt

+
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8 Modeling Non-Local Interactions in Liquid Electrolyte Transport Theories

+ να∇τ+RT (∇ ln cανα − να∇c) . (8.22)

Apparently, these forces are still underdetermined, as we have not yet specified the
exact form for the continuum-contribution δGint/δt which account for the non-local
interactions in momentum-balance eq. (8.1). However, the Gibbs-Duhem equation
corresponding to eq. (8.22) takes the form

N∑
α=1

cα∇µel
α = ∇τ−

N∑
γ=1

δF int[cα]
δcγ

·∇cγ + δGint

δt
[cγ ]. (8.23)

We assume that both sides vanish for stationary states (when the system is in
equilibrium). This constraint is fulfilled always exactly if we identify

Ġint[cγ ] =
∫

dV δGint

δt
[cγ ] =

∫
dV

N∑
α=1

δF int[cγ ]
δcα

·∇cα. (8.24)

This is reminiscent of conservative forces, appearing in classical mechanics. Substi-
tuting eq. (8.24) into eq. (8.22) yields the final form for the forces, and closes our
description up to F int,

∇µel
α=

N∑
β=1

(
δα

β−ναcβ

)
∇
(
FzβΦ+δF

int

δcβ

)
+RT (∇ ln cανα−να∇c) +να∇τ.

(8.25)
Thus, we obtain inter-species couplings of the electrochemical forces, in agreement
with the Gibbs-Duhem relation for the bulk-description (see eq. (5.101)),

N∑
γ=1

cγ ·∇µel
γ = ∇τ. (8.26)

Note the striking similarity between eq. (8.25) and the corresponding bulk term
eq. (5.234), i.e. the similar role of the quantities δF int[cα]/δcβ and ∂(ρφint

H )/∂cα .

8.3 Potentials of Molecular Interactions

We model hardcore-interactions via convolution-functionals,

F int[cα] = 1
2V

0 (NA)2
N∑

α, β

"
dx3dy3 F̃αβ(|x− y|)cα(x)cβ(y). (8.27)
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8.3 Potentials of Molecular Interactions

The symmetric interaction potential Fαβ determines the correlation length ℓint, and
the magnitude of the interaction. Here, we have factorized Fαβ into a dimensional
prefactor V0 · (NA)2, which characterize the magnitude of the interaction, and a
dimensionless shape-function F̃, which characterizes the correlation length of the
interaction, viz.

Fαβ

(
V0, ℓint

)
= V0 · (NA)2 · F̃αβ(ℓint). (8.28)

We assume that the shape-function F̃αβ is a conservative potentials, i.e. exhibits
spherical symmetry. The number of interaction parameters depends upon the model
for Fαβ. Experimental results suggest that ion-correlations in electrolytes typically
decay after some ionic diameters. [345] Hence ℓint is large compared to the exponential
decay of the electric field (Debye-length), [346,347] yet small compared to the battery
cell. Because we parametrize the correlation length of our model for hardcore par-
ticles via the ion-sizes of the particles, only V0 is introduced as a novel independent
material parameter.

The most important feature of hardcore particles is that they experience strong
repulsive forces at small distances, which origin from the Pauli exclusion princi-
ple (prohibiting overlaping electron shells). The resulting short-ranged order is
typical for systems at liquid state. [348] However, an additional cohesive energy is
required to stabilize the liquid. These attractive dispersion forces vary smoothly
over particle-distances, and constitute an attractive background which stabilizes the
bulk. The liquid model of hardcore particles moving in a uniform, attractive back-
ground potential was established by van-der-Waals and proved very successful. [63]

Accordingly, the interaction potential is often split into a repulsive and attractive
parts [349] The repulsive part models impenetrable hardcore particles and extends
over short distances determined by the particle-size a. In principle, hardcore poten-
tials should be modeled via an infinite square-well, corresponding to incompressible
particles. However, largely for reasons of numerical and analytical convenience, they
are usually modelled by inverse power laws. [63] The attractive part describes longer-
ranged attractive forces. A prominent two-fold approach are “twelve-six-potentials”
of Lennard-Jones type, [350–352] F(r) = V0(NA)2[(a/r )12 − (a/r )6], where the first
term describes short-ranged repulsion and the second term describes attractive con-
tributions from dipole-dipole interactions. [345,353–358]

Here, we restrict to short ranged repulsive potentials, since we focus on the mod-
eling of hardcore particles. Furthermore, since

δ2F int

δcγ(z)δcα(x) = Fαγ(|x− z|) = V0 · (NA)2 · F̃αβ(|x− z|), (8.29)

the potentials F̃αγ determine the direct pair correlation functions used in liquid state
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8 Modeling Non-Local Interactions in Liquid Electrolyte Transport Theories

theory, [63] see also our discussion in section 15.3 for more details.
The material law determines the interaction contributions via eqs. (8.12) to (8.16)).

For Υ int = {cα} the interaction contributes only to the chemical potentials. The
corresponding result for the constitutive equation subject via (see appendix E.2)

δF int

δcα
(x) = V0 · (NA)2 ·

N∑
β

∫
dy3 F̃αβ(|x− y|)cβ(y). (8.30)

8.4 Gradient Expansion of Molecular Interactions

In this section, we focus on repulsive potentials which describe hardcore-particles,
i.e. potentials Fαβ which range over the size of one molecule.

In appendix E.1 we show that interaction functionals which depend on short-
ranged potentials F can be approximated in power series of concentration gradients,

F int[cγ ] = 1
2V

0 · (NA)2 ·
N∑

α, β

∞∑
n=0

Γ 2n
αβ

∫
dy3 cα(y) ·∇2ncβ(y). (8.31)

where
Γ 2n

αβ

(
F̃αβ

)
= 1/(2n)!

∫
dx3 F̃αβ(|x|) · x2n (8.32)

are symmetric perturbation coefficients of dimension [Γ 2n
αβ ] = m3+2n. The perturba-

tion modes (the spherically symmetric interaction potentials) simplify in spherical
coordinates ,

Γ 2n
αβ

(
F̃αβ

)
= 4π/(2n)!

∫
dr F̃αβ(r) · r2(n+1), (8.33)

where the zero-order mode is given by the integral over the interaction potential,

Γ 0
αβ

(
F̃αβ

)
=
∫

dx3 F̃αβ(|x|) = 4π
∫

dr F̃αβ(r) · r2. (8.34)

This integral can be solved analytically for all potentials of the Lennard-Jones type,
and Gaussian type for all perturbation modes (see chapter 11). The complete free
energy functional for IL electrolytes becomes in the gradient description

F=
∫

dV
[
EDF/2 +RT

N∑
α=1

cα ln(cανα)+K/2
(

1−
N∑

α=1
cανα

)
2+

+V0/2 (NA)2
N∑

α, β

∞∑
n=0

Γ 2n
αβcα∇2ncβ

 . (8.35)
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8.4 Gradient Expansion of Molecular Interactions

The functional derivative with respect to the gradient expansion reads (eq. (8.35))

δF int/δcγ(z) = V0 · (NA)2 ·
N∑

β=1

∞∑
n=0

Γ 2n
γβ ·∇2ncβ(z). (8.36)

Hence, we find for the electrochemical forces (see eq. (8.25))

∇µel
γ =(Fzγ−νγϱF)∇Φ+V0(NA)2

∞∑
n=0

N∑
α,β

(δγ
α−νγcα)Γ 2n

αβ∇2n+1cβ+RT
(

∇cγ

cγ
−νγ∇c

)
.

(8.37)
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9 Molecular Interactions in Binary IL
Electrolyte

Here, we apply our formalism to binary ILs at electrified interfaces. We structure
this chapter as follows. In section 9.1, we specify our transport theory to binary
electrolytes. Next, in section 9.2, we simplify the description and remove the physical
dimensions form the equations. Finally, in section 9.3, we discuss the stationary
state.

9.1 Transport Theory of Binary IL Electrolytes with
Molecular Interactions

The minimal variable set for the description of a binary electrolyte consists of Φ,
ϱF, and v (where ion-concentrations are functions c±(ϱF,να). The electroneutral
bulk-state, c+ = c− = cb, determines the total molar volume ν = 1/cb , and we
define relative molar volumes

γα = να/ν = να · cb, where γ+ + γ− = 1, (9.1)

i.e. there exists only one independent quantity γ+.
In section 5.4.2, we used thermodynamic arguments to derive the partial mo-

lar volumes from the stress tensor. Here, we use a micrscopic approach and de-
fine parametrize the molar volumes by the ion sizes a, using a dimensionless form-
function ν̃, [359]

ν = NAν̃a
3. (9.2)

The form function ν̃ determines our model for the molar volumes. One common
choice is to model the molecules as spheres of radius a/2, i.e. ν̃ = π/6 . [360] Because
this model does not take account for non-trivial packing effects leading to excess
molar volumes,. [361] it is often corrected via ν̃ = ηπ/6 . [69,345] The packing ratio η
can be estimated from the statistical analysis of random packing of hard spheres,
which suggests η = 0.63. [362] Here, we use simple “block”-geometry for our model,
i.e. ν̃ = 1.
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9.1 Transport Theory of Binary IL Electrolytes with Molecular Interactions

The ion-concentrations are thus functions (see eqs. (5.222) and (5.223)), viz.

c±(a, ϱF, ν̃, z+, γ+) = cb ± ϱFγ∓/Fz+ (9.3)

The Euler equation for the volume implies that saturation of charges may occur near
electrified interfaces. Thus, there exist maximal values ϱsat

F and csat
± ,

csat
α = 1/να = cb/γα , and ϱsat

F = Fzα∗cb/γα∗ . (9.4)

Here, the index α∗ denotes the saturating species, usually defined by the sign of the
interface-potential ∆ϕ via the condition sign(zα∗) = −sign(∆ϕ).

Furthermore, the electric conductivity κ is the only independent transport pa-
rameter in a binary electrolyte (see section 5.3). The complete set of dynamical
transport equations reads (see eqs. (5.243) to (5.246))

∂tϱF = −∇ (ϱFv)−∇J , (9.5)
ϱF = −ε0∇εR∇Φ, (9.6)

∇v = (M+ν− −M−ν+)Fz+MIL ·∇J . (9.7)
Here, M± are the molar masses of the ionic species which sum to MIL, and J is the
electric current relative to the center-of-mass motion,

J = κ/Fz+ ·
(
M+/MIL ·∇µel

− −M−/MIL ·∇µel
+

)
. (9.8)

We restrict our set-up to one spatial dimension, and assume that the inert electri-
fied interface is located at x = 0 to which we apply the half-cell potential ∆ϕ. Since
the electric potential Φ is continuous across the electrode-electrolyte interface, Φ(0)
in the electrolyte is subject to the boundary condition

Φ(0)− Φ(x→∞) = ∆ϕ. (9.9)

Without loss of generality, we set the electrolyte potential in the bulk to zero,
limx→∞ Φ = 0. Hence, ∆ϕ = Φ(0) is the potential applied to the electrode. The elec-
troneutral boundary condition ϱF(x→∞) = 0 implies that the bulk concentration
cb = c±(x→∞) is completely determined by the total molar volume ν = ν+ + ν−
via cb · ν = 1. Since binary ILs are electrically neutral, z+= − z+, and we choose
z+>0.

Because we neglect viscous forces, ∇τ = 0, the Gibbs-Duhem relation (eq. (8.26))
becomes c+∇µel

+ + c−∇µel
− = 0, and couples the chemical forces,

∇µel
+ = −c−/c+ ·∇µel

−, (9.10)
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9 Molecular Interactions in Binary IL Electrolyte

such that eq. (9.8) simplifies to
J = κρ/Fz+c+MIL ·∇µel

−, (9.11)
where we used the chemical potential of the anion-species to determine the IL-
electrolyte,

∇µel
−=−νc+∇

(
Fz+Φ−γ+

δF int

δc−
+γ−

δF int

δc+
−RT

[
γ+ ln c−

cb −γ− ln c+
cb

])
. (9.12)

The prefactor “c+ on the right side has significant implications, as it cancels the
concentration appearing in the formula for the electric current, see eq. (9.11) (this
cancelling allows for an analytical discussion of the screening profiles, see below).
Insertion of eq. (9.12) into the current flux yields

J F = −κ/Fz+ ·
(
1 + χ ·

[
γ

2
+ + γ2−

]
ϱFν/Fz+

)
·∇µel

IL, (9.13)

where we define the electrochemical potential of the IL electrolyte

∇µel
IL=∇

(
Fz+Φ−2γ− · δF int/δc+−RT [γ+ ln(c−/c

b )−γ− ln(c+/c
b )]
)
. (9.14)

Similar to the relative molar volumes γα defined above, we introduce relative molar
masses,

M̃± = M±/MIL , (9.15)
which are normalized via M̃+ + M̃−=1, and introduce an asymmetry parameter
(note that 1 = γ+ + γ−),

χ = (M̃+γ− − M̃−γ+)/(γ2+ + γ2−) = (M̃+ − γ+)/[2(γ+)2 + 1− 2γ+] . (9.16)

The “asymmetry” parameter χ scales the flux J F in eq. (9.13) and depends crucially
on the species parameters M̃+ and γ+. If the ion-species have equal size, γsym = 1/2,
the asymmetry parameter becomes χ(γsym

α ) = M̃+ − 1/2. Furthermore, in the case
of completely symmetric ion species, i.e. where M̃+ = γ+ = 1/2, the asymmetry
parameter vanishes identically. Furthermore, if the molar volume of the ion-species
are assumed being linear functions of the molar masses, i.e. if να = b · Mα for
all species α (where [b] = m3 kg−1), then γα = M̃α and the asymmetry parameter
vanishes identically. An example for such a scaling is the model να = Mα/ρ, which
implies γα = M̃α. Note that such assumptions correlate with the model ν̃ = b ·
Mα/NAa

3 (se also fig. 9.1 and section 9.2.1).
In eq. (9.14), we used the coupling between c+ and c− imposed by the Euler
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9.2 Energy Scales and Dimensions

equation for the volume such that

δ

δc−
=δc+
δc−
· δ
δc+

=−γ−
γ+
· δ
δc+

, such that γ+
δF int

δc−
−γ−

δF int

δc+
=2γ−

δF int

δc+
. (9.17)

The quantity µel
IL is the only electrochemical potential necessary to describe the

electrolyte transport of the binary system. This is a consequence from the property
that the electric flux is the only independent flux in a binary systems, and from
the property that all species-couplings are taken into account. The complete set of
transport equations thus reads,

ϱF = −ε0∇ (εR∇Φ) , (9.18)

∂tϱF=−∇ (ϱFv) +κ/Fz+ ·∇
[(

1+χ ·
(
γ

2
++γ2−

)
·ϱFν/Fz+

)
·∇µel

IL

]
, (9.19)

∇v=−κχν/(Fz+)2 ·
(
γ

2
++γ2−

)
·∇
[(

1+χ ·
(
γ

2
++γ2−

)
·ϱFν/Fz+

)
·∇µel

IL

]
. (9.20)

The forces ∇µel
IL described by eq. (9.14) can be evaluated using either the inte-

gral description (eq. (8.30)), or the gradient description (eq. (8.36)). The integral
description follows from substitution of eq. (8.30),

γ−∇δF int

δc+
=γ−
ν

∇x

∫
dy3Fαβ(|x−y|)−γ−γ+

Fz+
∇x

∫
dy3Fαβ(|x−y|)ϱF(x) (9.21)

=V0NAγ−γ+/ez+ ·∇
∫

dx3F̃αβ(|x−y|) · ϱF(x). (9.22)

Here, we used that ∇x
∫

dy3Fαβ(|x − y|) = 0 for spherically symmetric potentials
Fαβ (see lemma 29), and used the elementary charge for F=NAe. Alternatively, the
gradient expansion eq. (8.36) yields

2γ−∇(δF int/δc+ ) = V0NA2γ+γ−/ez+ ·
∞∑

n=0
Γ 2n

+− ·∇2n+1ϱF. (9.23)

9.2 Energy Scales and Dimensions

Next, we simplify the set of equations and bring them into non-dimensional form.
An inspection of eq. (9.14) suggests that we divide both sides by RT and define

Φ̃ = Fz+/RT · Φ, and µ̃el
IL = 1/RT · µel

IL. (9.24)
Substituting the non-dimensional chemical potential for µel

IL in eq. (9.19) suggests
ϱ̃F = νc̃b/Fz+ · ϱF, and c̃b = (γ+)2 + (γ−)2. (9.25)
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9 Molecular Interactions in Binary IL Electrolyte

We use the non-dimensional quantities ϱ̃F and Φ̃ and remove the physical dimensions
from the Poisson equation. This defines the Debye-length,

LD =
√
kBTa3ν̃c̃bε0εR/(ez+)2 . (9.26)

This differs from the canonical definition by the ion-asymmetry, i.e. the parameters
γ± appearing in c̃b, [144] but reproduces the textbook definition for symmetric ions
(γ± = 0.5). Ion asymmetry increases LD, which becomes minimal for γ±=0.5 be-
cause the mixing entropy of a binary electrolyte is extremal for equal ion-size (we
discuss the influence of the system parameters on the Debye-length in more detail
in fig. 10.1). We use LD to non-dimensionalize our grid,

x̃ = x/LD , and ∇̃ = LD ·∇. (9.27)

This non-dimensionalization the ion-size, ã=a/LD , and Debye-length, L̃D=1. We
substitute all non-dimensional quantities into eq. (9.19) and define

∂/∂t̃ = ε0εR/κ · ∂/∂t , and ṽ = ε0εR/κLD · v. (9.28)
We substitute ϱ̃F for the charge density in the expansion ϱF=Fz+(c+−c−) and define

c̃α = c̃b/cb · cα. (9.29)

Thus, the relation between ϱ̃F and ion-concentrations reads (see eq. (9.3))

ϱ̃F = c̃+ − c̃−, where c̃± = c̃b ± ϱ̃Fγ∓, (9.30)
and the Euler equation for the volume and eq. (9.4) become

c̃b = c̃+γ+ + c̃b
−γ−, and c̃sat = c̃b/γ∗α , and ϱ̃sat

F = sign(zsat) · c̃b/γα∗ . (9.31)

From ṽ and c̃α (see eqs. (9.28) and (9.29)) follows

J̃ F = ez+LD/κkBT ·J F. (9.32)

Next, we introduce two energy scales which appear in the definition of the Debye-
length eq. (9.26). First, we substitute the thermal contribution in LD by

Eth = kBT · c̃b/2γ+γ− (9.33)

In the case of symmetric ion-species (γ± = 1/2 ), Eth → kBT , eq. (9.33) reproduces
the canonical definition for the thermal energy. [63] Note that Eth becomes extremal
for symmetric ions. This can be seen using the ion-ratio ν−/ν+ = γr, such that
Eth = kBT · [γr + 1/(γr)2]. Apparently, Eth(γr) has a global minimum at γr = 1, i.e.
for ion-species having the same molar volume, ν− = ν+.
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9.2 Energy Scales and Dimensions

Next, we substitute the electrostatic energy scale appearing in LD. However, this
requires the introduction of a characteristic length scale. Here, we choose the ion-size
and parametrize the corresponding energy scale via

Eel = (ez+)2/16πε0εRγ+γ−a . (9.34)

Like the thermal energy scale, Eel = Eel(r = a) takes the textbook form for Coulomb
energy of charges at distance a in the case of symmetric ions γ± = 0.5. Since the
relative volumes are bounded by 0 < γ± < 1, the electrostatic energy is minimal at
equal ion-sizes (ν− = ν+). Both energy scales are coupled by the length scale LD,

Eth/Eel = 8π/ν̃ · (LD/a )2 = 8π/ν̃ã2 . (9.35)

Our theory also contains a generalized Bjerrum-length LB, which measures the
distance at which the electrostatic energy and the thermal energy become compa-
rable, i.e. Eel(r = LB) = Eth. Thus,

L̃B = 1/8π · 1/LD (ez+)2/kBTε0εRc̃
b = ν̃/8π · ã3. (9.36)

The dimensionless Poisson-equation reads ϱ̃F = −∇̃2Φ̃. Thus, the coupling be-
tween ϱ̃F and Φ̃, as described by the Poisson equation, depends only on the two
energy scales thermal energy and electrostatic energy. Furthermore, the dimension-
less Poisson equation suggests to introduce non-dimensional electrostatic fields

D̃F = νc̃b/FLDz+ ·DF, and Ẽ = εRε0νc̃
b/LDFz+ ·E, (9.37)

such that ϱ̃F = ∇̃D̃F, Ẽ = −∇̃Φ̃, and D̃F = Ẽ.
Next, we use these dimensionless quantities to obtain the non-dimensional form

for the system of equations, given by eqs. (9.18) to (9.20). Altogether, we find

ϱ̃F = −∇̃2Φ̃, (9.38)
∂t̃ϱ̃F = −∇̃ (ϱ̃Fṽ)− ∇̃J̃ F, (9.39)

∇̃ṽ = χ∇̃J̃ F, (9.40)
where

J̃ F = − (1 + χϱ̃F) ∇̃µ̃el
IL. (9.41)

This system of equations is subject to the explicit form of the chemical forces ∇̃µ̃el
IL,

which can be expressed either using the integral description (see eq. (9.22)), or
using the gradient description (see eq. (9.23)). We find for the integral description
in non-dimensional form
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9 Molecular Interactions in Binary IL Electrolyte

∇̃µ̃el
IL = ∇̃

(
Φ̃− V0/8πEel ·

√
Eth/8πEel · 1/ν̃ ·

∫
dx3 F̃+−(|x̃− ỹ|)ϱ̃F(x̃)−

−γ+ · ln
[
c̃−/c̃

b
]

+ γ− · ln
[
c̃+/c̃

b
])
. (9.42)

In a similar manner, we find for the chemical forces in the gradient description,

∇̃µ̃el
IL=∇̃

(
Φ̃−γ+ ln

[
c̃−/c̃

b
]

+γ− ln
[
c̃+/c̃

b
]
−V0/Eth ·

∈∑
n=0

Γ̃ 2n
+−∇̃2nϱ̃F

)
, (9.43)

where we introduced the non-dimensional perturbation modes
Γ̃ 2n

+− = Γ 2n
+−/a

3ν̃(LD)2n . (9.44)

We summarize our choice for removing the physical dimensions from our electro-
lyte description in table 9.1.

Quantity Dimension Non-dimensional

Electrolyte electric potential [Φ] =kg m2 A−1 s−3 Φ̃=Φ · Fz+/RT

Electroneutral bulk concentration
[
cb
]

=mol m−3 c̃b=(γ+)2 + (γ−)2

Concentration [cα] =mol m−3 c̃α=cα · νc̃b

Charge density [ϱF] =A s m−3 ϱ̃F=ϱF · νc̃b/Fz+
Position from electrode [x] =m x̃=x/LD
Gradient [∇] =m−1 ∇̃=∇ · LD
Time [t] =s t̃=t · κ/ε0εR
Velocity [v] =m s−1 ṽ=v · ε0εR/LDκχ
Electric field [E] =kg m A−1 s−3 Ẽ=E · LDez+/kBT
Dielectric displacement [D] =A s m−2 D̃=D · ac̃b/LDez+
Chemical potential [µα] =kg m2 mol−1 s−2 µ̃α=µα/RT

Table 9.1: Sumarry of non-dimensional quantities.

We briefly discuss the influence of the asymmetry parameter χ (see eq. (9.16))
on the system of transport equations. The asymmetry parameter scales the fluxes
convection velocity v and J̃ F via 1 + χϱ̃sat

F (see eq. (9.41)). However, the charge
density becomes maximal / minimal in the case of saturation (see eq. (9.31)), ϱ̃sat

F =
sign(zα∗)c̃b/γα∗ , such that the asymmetry-correction has as maximal magnitude

1 + χϱ̃sat
F = 1 + sign(zα∗) · (M̃+ − γ+/γα∗ ) = M̃α∗/γα∗ . (9.45)

In fig. 9.1, we show a parameter-study for χ, and the maximal flux-correction
eq. (9.45) to J F (see eq. (9.39)). As can be inferred from fig. 9.1a), χ ranges between
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~

~

Pyr+

~

~

Pyr+

a)                                                                           b)

Figure 9.1: a) Parameter study of the asymmetry parameter χ (see eq. (9.16)). b)
Parameter study for the flux-correction χϱsat

F (see eq. (9.41) and eq. (9.45)).

zero and one. The mass-ratio for the Pyr-cation is roughly M̃Pyr=0.25. Also, as it
is shown in fig. 9.1b), the flux correction M̃α∗/γα∗ does not deviate much from one
for reasonable parameters (M̃+, γ+).

The non-dimensional form for the dynamical transport equations highlight the
role of the system parameters. Here, both the relative masses and the relative molar
volumes appear in the asymmetry parameter and the flux-correction. However, the
role of these parameters changes in the stationary case as the masses disappear from
the stationary equations, and only the volumes remain as system parameters. Thus,
the Euler equation for the volume and the existence of finite molar volumes are
crucial in the model.

9.2.1 Special Case: Symmetric Ion Species (χ = 0)

Here, we discuss the special case of symmetric ion species, i.e. χ=0.
As discussed above, χ=0 holds if the ion species have equal molar volumes and

masses, or if the molar volumes are proportional to the molar masses.
When χ = 0, the convection velocity becomes constant, ∇̃ṽ = 0 (see eqs. (9.38)

to (9.40)), and is completely determined by the boundary conditions (BCs). When
we assume no-flux BCs, i.e. v(x=0)=0, then v=0 everywhere. Furthermore, the
system of equations can be reduced to one single equation

ϱ̃F = −∇̃2Φ̃,
∂t̃ϱ̃F = ∇̃2µ̃el

IL

}
=⇒
χ=0 ∂t̃∇̃2Φ̃ = −∇̃2µ̃el

IL. (9.46)
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We eliminate the gradients appearing on both sides of eq. (9.46) via integration
using electroneutral boundary conditions (EBCs). These EBCs are defined by the
condition that the electrolyte is electrically neutral in the bulk x→∞,

Ẽ(x→∞) = 0, ϱ̃F(x→∞) = 0, Φ̃(x→∞) = 0, c̃±(x→∞) = c̃b. (9.47)

Thus, when we assume that the derivatives ∂t̃ and ∇̃ “commute” with each other,
we can omit the spatial derivatives such that eq. (9.46) reads

∂t̃Φ̃ = −µ̃el
IL. (9.48)

Next, we assume that χ=0 due to symmetric ion species, i.e. γ±=M̃±=1/2. Hence,
the concentrations become (see eq. (9.30))

c̃± = (1± ϱ̃F)/2, and γ±/c̃
b = 1. (9.49)

Thus, the logarithmic terms appearing on the right side of eqs. (9.42) and (9.43) can
be cast into one single term. THe integral description,

∂t̃Φ̃ = 1
2 ln

(
1 + Φ̃′′

1− Φ̃′′

)
− Φ̃− V0

8πEel

√
Eth

8πEel

1
ν̃

∫
dx3 F̃+−(|x̃−ỹ|)Φ̃′′(x̃), (9.50)

whereas the gradient description reads

∂t̃Φ̃ = 1
2 ln

(
1 + Φ̃′′

1− Φ̃′′

)
−
(

1 + V0

Eth

∞∑
n=0

Γ̃ 2n
+− · ∇̃2(n+1)

)
Φ̃. (9.51)

9.2.2 Non-Convective Case (v = 0)

Here, we consider the case where the equation for convection ( eq. (9.40)) is not
taken into account in the system of equations, and where the velocity is set to zero
in the remaining equations. Thus, we find that this case equals exactly the case of
symmetric ions except the dangling correction ∇̃[χϱ̃F∇̃µ̃el

IL],

ϱ̃F = −∇̃2Φ, and ∂t̃ϱ̃F = ∇̃
[
(1 + χϱ̃F) ∇̃µ̃el

IL

]
. (9.52)

9.3 Stationary State

One common focus in the study of ILs near electrified interfaces lies on the formation
of equilibrium structures. Here, we address this goal, and discuss the system of
equations in the stationary limit.
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We define the stationary state by the condition ∂t̃ϱ̃F = 0, and via no-flux boundary
conditions (NFBCs) at the interface, J̃ F(x=0)=v(x=0)=0. Thus, eq. (9.39) implies
that ϱ̃Fṽ+J̃ F=0 everywhere. However, because the fluxes vanish at the interface,
they vanish everywhere.

J̃ F = 0, and ṽ = 0. (9.53)

The system of equations describing a binary IL-electrolyte in stationary state reduces
to two equations,

ϱ̃F = −∇̃2Φ̃, (9.54)
0 = ∇̃µ̃el

IL. (9.55)

Apparently, this reproduces exactly the electrochemical equilibrium defined by eq. (5.234):
here, the only independent force relates to the fluxes via J̃ F ∝ ∇̃µ̃el

IL and ṽ ∝ ∇̃µ̃el
IL

(see eqs. (9.40) and (9.41)), i.e. ∇̃µ̃el
IL = 0 implies that all fluxes vanish identically.

Next, we use electroneutral BCs, eq. (9.47), and integrate both sides of eq. (9.55).
Thus, the stationary integral description reads (see eq. (9.42))

0 = Φ̃− γ+ ln c̃−
c̃b + γ− ln c̃+

c̃b −
V0√Eth

(8πEel)3/2
1
ν̃

∫
dx3 F̃+−(|x̃−ỹ|)ϱ̃F(x̃), (9.56)

whereas using the gradient description (see eq. (9.43)), eq. (9.55) becomes

0 = Φ̃− γ+ ln
[
c̃−/c̃

b
]

+ γ− ln
[
c̃+/c̃

b
]
− V0/Eth ·

∞∑
n=0

Γ̃ 2n
+−∇̃2nϱ̃F. (9.57)

Apparently, the molar masses appearing as parameters in the dynamical transport
equations via the asymmetry parameter χ (see eqs. (9.7), (9.8), (9.39), (9.40), (9.42)
and (9.43) become irrelevant in the stationary limit. This is a consequence of the fact
that electrolyte momentum is important only for dynamical processes. In contrast,
because the Euler equation for the volume holds in any state, the volume parameters
γ± remain as exclusive system parameters in the system of stationary equations, see
eqs. (9.55) to (9.57).
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The gradient description of the stationary state (see eq. (9.57)) renders useful to
analytical investigations. These analytical investigations, however, are based on dif-
ferent limiting assumptions, which we discuss in this chapter. First, in section 10.1,
we discuss the limiting cases of small and large potentials, derive approximations for
our variables and implement these results into our stationary description. In sec-
tion 10.2, we focus on the limit of vanishing molecular interactions V0 → 0. Finally,
in section 10.3, we discuss also the case of interacting electrolytes.

10.1 Small and Large Potentials

The set of equations, which are necessary to describe a binary IL in stationary state,
eq. (9.54) and either eq. (9.57) or eq. (9.56), can be solved using numerical methods.
However, here, we focus on the analytical analysis of the gradient description. Our
strategy is to focus on two different electrolyte regions. First, we discuss the region
far away from the interface, and assume that this region can be described by small
perturbations from the electroneutral bulk state. Second, we focus on the region
close to the interface, where we expect strong electric fields and where assume charge
saturation. For completeness, we restate the complete set of stationary equations,

ϱ̃F = −∇̃2Φ̃, (10.1)

0 = Φ̃− γ+ ln
[
c̃−/c̃

b
]

+ γ− ln
[
c̃+/c̃

b
]
− V0/Eth ·

∈∑
n=0

Γ̃ 2n
+−

˙̃∇2nϱ̃F. (10.2)

The higher order gradients and the differing volumes appearing on the right side of
eq. (10.2) hinder our analysis. To overcome these obstacles, we distinguish different
limiting cases in our analysis.

First, we focus on the electrolyte region far away from the electrode where we
assume that the electrolyte deviates only slightly from the electroneutral state. This
motivates the limiting case of small charge-densities, ϱ̃F ≪ 1, corresponding to small
potentials. We reexpress the ion concentrations via the charge density, see eq. (9.30),
i.e. c̃±/c̃

b = 1 ± ϱ̃Fγ∓/c̃
b , and expand the logarithmic terms in eq. (10.2) up to

134
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first order around the electroneutral state ϱ̃F = ϱ̃bulk
F = 0,

γ+ ln
(
c̃−/c̃

b
)
− γ− ln

(
c̃+/c̃

b
)
≈ −ϱ̃F. (10.3)

Substituting this result into the trivial force law, eq. (10.2), yields
ϱ̃F = −∇̃2Φ̃, (10.4)

0 = Φ̃ + ε̂Rϱ̃F, (10.5)
where we introduced the dielectric operator

ε̂R = 1− V0

Eth

∞∑
n=0

Γ̃ 2n
+− · ∇̃2. (10.6)

In the absence of molecular repulsion, V0=0, the non-dimensional dielectric operator
reduces to the canonical scalar-valued non-dimensional dielectric parameter ε̂R → 1.
Quantities like ε̂R usually arise in the liquid state theory of classical statistical
mechanics. We emphasize that the introduction of a dielectric operator like eq. (10.6)
can be implemented in various types. For example, ε̂Γ

R = V0/Eth ·
∑∞

n=0 Γ̃
2n
+− · ∇̃2,

is not subject to the assumption of small potentials. Based on this definition, the
gradient description of the chemical forces (see eq. (9.43)) becomes ∇̃µ̃el

IL = ∇̃(Φ̃−
γ+ ln[c̃−/c̃

b ] + γ− ln[c̃+/c̃
b ]− ε̂Γ

Rϱ̃F). Another approach is to implement the Poisson
equation directly into the forces which implies that Φ̃ is the only variable, and yields
ε̂Φ̃

R = −ε̂R · ∇̃2 occurring in the trivial force equation.

10.2 Mean Steric Effect: Charge Saturation

In this section, we neglect non-local interactions, V0=0, and discuss the EDL struc-
ture based on the bulk free energy F int =

∫
dV ρφH (see eq. (8.10)). The corre-

sponding system of equations reads (see eqs. (10.1) and (10.2))

0 = Φ̃− γ+ ln(c̃−/c̃
b) + γ− ln(c̃+/c̃

b). (10.7)

10.2.1 Static Asymptotic Analysis: Small Potentials |Φ̃| ≪ 1

In this section, we study the EDL far away from the electrode, i.e. close to the
electroneutral bulk (large x̃) and assume small potentials |Φ̃| ≪ 1. Since we non-
dimensionalized Φ using the energy scale Eth (see eq. (9.24)), this coincides with
the regime of high temperatures. According to eq. (10.7), small potentials corre-
spond to small dimensionless charge densities ϱ̃F ≪ 1. We approach the EDL from
the electroneutral bulk region along the direction of decreasing values x̃. Inserting
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10 Static Asymptotic Analysis

eq. (10.4) into eq. (10.5) (where ε̂R = 1) reduces our description to one equation,

∇̃2Φ̃ = Φ̃. (10.8)

We solve this equation using the electroneutral BCs from above (see eq. (9.47)),

Φ̃(x̃) = ∆ϕ̃ · exp(−x̃), and ϱ̃F(x̃) = −∆ϕ̃ · exp(−x̃). (10.9)

Thus, the dimensional electrolyte potential Φ(x) = ∆ϕ · exp(−x/LD) decays ex-
ponentially, and the decay length in the limit |Φ̃| ≪ 1 is the Debye length LD =√
kBTa3ν̃c̃bε0εR/ez+ defined in eq. (9.26). Thus, the width of the EDL is deter-

mined by the damping parameter k = 1/LD , i.e. by the Debye-length LD.
We examine the influence of ion-asymmetry on the damping, and express k via

k(γr) =
√

(ez+)2/kBTε0εRa3ν̃(1 + 2[γ+]2 − 2γ+ ). (10.10)

Because the damping k(γr) is a function of ion-asymmetry with global minimum at
γ+=1/2, the EDL-width is maximal for ion-species of equal size.

The surface charge density Q(x) comprised in the EDL is the cumulative charge
from the electroneutral bulk up to x, and is determined by the electric field,

Q(x) =
∫ LEDL

x
dy ϱF(y) = ε0εRΦ′(x) = −ε0εRΦ(x)/LD . (10.11)

The total surface-charge-density comprised in the EDL is thus determined by the
boundary condition for the electric field at the interface,

Qtot = Q(0) = −ε0εR∆ϕ/LD, (10.12)
whereas the corresponding differential capacitance is

dQtot/d(∆ϕ) = −ε0εR/LD . (10.13)

10.2.2 Static Asymptotic Analysis: Large Potentials |Φ̃| ≫ 1

Next, we discuss the EDL region close to the electrode/electrolyte interface where we
assume large potentials |Φ̃| ≫ 1. Due to our non-dimensionalization of the electric
potential (see eq. (9.24)), this corresponds to the limit of zero temperature, T = 0.

Starting point is the stationary equation for vanishing molecular repulsion (V0 =
0), see eq. (10.7). In this region of the electrolyte, the logarithmic terms in eq. (10.7)
must compensate the diverging potential term Φ̃. However, the behaviour of the
logarithmic terms is restricted due to the mean volume constraint (see eq. (5.178)),
and the finite molar volumes of the ion-species imply concentration saturation near
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10.2 Mean Steric Effect: Charge Saturation

the electrified interface for large enough potentials ∆ϕ̃ ( see eq. (9.31)). In contrast,
the counter-species depletes within this region. Thus, depending upon the sign of
the potential ∆ϕ̃, the condition of stationarity reads

|Φ̃| = |γ± · ln (γ∓) + γ∓ · lim
c̃±→0

ln(c̃±/c̃
b )|. (10.14)

As consequence, one of the logarithmic terms diverges if one species depletes c̃± → 0,
and the other species saturates c̃± → c̃sat

± =c̃b/γ± . Since electric fields are continu-
ous across interfaces, the polarization of the electrolyte potential near the interface
equals the electrode polarization ∆ϕ̃. Thus, the saturating species α∗ is uniquely de-
termined by the sign of the electrode potential, sign(zα∗)=−sign (∆ϕ). Altogether,
the charge saturation corresponding to the saturated concentration profile is deter-
mined by the screening-length

ϱ̃sat
F = −sign(∆ϕ̃) · θ(L̃EDL − x̃) · c̃b/γα∗ , (10.15)

This form for the charge density solves eq. (10.7) over some EDL-width L̃EDL. Here
θ denotes the Heaviside function. Thus, the charge profile has a “box-shaped”
form of constant saturation value over the distance L̃EDL into the bulk electrolyte as
measured from the interface. The EDL-width and the profile of the electric potential
can be determined as follows. Substitution of eq. (10.15) into the Poisson equation
yields ∇̃2Φ̃ = sign(∆ϕ̃) · c̃b/γα∗ . We integrate this modified Poisson equation twice
over the interval [x̃, L̃EDL], assuming electroneutral BCs at x̃ = L̃EDL, see eq. (9.47).
As result, for the electrolyte electric potential we find

Φ̃(x̃) = ∆ϕ̃ ·
(
1− x̃/L̃EDL

)2
. (10.16)

The EDL-width is determined by the interface BC Φ̃(0) = ∆ϕ̃. Hence,

L̃EDL =
√

2γα∗ |∆ϕ̃|/c̃b =
√
γα∗ez+|∆ϕ|/γ+γ−Eth . (10.17)

Apparently, the EDL-width L̃EDL increases with increasing γα∗ , since the amount of
charges which are necessary to screen the overpotential ∆ϕ̃ need “more space”. Also,
the screening width is larger for enhanced interface polarizations ∆ϕ̃. Furthermore,
L̃EDL also increases with decreasing temperature. The corresponding dimensional
EDL-width reads

LEDL = LD · L̃EDL =
√

2a3|∆ϕ|γα∗ ν̃ε0εR/ez+ (10.18)

and is larger than LD exactly if L̃EDL > 1, i.e. for small temperatures, large polar-
izations ∆ϕ̃, or “large” screening species.

137



10 Static Asymptotic Analysis

a)                                            b)                                            c)        

d)                                            e)                                            f)        

Figure 10.1: Parameter study for Debye-length LD, defined by eq. (9.26), and the
EDL-width LEDL, defined by eq. (10.18). If not stated otherwise, all plots refer to
the system parameters T = 300 K, εR = 15, γ+ = 0.5, a = 1.2 nm, ∆ϕ = −200 mV
and z+ = 1. a) LD and LEDL as function of the ion-asymmetry γ+. b) LD and
LEDL as function of interface potential |∆ϕ|. c) LD and LEDL as function of the
dielectricity εR. d) LD and LEDL as function of the valency. e) LD and LEDL as
function of the ion size a. f) LD as function of temperature. LEDL does not depend
on temperature and thus is constant (here LEDL = 0.53 nm).

Figure 10.1 illustrates the influence of the system parameters on the Debye-length
LD, defined by eq. (9.26), and the EDL-width LEDL, defined by eq. (10.18). The
EDL width LEDL is larger than the Debye length except for highly asymmetric ions,
or for small interface potentials (where the validity of LEDL becomes ill-defined).
Figure 10.1a) shows the influence of ion-asymmetry on both length scales. As men-
tioned above, the Debye length is minimal for symmetric ions (γ = 0.5). This is due
to the entropy becoming extremal for equal sized constituents. In contrast, the EDL

138



10.2 Mean Steric Effect: Charge Saturation

width increases with increasing ion asymmetry. Figure 10.1b) shows the influence
of the interface potential on the EDL-width. Apparently, the EDL width increases
with √γ+. Note that the Debye length does not depend upon the interface potential
and is thus constant (here Eth ≈ 25 meV). Figure 10.1c) shows the influence of the
dielectric constant εR on both length scales. Apparently, both increase with increas-
ing dielectric constant. Figure 10.1d) illustrates the influence of the ion valencies
on the EDL length scales. Both decrease with increasing value z+. Figure 10.1e)
shows that both EDL length scales increase with increasing ion size a. Figure 10.1f)
shows that the Debye length increases with temperature. Since the thermal energy
competes with charge ordering influences in the EDL, increasing the temperature
makes the EDL more diffuse. Note that the EDL width LEDL does not depend on
temperature (LEDL = 0.53 nm).

We determine the surface charge density Q from the dimensional form of the
solution for the electric potential,

Φ(x) = ∆ϕ · (1− x/LEDL) . (10.19)

The cumulative charge from the electroneutral bulk up to position x in the electro-
lyte, Q(x), follows from integration of the charge density over the integral [x;LEDL]
(assuming electroneutral BCs at x = LEDL)

Q(x) =
∫ LEDL

x
dy ϱF(y) = −2ε0εR∆ϕ/LEDL · (1− x/LEDL ) . (10.20)

In the first step above, we used the Poisson equation (ϱF = −ε0εRΦ′′), and, in the
second step, we used the solution eq. (10.19). From this cumulative charge follows
the total surface-charge-density Qtot(a, εR, T,∆ϕ, γ±), comprised in the complete
EDL, and the corresponding differential capacitance,

Qtot=Q(0)=−2ε0εR∆ϕ/LEDL =−sign (∆ϕ)
√

2|∆ϕ|ε0εR(ez+)2/kBTa3γα∗ , (10.21)
and

dQtot/d(∆ϕ) = −
√
ε0εR(ez+)2/2kBTa3γα∗ |∆ϕ| . (10.22)

10.2.3 Mean Volume Effect: Symmetric Ions

We discuss the special case where the ion-species have the same molar volume,
i.e. γ±=c̃b=1/2, where eq. (10.7) becomes Φ̃= ln

√
c̃−/c̃+ . We exponentiate both

sides, such that c̃−=c̃+· exp(2Φ̃), and substitute the charge density for the species
concentrations using eq. (9.30), ϱ̃F=c̃+−c̃− and c̃−=(1−ϱ̃F)/2. By substitution, we
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find that charge density becomes a function of electrolyte electric potential, [69]

ϱ̃F(Φ̃) = 1− exp(2Φ̃)
1 + exp(2Φ̃)

= − tanh(Φ̃) (10.23)

This corresponds to a dimensionless modified Poisson-Fermi distribution, which is
typical for saturated screening processes. [363] Next, we substitute the Poisson equa-
tion (ϱ̃F = −Φ̃′′) for the left side above, and multiply both sides by 2Φ̃′. In addition,
we integrate both sides over the interval [x;LDL], where we make use of electroneu-
tral BCs (see eq. (9.47)), and evaluate the relation 2Φ̃′Φ̃′′ = ∇[(Φ̃′)2] = d[(Φ̃′)2].
Altogether,

Φ̃′ = −sign(∆ϕ̃) ·
√

2 ln[cosh(Φ̃)], (10.24)
whereas the dimensionless total surface charge density Q̃tot=ez+/kBTε0εR·Qtot is

Q̃tot = −sign(∆ϕ̃) ·
√

2 ln[cosh(Φ̃)]. (10.25)

10.3 Non-Local Interactions: Charge Oscillations

Here, we supplement our finding from the previous section, and discuss the influence
of non-local interactions (V0 , 0) on the stationary EDL structure. Again, we focus
on the gradient description of the IL-electrolyte, and follow the same rationale as in
section 10.2 by discussing the two limiting cases of small and large potentials.

10.3.1 Static Asymptotic Analysis: Large Potentials |Φ̃| ≫ 1

Here, we discuss the regime of diverging electrolyte potentials |Φ̃| → ∞ where the
interaction contribution cannot compensate the diverging electrolyte potential in
eq. (10.2). Thus, the compensation must be realized via the logarithmic terms,
which, as explained in section 10.2.2, diverge if one species depletes. Hence, we
obtain the same results as described in section 10.2.2.

10.3.2 Static Asymptotic Analysis: Small Potentials |Φ̃| ≪ 1

Here, we consider the gradient description of the stationary EDL with molecular
repulsion in the regime of small potentials |Φ̃| ≪ 1 described by eqs. (10.4) to (10.6).

We restrict our gradient expansion to the first two modes n=0 and n=1, such that

ϱ̃F = −∇̃2Φ, and 0 = Φ̃ + ε̂Rϱ̃F, (10.26)
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where the dielectric operator expanded up to the second order is

ε̂R = 1− V0/Eth · Γ̃ 0
+− − V0/Eth · Γ̃ 2

+− · ∇̃2. (10.27)

We investigate the fundamental system corresponding to this set of equations. For
this purpose, we rephrase eqs. (10.26) and (10.27) in matrix form,(

∇̃2ϱ̃F
∇̃2Φ̃

)
= Ã ·

(
ϱ̃F
Φ̃

)
, (10.28)

where

Ã =


Eth

V0Γ̃ 2
+−

(
1− V0

Eth
Γ̃ 0

+−

)
Eth

V0Γ̃ 2
+−

−1 0

 . (10.29)

We solve eq. (10.28) via the eigenvalue decomposition, det(Ã − α̃1,2 · Id) = 0, for
the eigenvaluess α̃1,2. This shows that the eigenvalues are determined by the relative
magnitudes of the three competing energy scales Eth, Eel, and V0, and by the two
perturbation modes Γ̃ 0

+− and Γ̃ 2
+−,

α̃1,2=− Γ̃ 0
+−/2Γ̃ 2

+−

[
1−Eth/V

0Γ̃ 0
+−∓

√(
1−Eth/V0Γ̃ 0

+−

)2
−4EthΓ̃ 2

+−/V
0(Γ̃ 0

+−)2

]
.

(10.30)
These two eigenvalues α̃1,2 give rise to four dimensionless wave-vectors

k̃±
1,2 = ±

√
α̃1,2. (10.31)

The two eigenvectors ã1,2 of the matrix Ã corresponding to α̃1,2 are

ã1,2 =
(
−α̃1,2

1

)
. (10.32)

Altogether, the eigenvalues eq. (10.30), the eigenvectors eq. (10.32) and the wave
vectors eq. (10.31) determine the general solution of the equation system eq. (10.28)

(
ϱ̃F
Φ̃

)
=


...

...
ã1 ã2
...

...

 ·
A1e

k̃1x̃ +A2e
−k̃1x̃

A3e
k̃2x̃ +A4e

−k̃2x̃

 . (10.33)

Because the expansion coefficients Ai are unknown, this general solution is under-
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determined. However, we determine them using boundary conditions, and physical
arguments. Apparently, the wave-vectors are functions k̃1,2(T, zα, εR,να,Fαβ), and
determine the structure of the EDL according to the classification

k̃1,2 ∈


R, leads to exponential damping,
R+ i · R, leads to damped oscillations,
i · R, leads to undamped oscillations.

(10.34)

Thus, due to the exponential form of the general solution eq. (10.33), the EDL
structure depends upon the relative magnitudes of the energies Eth, Eel, and V0 via
eq. (10.30), and it remains to evaluate the conditions under which the wave-vectors
are real (k̃ ∈ R), imagiary (k̃ ∈ iR), orcomplex (k̃ ∈ R + iR). However, before we
address this goal, we check consistency with experimental results.

Experimental results based on AFM measurements of ILs near electrified inter-
faces show oscillatory force profiles, [48,345,364] where the wave-lengths ℓAFM of the
oscillations correlate with the ion-sizes via ℓAFM = a/2π . We use this observation
to parameterize our description. For this purpose, we consider the limit of indefinite
molecular repulsion, V0 →∞, and erect the constraint

lim
V0→∞

Im

(
k̃
)

= k̃AFM = 2π/ã . (10.35)

We transfer this constraint to the wave vector, and calculate the limit limV0→∞ α̃1,2
using eq. (10.30) and eq. (10.31),

lim
V0→∞

k̃ = k̃AFM =

±i ·
√
Γ̃ 0

+−/Γ̃
2
+− ,

0.
(10.36)

Thus, the constraint on the wave-vector transfers to a constraint on the perturbation
modes Γ̃ 0

+− and Γ̃ 2
+−, i.e. to a constraint on the model for F̃. Since the perturbation

modes are mainly determined by the effective support of the interaction potentials,
this is a constraint on the correlation length of the repulsive interaction. Altogether,
we find as constraint the following relation

Γ̃ 2
+−/Γ̃

0
+− = (ã/2π )2 = 2Eel/πν̃Eth. (10.37)

Here, we used the relation between the dimensionless molecule-scale ã and the en-
ergy scales Eth and Eel (see eq. (9.35)) Therefore, only one independent perturbation
mode exists in the second order expansion. As consequence, we substitute the con-
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dition eq. (10.37) for Γ̃ 2
+− into the eigenvalue-equation (see eq. (10.30)), which yields

α̃1,2 = − π

4ν̃ ·
Eth
Eel

(1− Eth

V0Γ̃ 0
+−

)
∓

√√√√(1− Eth

V0Γ̃ 0
+−

)2

− 8
πν̃

Eel
V0

1
Γ̃ 0

+−

 . (10.38)

We use this form for the eigenvalue equation and classify the wave-vector k̃ (see
eq. (10.34)), i.e. identify the energy regimes for which the wave vector becomes
real, complex, or imaginary. However, this classification of k̃ depends upon the
corresponding classification of the eigenvalues α̃1,2 being real, complex or imaginary,
which depends mainly upon the square-root appearing in eq. (10.30),

W =
(
1− Eth/V

0Γ̃ 0
+−

)2
− 8Eel/πν̃V

0Γ̃ 0
+− . (10.39)

Thus, the critical values V0
±, defined by the condition W(V0

±) = 0, determine the
phase boundaries,

V0
± = 1/Γ̃ 0

+− ·
[
Eth + 4Eel/πν̃ ± 2

√
2Eel(2Eel/πν̃+ Eth)/πν̃

]
(10.40)

Thus, eq. (10.40) allows to draw the phase diagram for the EDL screening phases
structure. Since 0 < V0

− < V0
+, there are three different screening phases, as stated

by the following Theorem (see appendix E.4),

Theorem 1. The phase-space of the screening profiles is threefold:

Region I: V0 ≤ V0
− Exponentially damped screening profile

Region II: V0
− < V0 < V0

+ Exponentially damped oscillations
Region III: V0

+ ≤ V0 Undamped oscillations

Apparently, due to eq. (10.40), the energy scales (V0
±Γ̃

0
+−) are model indepen-

dent (i.e. independent from the perturbation modes), i.e. determines the phase-
boundaries between the different screening profiles for all spherically symmetric in-
teraction potentials F. Hence, theorem 1 analytically predicts the emergence of
phase separation, and states the exact phase boundaries for any spherically sym-
metric potential. Note that the zero-order perturbations have a rather simple form,
see eq. (8.34).

Another consequence is that the phase boundaries corresponding to different mod-
els F are all proportional to each other, i.e. , the phase space is “conformally in-
variant”. Hence, the effect of choosing a specific form for the interaction potential
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is that it re-scales the phase boundaries, by scaling the critical interaction energies
V0

±. In chapter 11 we will study one specific example.
We discuss each of the three phases, which are predicted by Theorem 1 (see

appendix E.4 for more details).

Phase 1 0 ≤ V0 ≤ V0
−: In this region, all eigenvalues are real and positive, 0 ≤

α̃1,2 ∈ R. This implies real-valued wave-vectors, k̃1,2 = ±
√
α̃1,2 ∈ R, subject to

boundary conditions. Hence, the profiles for the charge density, and the electric
potential exhibit exponential shape,

ϱ̃F ∝ exp(−k̃Rx̃). (10.41)

In order to check consistency with the results from section 10.2.1, we consider the
limit limV0→0 α̃1,2, and we write eq. (10.38) in the form

α̃1,2=− πEth
4ν̃EelV0 ·

[(
V0−Eth/Γ̃

0
+−∓

√(
V0 − Eth/Γ̃ 0

+−

)2
−8EelV0/πν̃Γ̃ 0

+−

)]
.

(10.42)
Next we approximate the root appearing on the right side of eq. (10.42) via a har-
monic analysis,

√
W(V0→0)≈Eth/Γ̃

0
+− − (1 + 4Eel/πEth )V0, such that

lim
V0→0

k̃1 =∞ and lim
V0→0

k̃2 = 1. (10.43)

We discard the first solution as being unphysical. In contrast, the second solution for
k̃2 yields a dimensional damping-parameter k = 1/LD . Thus, this limit reproduces
the “bulk”-expansion for Φ̃ ≪ 1 from section 10.2.1 (see eq. (10.9)), and is thus
consistent with our previous analytical investigation.

Phase 2 V0
− < V0 < V0

+: In this regime, the root appearing in the eigenvalue
equation is negative, W < 0. Thus, the root W in eq. (10.39) becomes imaginary,
and the wave-vector is complex, k̃1,2 ∈ R× i ·R. This corresponds to charge-profiles
of exponentially damped oscillations,

ϱ̃F = A · e−k̃Rx̃ · cos(k̃Cx̃). (10.44)

where we write k̃R = Re(k̃), and k̃C = Im(k̃). Here, the parameter A is subject
to the boundary conditions and physical arguments. Apparently, the real part k̃R
determines the width of the EDL, whereas the complex part k̃C determines the
frequency of the oscillations appearing in the screening profile.
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Phase 3 V0
+ ≤ V0: In this region, both eigenvalues are real but negative, 0 ≥

α̃1,2 ∈ R. Therefore, the wave vector is imaginary, k̃1,2 ∈ i · R, which corresponds to
undamped oscillatory profiles

ϱF ∝ cos(k̃Cx̃). (10.45)

Apparently, with increasing V0, the frequency of the oscillations converges towards
the terminal oscillation frequency k̃AFM, which is determined by the ion-sizes (see
the constraint in eq. (10.35)). This corresponds to an increasingly incompressible
electrolyte, which prevents further decrease of the wavelength.

Altogether, the critical values V0
± constitute exactly the two boundaries between

the three different EDL phases. Interestingly, both eigenvalues α̃± have always
the same characteristic. Thus, there are no solutions yielding the superposition of
profiles from distinct phases.

In sections 10.3.5 and 10.3.6 we examine the influence of the individual pertur-
bation modes (i.e. Γ 0

+− and Γ 2
+−) on the phase space of screening profiles. As it

turns out, neglecting all but the zeroth-order mode (Γ 0
+−) results in a binary phase

diagram comprising only exponentially damped profiles and undamped, oscillatory
profiles. In contrast, taking only the first non-trivial order (Γ 2

+−) into account, re-
sults also in a binary phase-diagram, which comprises exponentially damped profiles,
and damped oscillatory profiles. The BSK framework constitutes an example for a
MFT based on only one perturbation mode of the form Γ 2

+−. [69] Therefore, in order
to obtain “complete” set of the three different phases, both perturbation modes (i.e.
Γ 0

+− and Γ 2
+−) are necessary.

Interestingly, if we consider attractive potentials, i.e. “negative” interaction ener-
gies (V0 < 0) in eq. (8.28), the space of screening profiles reduces to two phases. In
this case, only exponentially damped screening-profiles, and undamped oscillatory
screening-profiles are possible. Hence, the damped oscillatory screening-profile does
not occur. This follows straightforwardly from eq. (10.30) (see also the discussions
in sections 10.3.5 and 10.3.6).

10.3.3 Double Layer Forces

In section 5.4.5 we showed that there arise strong elastic pressure forces FEDL in
the EDL when the system is in mechanical equilibrium (see eq. (5.231) and, also,
chapter 14), [345]

FEDL = −ν/NA ·∇Pvol = ν/NA · ϱF∇Φ. (10.46)

The quantity FEDL has dimension of a force, i.e. [FEDL] = N, and the corresponding
dimensionless EDL force is thus F̃EDL = LDc̃

b/kBT ·FEDL = ϱ̃F∇̃Φ̃ (see section 9.2).
Thus, the charge density and the electric potential determine the forces appearing in
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the equilibrium EDL structures. These forces correspond to the reaction of the EDL
configuration in mechanical equilibrium under small perturbations. Note that if the
profiles for the charge density and the electric potential have an oscillatory shape
with periodicity 2π/k̃R, i.e. ϱ̃F ∝ Φ̃ ∝ cos(k̃Rx̃) (see eqs. (10.44) and (10.45)), then
the force in eq. (10.46) has the shape F̃EDL ∝ cos(2 ∗ k̃Rx̃). Thus, the resulting force
profile has the periodicity 4π/k̃R, i.e. a periodicity twice as large. This implies that
when the charge density and the electric potential oscillate with frequency given by
the ion-pairs, then the force profile oscillates with the size of the ions.

10.3.4 Analytical Construction of the Screening Profile

Apparently, the screening profile of the electric potential and the charge density
in the EDL is characterized by crowding and overscreening. Thus, the screening
profile consists of three characteristic properties: a constant charge plateau due to
concentration saturation appearing near the electrode (crowding); an exponentially
damped decay towards the electroneutral bulk region far away from the electrodes;
an oscillatory shape (overscreening), or undamped oscillations. Hence, the screening
profile is completely described by the three parameters L̃EDL, k̃R and k̃C as functions
of the system parameters T, εR, a, γα,V

0, ∆ϕ.
In particular, we can construct the analytical screening profile as follows. If charge

saturation occurs, then the analytical charge profile ϱ̃analytic
F consists of two parts.

The first part is the "saturation"-part, ϱ̃I
F = ϱ̃sat

F (usually, |ϱ̃sat
F | = 1) over the length

x̃ = [0; L̃EDL], which is followed by the damping part ϱ̃II
F = ϱ̃sat

F · exp(−k̃R[x̃ −
L̃EDL]) · cos(k̃C[x̃ − L̃EDL]) for x̃ ≥ L̃EDL. The complete profile for the analytical
charge density is then given by the combined profile ϱ̃analytic

F = ϱ̃I
F ∪ ϱ̃II

F. If no charge
saturation occurs, then the profile for the charge density is given by ϱ̃II

F, where L̃EDL
is set to zero. The corresponding analytical profile Φ̃analytic for the electric potential is
constructed in a similar manner, where the "saturation" part is given by a quadratic
function instead of the constant profile.

10.3.5 Special Case: Zero Order Expansion

In this section, we consider the special case, where the gradient description for the
limiting case described in section 10.3.2 is restricted to the trivial order (n=0), where
the dielectric operator reduces to the scalar parameter (see eq. (10.6))

ε̂R → εR
(n=0) = 1− V0/Eth · Γ̃ 0

+−. (10.47)
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10.3 Non-Local Interactions: Charge Oscillations

Thus, the corresponding system of equations (see eqs. (10.4) and (10.5)) can be
substituted such that

∇̃2Φ̃ = Φ̃/εR
(n=0) = 1/k̃2 · Φ̃, (10.48)

where

k̃ = ±
√

1
εR(n=0) ∈

{
R ⇔ V0 < Eth/Γ̃

0
+−

C ⇔ V0 > Eth/Γ̃
0
+− .

(10.49)

Thus, only the two screening phases of exponential decay, and undamped oscillatory
shape exist in the trivial expansion, with phase boundary V0

c = Eth/Γ̃
0
+− . Fur-

thermore, the electrostatic energy has no influence on the phase boundary, which is
completely determined by the thermal energy and the interaction energy.

Since we assume that both energy scales V0 and Eth are positive, the correction
Γ̃ 0

+− to the electrostatic parameter ε(n=0)
R corresponds to a mitigation of the elec-

trostatic energy Eel, see eq. (10.47). Apparently, the phase boundary where the
screening profile becomes undamped oscillatory, V0

c , corresponds to a transition to-
wards negative energies Eel. In section 9.2, we showed that Eth becomes minimal
for equal molar volumes of the ion-species. Thus, V0

c has a global minimum at
γ± = 1/2. This highlights the influence of ion-asymmetry on the phase-space, since,
at fixed temperature, the phase boundary becomes minimal for ions of equal size.
Note that in the case of negative interaction energies V0, i.e. attractive interaction
potentials eq. (8.28), the phase space reduces to exponentially damped profiles. This
corresponds to increased dielectricities, εR = 1 + |V0|Γ̃ 0

+−/Eth.

10.3.6 Special Case: First Order Expansion

In this section, we consider the special case, where the gradient description for the
limiting case described in section 10.3.2 is restricted to the linear order (n=1), and
the dielectric operator becomes (see eq. (10.6))

ε̂R → εR
(n=1) = 1− Γ̃ 2

+−V
0/Eth . (10.50)

Thus, the corresponding system of equations (see eqs. (10.4) and (10.5)) becomes(
ϱ̃′′

F
Φ̃′′

)
= Ã (n=1) ·

(
ϱ̃F
Φ̃

)
=
(
Eth/V

0Γ̃ 2
+− Eth/V

0Γ̃ 2
+−

−1 0

)
·
(
ϱ̃F
Φ̃

)
. (10.51)

We proceed as in the more general case described in section 10.3.2, and deter-
mine the solutions to this system of equations via calculating the eigenvalues α̃(n=1)

1,2
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10 Static Asymptotic Analysis

corresponding to the matrix Ã (n=1),

α̃
(n=1)
1,2 = Eth/2V0Γ̃ 2

+−

(
1±

√
1− 4V0Γ̃ 2

+−/Eth

)
. (10.52)

Similar to the case described in section 10.3.2, the zeros of the root W(n=1) =
1 − 4V0Γ̃ 2

+−/Eth determine the sign of the eigenvalue, i.e. the phase boundaries.
However, in this case, the phase space of screening profiles consists of exponen-
tially damped profiles, and damped oscillatory profiles. The corresponding phase
boundary is given by

V0
c = Eth/4Γ̃ 2

+− . (10.53)

Thus, only two screening phases exist; for V0 < V0
crit, the screening profiles are

exponentially damped; if V0
c < V0 all eigenvalues have non-vanishing real-/ and

imaginary parts, which implies damped oscillations.
Interestingly, for attractive potentials eq. (8.28), i.e. negative energies V0 < 0,

the two eigenvalues are from mutually different number-fields. This can be seen by
expanding the eigenvalue-equation via

α̃
(n=1)
1,2 = Eth/2V0Γ̃ 2

+− ·
(

1±
√

1 + 4|V0|Γ̃ 2
+−/Eth

)
. (10.54)

Apparently, the root is always positive and α̃(n=1)
1,2 < 0 leads to oscillations, whereas

α̃
(n=1)
1,2 > 0, leads to exponentially damped profiles. Since the general solution is the

superposition of the two solutions, this leads to the superposition of exponentially
damped, and undamped oscillatory profiles. Thus, there is a plethora of screening
profiles available, depending upon the amplitudes of these two solutions (i.e. the
BCs). However, all these profiles comprise an undamped oscillatory phase, although
it may have a very small amplitude. We emphasize that this situation does not
occur for positive parameters V0, where the eigenvalues are always from the same
number-field. Again, the phase boundary is minimal for symmetric ions.

10.4 Dynamic Asymptotic Analysis: Linear Bulk-Stability
Analysis

In this section, we supplement the static asymptotic analysis of the gradient de-
scription from section 10.3.2 by a linear stability analysis of the dynamic transport
equations (see eqs. (9.38) to (9.40)). Thus, we consider the gradient description
eq. (9.43) up to the first two perturbation modes in the limit of small potentials,
where the approximation of the logarithmic terms can be applied (see eq. (10.3)).
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10.4 Dynamic Asymptotic Analysis: Linear Bulk-Stability Analysis

Thus, eq. (9.39) becomes
∂t̃ϱ̃F = ∇̃2

(
Φ̃ + ε̂Rϱ̃F

)
, (10.55)

where ε̂R = 1−V0/Eth · Γ̃ 0
+−−V0/Eth · Γ̃ 2

+−∇̃2. This equation is supplemented by
the Poisson equation, ϱ̃F = −∇̃2Φ̃. We probe the stability of this description under
small perturbations from the uniform bulk-states Φ̃b and ϱ̃b

F, viz.

Φ̃ = Φ̃b +
∞∑

i=1
ϵi · Φ̃i, and ϱ̃F = ϱ̃b

F +
∞∑

i=1
ϵi · ϱ̃i

F, (10.56)

and define the equilibrium states by assuming electroneutral bulk-condition, i.e.
Φ̃b = 0 and ϱ̃b

F = 0. The first order perturbations take the form
Φ̃1 = ϱ̃1

F = ψ̃ = exp[s̃t̃+ ik̃x̃] + exp[s̃t̃− ik̃x̃]. (10.57)

The wave-number k̃ determines the spatial distribution of the dimensionless per-
turbation ϵ̃1Φ̃ ≪ 1, and the parameter s̃ measures the temporal growth rate of this
perturbation. Due to the Poisson equation, the perturbation modes with respect to
the expansion of Φ̃ and ϱ̃F are coupled via ϵ̃ϱ̃F = −(ik̃)2ϵ̃Φ̃.

We restrict our analysis to probing the linear stability, and substitute the ex-
pansion eq. (10.57) into eq. (10.55). However, we use that ∇̃2nΦ̃1 = (ik̃)2nψ̃, and
∂t̃ϱ̃

1
F = −ϵ̃1Φ̃(ik̃)2s̃ψ̃. Collecting terms up to the first order in the perturbation mode

ϵ̃1Φ̃ yields a dispersion relation for the grwoth rate of the perturbation,

s̃(k̃) = −1 +
(
1− V0Γ̃ 0

+−/Eth
)
· (ik̃)2 − V0Γ̃ 2

+−/Eth · (ik̃)4. (10.58)

In general, the uniform state is stable under perturbations from above exactly if
s̃ < 0. Thus, we are seeking an instability onset k̃c subject to the conditions that
s̃(k̃c) = 0, s̃′(k̃=k̃c) = 0 (where s̃′ = ds̃/dk̃) and s̃(k̃,k̃c) < 0. To simplify the
notation, we define two parameters α = V0Γ̃ 0

+−/Eth and β = 2Eel/ν̃πEth , such
that the dispersion relation becomes s̃ = −1 − (1 − α)2k̃2 − αβk̃4. The condition
s̃′ = 0 determines critical wave-vectors

k̃± = ±
√
α− 1/2αβ , subject to the condition α > 1. (10.59)

Since the second derivative fulfills s̃′′(k̃±) < 0, the critical wave vectors k̃± constitute
local maxima. We use these critical wavelengths to probe the condition s̃(k̃c) = 0.
This condition is true exactly if

α± = 1 + 2β ± 2
√
β(1 + β). (10.60)

Thus, this condition implies constraints on the parameters α and β. However,
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10 Static Asymptotic Analysis

the solution α− can be neglected, since it is not compatible with the condition
eq. (10.59). This can be seen using the triangle-inequality, i.e. since −

√
β2 + β ≤

−(β +
√
β), the solution α− ≤ 1 − 2

√
β < 1. Hence, we are left with one solution

α+, which translates into a condition on the interaction energy,

V0
c = V0

+ = 1/Γ̃ 0
+− ·

(
1 + 4Eel/πν̃ + 2

√
2Eel(2Eel/πν̃+ Eth)/πν̃

)
. (10.61)

Apparently, the phase boundary V0
c for the transition of the IL-electrolyte from bulk-

stability to bulk-instability equals exactly the phase-boundary V0
+ which determines

the phase transition of the screening profiles from damped, oscillatory shape to
undamped oscillations (see eq. (10.40)). Thus, for interaction energies V0>V0

+ the
bulk state of the system becomes unstable and phase separation emerges. The initial
cause for the structure-formation can be driven by external agents, or boundary con-
ditions. For example, by the application of an electric potential to an IL/electrode
interface.

This stability analysis complements the static analysis, since it rationalizes the
emergence of phase separation into pure ionic layers occurring at interaction energies
above V0

+.
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11 Interaction Model for Hardcore
Particles

In this chapter we specify our yet universal description to a specific choice for the
interaction potential F+− appearing in the interaction functional F int, see eq. (8.27).

In particular, we model the spherically symmetric interaction potential F̃ using a
Gaussian shape-function, viz.

F+−
(
V0, ℓint

)
= V0 · (NA)2 · G · exp

(
−
[
x̃/ℓ̃int(a)

]2)
. (11.1)

Here, 0 < G ∈ R is a dimensionless scalar-parameter, which allows to gauge the
interaction. Since all prefactors appearing in eq. (11.1) are strictly positive, the
interaction potential is repulsive. Thus, the exponential potential eq. (11.1) indeed
describes short-ranged repulsion, i.e. hardcore particles, but lacks the attractive
tail dominating at larger distances (usually attributed to higher order electrostatic
correlations). [63]

Exponential potentials for the modeling of hardcore particles have been widely
used in computational chemistry. [365] For example, eq. (11.1) can be extended by an
attractive term −V̄0/r6 , yielding the Buckingham potential. This potential com-
bines the Pauli exclusion principle (i.e. repulsion between closed electron shells),
with attractive long-ranged van-der-Waals forces. [366]

Apparently, our model eq. (11.1) requires two model parameters, V0 and ℓ̃int =
ℓint/LD . We assume that the correlation length ℓint(a) is a function of the ion-size
a. Thus, the constraint eq. (10.37) closes this relation, and implies a constitutive
equation for ℓ̃int.

Above, we showed that for spherically symmetric interaction potentials F̃ the
perturbation modes are determined by a one-dimensional integral over the radial
distance from the electrode, see eq. (8.33). However, in the special case where
the interaction model is given by eq. (11.1) the corresponding integral can be solved
analytically via

∫
dr exp[−(r/ℓint)2]·r2(n+1) = (ℓint)2n+3/2·Γ(n+3/2), where Γ(n/2)

is the Gamma function. Hence, we find

Γ 2n
+− = G4π/(2n)!

∫
dr exp[−(r/ℓint)2] · r2(n+1) (11.2)
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11 Interaction Model for Hardcore Particles

= G2π/(2n)! · (ℓint)2n+3 · Γ (n+ 3/2 ) . (11.3)

In particular, the first two perturbation modes can be stated analytically, using
Γ(3/2) =

√
π/2 and Γ(5/2) = 3Γ(3/2)/2 = 3

√
π/4, viz.

Γ 0
+− = G ·

(√
πℓint

) 3, (11.4)

Γ 2
+− = G · 3/4 · (ℓint)5 ·

(√
π
)3 = 3/4 · (ℓint)2 · Γ 0

+−. (11.5)
Via eq. (9.44) we get the dimensionless perturbation modes

Γ̃ 0
+− = G/ν̃ · (ℓint/a )3 Γ (3/2 ) , and Γ̃ 2

+− = 3/4 ·
(
ℓ̃int
)2
· Γ̃ 0

+−. (11.6)

The model eq. (11.1) is subject to the limiting constraint derived from experimental
results, eq. (10.37). Apparently, this is a constraint on the correlation length ℓint of
the hardcore interaction, which follows from eqs. (11.4) and (11.5)

ℓint(a) = a/π
√

3 . (11.7)

Thus, eq. (11.7) closes the model eq. (11.1) and reduces the set of independent
parameters appearing in this model to V0. Apparently, the parameter G has no
influence on the determination of the correlation-length, but only scales the phase-
boundaries by simultaneously gauging the perturbation modes, see eq. (10.40).
Hence, the parameter G serves to calibrate our framework in accordance to results
from atomistic simulations, or experimental findings for the exact values V0

±. How-
ever, without loss of generality, we here set G = 1.

Altogether, the corresponding Gauss Ansatz reads

F+−
(
V0
)

= V0 · (NA)2 · exp
(
−3 [πx/a ]2

)
, (11.8)

and we obtain the following perturbation modes for the Gauss-shaped interaction
potential,

Γ 0
+− = 1/2π ·

(
a/
√

3π
)3
, Γ̃ 0

+− = 1/2πν̃ ·
(
1/
√

3π
)3

(11.9)

Γ 2
+− = (a/2π ) 2 · Γ 0

+− Γ̃ 2
+− = (ã/2π ) 2 · Γ̃ 0

+−. (11.10)

The consistent form for the interaction potential above, eq. (11.8), is thus uniquely
defined up to a scalar prefactor.

The resulting constitutive equation for the chemical forces ∇̃µ̃el
IL according to the

gradient description, eq. (9.43), is

∇̃µ̃el
IL=∇̃

(
Φ̃−γ+ ln[c̃−/c̃

b ]+γ− ln[c̃+/c̃
b ]−V0Γ̃ 0

+−/Eth · [ϱ̃F+∇̃2ϱ̃F]
)
. (11.11)
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Next, we draw the phase space of screening profiles for the interaction potential
eq. (11.8). Figure 11.1 shows the results for the dimensionless wave vector, and the

Figure 11.1: a) Real and imaginary parts of the dimensionless wave-vector k̃ as
function of V0/Eth (Eth(T=300 K = 25 meV), see eqs. (10.30), (10.31) and (11.9).
b)-f) Different phase space diagrams of the screening profiles as function of the
system parameters. The phase boundaries V0

± follow from eqs. (10.40) and (11.9).
Figures first published in Ref. 367.
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11 Interaction Model for Hardcore Particles

critical interaction strengths V0
± as function of temperature (fig. 11.1b), as function

of the dielectricity εR (fig. 11.1c), as function of ion size a (fig. 11.1d), as function
of ion asymmetry γ+ (fig. 11.1e), and as function of the valency z+ (fig. 11.1f). If
not stated otherwise, the system parameters are T = 300 K, εR = 15, a = 1.2 nm,
γ = 0.5 and z+ = 1. As consequence, if not stated otherwise, LD = 0.14 nm and
k̃AFM ≈ 0.7 (see eqs. (9.26) and (10.35) and fig. 10.1).

Figure 11.1a) shows the the non-dimensionalized wave-vector k̃ (where k̃ = k ·LD)
as function of the non-dimensional interaction energy Ṽ0 = V0/Eth, see eqs. (10.30)
and (10.31). Here we remove the physical dimensions from the energy scale cap-
tured by the x-axis using the thermal energy Eth ≈ 25 meV, where T = 300 K is
set to a constant value. We discuss both the real part, i.e. the damping k̃R, and
the imaginary part, i.e. the frequency k̃C. For this purpose, we focus on the regime
of small interaction energies first, and then discuss the influence of increasing V0.
Apparently, for interaction energies Ṽ0 < Ṽ0

− the imaginary part of the wave vector
vanishes identically. Thus, below the phase boundary Ṽ0, the wave-vector is real,
i.e. k̃ = k̃R. This corresponds to exponentially damped screening profiles of the
electrolyte in the vicinity of the electrode, see eq. (10.41). There exist two indepen-
dent solutions for the damping parameter. However, we discard the solution for k̃R
which diverges for small interaction energies as unphysical, see the dashed blue line
in fig. 11.1a), and consider only the finite solution (solid blue line). For vanishing
interaction energies we observe that limṼ0→0 k̃=1. This reproduces our finding from
above, that the exponentially damped screening profile decays with the Debye length,
i.e. k(V0=0) = 1/LD (see section 10.2.1). However, the damping Re(k̃) increases
with increasing Ṽ0 up to the phase boundary Ṽ0

−, i.e. the width of the EDL decreases
with increasing Ṽ0. Once the interaction energy exceeds the phase boundary Ṽ0

−, the
screening profile changes it’s character. The damping parameter k̃R decreases with
increasing Ṽ0, i.e. the EDL width increases with increasing Ṽ0. Thus, the phase
boundary Ṽ0

− determines the threshold at which the EDL has minimal extension.
Apparently, the increasing strength of the repulsive ion-correlations compresses the
screening-layer. However, once the interaction strength exceeds the phase boundary
Ṽ0

−, the imaginary part of the wave vector k̃C becomes non-zero. Hence, the ion-
layers begin to oscillate and the system “overscreens”, see eq. (10.44). The real part
of the wave vector decreases with increasing Ṽ0 until it vanishes exactly at the phase
boundary Ṽ0

+, such that the wave vector becomes imaginary. Hence, with increasing
Ṽ0, the EDL width increases into the bulk electrolyte. Once Ṽ0 exceeds the phase
boundary Ṽ0

+, the EDL width diverges and the electrolyte system undergoes a phase
transition. As consequence, the oscillatory region extends over the complete system
length. Once the interaction energy exceeds V0

−, the frequency of the oscillations
starts increasing very fast and quickly reaches a local maximum. However, upon
further increase of Ṽ0, the frequency decreasing again until it reaches a local min-
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imum at Ṽ0 = Ṽ0
+. Finally, it starts increasing again, and converges towards it’s

global maximum given by the terminal frequency k̃AFM ≈ 0.7. The existence of local
extrema of the frequency k̃C highlights the non-trivial interplay of the competing
correlation energies Eth, Eel and V0.

Figure 11.1b)-f) illustrates the critical interaction energies V0
± as function of the

system parameters. Since the critical interaction energies constitute the phase
boundaries, these figures constitute the phase spaces of screening profiles, subject
to the variation of the system parameters.

Figure 11.1b) shows the influence of temperature, i.e. Eth on the phase boundaries
(since Eth is linear in the temperature, see eq. (9.33)). Both phase boundaries
increase with increasing temperature. This behaviour highlights the disordering
effect of entropy on the EDL structure. Apparently, the regime of exponentially
decaying screening profiles is highly suppressed for reasonable temperatures.

Figure 11.1c) illustrates the influence of the dielectric constant on the phase
boundaries, i.e. Eel (note that the thermal energy does not depend on εR). How-
ever, since the electrostatic energy depends inversely on the dielectric constant (see
eq. (9.34)), Eel decreases with increasing a. The two phase boundaries exhibit op-
posite behaviour, as V0

− increases with decreasing Eel (increasing εR), whereas V0
+

decreases with decreasing Eel (increasing εR). This results in the suppression of the
intermediate regime, where the EDL structure exhibits damped oscillatory profiles,
at larger values Eel. Apparently, the electrostatic energy favours the formation of
an exponentially decaying screening profile.

Figure 11.1d) shows the influence of the ion size on the phase boundaries V0
±.

Note that the y-axis for the interaction energy is in logarithmic scale. The phase
boundary V0

− increases with ion size, whereas the phase boundary V0
+ decreases

with the ion size. As consequence, the regime of damped oscillatory EDL structures
becomes suppressed for large ions. In contrast, this phase is favoured for very small
ions. We emphasize that the thermal energy is independent of the ion size, whereas
the electrostatic energy is inversely proportional to the ions size Eel ∝ a−1.

Figure 11.1e) illustrates the influence of ion asymmetry on the phase boundaries.
Both phase boundaries decrease with increasing symmetry (i.e. in the parameter
range γ ≤ 0.5), and increase with decreasing symmetry γ ≥ 0.5. Thus, the regime
of exponentially decaying profiles is suppressed for more symmetric ions.

Figure 11.1f) compares the phase boundaries as functions of temperature for the
two different valencies z+ = [1, 2]. Apparently, the phase boundary V0

−n is smaller
for multivalent ions, and the phase boundary V0

+ is larger for the multivalent ions.
Hence, the intermediate regime is more favourable for multivalent ions.
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12 Numerical Simulations of the
EDL-Structure of Binary ILs

Here, we use computational methods and validate our EDL transport theory for the
IL-electrolyte PYR[1,4 ]TFSI. We structure this chapter as follows. First, in sec-
tion 12.1, we describe the set-up. Next, in section 12.2, we focus on the influence of
thermal and electrostatic energies on the structure of the EDL and neglect molecular
interactions (thus we set V0=0). Finally, in section 12.3, we incorporate molecular
interactions into our discussion.

12.1 Binary IL-Electrolyte: PYR[1,4 ]TFSI

Scheme 12.1: Scheme of the half-cell set-up used in the simulations. The binary
IL-electrolyte PYR[1,4 ]TFSI is subject to the negatively charged interface at the
left, which causes the formation of an electrochemical double layer (EDL). Figure
first published in Ref. 367.

In this section, we describe the two set-ups which we use for the numerical simu-
lations. In section 12.2 we use a “half-cell” set up, whereas in section 12.3, we use
a “full-cell” set up which constitutes the symmetrized generalization of the half-cell
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12.2 Mean Volume Effect

set up. The half-cell set-up consists of an inert and ideally flat surface, which consti-
tutes our model for a metal-electrode, and the binary IL electrolyte, which extends
normally away from the electrode surface located at x̃=0 towards increasing values
of the interface-distance x̃. We neglect chemical reactions and specific adsorption at
the surface, and assign an electric potential to the electrified surface. However, since
electric potentials are continuous across interfaces, [144] the potential of the interface
coincides with the electrolyte electric potential Φ(x=0). Furthermore, we assign the
half-cell potential ∆ϕ, and assume electroneutral boundary condition for the bulk
potential, Φ(x→∞)→ 0,

Φ(0)− Φ(x→∞) = Φ(0) = ∆ϕ. (12.1)

However, we ensure that our geometry is consistent with the boundary conditions
and choose the length of the set-up such that it exceeds the double layer width.
Finally, in section 12.3 we use a “full-cell” geometry for our numerical set-up and
supplement the inert ideal surface located at x=0 by an oppositely charged surface
at x = Lsystem, where we set the boundary condition Φ(Lsystem)=−∆ϕ. To ensure
consistent bulk-behaviour, we use a grid-length of Lsystem=60 nm.

In our simulations, we focus on the binary IL electrolyte PYR[1,4 ]TFSI. Due to
their excellent electrochemical properties, the IL-family comprised of TFSI anions
and PYR cations is widely studied and used for applications in lithium-ion batter-
ies. [368] We assume complete salt disociation into PYR+ and TFSI– . Due to the
assumption of electroneutrality, both bulk-concentrations are equal c±(x→∞)=cb

and the Euler equation for the volume fixes the bulk concentration via cb · ν=1.
In the appendix, we state additional information (see appendices A.5 and E.5).

12.2 Mean Volume Effect

12.2.1 Numerical Simulations: Mean Steric Effect

In this section, we focus on the “bulk”-description of the EDL and V0 = 0. We ne-
glect convection (ṽ=0), such that the system of equations becomes (see section 9.2.2
and eq. (9.52))

ϱ̃F = −∇̃2Φ̃, and ∂t̃ϱ̃F = ∇̃
[
(1 + χϱ̃F) ∇µel

IL

]
, (12.2)

where the forces are given by eq. (9.43) subject to V0 = 0,

∇̃µ̃el
IL = ∇̃

(
Φ̃− γ+ · ln

[
c̃−/c̃

b
]

+ γ− · ln
[
c̃+/c̃

b
])
. (12.3)
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a)                                                       b)

c)                                                       d)

Figure 12.1: Simulation results for the EDL structure near the electrified interface
for a binary IL (see eq. (9.52) and eq. (9.43) subject to the condition V0 = 0). If
not mentioned otherwise, T=300 K, εR=15, γ+=0.5 and ∆ϕ=− 0.1 V. a) Profiles of
Φ and ϱF for different ∆ϕ. b) Profiles of c± for different ∆ϕ. c) Profiles of c± for
different γ+ (the inset shows Φ). d) Profiles of c± for varying dielectric constants
(dashed lines) and temperatures (solid lines). Figures first published in Ref. 367.

The objectives in this section are to study the influence of ∆ϕ, Eth, Eel, and ion
asymmetry on the screening profiles as predicted by the “bulk” description of our
theory (see eq. (12.2)).

If not stated otherwise, the numerical simulations were performed using the sys-
tem parameters T = 300 K, εR = 15, γ = 0.5, z+ = 1 and a = 1.2 nm. In ap-
pendix E.5 we list all parameters (see table E.1). Thus, the saturation value for the
ion-concentrations is csat

± = 6.6·10−5 mol m−3, see also eq. (9.4).
Figure 12.1 shows numerical results for the electric potential, charge density and

ion concentrations obtained from eqs. (12.2) and (12.3). However, in order to better
relate to the physical quantities, we show all results for the corresponding dimen-
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sional quantities Φ, ϱF and c±.
Figure 12.1a) and fig. 12.1b) show the screening profiles for electrolyte electric

potential, charge-density (inset), and concentration of the ion-species for a common
set of negative potentials in the range |∆ϕ| ∈ [10 mV, 350 mV]. All three electrolyte
quantities show a common reaction to the application of the electrode potential ∆ϕ.

Figure 12.1a) shows the electric potential of the electrolyte. Since electric poten-
tials are continuous across such interfaces, Φ(x = 0) = ∆ϕ at the electrode (see
eq. (12.1)). Apparently, for all values of ∆ϕ the potential Φ decays exponentially
to the electroneutral state. The corresponding EDL widths span across some Å.
However, the EDL width is a function of interface-potential, and increases with
increasing ∆ϕ.

Both the charge density (inset in fig. 12.1a) and the ion concentrations (fig. 12.1b)
show a similar behaviour at small potentials ∆ϕ. Both quantities decay exponen-
tially from their interfacial value to the electroneutral bulk state. For small poten-
tials, the deviation from the electroneutral value at the interface increases with in-
creasing∆ϕ. However, once the electric potential becomes larger than |∆ϕ| = 50 mV,
the screening profile changes into a saturation profile. Upon further increase of ∆ϕ,
constant plateaus emerge in the profiles next to the interface. These expand over
some Å before they decay exponentially into the electroneutral state. The width of
the constant saturation plateau increases with increasing ∆ϕ.

Altogether, the behaviour of the electrolyte quantities Φ, ϱF and c± as functions of
∆ϕ is consistent with our analytical discussion from section 10.2. The application of
an external potential causes an electrolyte-polarization, as the ions try to screen the
electrode. Since the ∆ϕ are negative, the electrolyte accumulates cations (“counter
species”) near the electrode, whereas anions (“like species”) are expelled towards the
bulk region. Upon increasing ∆ϕ, the electrolyte increases the number of cations
near the electrode. However, due to the Euler equation for the volume, there exists a
maximal “saturation” concentration which is determined by the molar volume of the
ions via csat

α∗ = (να∗)−1. Thus, once the external potential becomes too large (here
roughly at 50 mV), the interface concentration of counterions reaches it’s saturation
value, and the screening mechanism changes from increasing the concentration of
counterions near the interface towards broadening the EDL width. Note that this
implies that the like species (here, the anions) gets depleted near the interface.

At ∆ϕ ≈ −350 mV the EDL is roughly 6 Å thick. This is significantly larger than
predicted by the canonical Debye-Hückel-theory, i.e. by the Debye length LD ≈ 0.7 Å
(see eq. (9.26)). In the literature, this saturation-phenomenon is typically called
“crowding”. [69]

Next, we study the influence of ion asymmetry on the EDL structure. Fig-
ure 12.1c) shows the influence of ion asymmetry on the screening profile of the ion
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12 Numerical Simulations of the EDL-Structure of Binary ILs

concentrations. The cation volume ratio γ+ ranges from 0.17 to 0.83. Apparently,
highly asymmetric ion species yield highly asymmetric screening profiles, and the
saturation concentration increases significantly for smaller cation species (γ+<0.5).
This is because the molar volume ν+ decreases with decreasing parameter γ+, which
implies larger saturation concentrations csat

+ =(ν+)−1 ∝ (γ+)−1, see eq. (9.4). Hence,
the EDL-width is more compact for smaller ion-volumes γ+, as this allows for tighter
packing of cations. Thus, the partial molar volumes of the ion-species directly affect
the screening behavior.

It remains to discuss the influence of temperature T , i.e. Eth, and dielectricity
εR, i.e. Eel, on the EDL-structure. In fig. 12.1d we show numerical results for
different temperatures (solid lines) and different dielectric constants (dashed lines).
We first discuss the influence of different temperatures on the EDL structure. For
T = 100 K, the EDL profile of the charge density exhibits a crowded profile, i.e.
the cation concentration is saturated near the electrode and decays steeply towards
the electroneutral state. However, upon increasing the temperature, the EDL profile
gets more diffuse. At T = 300 K the charge density still exhibits a saturation profile.
However, the EDL width is reduced as compared to the case where T = 100 K, and
the decay is not so steep. Finally, the EDL structure gets washed out for T = 500 K.
This is a consequence of the disordering entropic-effect, i.e. of thermal motion.
Next, we discuss the influence of dielectricity on the EDL structure. The dashed
lines in fig. 12.1d show the numerical results of the screening profile as function of εR.
Apparently, the EDL-width increases with increasing εR, suggesting a more effective
screening at small dielectricities. This behaviour is in qualitative agreement with
the predicted screening behavior for dilute solutions by the Debye-Hückel theory.
Altogether, the observed effects of T and εR on the screening profiles highlight the
competing interplay between the the disordering effect of entropy and the effect of
charge ordering, due to electrostatics.

Finally, we shall briefly summarize our findings. We conclude from the numerical
results comprised in fig. 12.1 that there exist two distinct regimes of EDL structure.
One regime is located right next to the interface, where charge-saturation emerges
for large electrode potentials (i.e. ∆ϕ̃≫ 1). The second regime is the region close to
the electroneutral bulk, where ϱ̃F ≪ 1 and is characterized by an exponential profile
of the charge density. Thus, we conclude that the two distinct EDL-structures of
charge saturation and exponential decrease correspond to two disjoint electrolyte
regimes, i.e. |Φ̃| ≫ 1 and |Φ̃| ≪ 1. Apparently, these two regimes correspond to
the two limiting cases discussed in sections 10.2.1 and 10.2.2. This suggests that we
compare the numerical results discussed in this section, and comprised in fig. 12.1,
with the corresponding analytical prediction from sections 10.2.1 and 10.2.2.
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12.2 Mean Volume Effect

12.2.2 Analytical Discussion of EDL Screening: Mean Steric Effect

Figure 12.2: Comparison of the analytical prediction for the EDL structure
(eqs. (10.9), (10.15) and (10.16)) with the numerical results discussed in sec-
tion 12.2.1. We consider two interface potential, corresponding to the regimes
of small and large potentials, ∆ϕ= − 100 mV (∆ϕ̃= − 0.4), and ∆ϕ= − 350 mV
(∆ϕ̃=− 13.5). a) Profiles of Φ. The inset highlights the region close to the interface
for ∆ϕ= − 0.01 V. b) Profiles of ϱF. The inset compares numerical and analytical
values for the total charge comprised in the EDL (see eq. (10.21)). Figures first
published in Ref. 367.

In this section, we compare our numerical findings from section 12.2.1 with our
analytical predictions for the EDL-structure from sections 10.2.1 and 10.2.2.

Our main assumption from sections 10.2.1 and 10.2.2 for the analysis of the EDL
structure. i.e. that there exist two distinct electrolyte regions (∆ϕ̃ ≫ 1, near the
electrode, and ∆ϕ̃ ≪ 1, far away from the electrode), was qualitatively verified by
the numerical results discussed in the previous section. Here, we make a quantitative
comparison between the analytical description and the simulation results, and use
the numerical results for Φ and ϱF at the lowest interface potential ∆ϕ = −10 mV, or
∆ϕ̃ = −0.4 (to mimic the case ∆ϕ̃≪ 1), and at the highest interface potential ∆ϕ =
−350 mV, which corresponds to ∆ϕ̃ = −13.5 (to mimic ∆ϕ̃) shown in fig. 12.1a).

Figure 12.2 shows a comparison of Φ and ϱF for the two cases of small and large
electrode potentials. The dashed green lines show the analytical predictions for the
electric potential (subfigure a) and the charge density (subfigure b) at the smaller in-
terface potential ∆ϕ=− 10 mV, whereas the solid blue lines show the corresponding
numerical results. Similarly, the dashed yellow lines show the analytical predic-
tions for the electric potential (subfigure a) and the charge density (subfigure b) at
the larger interface potential ∆ϕ= − 350 mV, whereas the solid red lines show the
corresponding numerical results.
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12 Numerical Simulations of the EDL-Structure of Binary ILs

We first focus on the results for the small potential ∆ϕ = −10 mV. Apparently,
the analytical predictions for the electric potential (subfigure a) and for the charge
density (subfigure b) are quantitatively in excellent agreement with the numerical
results. The inset (in subfigure a) highlights the results for the electric potential close
to the interface. This confirms that the asymptotic analysis in the approximation
of small potentials delivers highly accurate predictions.

Next, we discuss large electrode potentials (∆ϕ̃=−13.5). The analytical prediction
for the electric potential is in very good agreement close to the interface. However,
it deviates only slightly close to the electroneutral region (roughly at 5 Å.

The analytical result for the charge density has a boxed-shaped profile. It can be
seen that the analytical prediction for the EDL width is roughly 5 Å, hence almost
predicts the numerical width of the EDL which is roughly 6 Å. Thus, it is in good
qualitative agreement with the numerical results. However, the profiles show some
deviations. The numerical profile is more diffuse in the transition from saturation
near the interface to the electroneutral bulk-state than the sharp profile of the an-
alytical charge box. This is a direct consequence of the disordering entropic effect,
which is neglected in the asymptotic analysis which assumes vanishing temperatures.
Apparently, the thermal influence “washes out” the compact charge-ordering of the
analytical box-profile. We note that the numerical charge profile and its dependence
on temperature is reminiscent of the Fermi distribution. The inset in fig. 12.2b com-
pares the analytical prediction for the total amount of charge Qtot comprised in the
EDL, as obtained from eq. (10.21), with the numerical results. Apparently, both are
in excellent agreement over the range of interface potentials discussed in fig. 12.1a).

Altogether, these results confirm our asymptotic analysis from section 10.2, and
the analytical predictions for the EDL structures are in excellent agreement with
the results obtained from numerical simulations.

12.3 Non-Local Interactions

In this section, we supplement our study from the previous section regarding the
influence of Eth and Eel on the EDL structure by the interaction energy V0 and
investigate the competing influence of the three energy scales Eth, Eel and V0, and
the electrode potential ∆ϕ on the screening profiles. For this purpose, we com-
pare numerical results obtained from the gradient and intergal description with the
analytical predictions.

We structure this section as follows. First, we study the influence of V0 on the
screening profile and present simulation results for ϱ̃F(V0), where we choose inter-
action energies from each of the three analytically predicted phases. Second, we
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quantify the agreement between the three descriptions and compare the results at
four different interface potentials. Third, we focus on the simulation results for
the integral description at very high interaction energy V0 = 500 meV, and probe
the fundamental assumption of our particle hypothesis, see eq. (10.35). Finally,
we generalize our findings to a systematic study over the complete phase-space of
interaction energies.

All numerical simulations in this section are performed for a symmetric cell-set-up,
where the IL electrolyte is located between two oppositely charged, blocking inter-
faces separated by a distance of 60 nm. We apply a negative interface-potential to the
left electrode, ∆ϕ=− 100 mV. The electrolyte consists of symmetric ions (γ±=0.5)
with ion-size a=1.2 nm. Hence, the cell-geometry allows a “maximal” number of
roughly 90 ions. The bulk-concentration of the symmetric iojns (c̃b=1/2) normalizes
charge saturation, ϱ̃sat

F =±1. The other system parameters are T=300 K and εR=15,
and the thermal and electrostatic energies are Eth≈25 meV and Eel≈80 meV. Fur-
thermore, the resulting phase boundaries, as predicted by the analytical description,
for this set-up are V0

−=3 meV and V0
+=253 meV.

12.3.1 Numerical Simulations: Molecular Interactions

For completeness, we restate the integral description and the gradient description.
For the above described symmetric electrolyte species, the system of equations re-
duces to ∂t̃Φ̃ = −µ̃el

IL (see section 9.2.1). The chemical potential according to the
integral description is given by eq. (9.50) and the resulting transport equation reads

∂t̃Φ̃ = −µ̃el
IL = −Φ̃ + 1

2 ln
[1− ϱ̃F

1 + ϱ̃F

]
+ V0

8πEel

∫
dx̃ ϱ̃F · exp

[
−3
(
πx̃

ã

)2
]
. (12.4)

The chemical potential according to the gradient description is given by eq. (11.11),
and the corresponding transport equation reads

∂t̃Φ̃ = −Φ̃ + 1
2 ln

[1− ϱ̃F
1 + ϱ̃F

]
+

V0Γ̃ 0
+−

Eth
·
[
ϱ̃F +

(
ã

2π

)2
∇̃2ϱ̃F

]
, (12.5)

where Γ̃ 0
+− = 1/2πν̃ · (

√
3π)−3 (see eq. (11.9)). Note the two expansions above are

supplemented by the Poisson equation,

ϱ̃F = −∇̃2Φ̃. (12.6)

Figure 12.3 shows numerical results for the charge density as function of the
interaction strength V0 obtained from solving the integral description eqs. (12.4)
and (12.6). Here, the values for V0 span two orders of magnitude, and comprise the
analytically predicted phase boundaries V0

±. The x̃-axis measures the distance from
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Figure 12.3: Numerical results for the non-dimensional charge density as function of
the interaction strength ϱ̃F(V0), obtained from the integral description, eqs. (12.4)
and (12.6). The x-axis comprises the complete cell length spanning over roughly
90 ion layers (roughly 60 nanometers). Hence, the negatively charged electrode is
located at x = 0 on the left, and the positively charged electrode is located at
roughly x = 90 on the right. The y-axis illustrates the charge density ϱ̃F, where
|ϱ̃F| = 1 corresponds to charge saturation. Figure first published in Ref. 367.

the negatively charged electrode (left side), to the positively charged electrode (right
side). The y-axis shows the non-dimensional charge density, where ϱ̃F= ± 1 corre-
sponds to charge saturation. The charge profile for the lowest interaction strength
V0=2 meV shows crowding, i.e. charge saturation at both electrodes followed by
an exponential decay towards the electroneutral state with increasing distance from
the electrodes (see chapter 12). Since V0<V0

−, this is in accordance with the an-
alytical prediction. The next several charge profiles show results for interaction
strengths from the intermediate regime, V0

−<V
0<V0

+. At V0=20 meV the oscilla-
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tions are hardly visible, and, up to the interaction strengths V0=80 meV, the charge
profiles exhibits only one small oscillations with moderate amplitude. The number of
oscillations increases only slowly up to interaction strengths of roughly V0=180 meV.
However, over the next few meV, the number of oscillations increases significantly,
and the EDL structure extends across multiple nanometers. At V0=195 meV the
oscillations span already over roughly 20 ion layers at each electrode. The bulk
region is hardly visible anymore at V0=198 meV, where the oscillations extend al-
most across the entire cell length. In accordance with this, a slight increase by
2 meV up to V0=200 meV causes the system to transition into the regime of un-
damped oscillations spanning across the complete system. However, the magnitudes
of the amplitudes are, apart from the crowding at the electrodes, not saturated,
i.e. |ϱ̃F|<1. Thus, for this magnitude of V0, the electrolyte has a nano-structure
consisting of oppositely charged layers, where the dominant ion species is alternat-
ing between neighbouring layers. Apparently, the magnitudes of the amplitudes
increase with increasing interaction strength V0. This implies that the separation
of the ion species becomes more pronounced with increasing interaction strengths
V0. Finally, at V0=240 meV, the amplitudes have reached saturation, ϱ̃F=±1. Fi-
nally, at V0=500 meV the ion layers have become very sharp, and the electrolyte
has transitioned into a crystalline phase consisting of pure ion-layers. Thus, with
increasing energies V0, the EDL increases into the bulk electrolyte, until the bulk
itself gets nano-structured by ion-segregation. This phase separation occurs rapidly
over a sharp increase of some meV.

Next, we discuss the double layer forces FEDL=ν/NA · ϱF∇Φ (see eq. (10.46) in
section 10.3.3) corresponding to the results shown in fig. 12.3. The EDL forces ex-
press the balance between elastic pressure forces and the strong electrostatic forces
which constitute the mechanical equilibrium of the quasi-crystalline EDL structures.
Figure 12.4 illustrates these force-profiles and highlights the limiting region where
the interaction energy V0 is dominant, i.e. V0≫Eth and V0 ≫ Eel (hence V0≫V0

+).
The left plot shows the EDL forces appearing in the left half-cell of the system.
Apparently, these forces are trivial in the regime V0<V0

+, but start oscillating once
V0

−<V
0. The oscillatory region extends further into the bulk with increasing inter-

action strength. Finally, at V0=200 meV non-trivial forces extend across the com-
plete half cell, where the profiles have a serpentine shape. The amplitudes of the
undamped force oscillations increase with increasing V0, and the oscillatory peaks
becomes more sharp with increasing V0. Finally, at V0=500 meV, the shape exhibits
zigzag pattern (similar to isogonal zig-zag skew apeirogons in two dimensions [369]).
This energy regime is highlighted in the right plot in fig. 12.4, which shows numeri-
cal results obtained from the integral description for the ion-concentrations c̃± (left
y-axis), and the double-layer forces (right y-axis) of the first six ion-layers adjacent
to the negatively charged interface at V0 = 500 meV (these results correspond to
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Figure 12.4: Profiles of the double layer forces for the first few nano-meters. The
left figure shows a cumulative overview of the double layer forces spanning over the
first 20 ion layers (roughly 24 nano-meters) as function of the interaction energy
V0. The set of forces is the same as appearing in fig. 12.3. The figure on the right
highlights the force profile (right y-axis) and the ion concentrations (left y-axis) at
V0 = 500 meV across the first six ion layers (roughly seven nanometers). Note that
the ion concentrations are normalized such that c̃± = 1 corresponds to saturation.
Figures first published in Ref. 367.

the very lowest charge profile shown in fig. 12.3). Note that because the ions are
symmetric in this simulation, the saturation concentrations are normalized to unity,
i.e. c̃sat

± =1. The concentration profiles show very sharply separated ion-layers of
box-shaped form, where the width of the ion-layers scale exactly with a, i.e. the size
of the ions. This is reminiscent of the “Gaussian” shape of our interaction model
for the hardcore ions (eq. (11.1)), and is in agreement with the force-profile shown
on the right y-axis. The force profile has a zigzag shape and the force peaks arise
exactly at the boundaries between two ion-layers. This highlights the highly crys-
talline structure, where the ion layers are stable with respect to perturbations of the
equilibrium configuration.

Altogether, we find that the numerical results obtained from the integral descrip-
tion confirm the existence of three different screening phases, as predicted by our
analytical description. The corresponding two phase boundaries obtained from the
integral description are roughly at 1 meV, and at 200 meV. Hence, the lower phase
boundary is quantitatively in very good agreement with the analytical prediction
V0

− = 3 meV. However, the upper phase boundary is roughly 25 % smaller than the
analytical prediction V0

+ = 253 meV. We attribute this discrepancy to the fact that
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the analytical prediction is based on our gradient approximation, which accounts
for only the first two perturbation modes. In contrast, the integral description com-
prises all perturbation modes. Nevertheless, the analytical description still offers
a good prediction for the qualitative behaviour of the system. Furthermore, the
numerical results in the regime of dominant interaction energies show ion layers in
the EDL which scale exactly with the ion sizes.

However, these conclusions refer to a limited set of simulation results, which did
not include results obtained from the gradient description eqs. (12.5) and (12.6).
Next, we generalize our results across the whole phase-spectrum, i.e. across several
orders of magnitude for V0, and to the gradient description. To address this goal, we
use a set of roughly 4000 interaction energies ranging from 0.1 meV up to 500 meV
and perform numerical simulations for this set of interaction energies with respect to
the integral description, and with respect to the gradient description. First, we eval-
uate the simulation results by counting the number of oscillation peaks appearing in
the screening profiles of |ϱ̃F|, as function of the interaction energy V0. For a fixed in-
teraction energy V0, let x̃i(V0) denote the position of the i-th peak ϱ̃i

F(V0)=|ϱ̃F(x̃i)|
occurring in the screening profile obtained from numerical simulations with respect
to either the integral description, or the gradient description. Then, for every inter-
action energy V0, we calculate the number Npeak(V0) of peaks ϱ̃i

F(V0) in the resulting
screening profile. By construction, the peaks have amplitudes 0<ϱ̃i

F≤1. However,
we discard all peaks smaller than a threshold 1·10−3. This yields the peak number
Npeak(V0) as function of the interaction strength. Note that there exists a maximal
number of peaks Nmax

peak, which is determined by the number of ions that “fit” into
our cell geometry. Hence, Nmax

peak is a function of the length of the system and the
size of the ions, Nmax

peak=Lcell/a (here, Nmax
peak≈90). Furthermore, we can safely assume

that the charge profiles become saturated next to the two electrodes (see fig. 12.1).
Thus, for this set-up, the peak numbers are limited from below and from above, i.e.
2≤Npeak≤90. However, besides the number of peaks we also want to account for the
amplitude of the oscillations in our quantitative evaluation. To address this goal,
we consider the variance σ defined for the half-cell

σ2(V0) =
∑Npeak(V0)

i=1 ϱ̃i
F ·
(
xi
)2∑Npeak(V0)

j=1 ϱ̃j
F

. (12.7)

Here, we use the “true physical” locations xi=x̃i·LD such that σ has dimension
of a length, i.e. [σ]=m. Due to the maximal number of peaks, and the maximal
amplitude given by the saturation threshold, the quantity σ converges towards a
finite value for very large interaction energies. To show this, let us consider the
limit V0

−≪V0, where we assume that the bulk-electrolyte has transitioned into a
crystalline phase composed of pure ion-layers (see figs. 12.3 and 12.4). Thus, all
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peaks are saturated, i.e. ϱ̃i
F = 1, and the corresponding layering-width is exactly

the ion-size a. To a good approximation, all saturated peaks are located at xi = a · i,

σ2 ≈
∑Nmax

peak
i=1 a2 · i2∑Nmax

peak
i=1 1

= a2

Nmax
peak
·

Nmax
peak∑
i=1

i2 = a

Lcell
·

Nmax
peak∑
i=1

i2. (12.8)

From Faulhaber’s formula, [370] follows that the sum on the right side converges
Nmax

peak∑
i=1

i2 = Nmax
peak ·

[(
Nmax

peak

)2
/3 + Nmax

peak/2 + 1/6
]
≈
(
Nmax

peak

)3
/3 . (12.9)

Insertion into eq. (12.8) shows that σ converges for V0
+≪V0 via σ=Lcell/

√
3.

a)                                                 b)                                                 c)

Figure 12.5: Meta analysis of the interfacial profiles for some thousand simulations.
a) Number of peaks in |ϱ̃F| as function of V0. b) Variance of the complete set of
simulations as defined by eq. (12.7). c) Variance in non-logarithmic scale. The inset
shows the onset of the oscillations for small V0. Figures first published in Ref. 367.

Figure 12.5 shows the numerical results for our meta analysis of the EDL structures
with respect to the set of 4000 simulations V0 obtained from the integral description
and the gradient description. The electrode potentials at both electrodes are set to
|∆ϕ|=100 mV. The dashed vertical lines in yellow indicate the analytically predicted
phase boundaries V0

± (see eq. (10.40)).
Figure 12.5a) shows the number of peaks Npeak(V0) as function of the interaction

energy. The solid red line illustrates the numerical results obtained from the inte-
gral description. Note the logarithmic scale on both axes. Apparently, for small
but non-negative interaction energies 0<V0<V0

−, the number of peaks is Npeak=2.
Thus, the screening profiles are saturated near both electrodes, and decay exponen-
tially into the bulk electrolyte ("crowding"). This is in accordance with fig. 12.1
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for this moderately large interface potential. However, at V0≈1 meV, the number
of peaks increases with increasing V0, and the screening profiles start oscillating.
Note that because the interaction energies between two simulations increase with
∆V0≈0.1 meV, the step-wise increase of Npeak is not an artefact from limited data
points. At V0≈200 meV the peak numbers increase exponentially until reaching a
saturation plateau at Npeak≈90. Interestingly, upon further increase there arises an-
other step-wise increase at roughly V0=550 meV. The dashed blue curve in fig. 12.5a)
shows numerical results for the peak number as function of the interaction energy, ob-
tained from numerical simulations with respect to the gradient description eqs. (12.5)
and (12.6). Apparently, the results with respect to the gradient description are very
similar to the results with respect to the integral description (red curve). However,
the transition from the crowding-profile to the overscreening profile, as well as the
transition between the damped oscillatory phase and the purely oscillating phase
are quantitatively in excellent agreement with the analytical predictions (dashed
vertical lines in yellow). The terminal number of peaks according to the gradi-
ent description is roughly 85, i.e. smaller than in the integral description. Hence,
the main difference between the two descriptions is that the gradient description,
and, as consequence, the analytical predictions, underestimate the influence of the
interaction energy. Apparently, this behaviour is due to the cumulative effect of
the integral-term in eq. (9.42), which comprises all interaction modes. In contrast,
we consider only the first two modes (n=0 and n=1) of the gradient expansion in
eq. (9.43).

Figure 12.5b) shows the variance of the peak numbers (see eq. (12.7)) in a log-
arithmic scale, where we normalized σ by it’s terminal value Lcell/

√
3. The solid

red line shows the variance with respect to the integral description, whereas the
blue dashed line shows the variance with respect to the gradient description . The
vertical dashed lines in yellow show the analytical predictions V0

± for the phase-
boundaries. Apparently, the variance according to the integral description (red line)
undergoes two phase transitions. However, the two phase boundaries are shifted
with respect to the analytical prediction. For high interaction energies, the vari-
ance σ/Lcell

√
3 converges towards unity, in accordance with our analysis above (see

eqs. (12.8) and (12.9)). In a similar manner, the numerical results for σ (dashed blue
line) also show two phase transitions, where the corresponding phase boundaries are
in excellent agreement with the analytical predictions (dashed vertical lines in yel-
low). Finally, fig. 12.7c) reproduces fig. 12.7b) in a non-logarithmic scale which
highlights the occurrence of the two phase transitions. The inset shows that the
variance converges to zero for small interaction energies.

Altogether, the cumulative study comprised in fig. 12.5 confirms our findings
obtained from the analysis of figs. 12.3 and 12.4.

Figure 12.6 shows a comparison of the EDL profiles for Φ̃ and ϱ̃F between nu-
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a)                                                                                      b)

Figure 12.6: Comparison of numerical results obtained from the gradient description
eqs. (12.5) and (12.6)with the analytical prediction eqs. (10.30), (10.31) and (10.33),
for Φ̃ and ϱ̃F. Here, ∆ϕ=100 mV and V0=250 meV. Figures first published in Ref.
367.

merical results obtained from the gradient description eqs. (12.5) and (12.6), and
the analytical prediction eqs. (10.30), (10.31) and (10.33). The analytical pro-
files are determined by the system parameters, and are constructed as described
in section 10.3.4. Here, the polarization of the electrodes is |∆ϕ|=100 mV and
V0=250 meV. Figure 12.6a) shows Φ̃ in the complete cell. Apparently, the ana-
lytical envelope captures the numerical results of the EDL profile to a high degree of
accuracy. The inset highlights the profile for the left half cell, and shows the almost
perfect agreement between the gradient description and the analytical description.
However, the first oscillation peak appearing in the screening profile of the electro-
lyte electric potential near both electrodes is larger than one which implies that the
electrolyte “overscreens” the applied potential in the first oscillation peak (see our
discussion in fig. 12.9). Figure 12.6b) compares both descriptions for ϱ̃F in the left
half cell. Overall, both profiles are in very good agreement. However, the first few
oscillation peaks occurring after the saturation plateau are more pronounced in the
analytical profile.

Next, we study the influence of the electrode polarization ∆ϕ on the structure of
the EDL. For this purpose, we repeat the procedure from above, but for different
potentials ∆ϕ. In particular, we perform numerical simulations with respect to
the integral description, and with respect to the gradient description, for the set of
interaction potentials ∆ϕi ∈ {10 mV; 70 mV; 100 mV} for all interaction energies as
above.

Figure 12.7 shows the corresponding numerical results for the peak numbers
Npeak(V0)|∆ϕi

, and the peak variances σ(V0)|∆ϕi
. Note that the legend for the
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12.3 Non-Local Interactions

d)                                                                                                       e)  

a)                                                        b)                                                        c)

Figure 12.7: Meta analysis of the interfacial profiles for some thousand simulations.
a) Number of peaks exhibited of |ϱ̃F| as function of V0. b) Variance of the complete
set of simulations as defined by eq. (12.7). c) Non-log scale of subfigure b). d)
Legend for the colors. e) Oscillation onset at small interaction energies.

subfigures a), b) c) and e) is shown in subfigure d). Figure 12.7a) shows that the
results for the peak numbers with respect to the integral description (solid lines)
for ∆ϕ=10 mV and for ∆ϕ=70 mV exhibit only small deviations from the results for
∆ϕ=100 mV described in fig. 12.5. Note that the phase boundaries with respect to
the integral description are the same for the different interface potentials. Surpris-
ingly, the peak numbers are Npeak=2 for also the very small electrode polarization
∆ϕ=10 mV. This is in contrast to fig. 12.1, where saturation begins at potentials
at least larger than 50 mV. The same observations can be made for the peak num-
bers with respect to the gradient description (dashed lines). Figure 12.7b) shows
the results for the peak variance σ defined by eq. (12.7). Apparently, the numer-
ical results, both with respect to the integral description and with respect to the
gradient description show small deviations between the different interface potentials
in the intermediate energy regime where 1 mV<V0<100 mV. However, the logarith-
mic scale chosen in this plot highlights the deviations. In the non-logarithmic scale
shown in fig. 12.7c) the deviations are hardly visible anymore. Again, the inter-
face potential does not influence the phase boundaries of σ. Altogether, the results
shown in fig. 12.7 suggests that the interface potential has only a small influence on
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12 Numerical Simulations of the EDL-Structure of Binary ILs

the amplitude of the screening profiles for the charge density, and does not influence
the phase boundaries. However, non-vanishing interaction strengths drive charge
saturation independent of the electrode polarization. Figure 12.7e) illustrates that
the oscillation onsets in the different descriptions do not depend upon the interface
potential.

 = 100 mV

a)                                                           b)                                                          c)

 = 200 mV = 10 mV

Figure 12.8: Numerical results for ϱ̃F with respect to the gradient description (see
eq. (9.43)), and the analytical description (see eqs. (10.30), (10.31) and (10.33)), at
V0=250 meV. a) ∆ϕ=− 10 mV. b) ∆ϕ=− 100 mV. c) ∆ϕ=− 200 mV. Figures first
published in Ref. 367.

Next, we supplement our holistic discussion of the influence of the electrode po-
larization on ϱ̃F from above and take a detailed look at the charge density at fixed
interaction energy but for varying potentials ∆ϕ̃. Figure 12.8 shows numerical
results for ϱ̃F obtained from simulations with respect to the integral description
eqs. (12.4) and (12.6) (solid red curve) and with respect to the gradient descrip-
tion eqs. (12.5) and (12.6) (blue dashed curve), and the analytical profile ϱ̃analytic

F
(dashed yellow curve) for ∆ϕ ∈ {10 mV; 100 mV; 200 mV} at fixed interaction energy
V0=185 meV. Figure 12.8a), shows that both numerical results at small electrode po-
tential ∆ϕ=10 mV exhibit charge saturation near the negatively charged electrode.
This is in contrast to the results obtained from the numerical simulations of the
non-interacting case, see fig. 12.1 which shows that the system does not reach satu-
ration before ∆ϕ=50 mV. We conclude from this result that any small non-negative
interaction energy V0 causes charge saturation near the electrode. This is in accor-
dance with figs. 12.5 and 12.7, where the peak numbers are Npeak=2 for all small
interaction energies. Hence, we identify the two parameters V0 and ∆ϕ which lead to
charge saturation. In addition, we observe in the left figure that the saturation width
agrees very good for the three descriptions. However, the oscillation peaks are more
pronounced in the integral description, and, also, the frequency of the oscillations
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12.3 Non-Local Interactions

with respect to the integral description is smaller than with respect to the gradient
description and than with respect to the analytical prediction. Both observations
highlight that the perturbation descriptions underestimate the influence of V0 when
compared with the integral description. The profile of the gradient description de-
viates only slightly from the analytical profile. In particular, both the frequency as
well as the amplitudes are a little bit more pronounced. This is in accordance with
the result shown in the right figure in fig. 12.6. Figure 12.8b) shows the correspond-
ing results for ∆ϕ=100 mV. Apparently, the qualitative behaviour has not changed
significantly. The saturation width and the amplitude of the first oscillation peaks
of all three profiles have slightly increased with increased ∆ϕ. However, the agree-
ment between the profiles with respect to the gradient description and with respect
to the analytical prediction has improved. Figure 12.8c), shows the corresponding
profiles for ∆ϕ=200 mV. Again, the saturation width and the amplitude of the first
oscillation peak have increased with ∆ϕ. Apparently, the profiles with respect to
the gradient description and with respect to the analytical prediction exhibit almost
perfect agreement for the increased electrode polarization. Altogether, we conclude
that the electrode potential increases the saturation width, in accordance with our
analytical prediction. Furthermore, the agreement between the profiles increases
with increasing ∆ϕ. Finally, charge saturation is not only driven by the electrode
polarization, but emerges also for any non-vanishing interaction energy V0.

Figure 12.9 shows the analytical prediction for the electric potential, and results
for Φ̃ obtained from numerical simulations with respect to the integral descrip-
tion eqs. (12.4) and (12.6), and with respect to the gradient description eqs. (12.5)
and (12.6), for the set of different electrode polarization ∆ϕ given by 10 mV, 25 mV,
70 mV, 100 mV, and 200 mV at V0 = 185 meV. The analytical results Φ̃analytic are
calculated according to the instructions discussed in section 10.3.4. Here, we have
also included the damping envelope in the plots. However, since we adjust the ana-
lytical profile Φ̃analytic in the region from the interface up to the distance LEDL from
the electrode, we draw the envelope beginning at x=LEDL. Subfigures a)-e) show
the screening profiles for increasing electrode polarization. The left figure in the
first row, fig. 12.9a), shows the results for the rather small polarization ∆ϕ=10 mV.
Apparently, the amplitude of the first oscillation peak in the profile of the integral
description (roughly at 70 mV) and the of the first oscillation peak in the profile
of the gradient description (roughly at 75 mV) are much larger than the interface
value ∆ϕ=10 mV. Hence, the electrolyte massively “overscreens” the interface. Both
the amplitudes and the frequency of the oscillations of the numerical results with
respect to the integral description are more pronounced than of the numerical re-
sults with respect to the gradient description, except for the first oscillation peak.
Hence, the gradient description underestimates the influence of V0 with increasing
distance from the electrode, when compared with the integral description. By con-
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12 Numerical Simulations of the EDL-Structure of Binary ILs

 = 200 mV

0           2          4           6           8          100           2          4           6           8          10
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 = 10 mV  = 25 mV  = 70 mV

 = 100 mV  = 200 mV

a)                                                          b)                                                          c)

d)                                                         e)                                                           f)

Figure 12.9: Comparison of the numerical profiles obtained from the integral descrip-
tion (see eq. (9.42)), and from the gradient description (see eqs. (9.43) and (9.52))
for Φ̃ with the analytical predictions (see eqs. (10.30), (10.31) and (10.33)) at
V0=185 meV and at varying interface polarizations. Figures first published in Ref.
367.

struction, the analytical profile (yellow dashed curve, and envelope) does not show
such a behaviour. Figure 12.9b) shows the results for ∆ϕ=25 mV. Again, the oscil-
lations appearing in the profiles of the two numerical results are much larger than
the electrode polarization. Interestingly, these amplitudes have the same magni-
tude as for the previous interface potential ∆ϕ=10 mV (roughly at 70 mV and at
75 mV). The deviations between the two numerical results reproduce almost exactly
the same behaviour as discussed for ∆ϕ=10 mV. Figure 12.9c), shows the results
for ∆ϕ=70 mV. The pattern observed in the previous two cases also appears here,
because the magnitudes of the amplitudes for the first oscillation peak appearing
in the two numerical results are again roughly at 70 mV and at 75 mV. However,
this equals almost exactly the interface polarization ∆ϕ=70 mV. Hence, there is no
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12.3 Non-Local Interactions

“overscreening” of the first oscillation peak relative to the interface potential. Fur-
thermore, the two numerical profiles have a rather good quantitative agreement to
each other. The first oscillation peak of the analytical profile has a magnitude which
equals roughly 40% of the interface potential. Next, fig. 12.9d), shows the results
for ∆ϕ=100 mV. We observe the same patterns as in the previous cases; the first
oscillation peaks of the two numerical profiles have again the magnitudes 70 mV and
75 mV, and the amplitude of the first oscillation peak appearing in the analytical
profile has a magnitude of roughly 40% of the interface potential. Figure 12.9e),
shows the corresponding results for the interface potential ∆ϕ=200 mV. We observe
the same pattern as in the previous cases. However, due to the coincidence that
∆ϕ · 0.4 ≈ 75 mV, all three curves exhibit a very good agreement and the profiles
match exactly in the region close to the interface and up to the first oscillation
peak. However, beyond this first “layer”, the integral profile oscillates with a larger
frequency when compared to the gradient profile and the analytical profile. Never-
theless, the analytical envelope captures all three profiles rather good. In particular,
the profile with respect to the gradient description and with respect to the analytical
description correspond almost exactly. This agreement is highlighted in fig. 12.9e).
Altogether, we find that the amplitude of the first oscillation peak is independent
from the electrode potential and has roughly the magnitudes 70 mV, for the integral
description, and 75 mV for the gradient description. This “discretization” of the
electric potential in the first ion layer near the electrode is reminiscent of saturation
processes occurring near the electrode due to crowding, and this behaviour is in ac-
cordance with fig. 12.8, which shows that crowding effects occur independently from
the electrode potential for non-vanishing interaction energies V0. Finally, we com-
pare the magnitude of the first oscillation peaks (roughly 70 mV) in the numerical
profiles for V0=185 meV shown in fig. 12.9d), with the magnitude of the first oscil-
lation peak (roughly 110 mV) for V0=250 meV, shown in fig. 12.6. Both results are
obtained with respect to the same electrode polarization ∆ϕ = 100 mV. From this
we conclude that the magnitude of the first oscillation peak is constant with respect
to the electrode polarization, but increases with increasing interaction energy.
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13 EDL Structures of Ternary
Electrolytes: Mean Steric Effect

13.1 Transport Theory of Ternary Electrolytes

In this section, we discuss the case of a ternary electrolyte. In contrast to sec-
tion 15.2, where we discussed a ternary electrolyte with neutral solvent in the elec-
troneutral bulk state, our focus here lies on the formation of charged EDL structures.

At least two species comprised in the electrolyte are oppositely charged. Hence,
without loss of generality, we denote these two species by the labels "+" and "-",
and label the third species via the index "s". Hence, there are two independent
valence-parameters, z+ and zs, since z−= − z+. We assume complete dissociation
of the IL and define the molar mass MIL=M+ +M−, and the partial molar volume
νIL=ν++ν− which define dimensionless parameters γα=να/νIL, and M̃=Mα/MIL.

As described in section 5.3, three independent transport parameters exist in a
ternary electrolyte. These are the electrolyte electric conductivity κ, one transfer-
ence number ts and one diffusion coefficient Dss=Ds. Because of charge conservation
and the Euler equation for the volume, there is only one independent species con-
centration appearing in the ternary system. Thus, the set of independent variables
which are necessary to describe the EDL system are the ϱF, Φ, v and one species
concentration, where, by convention, we choose cs as independent species concen-
trations such that (see eqs. (5.222) and (5.223))

c∓ = 1/νIL ∓ ϱFγ+/Fz+ − cs/z+ · (γsz+ ∓ γ+zs) , (13.1)
and the Gibbs-Duhem relation reduces the number of independent forces ∇µα to
two

∇µs = −1/cs · (ϱF∇Φ + c+∇µ+ + c−∇µ−) . (13.2)

The corresponding system of transport equations reads

ϱF = −ε0∇εR∇Φ, (13.3)
∂tϱF = −∇J F −∇ (ϱFv) , (13.4)
∂tcs = −∇Ns −∇ (csv) , (13.5)
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13.2 Numerical Simulations

with fluxes
J F = −κ∇φ− κts/F z̃s ·∇˜̃µs, (13.6)
Ns = ts/F z̃s ·J F −Ds∇˜̃µs, (13.7)

∇v = −ν̃−/F z̃− ·∇J F − ˜̃νs ·∇Ns. (13.8)

We neglect molecular interactions (V0=0), such that eq. (8.25) becomes

∇µα = −ναϱF∇Φ +RT∇ ln[cανα]−RTνα∇c. (13.9)

Apparently, it suffices to determine the forces ∇φ and ∇˜̃µs to close the fluxes
eqs. (13.6) to (13.8). We find (note that ∇µ̃el

−=−F/z+ ·∇φ)

∇φ = ∇Φ− M̃+/Fz+ ·∇µ− − M̃−/Fz+ ·∇µ+. (13.10)

Next, we calculate the force ∇˜̃µs by substituting eq. (13.2) for ∇µs,

∇˜̃µs = −
[
ϱF/cs ·∇Φ +

(
c−/cs + zsM̃+ − z+M̃s

)
∇µ−+

+
(
c+/cs + M̃s/M̃+ · (1− z+M̃−) + zsM̃−

)
∇µ+

]
. (13.11)

If z+=1, then eq. (13.11) becomes

∇˜̃µs=−[ϱF/cs ·∇Φ+(c−/cs + zsM̃+−M̃s)∇µ−+(c+/cs +zsM̃−+M̃s)∇µ+].
(13.12)

13.2 Numerical Simulations

Here, we apply our description from section 13.1 to the ternary electrolyte-mixture
consisting of PYR[1,4 ]TFSI supplemented by AgTFFSI-salt. Thus, the completely
dissociated electrolyte consists of Pyr+-cations (c+), Ag+-cations (cs) and TFSI– -
anions (c−). The bulk-concentrations are thus determined by the condition of elec-
troneutrality,

cb
− = cb

+ + cb
s . (13.13)

Hence, for a constant amount of PYR[1,4 ]TFSI, cb
− increases with cb

s .
The additive salt AgTFSI is advantageous because the Ag+-ions can be assumed

much smaller than the bulky IL-ions. [345] This suggests the limit where νs≪ν±, see
section 13.4. Here, we assume a ratio νs=0.1·ν+, set ν+=ν− and neglect convection.
Hence, the system of equations reads

ϱF = −ε0∇εR∇Φ, ∂tϱF = −∇J F, ∂tcs = −∇Ns. (13.14)
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13 EDL Structures of Ternary Electrolytes: Mean Steric Effect

a)                                                                         b)                                                                       c)

d)                                                                        e)                                                                         f)

Figure 13.1: Numerical results with respect to eq. (13.14) as function of minor salt
concentration. a)-d) Species concentrations cα. e) ϱF. f) Φ.

The fluxes and chemical forces are given by eqs. (13.6) to (13.11). Here, we have
z+=zs=1. We solve this system of equations described in the one-dimensional “half-
cell” set-up described in section 12.2.1, and set ∆ϕ = −100 mV (see appendix E.5
for more details).

Figure 13.1 shows numerical results for the as-described set-up, subject to differ-
ent bulk-concentrations cb

s . Subfigures a)-d) show the screening profile of the species
concentrations with increasing cb

s . Figure 13.1a), shows the species concentrations
for a relatively small amounts of Ag+-salt cb

s . Apparently, the electrode-screening
is mainly due to the Pyr cations. For this species, a perturbed crowding effect
is clearly visible. In contrast, only a small amount of Ag-ions accumulate next
to the interface, and the Ag-concentration quickly decays towards it’s electroneu-
tral bulk-concentration. Likewise, the TFSI-ions get depleted in the EDL-region.
However, the inset shows that the anion concentration does not become completely
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13.3 Stationary State

depleted at near the interface. Overall, this figure is reminiscent of the binary
screening-profiles described in section 12.2. Figure 13.1b) shows that, upon increas-
ing the bulk-concentration of the Ag+-ions, the screening profile changes. Here,
cb

s =0.1 mol L−1, and the Ag-ions begin accumulating near the interface. This results
in a reduced accumulation of the Pyr-cations near the interface. Again, the anion
concentration almost vanishes near the interface. In accordance with eq. (13.13),
the bulk concentration of the IL-anions is slightly increased with respect to the
concentration of the IL cation species. Figure 13.1c) shows numerical results for
cb

s =0.25 mol L−1. Here, the Ag+-concentration near the interface is larger than the
Pyr+-concentration. However, c+ shows a curved shape, and increases with increas-
ing distance from the electrode up to a saturation value at roughly x≈0.8 Å, beyond
which it starts decaying into the electroneutral state, i.e. towards it’s bulk concen-
tration. The anion species is dominant in the bulk state of the electrolyte mixture.
Figure 13.1c) shows the species concentrations for cb

3=0.6 mol L−1. The Pyr+-ions
are depleted next to the interface, and the screening has switched completely to the
Ag+-ions. The lower inset shows that the concentration of the Pyr+-ions near the
electrode is not zero. However, the Pyr+-ions still exhibit saturation in an interme-
diate EDL-region. The upper inset highlights that the concentration of the minor
Ag+-salt saturates near the electrode. However, due to the small molar volume
νs, the saturation concentration is extremely large. The anion species exhibits a
non-trivial profile next to the interface, see the lower inset. It depletes completely
at the electrode, and increases up to a plateau at roughly 0.25 Å, after which it
increases again. Apparently, this concentration plateau correlates with the satura-
tion of the Ag+-ions (see the upper inset). Figure 13.1e) shows the corresponding
charge-profiles for all four cases. Apparently, the charge density shows an expo-
nential profile for small amounts of minor Ag+-salt. However, at cs=0.6 mol L−1,
the charge density has transitioned into saturation, where the corresponding satu-
ration threshold is at extremely large values, due to the small molar volume of the
Ag+-ions. Figure 13.1f), shows the electric potential for all cases. In contrast to
the charge density, the profile of the electric potential has a more “canoncal” shape.
Apparently, the screening becomes more effective with increasing salt concentration.

Altogether, we find that the amount of minor silver salt influences the EDL struc-
ture. At roughly cs=0.25 mol L−1, the crowding of counterions near the electrified
interface is destroyed.

13.3 Stationary State

In this section, we consider the stationary state and use the same rationale as in
section 9.3, where we discussed the stationary state for a binary electrolyte.
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In stationary state, all species-fluxes vanish, i.e. vα=0. Hence, the macroscopic
fluxes become trivial, v=J F=Ns=0. However, eq. (13.6) implies that J F=0 exactly
if ∇φ=0, which is equivalent to ∇µ̃el

−=0. From eq. (13.7), it follows that N3=0
exactly if ∇˜̃µs=0. Note that the vanishing of the two electrochemical forces follows
directly from the Onsager approach, where the flux J F is linear in ∇µ̃el

−, and Ns is
linear in µ̃el

s (see section 5.3.1). We use the Gibbs-Duhem relation, eq. (13.2), and
evaluate the first condition,

0 = ∇Φ̃ + M̃−/RT ·∇µ+ − M̃+/RT ·∇µ−. (13.15)

However, it is easy to show that if ∇φ=0, then ∇˜̃µs=∇µ̃el
s . Thus, the second sta-

tionary condition can be expressed as ∇µ̃el
s =0. Evaluation of this condition, and

using eqs. (13.2) and (13.15), we find that the stationary conditions can be expressed
by two of the three trivial electrochemical forces 0=∇µel

α , where α ∈ {+,−, s}. Alto-
gether, the stationary state for the three independent variables Φ, ϱF, cs is described
by the Poisson equation and two trivial force-laws, e.g.

ϱF = −ε0∇εR∇Φ, 0 = ∇µel
+ and 0 = ∇µel

s . (13.16)

13.4 Static Asymptotic Analysis: Minor Salt Species

In this section we evaluate the stationary case described in section 13.3 for the
limit where the minor silver species has very small molar volume compared with
the ion species, i.e. νs≪νIL (hence (c++c−)νIL≈1. For this purpose, we eval-
uate the system of stationary equations, eq. (13.16). The stationary condition
0=F∇Φ+∇µs is determined by the constitutive equation for the chemical forces,
∇µs=− νsϱF∇Φ+∇ ln[csνs]−νs∇c. Hence, in the limit ν3≪νIL, we find

0=F [(c+ + c−)(νIL − νs)−νscs]∇Φ+RT∇ ln[νscs]−νs∇c≈F∇Φ+RT∇ ln[νscs].
(13.17)

Next, we non-dimensionalize the electric potential via Φ̃=FΦ/RT , and integrate
both sides from x up to the electroneutral bulk region where Φ̃(LEDL)=0, and
cs(LEDL)=cb

s , such that 0=Φ̃(x)+ ln[cs(x)νs] − ln[cb
sνs]. We solve this for the salt

concentration,
cs(x) = cb

s · exp[−Φ̃(x)]. (13.18)

Since the electric potentials are continuous across interfaces, we find for the minor
species concentration close to the interface cs=cb

s · exp(−∆ϕ̃). This argument holds
even if the polarization of the interface has the same “sign” as the valency of the
minor species. For example, if the minor species is positively charged, and the
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13.4 Static Asymptotic Analysis: Minor Salt Species

polarization of the electrode is such that sign(∆ϕ̃)=sign(zs), then the counter species
is the positive species. In this case, we showed above that the counter-species creates
a negative electric potential of roughly the magnitude −∆ϕ̃, after the distance from
the electrode given by the size of the cations. Then, the minor species accumulates
right behind the ion-layer of specifically adsorbed cations.

We assume that the EDL structure of the binary IL gets disturbed by the ions
of the minor species, once their concentration at the electrode becomes comparable
with the bulk concentration of the neat IL PYR[1,4 ]TFSI, i.e. cb

s =cb
IL = 1/νIL .

This implies the condition
ccrit

s = exp(∆ϕ̃)/νIL . (13.19)

Hence, for an electrode-potential of ∆ϕ= − 100 mV and a bulk concentration of
roughly cb

IL=4 mol L−1, we predict the critical amount of ccrit
s ≈0.1 mol L−1 minor salt,

which is necessary to disturb the EDL-structure formed by the neat IL electrolyte.
This prediction is qualitatively in good agreement with the numerical results, see
fig. 13.1. In chapter 14, we use this description to validate our EDL model for
ternary electrolytes.
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14 Validation of Our EDL Description
With Experiment

In this section, we discus how our EDL description relates Atomic Force Microscopy
(AFM) measurements.

a)                                                                          b)

c)                                                                          d)
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Figure 14.1: Double layer forces as function of V0 (a-c), and AFM force profiles ob-
tained from experiments (d)). [345] The EDL forces in a)-c) are defined by eq. (10.46),
and correspond to the charge profiles shown in fig. 12.3. Figures a) and d) first pub-
lished in Ref. 345.

A prominent experimental technique for the examination of the interfacial struc-

182



ture of ILs near electrified interfaces are AFM force curve measurements. [371] This
type of scanning probe microscopy uses sharp tips attached to a micro-cantilever to
scan a liquid sample in the vicinity of an electrode interface. Thereby, it measures
the forces FAFM which emerge between the interface, and the liquid sample (IL) as
function of electrode distance. [372] The corresponding force-profiles usually exhibit a
damped oscillatory shape. Typically, the “wave-length” of the oscillations, i.e. the
distance between consecutive peaks in the profile of FAFM, correlates with the ion-
size. [373] In addition, the number of peaks (i.e. the EDL-width) provides a means
for evaluating the interaction strength.

We relate these AFM forces FAFM to the double layer forces in mechanical equi-
librium FEDL introduced above (see eq. (10.46))

FEDL = ν/NA · ϱF∇Φ. (14.1)

In fig. 12.3, we showed force profiles as function of the interaction energy V0. Here,
we focus on four energies V0 and compare the force profiles with experimental results.

Figure 14.1 shows numerical results for the EDL forces corresponding to the
charge-profiles discussed in section 12.3.1, and experimental results obtained from
AFM measurements (see Ref. 345. The “sample” used in the simulations and in the
AFM experiment is the binary IL PYR[1,4 ]TFSI, and the electrode polarization is
∆ϕ=− 200 mV. The ion size used in the simulations was 0.7 nm. The double layer
forces in the subfigures a)-c) were calculated via eq. (14.1). Figure 14.1a) shows
the force profile at V0=198 meV. The first two force peaks are separated by roughly
a distance 0.9 nm, and the next two peaks have a distance of roughly 0.8 nm and
0.7 nm. Figure 14.1b) shows the force profiles at V0=205 meV (brown curve) and
at V0=350 meV (blue curve). For both interaction energies, the screening profile
has transitioned into the phase of undamped charge oscillations. Apparently, the
amplitude of the force peaks increases significantly with increasing V0. This can be
attributed to the fact tthat the ion segregation increases with V0 (see also fig. 12.3).
The frequency of the oscillations differs only slightly. For V0=350 meV, the force
peaks are separated roughly by a distance of 0.8 nm. Figure 14.1c) shows the force
profile at V0=500 meV (this force profile was already presented in fig. 12.4). The
profile exhibits very sharp peaks, which are mutually separated by a constant dis-
tance of 0.7 nm. This coincides exactly with the parameter for the ion size used
in the simulations. However, the first peak occurs at a distance of 0.9 nm from
the electrode, which is slightly larger than the ion size. This larger width of the
first “layer” can be attributed to the enhanced saturation width LEDL (compare
the parameter study in fig. 10.1). Figure 14.1d), shows the experimental results for
the AFM profiles (see Ref. 345). Apparently, the force peaks have a distance of
roughly 0.9 nm, which is slightly larger than the parameter used in the simulations
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(0.7 nm). However, the magnitudes of the EDL forces, O(FEDL)≈0.1 nN, differ from
the typical magnitudes measured in AFM experiment, O(FAFM)≈1 nN, by at least
one order of magnitude. This can be attributed to the fact that the AFM force
is used to study the same equilibrium structure as the EDL force, but relates to a
different technique. In contrast to the experiment, where the nano-scaled tip of the
AFM cantilever penetrates the highly crystalline structure, the forces FEDL account
for elastic perturbations of the EDL structure. Nevertheless, assuming that the nu-
merical results for the charge ordering is consistent with the experimental set-up,
the shape of the force profiles FEDL and FAFM, i.e. frequency and decay length of
the oscillations, should be similar for some interaction energy V0.

We conclude that, in principle, the comparison of the two quantities FAFM and
FEDL allows to validate our framework. Altogether, we find that the left figure in the
first row, fig. 14.1a), yields consistent results when compared with the experimental
results shown in fig. 14.1d).

In our discussion of ternary IL/salt mixture, we derived an analytical description
for the influence of a minor salt on the EDL structure, see section 13.4. We found
that there exists a critical bulk concentration of the salt at which the EDL structure
of a binary IL gets destroyed,

ccrit
s = exp(∆ϕ̃)/νIL . (14.2)

where νIL≈cb
IL equals roughly the bulk concentration of the IL.

We use this description to validate our EDL theory for ternary electrolytes. Ex-
perimental results based on AFM measurements show that for ∆ϕ=−200 mV versus
OCP, a minor amount of roughly ccrit

s =1·10−3 mol L−1 of AgTFSI is necessary to de-
stroy the EDL structure of the IL PYR[1,4 ]TFSI. [345] Hence, when we assume an
IL bulk concentration of cb

IL≈3 mol L−1, then the critical salt concentration accord-
ing to eq. (14.2) is ccrit

s ≈1·10−3 mol L−1. This quantitative agreement between the
experimental observation and the analytical prediction validates our model for the
equilibrium EDL structures of ternary electrolytes.
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Part IV

Discussion of Our Multi-Scale
Methodology
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In this part, we discuss our multiscale methodology derived in parts II and III.
To adress this goal, we split this discussion into two chapters.

First, in chapter 15, we relate our framework to different frameworks from the
literature. In section 15.1, we discuss different approaches for the unification of
mechanics, thermodynamics and electromagnetic theory, and different sets of elec-
tromagnetic material variables. Next, in section 15.2, we compare our bulk transport
theory with the Newman-model for the specific case of standard-electrolytes used
in lithium ion batteries. In section 15.3, we focus on the relation of our multiscale
methodology to atomistic models. With the help of basic concepts from liquid state
theory, we show that atomistic simulations can directly parameterize our theory. In
section 15.4 we discuss the relation to mean-field-theories (MFTs) for the electro-
chemical double layer (EDL) proposed in the literature, and focus on the canonic
BSK approach.

Second, in chapter 16, we discuss how macroscopic thermodynamic energy contri-
butions, and the mean steric effect, can be obtained from our microscopic description
via coarse graining.
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15 Comparison with Literature and
Theory

15.1 Thermo-Electro-Mechanical Balance Laws

The unification of mechanics, electromagnetic theory and thermodynamics consti-
tutes a fundamental pillar on which continuum transport theories reside. Thus,
differing approaches usually lead to conceptual differences between the resulting
transport theories. In this section, we discuss some alternative proposals from the
literature for such unifications.

The fundamental balance equations for mass, momentum and energy constitute
the basis for the framework of rational thermodynamics. [74] Although there is com-
mon agreement regarding the balance laws of thermo-mechanics, [81] various models
for the electromagnetic balance laws (and how to unify them with thermo-mechanics)
exist. [245] In this section, we briefly discuss differing approaches, and their conse-
quences for the resulting transport theory.

The diversity of fundamental modeling approaches culminates in the electromag-
netically extended balance equation for momentum. Any such balance equation
relies on a proper form for the momentum of the electromagnetic fields. However,
the precise definition for the electromagnetic momentum is under debate. [248,374–377]

Also, some authors argue that a precise definition for electromagnetic momentum
must distinguish between the electromagnetic field-/ and matter-part. [77,78]

One approach to resolve this issue is to split the “complete” momentum into sep-
arate “mechanical” and “electromagnetic” quantities. [141] Both quantities are then
subject to individual balance equations. However, this separation requires individual
stress tensors representing mechanical and electromagnetic contributions. Further-
more, the momentum-separation is accompanied by individual balance equations for
mechanical (internal and kinetic) energy, and energy of the electromagnetic fields
(“Poynting’s Theorem”). [140] This approach offers a clear and rational description,
which bears many advantages. Among them is that the approach suggests precise
definitions for debated electromagnetic expressions like flux-terms, energy-terms,
and quantities related to the conversion of electromagnetic energy to internal and
kinetic energy. [378] In particular, this method is often used to identify DF ∧ B as
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electromagnetic momentum, and (EDF + HFB)/2 as electromagnetic energy den-
sity, [141] and the Lorentz-force and Joule-heating is derived from momentum-/ and
energy-conservation. Thus, the ambiguous nature of the Lorentz force (being a body-
/ or surface-force) is resolved within this approach. [247] However, such an approach
has also some disadvantages. Because the electromagnetic “balance-equations” are
derived from the Maxwell-equations they merely constitute identities, which are sat-
isfied by all electromagnetic quantities that solve Maxwell’s equation. [379] Further-
more, these “Poynting Theorems” are highly non-unique, and various such equations
exist which all take the form of balance-laws and can be derived from the Maxwell
equations. [380] Furthermore, the identification of the “correct” form for the elec-
tromagnetic momentum and energy density follows more naturally from the four-
dimensional description of electrodynamics, because both quantities are comprised
in the stress-energy tensor, which fulfills a conservation-law by it’s own (see ap-
pendix B.4). Furthermore, despite the clearly stated separation between mechanics
and electromagnetic theory, this approach considers the electromagnetic body-forces
(Lorentz-force) as source-terms in the balance-law of the purely mechanical momen-
tum. [141] This highlights the underlying ambiguity between these approaches, since
the coupling between mechanics and electromagnetic theory must be “modelled” ,
and cannot be derived from first principles.

In this work, we choose to express the Maxwell equations in the Galilean ap-
proximation, and express the Maxwell equations via flux-derivatives based on the
objective quantities E,DF,B,HF,J F, ϱF (this is the same set as used by Kovetz [81]).
In particular, we use E,B as proper electromagnetic variables in our materials law,
which yields constitutive equations for P,M. This approach was also chosen by
Latz et.al. [64] The set of electromagnetic variables which is used to formulate the
Maxwell equations, must be chosen in accordance with the materials law, because
they couple to the expansion of φ̇H(Υ ) (see section 5.2.3). However, since the
Maxwell equations can be formulated using different electromagnetic variables, dif-
ferent electromagnetic variables can be used in the materials law. [245] For example,
Dreyer et al state the Maxwell equations via E,DF,B,HF,J F, ϱF, and use P,M
in their materials law to obtain constitutive equations for E,B. [141] In contrast, Ref.
67 aimed to derive constitutive equations for E,HF by using the common choice
DF,B in the materials law. [77,78]. Interestingly, this approach reproduces exactly
the transport equations derived in this framework although an alternative choice for
the electromagnetic variables was used here. For a concise discussion of a variety of
such models, see Ref. 245.

Dreyer et al proposed a rationale as how to discard certain choices, based on equi-
librium relations and relaxation arguments. In Ref. 141 they state that although
the choice E, as used for example in Ref. 64, is mathematically consistent, it is
incompatible with equilibrium relations and shall therefore be dismissed as elec-
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tromagnetic variable. We disapprove with their reasoning as their main argument
confuses primary and secondary quantities, and is physically not justified.

15.2 Comparison with the Extended Stefan-Maxwell
Approach (“Newman-Model”)

The Stefan-Maxwell approach is among the most-widely used models for concen-
trated solutions. [93] In section 3.1 we gave a brief summary of the underlying as-
sumptions, and introduced the “Newman-model”. In this section, we relate our
framework to this canonic description. For this purpose, we consider the standard
electrolyte discussed in section 5.4.6. This ternary electrolyte is commonly used for
lithium ion batteries, and consists of a neutral solvent species and two ionic species.

As reference for the Newman-description of this electrolyte, we refer to Ref. 381,
where a notation is used which is similar to ours (see also Ref. 100). Assuming LiPF6
as electrolyte-salt, the set of isothermal transport equations for this electroneutral
system in the Newman-model is (see Eqs.(2.72) and (2.74), Ref. 381)

∂tcLi+ + ∇
(
tNLi+/FzLi+ ·J F −∇

[
DN

LiPF6 ·∇cLi+
])

= 0, (Newman-I)

∇J F = 0, (Newman-II)
where the electric current takes the form (see Eq.(2.51), Ref. 381)

J F=−κN∇φN+ 2
zLi+

RT

F
κ

N
(

1+d ln f N
LiPF6

d ln cLi+

)(
1−tNLiPF6

) ∇cLi+

cLi+
. (Newman-III)

Here, we slightly modified the notation used in Ref. 381 to better relate to our
notation. Above, κN,DN

LiPF6, t
N
LiPF6, f N

LiPF6 denote the transport parameters appear-
ing in the Newman-framework. In contrast to our description, where the transport
coefficients are defined relative to the reference frame of the center-of-mass convec-
tion velocity, the Newman parameters are defined relative to the solvent-velocity
(i.e. the convection velocity is defined by the solvent velocity). This is similar to
the IVRF-approach discussed in section 5.5.4. In section 5.5.3, we showed that the
conductivities in all reference frames are identical for electroneutral electrolytes,

κ
N = κ. (15.1)

Below, we will see how the remaining transport parameters relate to our de-
scription (see eqs. (15.14) and (15.16)). Note that the potential φN appearing in
eq. (Newman-I) defines the electrochemical potential with respect to a Li+-reference

189



15 Comparison with Literature and Theory

(see Eq.(A9), Ref. 381),
φN = Φ + µLi+/FzLi+ , [Newman-IV]

and differs from the electrochemical potential φ = Φ + µ̃2/F z̃2 appearing in our
formalism (see eq. (5.134)). However, both are related by eq. (5.265).

We make use of the results derived in section 5.4.6, and assign Li+ as second
species, and [PF 6 ]– as third species. Because of electroneutrality, both concen-
trations are equal, cLi+ = c[PF 6 ]− . Furthermore, we neglect convection, as it is
usually assumed in Newman-type models. Thus, the two transport equations for
this ternary system at thermal equilibrium are given by eqs. (5.273) and (5.274).
For completeness, we restate them here,

∇J F = 0, (15.2)
∂tcLi+ = −∇N[PF 6 ]− , (15.3)

The corresponding electric flux, and the relevant mass-flux N[PF 6 ]− are deter-
mined by eqs. (5.266) and (5.267). According to this description, the only relevant
chemical potential is µternary = µLiPF6 = µLi+ +µ[PF 6 ]− , see eq. (5.263). Since we ne-
glect convection, there are no viscous forces, i.e. ∇τ = 0. Hence, the Gibbs-Duhem
relation becomes trivial, see eq. (5.101). Thus, when we neglect reactions, we find
(see eq. (5.263))

J F = −κ∇φN + κ/FzLi+ · ρt[PF 6 ]− − ρLi+/ρ1 ·∇µLiPF6, (15.4)
N[PF 6 ]− = t[PF 6 ]−/Fz[PF 6 ]− ·J F −D[PF 6 ]−ρ/ρ1 ·∇µLiPF6. (15.5)

Electroneutrality allows to transform the independent transport equation for the
[PF 6 ]−-ions (eq. (15.3)) to a transport equation for the Li+-ions. For this purpose,
we use that cLi+ = c[PF 6 ]− , t[PF 6 ]− = 1 − tLi+ , ∇J F = 0, and z[PF 6 ]− = −zLi+ .
Hence, our system of transport equations (eqs. (15.2) and (15.3) is equivalent to

∇J F = 0, (15.6)

∂tcLi+ + ∇ (tLi+/FzLi+ ·J F)−∇
(
D[PF 6 ]−ρ/ρ1 ·∇µLiPF6

)
= 0. (15.7)

In the next step, we evaluate the chemical forces ∇µLiPF6 using the correspond-
ing material function eq. (5.237). Since we assume electroneutrality and neglect
convection, the forces become ∇µα = RT

∑N
β=1 TDF αβ ∇cβ/cβ , where the therom-

dynamic factor is (see eq. (5.236)) TDF αβ =
∑3

γ=1(δαγ−ναcγ)(δβγ +∂ ln f γ/∂ ln cβ ).
As already mentioned in section 5.4.5, this form of the thermodynamic factor differs
from the canonical form, which also appears in the Newman-model, TDF N

LiPF6 =
1 + ∂ ln f N

LiPF6/∂ ln cLi+ . Since the chemical force ∇µLiPF6 is determined by µLi+

190



15.2 Comparison with the “Newman-Model”

and µ[PF 6 ]− , we only need to calculate the six coefficients TDF 2α and TDF 3α.
Note that for this electrolyte cLi+ is the only independent species-concentration,

see eqs. (5.222) and (5.223). In particular, the solvent-species is determined by
c1 = (1− c1ν1)/(νLi+ + ν[PF 6 ]−), such that

∂

∂c1
= − ν1

νLi+ + ν[PF 6 ]−

∂

∂cLi+
, or ∂

∂ ln c1
= −cLi+

c1

ν1
νLi+ + ν[PF 6 ]−

∂

∂ ln cLi+
.

(15.8)
We use these relations for the calculation of the six coefficients of the two ther-

modynamic factors. In addition, we define the binary salt-activity coefficient

f LiPF6 = f Li+ · f [PF 6 ]− . (15.9)

From a lengthy but simple calculation follows

∇µLiPF6 = RT

[
c1ν1 − 1
cLi+

(
1 + ∂ ln f 1

∂ ln c1

)
− cLi+(ν1)2

c1(νLi+ + ν[PF 6 ]−)
∂ ln f LiPF6
∂ ln cLi+

]
∇c1

+ 2RT
[
c1ν1

(
1 + ∂ ln f LiPF6

∂ ln cLi+

)
+ (c1)2

(cLi+)3ν1
(1− c1ν1)2 ∂ ln f 1

∂ ln c1

]
∇cLi+

cLi+
. (15.10)

However, when we insert this expression into the electric current, eq. (15.4), we find
that our expression for J F differs from the electric current as predicted by Newman
(eq. (Newman-III)). Apparently, the differing terms vanish in the limit where the
neutral solvent dominates the electrolyte with respect to mass and volume,

ρ1 ≈ ρ, c1ν1 ≈ 1, (15.11)
since then eq. (15.10) reduces to

∇µLiPF6 = 2RT (1 + ∂ ln f LiPF6/∂ ln cLi+ ) (∇cLi+)/cLi+ . (15.12)

As we have shown in section 5.4.6, the assumptions eq. (15.11) are consistent
with the above assumption that the convection-velocity can be neglected (see also
eq. (5.272) and the discussion there, as well as section 5.4.7, eq. (5.280) and the text
below). Hence, in the limit eq. (15.11), we find for the electric current eq. (15.4)

J F = −κ∇φN + 2κRT
FzLi+

1− tLi+

cLi+

(
1 + ∂ ln f LiPF6

∂ ln cLi+

)
∇cLi+ . (15.13)

Apparently, the two models predict the same flux-expressions (viz. eqs. (15.13)
and (Newman-III)), if we identify the activity-parameters, and the transference
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numbers in the two different frameworks via

f N
LiPF6 = f LiPF6, and tNLi+ = tLi+ . (15.14)

The latter identification is not trivial, since the Newman-parameters tNα are de-
fined relative to the solvent-velocity v1. [381] This description is similar to the IVRF-
parameters discussed in section 5.5.4. There we showed that in the limiting case
eq. (5.272), the ionic transference numbers are equal for the standard electrolyte
(see eq. (5.339), and the discussion there). Newman also states a relation for the
parameters between both frames, tα = (ρα + ρ1t

N
α)/ρ (see p. 301, Ref. 100). Thus,

according to this relations, the identification eq. (15.14) for the transference param-
eters is also true in the limit eq. (15.11).

It remains to discuss the two transport equations for the Li+-concentration, eqs. (15.7)
and (Newman-I). To address this, we substitute eq. (15.12) into eq. (15.7),

∂tcLi+ + ∇
(
tLi+

FzLi+
J F

)
− 2D[PF 6 ]−

(
1 + ∂ ln f LiPF6

∂ ln cLi+

)
∇cLi+

cLi+
= 0. (15.15)

Apparently, the two transport equations for the Li+-ions eqs. (15.15) and (Newman-
I) agree up to differing expressions for the diffusion coefficients,

DN
LiPF6 ←→ 2

cLi+
D[PF 6 ]−

(
1 + ∂ ln f LiPF6

∂ ln cLi+

)
. (15.16)

Note the conceptual difference between both quantities. The binary Newman-
diffusion of the salt DN

LiPF6 is defined relative to concentration gradients, whereas
the expression appearing in our formalism, D[PF 6 ]− , is defined relative to gradients in
the chemical potential. However, the Newman-coefficient DN

LiPF6 can be expressed
via a corresponding diffusion-coefficient DN

LiPF6, which is defined with respect to
gradients in the chemical potential (see p.26 in Ref. 381), DN

LiPF6 = DN
LiPF6(1 +

2cLi+/c1 )(1 + ∂ ln f N
LiPF6/∂ ln cLi+ ). Thus, the two systems of transport equations

agree subject to the identification (1 + 2cLi+/c1 )DN
LiPF6 ↔ 2D[PF 6 ]−/cLi+ .

Therefore, in the limit eq. (15.11), our description reproduces the Newman-approach,
subject to the identification of the binary diffusion coefficients, eq. (15.16). Ulti-
mately, both theoretical descriptions must be validated in comparison with exper-
imental results. In particular, it remains up to experimental examinations if the
limiting assumptions eq. (15.11) are reasonably chosen. Recently, Gasteiger et.al.
proposed a scheme for the complete experimental determination of the relevant
transport parameters (conductivity, binary diffusion coefficient, transference num-
ber, and thermodynamic factor) in this standard electrolyte. [294,382,383] Their ap-
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proach relates to the Newman-model eqs. (Newman-I) to (Newman-IV) (see, e.g.,
Eq.(1) and (2) in Ref. 294), and thus can be used to probe the Newman-approach
in comparison with our description. Indeed, since the experiment determines both,
DN

LiPF6 and TDF N
LiPF6, the identification eq. (15.16) gets resolved. This provides the

possibility for direct comparison of both descriptions using the Gasteiger-approach
discussed in Ref. 294.

15.3 From Molecular Dynamics to Non-Equilibrium
Thermodynamics

In this section we focus on how atomistic frameworks, based on quantum chemistry,
i.e. DFT and MD, are related to our continuum description.

By solving the Schrödinger equation, ab-initio DFT determines the forces between
ions and molecules, and determines the electronic structure of many-body systems
in condensed phase. [384] MD simulations calculate the classical trajectories of ions
and molecules, i.e. their positions and velocities, based upon the DFT generated
force fields. [385] Although MD simulations describe static and dynamic properties
occurring at the microscale, results obtained from MD simulations also relate to
continuum transport quantities, e.g. Onsager coefficients, via the velocity auto-
correlation function / Green-Kubo relations. [386,387]

Static results from MD simulations are often interpreted via profiles of the radial
distribution functions (RDF) g(r). [63] In general, the RDF accounts for correlations
in the positions of sample-particles by describing how the density varies as function
of the distance. Because RDFs play an important role in various different theories
and experiments, they can be used to interpret the MD results.

In particluar, the RDF can be obtained from scattering experiments, e.g. X-
ray diffraction or neutron diffraction, [388] via the resulting structure factor of the
sample. For example, the structure factor of spherically symmetric samples (like
isotropic liquids) relates to the RDF via Fourier-transformation. [389–391] Further-
more, RDFs are focal quantities appearing in liquid state theory (LST), which
links microscopic details to macroscopic properties ("Kirkwood-Buff solution the-
ory"). [63,392] This provides the possibility for connecting atomistic descriptions with
scattering experiments, [393] and thermodynamic concepts. [63] In integral equation
theories (IETs), the correlations described by the RDF are typically split up into
different types of correlation functions. The pairwise total correlation function h
relates to the RDF via subtraction of it’s asymptotic value h(r) = g(r) − 1 (since
limr→∞ g(r) = 1), [320] and to the direct pair correlation function c(2)(r) via the
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Ornstein-Zernike relation, [394]

h(r) = c(2)(r) + ρb
∫

dr′c(2)(|r − r′|) · h(r′). (15.17)

Here, ρb is the density of the bulk liquid. Finally, because the direct pair correlation
functions c(2)

αβ are also used in classical density functional theory (cDFT), where they
account for pairwise interactions between two ions of species α and β, they relate to
the excess free energy (due to pairwise ion-interactions), i.e. to thermodynamic con-
cepts used in our description. [395] In particular, the direct pair correlation function
is the twofold functional derivative of F int. [393] Thus, as shown in section 8.3, the
direct pair correlation function equals the interaction potential F (see eq. (8.29)),

c(2)
αβ(r, r′) = −Fαβ(|r − r′|)

kBT (NA)2 = − V0

Eth
· c̃b

2γ+γ−
· F̃αβ(|r − r′|). (15.18)

Furthermore, the excess chemical potentials µint
α (x, [cγ ]) follow from higher-order

correlation functions c(n)
αβ... via the Taylor approximation for a functional. [393] To

show this, we consider a non-uniform system, and measure the concentrations cγ(x) =
c0

γ(x) + δcγ(x) relative to a reference state defined by reference concentrations c0
γ .

We expand the excess chemical potential µint
α (x, [cγ ]) = µα(x, [cγ ]) − ∂(ρφH)/∂cα

around the referenced state using the Taylor expansion for a functional, [396]

µα(x, [cγ ]) =µα(x, [c0
γ ]) +

N∑
β=1

∫
dx′ δµα(x, [c0

γ ])
δcβ(x′) · δcβ(x′)

+ 1
2
∑
β,λ

"
dx′dx′′ δ2µα(x, [c0

γ ])
δcλ(x′′)δcβ(x′) · δcβ(x′)δcλ(x′′)

+ O
(
[δcγ ]3

)
(15.19)

=µα(x, [c0
γ ])−RTNA ·

N∑
β=1

∫
dx′ c(2)

αβ(x,x′) · δcβ(x′)

− RT

2 ·NA ·
∑
β,λ

"
dx′dx′′ c(3)

αβλ(x,x′,x′′) · δcβ(x′)δcλ(x′′)

+ O
(
[δcγ ]3

)
,

(15.20)

Here we used µint
α (x, [c0

γ ]) = δF int[c0
γ ]/δcα(x) and introduced the direct correla-

tion functions c(2)
βα(x,x′) = −1/RTNA · δ2F int/δcβ(x′)cα(x) and c(3)

λβα(x,x′,x′′) =
δ3F int/δcλ(x′′)δcβ(x′)δcα(x) with respect to the reference state.
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This illustrates how the atomistic description relates to our thermodynamic frame-
work via a simple recipe: DFT determines force fields for MD; MD determines g(r)
for LST; g(r) determines c(2)(r) via the Ornstein-Zernike relation; c(2)(r) determines
F int, thus generates our non-equilibrium thermodynamic theory. Altogether, the pa-
rameters of our continuum theory can be rigorously calculated via these atomistic
methods.

As mentioned above, atomistic simulations also relate to transport parameters
appearing in our theory, i.e. dynamic properties. In this work, we use a con-
sistent flux-explicit description based on Onsager coefficients. [397] These Onsager
coefficients can be measured experimentally, [386] or can be obtained from MD simu-
lations via time-integration of the velocity-auto-correlation functions (“Green Kubo
relations”). [387]

Finally, we note that scattering experiments are often evaluated using fit func-
tions in the form of eq. (10.44) to describe the interfacial profiles obtained from the
scattering intensity, i.e. the structure factor (see, e.g., eq. (7) in Ref. 398). These
fit parameters follow analytically from our theory.

15.4 From Non-Equilibrium Thermodynamics to BSK
Theory

In this section, we compare our thermodynamically consistent continuum approach
with phenomenological mean field theories (MFT) from the literature.

The seminal MFT-approach proposed by Bazant, Storey, and Kornyshev (BSK),
for the description of ILs near electrified interfaces, [69] constitutes the canonic ap-
proach for such MFTs based on modified dielectric relations.

In contrast to our approach, where we incorporate non-local effects via modifica-
tion of the free energy, BSK account for non-local ion-correlations using a modified
linear dielectric relation between the electrostatic fields D̄ and E via

D̄ = ˆ̄εE. (15.21)

Here, the dielectric BSK parameter is an operator which contains higher-order gra-
dients,

ˆ̄ε = εRε0(1− ℓc∇2). (15.22)

The second order gradient-term in ˆ̄ε is effectively short-ranged with correlation-
length ℓc. The constitutive relation, eq. (15.21), implies a modified Poisson equation,

ˆ̄ε∇2Φ = −ϱ̄F. (15.23)

195



15 Comparison with Literature and Theory

In addition, the chemical potential connects electric potential and charge density,
i.e. ϱ̄F(Φ). Furthermore, in the limit of small potentials, the EDL is described via
one equation,

ˆ̄ε∇2Φ = Φ. (15.24)

We compare this description with our approach. Because our modeling is based
on a different rationale, it differs conceptually from BSK theory. Focal quantity in
our modeling is the free energy F , hence we incorporate electrostatic correlations
into our framework via modification of F . Thus, instead of modifying the dielectric
constitutive relation as in eq. (15.21), we supplement the free energy by an additional
term F int, see eq. (8.10). Thus, non-local ion-interactions arise in the set of equations
via the constitutive equations, i.e. via the chemical potentials. As consequence, the
MFT-quantities appearing in the BSK description, D̄ and ϱ̄F = ∇D̄, differ from the
corresponding quantities ϱF and D appearing in our formalism; the charge density
ϱF relates to the "bulk"-quantity D and does not incorporate ion correlations. This
is in contrast to the "mean field charge density" ϱ̄F.

Nevertheless, we show that despite these conceptual differences the resulting model
equations are very similar. In particular, it is possible to reproduce the BSK descrip-
tion, eq. (15.24), from our system of equations, eqs. (10.4) and (10.5). To show this,
we assume the limit of small potentials, such that eqs. (10.4) and (10.5) equations
can be cast into one equation for the electric potential alone, viz.

ε̂R∇̃2Φ̃ = Φ̃. (15.25)

Here, the dielectric operator appearing in our description is ε̂R = 1−V0Eth · Γ̃ 0
+−−

V0/Eth · Γ̃ 2
+− · ∇̃2 (see eq. (10.6)). We highlight the similarity between eq. (15.24)

and eq. (15.25), and between the dielectric operators ε̂R and ˆ̄ε shown in eq. (15.22).
This illustrates the similarity between our model, and the BSK theory.

However, we want to emphasize that our gradient description merely constitutes
an approximation to the more concise integral description, which incorporates all
interaction modes. Nevertheless, the gradient description emerges naturally within
our rigorous continuum model, and thus stems form a thermodynamically consistent
transport theory. In contrast, the higher-order gradient-terms are phenomenologi-
cally incorporated in the BSK approach. Also, in contrast to the BSK model, our
description comprises a zero-order correction in the dielectric operator, which is
mandatory to realize the “complete” ternary phase-space of interfacial profiles (see
the discussion at end of section 10.3.2, as well as sections 10.3.5 and 10.3.6). This
mode is missing in the BSK approach.
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16 Coarse Graining: From Non-Local
Microscopic Correlations to
Macroscopic Phenomenological
Thermodynamic Properties

Our multiscale framework allows to incorporate a variety of effects via modeling
of the free energy. Depending upon the effect, they can either be incorporated as
bulk effects in the form of contributions to the free energy density

∫
dV ρφH, or

in the form of energy functionals F int representing effects which involve non-local
intercations occurring on the microscopic scale.

However, this dichotomy is not always well defined. [399] On one side, there are
macroscopic effects, which are emergent, i.e. result from microscopic interactions
between particles on much smaller scales. [400] As consequence, it suffices to describe
such effects via a macroscopic (averaged) energy contribution. For example, the ba-
sic idea of mean field theories is to approximate the cumulative energy contribution
resulting from interactions between molecules by an averaged effective description,
i.e. to replace the individual particle interactions by a homogeneous background
potential. [401] On the other side, rational thermodynamics constitues a description
of non-equilibrium thermodynamics which is based on universal principles impos-
ing strict constraints on the macroscopic behaviour of matter. [74] Thus, not all of
thermodynamics can be reduced to particle interactions. [81]

In this chapter, we show that our microscopic approach can be used to rationalize
the continuum description of emergent bulk effects, by replacing macroscpic energy
descriptions with microscopic interactions via the method of coarse graining. This
method is based on the assumption that macroscopic effects can be approximated
by microscopic interactions, where the corresponing interaction potentials have, ef-
fectively, a Dirac Delta distribution as their support.

In the first section, we introduce our model for coarse graining, see section 16.1.
Next, in section 16.2 we apply this description to the seminal Folry-Huggins solution
theory, and show how the phenomenological, macrsopcopic interaction parameters
can be derived from microscopic interactions. Finally, in section 16.3 we discuss
how to derive the macroscopic elastic energy contributions due to finite molar vol-
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16 Coarse Graining

umes from a microscopic model, and how the bulk modulus can be obtained from
microscopic parameters.

16.1 Coarse Graining of Microscopic Interactions

Our continuum description for the electrochemical double layer (EDL) is based on
the free energy functional

F =
∫

dV ρφH + F int, (16.1)

and accounts for non-local ion correlations on the microscopic scale (nanometer
scale) via interaction contributions (see eq. (10.35)),

F int = 1
2V

0 (NA)2
"

dx3dy3
N∑

α,β

F̃αβ(|x−y|)cα(x)cβ(y). (16.2)

Here, the corresponding scale of this interaction model is determined by the effc-
tive support of the interaction potential F̃αβ(ℓint), i.e. the correlation length ℓint. In
our EDL description, we assumed that the correlation length scales with the ion size
a via ℓint ≈ a/2π (where we assumed that a3 ∝ ν/NA, see eqs. (9.2) and (10.35)),
i.e. which corresponds to a model for microscopic interactions. In contrast, the
quantity ρφH appearing in eq. (16.1) is the bulk free energy density, which was dis-
cussed in part II, for the description of neutral electrolytes on a macroscopic scale
(micrometer scale).

However, the argument is that we can transfer the microscopic description eq. (16.2)
to larger length scales via coarse graining. From a macroscopic perspective, the mi-
crscopic interaction potential can be approximated by a Dirac Delta distribution,

F̃αβ(|x−y|) = χαβ · δ3(|x−y|). (16.3)

Note that since [δ3(|x−y|)] = m−3, the mesoscopic interaction parameter χ has
dimension [χαβ] = m3. From the Ansatz in eq. (16.3), we obtain a coarse grained
interaction energy via substitution of eq. (16.3) into eq. (16.2)

F coarse =
∫

dV V0

2 (NA)2
N∑

α,β

χαβcα(x)cβ(x). (16.4)

The corresponding coarse grained description of the complete system becomes

F = F coarse +
∫

dV ρφH. (16.5)
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16.2 Flory Huggins Solution Theory

16.2 Flory Huggins Solution Theory

In this section we apply our model for coarse graining described in section 16.1 to
the seminal Flory-Huggins theory for polymer solutions. [341,342]

According to this model, the excess free energy of a binary system is described by
an energy contribution

FFLORY =
∫

dV RTχFLORY
αβ c1ν1c2ν2, (16.6)

where χFLORY
αβ are the Flory interaction parameters (with dimension [χFLORY

αβ ] =
mol m−3).

The goal of this section is to show that our coarse graining model eq. (16.4) applied
to a binary system,

F coarse = V0

2

∫
dV (NA)2

[
χcoarse

11 (c1)2 + (χcoarse
12 + χ21)c1c2 + χcoarse

22 (c2)2
]
, (16.7)

reproduces the Flory Huggins model in eq. (16.6). For this purpose, we neglect self-
interactions, χcoarse

11 = χcoarse
22 = 0, and assume symmetric inter-species interactions,

χcoarse = χcoarse
12 = χcoarse

21 . Then, eq. (16.7) equals the Flory theory exactly if

χFLORY = χcoarse ·NA/(ν1 · ν2) · V0/kBT. (16.8)

Hence, when we remove the physical dimensions from the interaction parameters
according to χ̃FLORY = ν · χFLORY (where ν = ν1 + ν2, γα = να/ν) and χcoarse =
γ1γ2/NAν = γ1γ2a3 (alternatively, the interaction energy can be reparametrised by
V0 → V0/χ̃coarse where χ̃coarse = χcoarse/γ1γ2a

3), this identification yields

χ̃FLORY = V0/kBT. (16.9)

This shows that the macroscopic thermodynamic quantity χFLORY appearing in
the Flory Huggins solution theory can be derived from a microscopic interaction
model via the method of coarse graining. According to this description, the Flory
parameters are expressed via the ratio of the interaction energy, which stems from
microscopic ion correlations, and the thermal energy.

16.3 Mean Steric Effect

In our model free energy density for the continuum bulk transport theory, we took
account for elastic contributions to the energy of the system due to compression of
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16 Coarse Graining

the electrolyte system via a contribution

∫
dV ρφelastic

H = K

2 ·
∫

dV

1−
N∑
αβ

cαν
0
α

2

. (16.10)

Here, K is the macroscopic bulk modulus of the electrolyte. This energy contribution
relates the current configuration of the system, with species concentrations cα and
partial molar volumes να, to some reference state of the system, where the species
concentrations take values c0

α and have partial molar volumes ν0
α. Note that the

Euler equation for the volume applies to each configuration, i.e.
∑N

α=1 c
0
αν

0
α =∑N

α=1 cανα = 1.
Here, the partial molar volumes are thermodynamic quantities, i.e. refer to a

macroscopic concept . Likewise, the mean steric effect described by the energy con-
tribution ρφelastic

H is a macroscopic effect. However, we assume that it is being an
emergent effect, i.e. an effect which results from microscopic effects occurring on
much smaller length scales. According to this understanding, microscopic interac-
tions imply that the partial molar volumes of the species will change during the
evolution of compressible electrolyte systems, such that, in general, ν0

α , να.
Our goal in this section is to study if the method of coarse graining, introduced

in section 16.1 above, can be used to obtain the energy contribution ρφelastic
H , from

modeling microscopic interactions via F̃αβ = χαβ · δ3(|x− y|).
For completeness, we restate the explicit form for the volumetric energy contri-

bution,

ρφelastic
H = K

2 ·

1− 2
N∑

α=1
cαν

0
α +

( N∑
α=1

cαν
0
α

)2 , (16.11)

which consists of energy contributions which do not depend upon ion concentration,
contributions which are linear in the ion concentrations, and contributions which
are quadratic in the ion concentrations. Energy contributions which are trivial in
the concentrations do not contribute to the chemical potentials. Hence, they do not
play much of a role in the discussion here. In contrast, energy contributions which
are linear in the concentrations lead to contributions to the chemical potentials
which do not depend on ion concentrations, i.e. have no contributions to the forces.
These linear energy terms can be interpreted as single species contributions due to
compression, and the corresponding contributions to the chemical potentials have
the role of an off-set, relating to some reference configuration of the system. Thus,
the crucial quantities are the terms quadratic in the species concentrations.

To address the goal of this section, we assume that the interaction parameters
are functions of the molar volumes derived from the microscopic configuration, i.e.
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16.3 Mean Steric Effect

χαβ(ν0
γ). In this sense, we designate the specific state of reference as being consti-

tuted by the assumption that the reference molar volumes are determined by the
ion sizes, i.e. ν0

α(a). Furthermore, we assume that the amount of energy which is
necessary to compress the system from a reference configuration c0

α to the actual
configuration cα depends only on the differentials ∆α(x) = cα(x)− c0

α(x), viz.

F el[cα]=Vel

2 (NA)2
"

dx3dy3
N∑

α,β

F̃αβ(|x−y|)∆α(x)∆β(y), (16.12)

Here, Vel is the interaction energy which accounts for the microscopic compression
of the electrolyte. We will see below, that this quantity determines the macroscopic
bulk modulus when we apply the method of coarse graining.

The most simple approach is to define (note that the interaction parameters have
dimension [χαβ] = m3)

χαβ = ν0
αν

0
β/ν

0NA = γ0αγ0β · ν0/NA, (16.13)

where ν0 =
∑N

α=1 ν
0
α is the total molar volume with respect to the reference config-

uration, and γ0α = ν0
α/ν

0 (see section 9.2). Altogether, we find (making use of the
Euler equation for the volumes in both configurations)

F el[cα] = Vel

2
NA
ν0

∫
dV

(
1−

N∑
α=1

cαν
0
α

)2

, (16.14)

which equals our bulk continuum Ansatz in eq. (16.10) subject to the identification
of the bulk modulus Kcoarse = VelNA/ν

0.
When we relate this to our description of pure binary ILs discussed in part III,

where ν0 = a3/NA, then, the bulk modulus is given by Kcoarse = Vel/a3, and
the (only) interaction parameter is χ± = γ+(1 − γ+)a3 i.e. both are completely
determined by microscopic parameters.

Next, we shall discuss the limit of an incompressible electrolyte for eq. (16.14),
where the bulk modulus Kcoarse = VelNA/ν

0 diverges, i.e. Vel → ∞. A sufficient
condition for that the quantity F el remains finite in this limit is that the molar
volumes of the reference configuration (ν0

α) equal the molar volumes of the actual
configuration (να), i.e. ν0

α → να. Since this argument applies to any state of
the system, this sufficient condition is equivalent to the condition of constant, i.e.
pressure independent, partial molar volumes.
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16 Coarse Graining

Note that the Ansatz above is equivalent to a threefold approach

F el[cα]=(NA)2Vel/2 · x
∫

dV
∑
α,β

χαβ[cαcβ − 2c0
αcβ + c0

αc
0
β]. (16.15)

The second term is a linear expansion, whereas the third term is just a constant
offset for the energy. For completeness, we discuss such an approach in more detail
below.

Quadratic Form Approach

The goal of this section is to reproduce our macroscopic bulk description for the
elastic energy

ρφelastic
H = K

2

[
1− 2

(
c1ν

0
1 + c2ν

0
2 − c1c2ν

0
1ν

0
2

)
+
(
c1ν

0
1

)2
+
(
c2ν

0
2

)2
]
. (16.16)

from a microscopic approach using the method of coarse graining introduced in
section 16.1. This discussion is complementary to the approach discussed above (see
section 16.3), where we already presented one approach based on the assumption
that the energy of compression depends only on the differential of the concentrations
before and after the compression in section 16.3. However, here we want to discuss
two slightly different approaches based on an expansion of the energy of compression
in powers of the concentrations cα, and in powers of the concentration differentials
∆α = cα − c0

α.
We first discuss a power expansion of the free energy with respect to the species

concentrations, viz.

F el=(NA)2
∫

dV

 Vel
(0)

2NAν0 + Vel
(1)
∑

α

ζαcα +
Vel

(2)
2
∑
α,β

χαβcαcβ

 (16.17)

Here, the parameters have dimension [ζα]=mol and [χαβ]=m3. One model is to
define

ζα = −ν0
α/ν

0NA, and χαβ = ζαζβν0NA, (16.18)
such that

F el = NA
2ν0

∫
dV

Vel
(0) − 2Vel

(1)

N∑
α=1

cαν
0
α + Vel

(2)

( N∑
α=1

cαν
0
α

)2 . (16.19)

Hence, when we assume that all energy modes are the same, i.e. Vel
(0) = Vel

(1) =
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16.3 Mean Steric Effect

Vel
(2) ≡ Vel, we get

F el=NA
ν0

Vel

2

∫
dV

(
1−

∑
α

cαν
0
α

)2

. (16.20)

This suggests that we define the macroscopic bulk modulus via Kcoarse = NAV
el/ν0.

Hence, a sufficient condition for F el to remain finite in the incompressible limit
Vel →∞ is that the partial molar volumes are constant and ν0

α → να.
Second, we expand the energy in powers of the concentration differentials ∆α =

cα − c0
α.

F el=(NA)2
∫

dV

 Vel
(0)

2NAν0 + Vel
(1)
∑

α

ζα∆α +
Vel

(2)
2
∑
α,β

χαβ∆α∆β

 (16.21)

We use the same model for the expansion coefficients ζα and χαβ as above, see
eq. (16.18), which yields

F el = NA
2ν0

∫
dV

Vel
(0) + 2Vel

(1)

(
1−

N∑
α=1

cαν
0
α

)
+ Vel

(2)

(
1−

N∑
α=1

cαν
0
α

)2 (16.22)

Thus, we obtain a perturbation expansion of the bulk modulus via

Kcoarse = Kcoarse
(0) + Kcoarse

(1) + Kcoarse
(2) (16.23)

= Vel
(0) ·

NA
ν0 + Vel

(1) ·
NA
ν0 + Vel

(2) ·
NA
ν0 (16.24)

=
Vel

(0)
a3 +

Vel
(1)
a3 +

Vel
(2)
a3 . (16.25)

Thus, in the incompressible limit where the non-trivial bulk moduli diverge, i.e.
Vel

(1) → ∞ and Vel
(2) → ∞, a sufficient condition for that F el remains finite is that

the partial molar volumes are constant and that ν0
α → να.
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Conclusion and Outlook
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In this final chapter, we give an outlook and discuss possible applications and ex-
tensions of our multi-scale framework. Furthermore, we discuss how our framework
can be modified to account for additional bulk effects, and for additional microscopic
effects.

By construction, our framework can easily be customized to incorporate additional
effects into our theory, both in the bulk formulation, and in the generalized functional
formulation. To see this, we restate here our model for the free energy density of
the bulk, see eq. (5.153),

ρφbulk
H =−χε0/2 ·E2+K/2 ·(1−

N∑
α=1

ν0
αcα)2+RT

N∑
α=1

cα· ln(cα/c )+ρφint
H . (16.26)

which contains the template contribution ρφint
H . This quantity can be used to cus-

tomize our standard electrolyte model to specific applications. Via the constitutive
equations, this energy term yields contributions both to the chemical potential (and
to the stress tensor), where we account for such interactions via the activity coef-
ficients RT ln(f αc) = ∂(ρφint

H )/∂cα appearing in the non-standard thermodynamic
factor TDF αγ =

∑N
β=1(δβ

α − ναcβ) · [δγ
β + ∂ ln(f βc0)/∂ ln(cγ/c0 )], viz.

∇µα = RT
N∑

γ=1
TDF αγ(∇cγ)/cγ + ναϱFE + ∇([γ + η]∇v) + ∇2(ηv). (16.27)

Likewise, non-local interactions can be added to our framework via a functional
contribution F int[Υ ], as is described in chapter 8,

F [Υ ] = F int[Υ ] + F b(Υ ) = F int[Υ ] +
∫

dV ρφbulk
H . (16.28)

First, we discuss interesting applications / modifcations of our bulk electrolyte
model.

Solvation effects can play an important role both for bulk transport effects, e.g.
by altering the transport parameters, and in the EDL, e.g. altering the screening
profile. These effects influence the number of microscopic realizations of a given
macrostate. [271] Therefore, they yield an additional entropic contribution to the
free energy. However, because we derive the entropy of mixing from the statistics,
this implies that our naive approach based on an ideal gas must be modified when
solvation is incorporated.

Our description for liquid electrolytes can be modified to account for visco-elastic
materials, e.g. polymer based electrolyte mixtures. [141] In section 5.2.3 we intro-
duced the unimodular deformation tensor as material variable, to account for such
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elastic effects. However, we did not include this contribution in our free energy
model. There exist different energy models for such a contribution, e.g. the Odgen
model. [402]

High temperature applications of molten salts and ILs, e.g. molten salt reac-
tors, [403] solar power applications, [404] or the electrolytic production of metals, al-
loys or semiconductors [405] constitute another promising area of research for the
application of our transport theory.

Finally, we discuss extensions of our framework by microscopic effects (see also
our comment regarding canonical interaction models in the form of “twelve-six-
potentials” of Lennard -Jones type in see chapter 11).

As shown above, see eq. (16.28), the generality of our framework offers the pos-
sibility to incorporate a wide range of non-local effects. In this work, we evaluated
our description for the case of hardcore particles. Hence, our discuccion here focuses
on microscopic effects which supplement our model for hardcore particles.

In the case of ILs near electrified interfaces, microscopic properties like ion asym-
metry, ion geometry, polarization, and charge delocalization have a significant influ-
ence on the formation of the equilibrium structures. [364,406–409] However, since these
properties result from the complex three dimensional configuration of the ions, a
one dimensional approach is challenging, and needs simplifying assumptions on the
symmetry of the system.

Apparently, our repulsive interaction model for hardcore particles scales with the
extension of the ions. Here, we neglected self-interactions between the ions, which
can be a bad approximation for neutral systems, and assumed symmetric ions. These
restrictive assumptions can be easily relaxed to obtain a more refined description.
Thereby, more microscopic details become accessible by our approach. However,
such repulsive hardcore potentials do not describe higher order electrostatic effects
which have typically a longer ranged attractive support. Such interactions play an
important role in the force fields used in atomistic simulations, where they account
for van-der-Waals effects, or for larger ions of complex geometry, i.e., long alkyl
chains. [353,354,385]

An alternative strategy to include non-local effects into our description is based
on modified models for the linear dielectric relation between the electric field and
the dielectric displacement. The introduction of non-local susceptibilities leads to
a spatially varying dielectric function εR(x) appearing in Eel (see eq. (9.34)) and a
direct coupling of the chemical potentials with the ion polarization.

However, such modifications will have an impact on our analytic analysis. Since
both the gradient description and the analytical description depend strongly on these
microscopic properties, it is an open question how such modifications influence the
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phase space of the screening profiles. One possible consequence is that the three
energy scales which characterize the phase boundaries might transition from being
scalars to being spatially varying field quantities. Also, the phase space, and the
number of phase boundaries, might get more complex. This could result in the
formation of higher-dimensional phase spaces with non-trivial boundaries, or "wash
out" the phase boundaries as the energy scales get more diffuse.

We emphasis that the emergence of a three fold phase space in our analytical
description is a consequence of the two perturbation modes Γ̃ 0

+− and Γ̃ 2
+−, i.e. a

consequence on the fact that we restricted our gradient approximation to the sec-
ond order. However, it remains an open question how additional modes in this
perturbation analysis influence the phase space of screening profiles.

Furthermore, our transport theory provides a dynamical description of electrolytes
near electrified interfaces. Thus, it offers the possibility to study transport processes
occurring in non-neutral electrochemical systems taking account for the formation
of double layers, and chemical reactions. This includes, e.g. the influence of EDL-
charging on the electrolyte performance, or the influence of the EDL structure on
the electrode transfer kinetics.

However, real world electrochemical devices exhibit complex properties. These
must be included in the modelling approach. For example, we assumed an ideally flat
surface for the electrodes. This can be a bad approximation for many electrochemical
systems due to the roughness of the interface, [410] which leads to strong entropic
contributions. However, as it was shown in Ref. 411 such an influence on the EDL
structure can also be described via the energy functional approach. We hypothesis
that in our theory, such an entropical non-local energy contribution would alter the
thermal energy scale Eth, see eq. (9.33). Since this energy scale is usually attributed
to the disordering effect of entropy, the formation of crystalline phases might become
suppressed at rougher surfaces, similar to increasing the temperature.
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A Numerical Methods

In this chapter we discus numerical aspects which are relevant for performing com-
puter simulations based on the transport theory. First, in appendix A.1 we briefly
discuss the typcial structure of the transport equations. Next, in appendix A.2
we introduce our discretization scheme. In appendix A.3 we account for bound-
ary conditions. Finally, in appendix A.4, we discuss the case of electroneutral cell
simulations on macroscopic length scales, and, in appendix A.5, we focus on EDL
simulations of charged electrolytes.

A.1 Numerical Implementation

In this work we use the method of finite elements and solve the transport equations
numerically using matlab.

The differential equations appearing in our transport theory have a typical struc-
ture. For a material variable ξ ∈ Υ = {Φ, ϱF, c3, . . . , cN}, and a function of the
material law A(Υ ) (see eqs. (5.244) and (5.245)),

∂tξ = ∇ (v · ξ) + ∇ [A(Υ ) ·∇ξ] . (A.1)

The quantities A(Υ )·∇ξ are flux terms, e.g. J F or Nα (see eqs. (5.247) and (5.248)).
The dynamical transport equations eq. (A.1) are supplemented by an algebraic equa-
tion for v, or the Poisson equation (see eqs. (5.243) and (5.246))

∇v ∝ A(Υ ) ·∇ξ, and 0 = ϱF/ε0εR + ∇ [1 ·∇ξ ] (A.2)

Because in our gradient description of the electrochemical double layer (see part III),
higher order gradients of even type of the species concentrations appear, it suffices
for the implementation of the spatial derivatives to focus on divergence operations
of the form ∇(ξ · v), and on second order derivatives of the form ∇[A(∇ξ)].

Altogether, the system of equations appearing in our transport theory takes the
form of differential algebraic equations (DAEs),

M(t, ξ) · ∂tξ = f(t, ξ). (A.3)
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Here, M denotes the mass matrix, which is usually diagonal. The algebraic equations
(i.e. the convection equation and the Poisson equation) lead to a singular mass
matrix with the corresponding diagonal entries being zero, whereas the diagonal
entries corresponding to the dynamical transport equations are one,

M = diag(1, . . . , 1, 0; . . . , 0). (A.4)

A.2 Numerical Differentiation

In this section, we define our numerical grid, which we use in our implementation
of the transport equations. For the spatial length L of there exists a continuous set
of values x ∈ I = [0; L], where x = 0 is the "left wall" of the grid, and x = L is the
"right wall" of the grid. We discretize the interval L for N grid points distributed
homogeneously over L and define the constant grid separation length ∆x = L/N.
The first grid point is at x = ∆x/2, followed by further N grid points mutually
separated by the grid distance ∆x. The last grid point (N-th grid point) is located
at a distance ∆x/2 left of the right wall, x = L−∆x/2. Next, we introduce a set of
N non-dimensional positions x̃i assigned to the individual N grid points via

x̃1=0.5 x̃3=2.5x̃2=1.5 x̃N-2=N-2.5 x̃N=N-0.5x̃N-1=N-1.5

Left Wall Right Wall

Δx/2 Δx Δx Δx/2Δx Δx

x=0 x=L

Figure A.1: Scheme of our numerical grid.

x̃1 = 1/2 , and x̃i = x̃1 + (i− 1) , for i ∈ {1; N}. (A.5)

The space of grid points is X̃N = {1/2; 3/2; . . . ; N− 1/2} (i.e.x̃i ∈ X̃N). See fig. A.1
for an illustration of our set up. Thus, the positions of the N grid points in the
physical space are

x(x̃i) = x̃i ·∆x = ∆x/2 + (i− 1) ·∆x. (A.6)

We assign to each continuous physical variable a value at each grid point x̃i.
Because the grid is similar to a metric on the abstract space of variables, we use the
discretization of the grid to perform operations between neighbouring grid points,
e.g. subtract or add values of the variables at neighbouring grid points. To any
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x̃1=0.5 x̃3=2.5x̃2=1.5

Left Wall

Δx/2 Δx Δx

ξ1̃ ξ2̃ ξ3̃

Figure A.2: Scheme of the discretized system variables on the numerical grid.

variable ξ, we assign N values ξ̃i = ξ(xi) at the different grid points x̃1, . . . , x̃N.
Note that the array ξ̃ = (ξ̃i) ∈ X̃N is an element of the space X̃N (see fig. A.2 for
an illustration). In order to do calculus on the grid, i.e. calculate differences and
derivatives, we introduce N + 1 grid walls ỹj = j − 1 for j ∈ {1; N + 1}. Hence, the
grid walls evaluated in the physical space have coordinates y1 = 0, yj = (j − 1) ·∆x
for 1 < j ≤ N and yN+1 = L. For all but the last grid wall, ỹi|i≤N = x̃i−1/2. Similar
to the set of grid points, we define the space of grid walls by ỸN+1 = {0; 1; . . . ; N}.
See fig. A.3 for an illustration.

x̃1=0.5 x̃3=2.5x̃2=1.5

ỹ1=0 ỹ3=2ỹ2=1

Left Wall

Figure A.3: Illustration of the compartment boundaries, i.e. the grid walls, between
neighbouring grid points.

To calculate numerical derivatives with respect to the grid, we introduce a map-
ping from the space of grid points to the space of grid walls (these derivatives
correspond to forces ∇ξ) and define the first-order finite difference approximation

grad : X̃N → ỸN, Force = grad ξ̃ =
[
0, (diff ξ̃)i/∆x , 0

]
(A.7)

where the differential is defined by (diff ξ̃)i = ξ̃i − ξ̃i−1 for 2 ≤ i ≤ N. Here, we
have set the force-values at the left and right wall to zero. Below, we show that
this assumption (if not modified by specific boundary conditions) corresponds to
the assumption of no-fluxes through the boundaries. See fig. A.4 for an illustration.

We use a simple routine to solve differential equations: the computer solves for
values at the grid points defined as above; we use these values, and compare how an
object changes from grid point to grid point and compute the spatial derivatives of
the variables at the grid walls.

Next, we construct an operator divAgrad for computing second order derivatives
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ξ1 ξ2 ξ3 ξN-2 ξN-1 ξN

x̃1=0.5 x̃3=2.5x̃2=1.5 x̃N-2=N-2.5 x̃N=N-0.5x̃N-1=N-1.5

Δx/2 Δx Δx

grad(ξ)1 grad(ξ)2 grad(ξ)3 grad(ξ)N-1 grad(ξ)N+1grad(ξ)N

Figure A.4: Scheme of the discretized system variables on the numerical grid.

via ∇(A[∇ξ̃]), i.e. fluxes. We follow the same strategy for grad, and first evalu-
ate the product of the variable Ã and the force grad ξ̃, and then use the forward
difference approximation to evaluate the spatial variation between two neighbour-
ing grid walls for the intermediate grid point. However, note that the grid variable
corresponding to A is defined at the grid pints, i.e. Ã ∈ X̃N, whereas the numerical
derivative of ξ̃ is defined at the grid walls, i.e. grad ξ̃ ∈ ỸN+1. We solve this and
calculate averaged values for Ãi at the grid walls via the harmonic mean

Wall Ã = [0; 2 ·
(
1/Ãi + 1/Ãi−1

)−1
; 0], (A.8)

where 2 ≤ i ≤ N. In eq. (A.8) we assumed that the topological spaces X̃N and ỸN+1

of the grid points and grid walls have additional structure similar to normed vector
spaces, i.e. an inner product. We define inner products between two elements of X̃N

and between two elements of ỸN+1 by pointwise multiplication, and obtain the flux
map FLUX ỸN+1 × ỸN+1 → ỸN+1 via (where i ∈ {2; . . . ,N})

FLUX[Ã, ξ̃] = Wall Ã · grad ξ̃ = [0; (Wall Ã · grad ξ̃)i; 0] (A.9)

Finally, we define “divAgrad”-operator which calculates the numerical derivative
of the flux quantity FLUX = Wall Ã ·grad ξ̃ at the grid points, i.e. the map from the
grid walls to the grid points, divAgrad : ỸN → X̃N, such that (where 2 ≤ i ≤ N)

divAgrad FLUX[ξ̃, Ã] = diff FLUX[ξ̃, Ã]/∆x = diff[Wall Ã · grad ξ̃]./∆x =
= [FLUX2/∆x ; (diff FLUX)i/∆x ;−FLUXN/∆x ; ]. (A.10)

A.3 Boundary Conditions

In this section, we correct the operations grad, Wall, FLUX and divAgrad, introduced
above, by setting boundary conditions (BCs) at the left wall and at the right wall.

Here, Σleft
ξ and Σright

ξ constitute BCs for a given variable ξ at the and right wall, i.e.
at x = 0 and at x = L (whereas ξ is defined at the grid points). Similar BCs exist for
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ξ1 ξ2 ξ3 ξN-2 ξN-1 ξN

x̃1=0.5 x̃3=2.5x̃2=1.5 x̃N-2=N-2.5 x̃N=N-0.5x̃N-1=N-1.5

Δx/2 Δx Δx

ξΣleft ξΣright

Figure A.5: Illustration of the implementation of boundary conditions at the left
and right wall.

the functions A appearing as prefactors in the transport equations, Σleft
A , and Σright

A

and for the fluxes, Σleft
FLUX and Σright

FLUX. However, in this case, the BCs and the first and
last value of the flux are located at the same position. Figure A.5 illustrates the
variables at the grid points and the corresponding boundary conditions. We show
that these BCs lead to corrections in the quantities grad, Wall, FLUX and divAgrad.

Our definition for the first order numerical derivative above, eq. (A.7), is based
on subtracting values at neighbouring grid points, which yields a differential defined
at the corresponding compartment wall. Because, this procedure does not apply to
the first and last value of the derivative, located at the left and right wall, we define
the differentials at the left and right wall separately,(

grad ξ̃
)

1
= 2

(
ξ̃1 − Σleft

ξ

)
/∆x , and

(
grad ξ̃

)
N+1

= 2(Σright
ξ − ξ̃N)/∆x . (A.11)

The approximations for the left and right walls lead to corrections,
gradBC ξ̃ =

[(
ξ̃1 − Σleft

ξ

)
/∆x/2 ; diff ξ̃/∆x ;

(
Σright

ξ − ξ̃N
)
/∆x/2

]
. (A.12)

Next, we implement BCs for functions A fluxes at the left and right wall. This
leads to corrections in the corresponding averaged quantity located at the grid walls,

WallBC Ã =
[
Σleft
A ; 2 ·

(
1/Ãi + 1/Ãi−1

)−1
; Σright

A

]
. (A.13)

Furthermore, the BCs for ξ and A lead to corrections in the fluxes. According to
the definition FLUX[ξ̃, Ã] = Wall Ã · grad ξ̃, see eq. (A.9), this yields

FLUXBC[Ã, ξ̃]=

Σleft
A ·

ξ̃1−Σleft
ξ

∆x/2 ;
(
Wall Ã· grad ξ̃

)
i; Σright

A ·
Σright

ξ −ξ̃N

∆x/2

 . (A.14)

where i ∈ {2; . . . ,N}. Finally, these corrections influence our definition for the
operation divAgrad, see eq. (A.10). Putting all together, we find
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divAgradBC FLUX =
[

FLUX2
∆x −

Σleft
A (ξ̃1 − Σleft

ξ )
(∆x)2/2 ; (diff FLUX)i

∆x ;

Σright
A (Σright

ξ − ξ̃N)
(∆x)2/2 − FLUXN

∆x

]
. (A.15)

Alternatively, in some systems there exist direct BCs for the fluxes Σleft
FLUX and

Σright
FLUX. In this case, the fluxes have the form

FLUXBC[Ã, ξ̃] =
[
Σleft

FLUX;
(
Wall Ã · grad ξ̃

)
i; Σright

FLUX

]
. (A.16)

where i∈{2; . . . ,N}. The second order derivatives containing flux BCs are

divAgradBC FLUX=1/∆x ·[FLUX2 − Σleft
FLUX; diff FLUX)i; Σleft

FLUX − FLUXN]. (A.17)

For completeness, we restate the corrections grad, Wall, FLUX and divAgrad,(
gradBC ξ̃

)
1

=
(
grad ξ̃

)
1
− 2Σleft

ξ − ξ̃1/∆x , (A.18)(
gradBC ξ̃

)
N+1

=
(
grad ξ̃

)
N+1
− 2ξ̃N − Σright

ξ /∆x , (A.19)

(divAgradBC FLUX)1 = (divAgrad FLUX)1 − 2Σleft
A (ξ̃1 − Σleft

ξ )/(∆x)2 , (A.20)

(divAgradBC FLUX)N = (divAgrad FLUX)N − 2Σleft
A (ξ̃N − Σright

ξ )/(∆x)2 . (A.21)

A.4 Numerical Aspects of Cell Simulations

Because the electrolyte is in electroneutral state, the system of equations for bulk
transport consists of dynamical transport equations which have the form ∂ξ = ∇(A·
∇ξ), supplemented by the electroneutrality condition 0 = ∇(

∑
A ∇ξA) and by

the convection equation ∇v ∝ ∇(
∑

A ∇ξA). For the convection, there arises the
problem that the left side of the convection equation is evaluated at the grid walls,
whereas the right side is evaluated at the grid points. We tackle this issue and
homogenize the quantity ∇v from the grid walls to the grid points. However, the
solution to this differential equation is fixed only up to an offset. To compensate
for the numerical deficiencies, we set no-flux Bcs at the left wall, and allow for a
convective flux at the right wall. Another approach is to introduce a potential ζ
such that ∇v = ∇ ·∇ζ. This approach has the disadvantage that the BCs for the
convection potential must be chosen carefully. We use flux BCs for the quantities J F
and Nα which are given by chemical reactions occurring at the interface, and couple
the liquid phase of the electrolyte to the solid phase of the active particles via a
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Butler-Volmer approach. We initiate cell operation by applying an external current
via the BCs at the left and right wall (galvanostatic discharging / charging), which
pushes the system out of it’s equilibrium state. To improve the numerical stability,
we ramp the current from zero up to it’s terminal value (where the ramping time is
chosen to be few per-cent of the discharge time).

A.5 Numerical Aspects of EDL Simulations

The dynamical transport equations for the EDL description of binary ILs consist of
the Poisson equation and one transport equation for the fluxes (see chapter 9).

Because the grid shall resolve the particles of size a (typically, a = 0.7 nm), the
step size of the grid must be chosen very small. However, the system length L should
be larger than the typical extension of the EDL, i.e. a few nano-meters. Thus, the
number of grid pints is a trade-off between L and the ion size because if L is very
long (e.g. O(L) = 60 nm), then the numerical costs are very large due to the small
size of the ions.

There exist two differing length scales in the EDL description; a contribution from
the bulk description of the EDL leads to screening profiles which are usually a few
Ångstrom thick, whereas taking account for hardcore particles leads to EDL struc-
tures which can easily extend over some ten nanometers. This discrepancy implies
that the system of differential equations exhibits a large degree of stiffness. Partly,
it helps implementing the non-dimensionalized system of equations (see section 9.2).

Here, we consider the case of binary ILs near electrified interfaces, either in a half
cell set-up, or in a full cell cell set-up. In both set-ups, we assign BCs for the electric
potential at the left and at the right wall. At the left wall, we apply the external
interface potential ∆ϕ. Since electric potentials are continuous across interfaces, we
set Σleft

Φ = ∆ϕ. In the case of a half-cell set-up, we erect electroneutral BCs at the
right wall by setting Σright

Φ |half cell = 0. In contrast, in a full cell set-up, we apply
Σright

Φ |full cell = −∆ϕ. To improve the numerical stability, we ramp the BCs at the
left and right wall from zero up to it’s terminal value. In contrast, we assign no-flux
BCs for the variable ϱF at the left and right wall, Σleft

FLUX[ϱF]=Σright
FLUX[ϱF]=0.
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B Covariance, Invariance and Symmetry

As far as I see, all a priori
statements in physics have their
origin in symmetry.

Hermann Weyl

B.1 Introduction

Symmetry principles play a fundamental role in all physical theories. [412].
Usually, symmetry is imposed in axiomatic form by demanding that physical laws

are invariant under coordinate transformations. [413] In this sense, symmetry acts as
constraint on the structure of the equations of motions. For this reason, physical
theories are oftenly expressed using tensor fields, which are mathematical objects
defined entirely by their transformation behaviour. [414,415] However, “invariance”
can have two distinct meanings, which are both related to each other, but refer
to different types of symmetry. In a form-invariant (“covariant”) description, the
relation between values of observables measured by different observers remains the
same under coordinate transformations, although the values themselves usually are
different. In this work, we are mainly concerned with the principle of general co-
variance, which demands that physical laws must be form-invariant under arbitrary
coordinate transformations. [416] In contrast, in an invariant description, not only
the relation among observables remains the same but also the precise values. Thus,
“invariance” is a more restrictive type of symmetry. Both concepts can be probed
under coordinate transformations with respect to spacetime symmetries.

In many cases, general covariance is relaxed to covariance under specific types of
transformations, comprised in specific symmetry-groups. Representations of such
covariance groups designate admissible frames of reference, which are related via
coordinate transformations comprised in the covariance group.

The main goal of this chapter is to derive the common covariance group of electro-
magnetic theory and mechanics, which is mandatory for the unification of the two
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theories. However, this is a non-trivial task because the symmetries of electromag-
netic theory emerge naturally in the fourdimensional spacetime structure of special
relativity. In contrast, we formulate our transport theory in the three dimensional
Euclidean description of classical mechanics. As consequence, we must stick to a lim-
iting case (“classical limit”), which allows the identification of a three-dimensional
covariance group with respect to four-dimensional coordinate transformations.

We structure this chapter as follows. First, in appendix B.2 we introduce the nec-
essary mathematical tools and give a precise definition for symmetry transformations
via the tensor-formalism. Next, in appendix B.3 we apply this formalism and state
the covariant formulation of electrodynamics in fourdimensional spacetime, which
emerges naturally from special relativity. We show that the resulting covariance-
group is comprised by Lorentz transformations. In appendix B.4 we highlight the
power of this formalism and show that the set of internal symmetries completely de-
termines the electromagnetic energy-momentum tensor. Next, in appendix B.5, we
discuss covariance of classical mechanics with respect to Euclidean-/ and Galilean
transformations in the context of mechanics. In appendix B.6, we focus on the role of
symmetry in the framework of rational thermodynamics. Finally, in appendix B.7,
we obtain the common covariance group for the unification of mechanics and elec-
trodynamics.

B.2 Tensor Formalism

In this section, we introduce the mathematical tools which are necessary to discuss
symmetries.

Differential calculus is the basic tool for the dynamical description of a physical
system. However, this presupposes the existence of a differential structure ("smooth
manifold"), which represents the geometric set up of the system. For this purpose, we
assign local coordinates to overlapsing regions F on these structures via multilinear
maps, i.e. rank(k, l)-tensors,

T : V∗ × . . .× V∗︸               ︷︷               ︸
k

×V× . . .× V︸            ︷︷            ︸
l

→ R. (B.1)

Smooth transitions, i.e. coordinate transformations, between overlapsing regions F
ensure a consistent description of the complete system out of the local representa-
tions. The complete description is covariant, if these transitions leave the equations
of motion form-invariant. In eq. (B.1), V is the local n-dimensional tangent vector
space, which is dual to V∗. The vector spaces V, and V∗, are spanned by local basis
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vectors {êB}, and {êA}. Hence, the local tensor representation is

T =
dim(V)∑

B1,...,Al

T
B1...Bk

A1...Al
êB1 ⊗ . . .⊗ êBk

⊗ êA1 . . .⊗ êAl . (B.2)

Different local expansions in overlapsing frames F and F′ are related via the tensor-
transformation law,

T
′B1...Bk

A1...Al
=
∣∣∣∣det

(
∂x

∂x′

)∣∣∣∣p · dim(V)∑
D1,...,Dk,

C1,...,Cl=1

∂x′B1

∂xD1
·. . .·∂x

′Bk

∂xDk
· ∂x

C1

∂x′A1
·. . .·

· ∂x
Cl

∂x′Al
·TD1...Dk

C1...Cl
, (B.3)

where x and x′ are coordinates of volume-elements in F and F′. T is classified
according to the power p of the Jacobian determinant det(∂x/∂x′), and is called
tensor-density of weight p. In particular, tensor-densities of weight p = 1 (p = 0)
are called axial tensors (absolute tensors).

The tensor transformation law eq. (B.3) allows to formulate a precise definition
for covariance. An equation of motion is covariant (form-invariant) under coordinate
transformations, if all terms appearing on both sides of the equation have the same
tensor-degree and tensor-weight. The set of all such transformations forms the
covariance group. An equation of motion is generally covariant, if it is covariant
under any coordinate transformation. Tensor-degree and tensor-weight can both be
probed using eq. (B.3). If a generally covariant equation is valid in one frame, then
it is valid in any frame.

Furthermore, we define symmetry (invariance of values) under coordinate transfor-
mation x→ x′ via the constraint ∂x′j/∂xi = δj

i . The set of all such transformations
determines the symmetry group. In representation theory, transformation matri-
ces constitute the linearized symmetry groups. [417] By construction, any symmetry
group for an equation of motion is also a covariance group, whereas the opposite is
not true.

B.3 Covariant Formulation of Electrodynamics

In this section, we discuss the symmetries of the electromagnetic theory in four
dimensions.

For completeness, we briefly review the “classical” formulation of electromag-
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netism in three dimensions, comprised in the Maxwell equations

∇B = 0, ∂tB + ∇ ∧E = 0, (B.4)
∇DT = ϱT, ∂tDT −∇ ∧HT = −jT. (B.5)

Here, the index “T” refers to the total of all charges present in the system. In
section 5.2 we present a constitutive model, in which we split ϱT and jT into so-
called “free” and “polarized/magnetized” parts.

In our framework, we interpret the electromagnetic fields E,B appearing in the
homogeneous Maxwell equations, eq. (B.4), and the charge-current densities ϱT, jT,
appearing in the inhomogeneous Maxwell equations, eq. (B.5), as independent ("pi-
mary") variables. In contrast, the potentials DT, and HT are derived quantities,
which are determined by ϱT, jT. The charge-current densities ϱT, jT satisfy charge
conservation,

∂tϱT + ∇jT = 0. (B.6)

Of course, the system of electromagnetic eqs. (B.4) and (B.5) is under-determined
and must be supplemented by closure relations. Below, we show that such closure-
relations are deeply connected to the fourdimensional formulation of electromag-
netism.

We describe the Minkowski spacetime (η,R4) by the flat metric tensor field η =
diag(−1, 1, 1, 1) (such that detη = −1), and assign R4 with global four-dimensional
spacetime coordinates xA = (ct, x1, x2, x3) = (ct, xi), where c is the vacuum-speed
of light. We use the convention that capital Latin letters refer to four-vectors, in
contrast to small Latin letters referring to spatial components in R3. According to
eq. (B.3), the metric tensor transforms via

η′AB = ∂x′A/∂xC · ∂x′B/∂xD · ηCD, (B.7)
whereas the metric determinant transforms via

det(η′) =
[
det(∂x′/∂x)

]2 · det(η). (B.8)

The metric structure also determines the four-dimensional derivative operator

div = (∂A) = (1/c · ∂t,∇) (B.9)

associated to the coordinates xA. In this description, charge conservation, eq. (B.6),
becomes div s = 0, where s = (cϱT, jT) is the relativistic four-potential comprising
the charge density and the electric current. Thus, s is conservative, and, therefore,
there exists an antisymmetric matrix f(DT,HT), such that div f = s. [81] In the
same rationale, the four-dimensional generalization of Faraday’s law suggests the ex-
istence of an antisymmetric, closed matrix F (E,B), [81] satisfying dF = 0. [418] (Since
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F obeys the Bianchi-identity, it is locally exact (Poincaré Lemma), i.e. there exists
a four-potential A = (Φ/c ,Ai), such that F = dA. [419] Here, Φ is the Coulomb-
potential, and A is the magnetic vector-potential. [254] In the field-theoretic descrip-
tion of quantum-electrodynamics, A is the U(1) gauge-field of the covariant spin-1
Lagrange-function. [412]) The quantities f and F are differential two-forms, [419] and
have canonical matrix representation [376]

FAB =


0 −E1/c −E2/c −E3/c

E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0

 , (B.10)

and

fAB =


0 cD1

T cD2
T cD3

T
−cD1

T 0 HT;3 −HT;2
−cD2

T −HT;3 0 HT;1
−cD3

T HT;2 −HT;1 0

 . (B.11)

Obviously, Fi0 = Ei/c , Fij = ϵijkB
k, f0i = cDi

T, and f ij = ϵijkHT;k, which can
be solved for HT;m = ϵmijf

ij , by multiplication with ϵmij , and using the identity
ϵmijϵ

ijk = δk
m. Thus, in this description, f(DT,HT) comprises the matter-related

potentials, whereas F (E,B) comprises the electromagnetic fields. [420] In compo-
nents, the four dimensional Maxwell equations div f = s and dF = 0 read

ϵABCD∂BFCD = 0, (B.12)
and

∂Bf
AB = sA, (B.13)

Equation (B.12) reproduces the two homogeneous Maxwell equations 0 = ∇B and
0 = ∂tB + ∇ ∧ E, whereas eq. (B.13) reproduces both inhomogeneous Maxwell
equations, ϱT = ∇DT and jT = −∂tDT + ∇ ∧HT.

From charge invariance follows that F is an absolute tensor, and that f and s are
tensor densities of weight one, [81,82,421]

F ′
CD = ∂xA

∂x′C
∂xB

∂x′DFAB, f
′CD = J · ∂x

′C

∂xA

∂x′D

∂xB
fAB, s′C = J · ∂x

′C

∂xA
sA. (B.14)

where J = |det(∂x/∂x′)|. Because, the tensor-rank and the tensor-weight of these
quantities agree on both sides, the relativistic Maxwell eqs. (B.12) and (B.13) are
covariant under coordinate transformations of type eq. (B.3). [82,415]

However, due to the dangling index “A” on both sides of eqs. (B.12) and (B.13),
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they are not invariant. [422,423] Thus, distinct observers measure different compo-
nents, whereas they agree upon the structure how the components are related to each
other (via eqs. (B.12) and (B.13)). Unfortunately, this peculiarity is often misquoted
in the literature, [82,140,141] where the covariant equations are imprecisely called in-
variant. However, a clear distinction between both concepts becomes mandatory,
when we discuss the unification of mechanics and electromagnetics via the Maxwell-
Lorentz aether relations.

Bcause eqs. (B.12) and (B.13) are underdetermined, they are closed by covariant
constitutive equations f(F ) ("Maxwell-Lorentz aether relations"), [82,418,424] which
couple F and f , i.e. the electromagnetic fields E,B and the electromagnetic poten-
tials DT,HT. These couplings f(F ) connect mechanics with electromagnetism and
are mandatory for their unification.

Because the field strengths f and F transform differently (see eq. (B.14)), the
constitutive equations DT(E,B) and HT(DT,B), which follow from the covariant
coupling f(F ), are not covariant, i.e. frame-dependent. [81] Here, we restrict to a
linear coupling f = χ · F , where the rank-four tensor χ is independent of f and
F . Due to antisymmetry of f and F , this coupling becomes fAB = χACBDFCD =
(χAjB0 − χA0Bj)Ej/c + χAjBkϵjklB

l, where

χ0j0k = χ0j00 − χ000j = 0, (B.15)
(χ0jmk + χ0j0k)ϵjkl = (χmjnk + χnjmk)ϵjkl = 0 (B.16)

χmjk0 − χm0kj + χkjm0 − χk0mj = χ0jk0 − χ00kj + χkj00 − χk00j = 0. (B.17)

We close the coupling by assuming that there exists at least one frame Faether in
which the coupling f(F ) is such that E couples only to DT, and HT couples ony to
B, viz.

Di
T = ε0Ei, Bi = µ0HT;i. (B.18)

where c = 1/√ε0µ0 . Note that the two couplings in eq. (B.18) involve tensor-
components of different kind, since the left sides are covariant, whereas the right sides
are not. Equation (B.18) are often referred to as vacuum-relations. [254] However,
here we assume that eq. (B.18) are valid both “inside” and “outside” of matter in
the respective frame. [81,82,141] The differing tensor-structure of f and F suggests
a factorization χACBD = ΓACΓBD via matrices Γ , where eqs. (B.15) to (B.18)
imply that Γ = η

√
κ/µ0 and κ = 1 is a weight-one tensor-density of rank zero (a

scalar). Thus, there is a relation between the metric of Minkowski spacetime, and
the assumption that E couples linearly only to DT, and HT couples linearly only to
B.

Without loss of generality, we choose κ = 1 = 1/
√
−detη , and obtain the gen-

erally covariant, four-dimensional tensor generalization of the linear couplings in
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eq. (B.18),
fAB = ηACηBDFCD/µ0

√
−det(η) . (B.19)

Apparently, the covariance of f , F does not transfer to the components Ei, Di
T, Bi,

HT;i. For example under so-called Euclidean transformations, i.e. threedimensional
time-dependent rotations R(t) and translations Y (t) (see appendix B.5), the fields
E and HT transform non-covariantly,

E′
j = Rji

(
Ei − ϵimnRlm

[
Ṙlkxk + Ẏl

]
Bn

)
, (B.20)

and
H ′

T;j = Rji

(
HT;i − ϵimnRlm

[
Ṙlkxk + Ẏl

]
Dn

T

)
, (B.21)

whereas E,DT,B,HF, ϱF,J F are covariant. [245] Thus, the Maxwell-Lorentz aether
relations eq. (B.18) are not generally covariant. Furthermore, they are not even
covariant with respect to Galilei-transformations (setting Ṙ = 0 in eq. (B.20) still
is not covariant due to the dangling convective terms), i.e.. the covariance group
of classical mechanics. Thus, there is no common Galilei-covariant ground for an
electro-mechanical unification.

Since eq. (B.19) is a tensor equation valid in the designated frame Faether, it is
valid in any other frame. Nevertheless, although the special linear couplings defined
by eq. (B.18) are valid in Faether, they are, in general, not valid in other frames.
That is, when we transform into an alternative frame x′A, the component E′

i will
not neccessarily equal ε0D

′i
T ( see, e.g., Ref. 81, section 13). However, we show that

they are are covariant with respect to the isometry-group of Minkowski-spacetime
(Lorentz transformations), i.e. the covariance-group of eq. (B.18). To see this,
consider the set of transformations xA→x′A under which eq. (B.18) is covariant, i.e.

E′
i = ε0D

′i
T, and B′i = µ0H

′
T;i, (B.22)

whereas,
f ′AB = η′ACη′BDF ′

CD/µ0
√
−η′ . (B.23)

Hence, we demand three-dimensional covariance with respect to four-dimensional co-
ordinate transformations. However, the set of transformations under which eq. (B.23)
preserves eq. (B.22) is given by the transformations which leave η invariant, i.e. the
Lorentz transformations, since then eq. (B.23) becomes f ′AB = 1/µ0 · 1/

√
−η ·

ηACηBDF ′
CD. Thus, there is a somewhat hidden relation between electromagnetism

and the spacetime structure of special relativity, because the isometry-group of
Minkowski spacetime forms the covariance-group of the Maxwell-Lorentz aether re-
lations, and all reference frames in which eq. (B.18) is valid, are related by Lorentz-
transformations . Note that the subtle difference between the notions of covariance
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B.4 Electromagnetic Energy-Momentum Tensor

and invariance was essential to derive this result.
Because the Maxwell-Lorentz aether relations apply to the charge-/ and current-

potentials DT,HT of all kind, in our description, they are a constitutive model for
the designated set of aether-frames. [425]

In the classical limit |v| ≪ c, the four-dimensional Lorentz transformations be-
tween two coordinate systems x′ and x, [82]

x′0 = γx0 − γxivi/c , x′j = R′
ji

([
δik + (γ − 1)vivk/v2

]
xk − γx0vi/c

)
, (B.24)

defined by γ = 1/
√

1− v2/c2 and by time-independent rotation R, reduce to the
Galilei-transformations,

x′0 = x0, x′j = R
j
ix

i − vjt. (B.25)

Therefore, the symmetry group of the Maxwell-Lorentz aether relations reduces to
the covariance-group of mechanics, which constitutes the common covariant struc-
ture for the unification of mechanics and electromagnetic theory (subject to the
Maxwell-Lorentz aether frames).

B.4 Electromagnetic Energy-Momentum Tensor

In this section we use Nother’s Theorem and derive the electromagnetic energy
momentum tensor from the electromagnetic action [412]

S =
∫
Ld4x =

∫
(f · F/4 − s ·A)d4x, (B.26)

where, s is a four-flux , and F (A) = dA is a closed differential form, i.e. an
absolute antisymmetric tensor determined by a four-potential A = (Φ/c ,A) (hence
FAB = ∂[AAB]). Furthermore, we assume that the antisymmetric tensor density f

couples linearly to F via fAB = χABCDFCD. [376]

The Euler-Lagrange equations corresponding to this action follow from the sta-
tionary state, defined by variations δA where δS = 0. The Lagrange-density
L = f · F/4 − s ·A gives rise to Euler-Lagrange equations, [81]

∂L
∂(∂DAC) = fAB

2
∂(∂[AAB])
∂(∂DAC) = fAB

2
[
δD

A δ
C
B − δD

B δ
C
A

]
= −fCD. (B.27)

Because ∂L/∂AC = −sC , the Euler-Lagrange equations reproduce the inhomoge-
nous Maxwell-equations, s = div f , whereas the homogeneous Maxwell-equations,
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B Covariance, Invariance and Symmetry

dF = 0, follow from F = dA (since “d2 ≡ 0”). According to Noether’s Theorem,
the invariance L under fourdimensional translations (time-translation and spatial
translations) gives rise to four conserved currents,

∂AT
AB = 0, (B.28)

comprised in the energy-momentum tensor [418]

TAB = ∂L
∂(∂AAC) · η

BD ∂A
C

∂xD
− ηABL. (B.29)

However, this quantity can be brought into a covariant form by adding an antisym-
metric term, [426] TAB → TAB + ∂cf

CAηBD∂cAD, which yields the electromagnetic
energy momentum tensor ("Minkowski-tensor"),

TAB = −fACηBDFCD − ηABf · F/4 . (B.30)

The components of the energy-momentum tensor comprise important electromag-
netic quantities. For their derivation, note that

f · F = fABFAB = 2BHT − 2EDT, s ·A = ϱFΦ + jFA (B.31)
f0jFj0 = EDT, f0jFji = −c (DT ∧B)i , (B.32)
f ijFj0 = − (E ∧HT/c ) i, f ikFkj = BiHT;j −HTB · δi

j . (B.33)

In particular, the temporal component T 00 = (EDT + BHT)/2 constitutes the
energy-density of the elctromagnetic fields. The mixed tempo-spatial components
T 0i = ϵijkEjBk are the components of the momentum-density carried by the electro-
magnetic fields, whereas the transposed tempo-spatial components T i0 = ϵijkBjEk

are the components of the Poynting-vector, which can be interpreted as the elctro-
magnetic energy-flux. Furthermore, the spatial components of the electromagnetic
energy-momentum tensor determine the electromagnetic stress tensor (“Maxwell-
stress-tensor”), [418]

T ij = Σij = −(E⊗DT −B⊗HT)ij + δij(EDT + BHT)/2 . (B.34)

Altogether, we find

TAB =


(EDT + BHT)/2 (cDT ∧B)1 (cDT ∧B)2 (cDT ∧B)3

(HT ∧E)1/c . . .
(HT ∧E)2/c . . . Σij . . .
(HT ∧E)3/c . . .

 . (B.35)

Note that T is not symmetric, which is at the origin of the (in)famous Abraham-
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Minkowski controvery. [377]

B.5 Euclidean Transformation: Material Frame Indifference

The symmetry axiom of material frame indifference (also material symmetry, [427]

or material objectivity [428]) used in continuum thermodynamics and continuum me-
chanics states that the measurement of an observable, i.e. the state of a system is
independent from the relative motion of any observer, [74] i.e. covariant with respect
to Euclidean transformations.

Definition 1. The Euclidean group E consists of time-dependent, spatially homoge-
neous, orthogonal rotations R(t) (hence RTR = Id, ∇R = 0), and time-dependent,
spatially homogeneous translations Y (t) (hence ∇Y = 0). The set of frames F
which are related by Euclidean transformations are called Euclidean frames. Thus,
for the coordinates x and x′ of two Euclidean frames F and F′,

t′ = t, x′ = R(t)x + Y (t), or, Y ′j = R
j
i(t)x

i + Y j(t). (B.36)

The Euclidean transformations define the covariance-group of our transport the-
ory, and the component-wise Euclidean transformation dx′j/dxi = R

j
i(t) determines

the Euclidean tensor transformation law.

Definition 2. The Euclidean tensor transformation law of rank(k) tensors T is

T′j1...jk = det(R)p · Rj1i1 · . . . · Rjkik · Ti1...ik
. (B.37)

Quantities which transform covariant under Euclidean transformations, i.e. accord-
ing to eq. (B.37), are called Euclidean tensors, or objective tensors. For p=1, T is an
axial Euclidean tensor, while p=0 defines an absolute Euclidean / objective tensor.
The following Lemma follows from definition 2.

Lemma 7. Objective absolute tensors Ψ,Z,M of rank 0, 1, 2 transform via

Ψ ′ = Ψ, Z′ = R ·Z, M = R ·M ·RT . (B.38)

Objectivity constitutes covariance with respect to the covariance-group of Eu-
clidean transformations. If the orthogonal transformation is constant and the trans-
lation is linear in time, then the Euclidean group equals the Galilei-group G.

Next, we discuss objectivity of some physical quantities which commonly appear
in the transport equations.
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B Covariance, Invariance and Symmetry

Lemma 8. Velocity is not a Euclidean vector, and transforms under Euclidean
transformations according to v′ = Ṙx + Rv + Ẏ.

Proof. The position vector is objective by construction, x′ = Rx+Y. Hence, we find
v′ = ẋ′ = Ṙx + Rv + Ẏ. Apparently, the first and last term violate objectivity. □

Lemma 9. The Nabla operator is a Euclidean tensor, and transforms under Eu-
clidean transformations according to ∇′ = R∇.

Proof. Let y=Rx+Y be a Euclidean transformation, and, for simplicity, let us de-
note y=x′. Hence, we calculate the derivative-operator ∇′=(∂/∂y1, ∂/∂y2, ∂/∂y3)T .
However, since the partial derivatives transform according to ∂/∂yj = ∂xi/∂yj ·
∂/∂xi, [415] it remains to calculate the “inverse” transformation xj(yi). The rotation
is orthogonal (RTR= Id), such that we can easily calculate this by left-multiplicating
y with RT . Hence, x=RT y−RTY, such that ∂xi/∂yj=(RT )ij , where we used ∇R=0
and ∇Y =0. Therefore, ∂′

j=Rji∂i, i.e. ∇ is objective. □

This Lemma has direct consequences which follow from the proof above.

Lemma 10. If T is a Euclidean rank(n)-tensor, gradT is a rank n+1 Euclidean
tensor.

Proof. This follows from ∇R=0 (homogeneity of rotation) and from Lemma 9. □

Lemma 11. The velocity gradient is not objective and transforms under Euclidean
transformations according to (grad v)′ = R(grad v)RT + ṘRT .

Proof. We use Lemma 8 and Lemma 9 component-wise, such that (grad v)′
ij=∂′

jv
′
i =

R k
j ∂k(Ṙilx

l+Rilv
l+Ẏi)=R k

j Ṙilδ
l
k+RjkRil∂

kvl=(ṘRT +R· grad v·RT )ij . □

In particular, velocity is neither a Galilean vector, whereas the velocity gradient
is. In contrast, velocity-differences, e.g. diffusion velocities in comoving fluxes, are
objective.

Lemma 12. The strain rate tensor κ = (grad v + grad vT )/2 is a Euclidean tensor.
The skew-symmetric spin tensor ω = (grad v − grad vT )/2 is not Euclidean, as it
transforms similar as the velocity gradient, ω′ = RωRT + ṘR.

Proof. By construction, grad v = κ + ω. Therefore, κ∗ + ω∗ = RκRT + RωRT +
ṘRT . Furthermore, RκRT is symmetric, whereas RωRT and ṘRT are not. Thus,
separating symmetric and skew-symmetric parts proves the statement. □
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In contrast to kinematic quantities, where objectivity can be probed via eqs. (B.36)
and (B.37), objectivity of non-kinematic physical quantities (e.g. temperature, mass
densities, stress tensor, and the heat flux) cannot always be assessed analytically and
their objectivity must be postulated in analogy to experiments. [141]

Lemma 13. If T is an objective tensor of rank rank(n) ≥ 1, then Ṫ is an objective
tensor of rank rank(n) ≥ 1 only if the transformation is time-independent. Further-
more, the time-derivative of objective scalars is objective.

Proof. Note that Euclidean transformations leave the time dimension invariant, i.e.
d/dt′ = d/dt (this were true even for (constant) time-translations t′ = t + τ , since
d/dt′ = dt/dt′ · d/dt, where ∂t′(t′ − τ) = 1). Thus, dT′/dt′ = dT′/dt transforms
properly only if Ṙ = 0. The proof is trivial for scalars. □

B.6 The Role of Symmetry in Rational Thermodynamics

Rational thermodynamics is a description of classes of materials, which are defined
by their material law (tensor-valued functions of tensors). [74]

Definition 3. A rank(k) tensor-valued function C(T1,T2, . . .) of tensorial variables
TA is called objective tensor-valued function if it transforms under Euclidean trans-
formations according to

Cj1...jk(T′
1,T

′
2, . . .) =

∑
i1,...,ik

|det (R)|p · Rj1i1 · . . . · RjkikCi1...ik(T1,T2, . . .) (B.39)

The most important tensorial objects appearing in this context are tensors of
ranks 0, 1, 2, i.e. scalars, vectors and matrices.

Lemma 14. Let Ψ be a scalar-valued tensor function, Z a vector-valued tensor func-
tion and M a matrix-valued tensor function. Furthermore, let (ϕ,X,T) be a variable-
set for the tensor functions, consisting of rank(0, 1, 2)-tensors. Then, Ψ,Z,M are
objective if they transform according to

Ψ(RX) = Ψ(X), Ψ(RTRT ) = Ψ(T), (B.40)
Z(ϕ) = RZ(ϕ), Z(RX) = RZ(X), Z(RTRT ) = Z(T), (B.41)
M(ϕ) = RM(ϕ)RT , M(RX) = RM(X)RT , M(RTRT ) = RM(T)RT . (B.42)

For a proof of these relations we refer to the literature, e.g. Ref. 429. Note that
these results transfer easily to the case of tensor functions of weight p , 0.
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B Covariance, Invariance and Symmetry

This result immediately restricts the variables which can appear in any objective
tensor function.

Lemma 15. If a tensor function is objective, then it cannot depend on the velocity
or the spin tensor. Furthermore, it can depend on grad v only via κ and must fulfill
the objectivity condition C(RκRT ) = RC(κ)RT .

Proof. Let T be an objective tensor, i.e. transforming according to T′ = RTRT .
Now, let us assume that the objective tensor were a function of the velocity and
the velocity gradient, T = T(v, grad v). Objectivity implies T(v′, (grad v)′) =
RT(v, grad v)RT . Using Lemma 8 and Lemma 11 implies

T[Ṙx + Rv + Ẏ,R(grad v)RT + ṘRT ] = RT(v, grad v)RT . (B.43)

Without loss of generality, let us assume R(t) = Id, hence Ṙ = 0, such that the
objectivity condition becomes T(v + Ẏ, grad v) = T(v, grad v). Since Y is arbitrary,
this equation cannot be true in general. Therefore, T cannot depend on v and the
objectivity condition eq. (B.43) reduces to T(R(grad v)RT + ṘRT )=RT(grad v)RT .
The irreducible decomposition of the velocity gradient, grad v = κ + ω, implies
T
(
RκRT + RωRT + ṘRT

)
= RT(grad v)RT for any orthogonal tensor R. Sub-

claim: For any skew-symmetric tensor ω, we can define an orthogonal tensor R

such that R(t0) = Id and Ṙ(t0) = −ω. Doing so, the objectivity condition at
t = t0 is given by T(κ) = T(grad v). This implies that T cannot depend on ω if it
is to be objective. Furthermore, it implies that T can only depend on grad v in the
form of κ if it is to be objective. Note that the objectivity condition for T(κ) is still
given by T(RκRT ) = RT(grad v)RT . This completes the proof. □

Lemma 16. The scalar valued-function Ψ(T)= det(T) of a rank-two tensor T, and
the scalar valued-function Ψ(T)= tr(T) of a rank-two tensor T are objective.

Proof. Since R are othogonal matrices, RTRT is similar to R, and thus both objects
are related by a conjugacy transformation. Since the determinant is invariant under
conjugacy transformations, Ψ(RTRT )= det(RTRT )= det(T). Due to the abelian
property of the trace in it’s arguments, we have tr(RTRT )= tr(TRRT )= tr(T). □

An important class of tensor-valued functions appearing in our framework are
linear tensor-valued functions of the form C(T1,T2, . . .) = λ1(TA)·T1+λ2(TA)·T2+. . .,
where λi(TB) are scalar-valued tensor-functions.

Lemma 17. An objective linear scalar-valued tensor function Ψ cannot depend on
vectors. Furthermore, let M be a rank-2 tensor. Then, Ψ(M) is objective if and
only if Ψ(M) ∝ tr(M).
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For a proof, see Ref. 74. However, objective scalar-valued functions of higher
order can be functions of vectors. [429] Furthermore, the following Lemma is a direct
consequence of definition 3.

Lemma 18. A linear non-scalar-valued tensor function is objective, if it’s arguments
are objective.

Because they determine the constitutive equations, linear tensor functions are
important quantities in our framework.

Definition 4. A constitutive quantity C is an abstract tensor-valued quantity which
implements classes of materials into a constitutive theory.

Definition 5. A material law Υ = {ΥA} is a set of tensor-quantities ΥA, which
defines a class of materials.

For example, the material law Υ = (T,∇T,ϖsym) determines the class of “ther-
moelastic” materials (here ϖsym is the symmetrized tensor of grad x), and Υ =
(ρ, T,κ,∇T ) describes a monocomponent, viscous, heat-conducting fluids, and Υ =
(ρα, T,κ,∇T,P,M) describes multicomponent, viscous heat-conducting fluids which
are polarizable and magnetizable.

Definition 6. Let C be a constitutive quantity of rank(k), and Υ = {ΥA, ΥB, . . .} a
material law. Then, the rank(k) tensor-valued tensor function C(Υ ) is called material
function (or, constitutive mapping) with respect to C, if

C = C(Υ ). (B.44)

Hence, a material function with respect to a constitutie quantity C is a material-
representation of C. The most important constitutive quantity appearing in our
framework is the Helmholtz free energy density φH, where the material function
φH(Υ ) specifies the electrolyte. However, material functions are restricted by sym-
metry arguments.

Axiom 1 (“Material Objectivity” / “Material Symmetry”). Any material function
appearing in our constitutive model must be an objective function.

Thus, the axiom of material objectivity implies that the material law is covariant
with respect to the covariance group E, i.e. it must transform according to eq. (B.37)
under Euclidean transformations.
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Lemma 19. Material symmetry implies that the velocity v, and the velocity gra-
dient grad v are no material variables.

This follows directly from axiom 1 and lemma 15. Axiom 1 and Lemma 18 imply
that material laws, which are linear tensor functions of non-zero rank are objective,
can depend only on objective quantities.

Lemma 20. The material law of a linear material function with rank(k) ≥ 1 consists
of objective tensors.

The axiom of material objectivity is a constraint on the set of admissible ma-
terial functions appearing in the constitutive model. The so-called representation
theorems of isotropic tensors determine all admissible forms of objective material
functions C(Υ ) for material variables ΥA of rank(k) and constitutive quantities of
rank(l), [270,430–433] and determine most general form of constitutive equations which
is in compliance with the axiom of material symmetry. For example, for constitutive
quantities of rank(0,1,2) (“scalars”, “vectors” and “matrices”), and for a material law
comprised of tensors of degree one and two, Υ = {X,M}, the most general objective
material functions Ψ,Z,T are [432]

Ψ(X,M)=Ψ
(
tr(M), det(M), tr(M)2 − tr(M2),X2,XT (MX),XTM2X

)
, (B.45)

Z(X,M)=
(
λ1(X,M) · Id +λ2(X,M) ·M + λ3(X,M) ·M2

)
·X, (B.46)

T(M)=λ̃1(M) · Id +λ̃2(M) ·Mtf + λ̃3(M) ·M2, (B.47)

where λi, λ̃i are scalar-valued functions and rank(Ψ) = 0, rank(Z) = 1, rank(T) = 2.
However, in many cases one is interested only in linear material-representations. In
this case, the most general objective constitutive functions are

Ψ(X,M) = λ1 · tr(M), (B.48)
Z(X,M) = λ2 ·X, (B.49)

T(M) = λ̃1 · tr(M) · Id +λ̃2 ·Mtf , (B.50)

where λ1,2 and λ̃1,2 are independent of Υ . Apparently, the representation theorems
B.49 and B.50 restrict admissible couplings according to their rank. [74]

Lemma 21 (Curie’s law). In the linear constitutive regime, the material law Υ =
{ΥA, ΥB, . . .} for a material function C(Υ ), with respect to the constitutive quantity
C (i.e. C = C(Υ )), consists of material variables which have the same tensorial order
as the constitutive quantity. Thus, rank(ΥA) = rank(C) for ΥA ∈ Υ .
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Hence, material symmetry implies that causes cannot have more elements of sym-
metry than the effects they produce. [434] Thus, physical phenomena do not auto-
matically exhibit the symmetries of the laws that govern them. [74] Linear relations
appear in the Onsager-formalism where thermodynamics fluxes (the effects) are cou-
pled linearly to thermodynamic forces (causes).

As example, we consider the linear material function for the viscosity tensor τ (see
section 5.3.2), where τ(κ) depends linearly on the rate of strain, and is determined
by symmetry arguments. Lemma 20 and axiom 1 imply that, because grad v is not
objective, τ must be a linear function of κ, and Lemma 11, Lemma 12 and eq. (B.50)
determine the most general form for τ up to two parameters α1,α2,

τ(κ) = α1 · tr(κ) · Id +α2 · κtf . (B.51)

Material symmetry also applies to the method of Coleman and Noll, where all
constitutive quantities CA are determined via the evaluation of the universal balance
laws by conjugate material variables ΥA, which are comprised in a material law
Υ ={ΥA, ΥB, . . .} for φH. The corresponding constitutive equation for CA then takes
the form

CA = ∂(ρφH)/∂ΥA . (B.52)

Thus, the material function CφH for ρφH determines the material functions CCA
for

all constitutive quantities CA via the corresponding constitutive equations,

CA = ∂CφH/∂ΥA . (B.53)

Altogether, we can conclude on the transfer of symmetry from the quantity ρφH
to the corresponding material function.

Theorem 2. Let Ψ be a smooth function of a non-scalar variable X and U an
orthogonal transformation. Then, Ψ is invariant under orthogonal transformations,
i.e. Ψ(UX)=Ψ(X), exactly if the quantity X⊗ ∂Ψ/∂X is symmetric, i.e. exactly if
X[i∂Ψ/∂Xj]=0 for all spatial components i, j.

Proof. Consider an infinitesimal orthogonal transformation, i.e. a rotation, induced
by a matrix U, where UT =U−1. From representation theory, we know that the
generators of SO(3) (or, equivalently, SU(2)) are anti-symmetric matrices. This can
be easily verified by expanding the orthogonality condition up to second order in
the infinitesimal representation U= Id +ε·ω,

Id = UT ·U = (Id +ε ·ωT ) · (Id +ε ·ω) = Id +ε(ω + ωT ) +O(ε2). (B.54)
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Thus, in this approximation, the generators ω are anti-symmetric matrices. Fur-
thermore, since any anti-symmetric matrix has N×(N − 1)/2 independent compo-
nents, the generators ω have three independent components (here, N=3). Thus,
they are determined by the vector of angular-momentum Ω and the Levi-Civita
symbol via ωij=−ϵijkΩk. We probe the invariance of the field Ψ(X) by calculating
the transformation behaviour of the argument, UX=(Id +εω)X=X+εωX. Since
εωX=−εX∧Ω, this becomes UX=X−ε ·X∧Ω. Therefore, Ψ is invariant under or-
thogonal transformations if Ψ(X−ϵ·X∧Ω)=Ψ(X), or, equivalently, if ∂Ψ(UX)/∂Ω=0.
In particular, for any spatial component i,

∂Ψ(UX)
∂Ωi

=∂Ψ(X−ε·X∧Ω)
∂Ωi

= ∂Ψ

∂(X−ϵX ∧Ω)j

∂(X−εX∧Ω)j

∂Ωi

=− ∂Ψ

∂(X−εX∧Ω)j
·εϵjklδ

l
iX

k=εϵikjX
k ∂Ψ

∂(X−εX∧Ω)j
. (B.55)

Let Ω=0. Then, the left hand side vanishes identically, ∂Ψ/∂Ω|Ω=0=0, whereas the
right hand side becomes a derivative with respect to X. Thus, 0=εϵikjX

k·∂Ψ/∂Xj ,
which is true for any arbitrary index i, if Xk∂Ψ/∂Xj−Xj · ∂Ψ/∂Xk=0. □

B.7 Covariant Unification

Finally, we discuss material symmetry, i.e. covariance with respect to Euclidean
transformations (see axiom 1), of a unified electrolyte description based on methods
from non-equilibrium thermodynamics, electromagnetic theory and mechanics.

We showed above that the covariance group of classical mechanics is the Galilei-
group, whereas the covariance group of the Maxwell-Lorentz aether relations is the
Lorentz group (see appendix B.3). However, in our context, we can safely assume
the classical limit |v| ≪ c, where the Lorentz group reduces to the Galilean group.
Furthermore, experiments involving the kinetic theory of gases showed that Eu-
clidean symmetry is violated only in the case of strong rotations. [435] Because such
inertial effects can be neglected in this context, [436] this suggests that the proper
covariance group for material symmetry is the Galilei group, and not the Euclidean
group. Thus, material objectivity defined with respect to the Euclidean group (see
axiom 1) is a good approximation.

However, symmetry alone does not suffice to determine the material law and the
material function for a given material, but must be supplemented by additional
physical arguments.
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The left side of the balance sheet
has nothing right and the right side
of the balance sheet has nothing
left. But they are equal to each
other. So, accounting-wise we are
fine.

Jacob Frenkel, AIG Vice Chairman
2008

In this chapter, we introduce the mathematical description for the time evolution
of field quantities.

The response of physical objects to the application of external stimuli, e.g. forces,
or internal processes, e.g. chemical reactions can be described via balance equations,
which describe the time evolution of field quantities Ψ , or the corresponding field
densities ψ(x, t) (where Ψ(t) =

∫
V (t) dV ψ(x, t)). Their typical structure shows how

an object evolves locally, taking account for the evolution of dV (t), on the one side,
whereas the other side comprises all physical prcoesses by which Ψ changes.

We split this chapter into four sections. First, in appendix C.1 we introduce the
mathematical structure to describe material bodies. Next, in appendix C.2 we state
the general form for the global balance equation of a field quantity, which evolves
due to transport processes and reactions. Finally, in appendix C.3, we derive the
so-called Leibnitz-Reynolds Transport Theorems, which determine how the global
description for Ψ transfers to the local time evolution of ψ, and state the universal
form of local balance equations.

C.1 Mathematical Introduction

In this section we discuss the mathematical description for material bodies used in
our framework.

We assume that, at any instant of time, a material body can be described math-
ematically via a coordinate representation of it’s material points (“particles”) in
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threedimensional Euclidean space. Here, we use a method devised by Euler to label
the set of material points, [81] which form the configuration of the body (see, e.g.,
Ref. 82,246). [82]

Let B be a material body, and let p be the set of material points. At any instant
of time, we assign to each material point p of B Cartesian coordinates via functions
(“Euler coordinates”)

x : I ×B → Ω(t) ⊂ R3, such that xp(t) =
(
x1

p(t), x2
p(t), x3

p(t)
)
. (C.1)

Thus, for any reference configuration B0, usually chosen at t0 = 0, the set Ω0 =
ΩB(t0) defines a coordinate system, and each material point in the reference configu-
ration B0 can be labelled using a triad X = (X1,X2,X3) (“Lagrangian coordinates”).
However, since the material body B may not be self-permeating, there exists a bi-
jective map

ϕ : I ×Ω0 → Ω such that x = ϕt0(X , t). (C.2)

For fixed coordinates X0, the vector function x(t) = ϕX0
t0 (t) defines the trajectory of

the material point p assigned to X0 in the reference configuration (at t = t0). The
corresponding “barycentric velocity” and the acceleration of this trajectory are

w(t, ϕ(t,X)) = w(t,X) = ∂ϕ(X , t)/∂t , and ẇ = ∂2ϕ(X , t)/∂t2 . (C.3)

Similarly, for fixed t = t0, and varying X , the vector function x(X) = ϕt0(X)
defines the positions of all material points, i.e. a “picture” of the body B at that
instant of time. Accordingly, the nine derivatives of this picture with respect to the
material coordinates X define the deformation tensor F of the body,

F ij(X , t) = ∂ϕi(X , t)/∂Xj . (C.4)

Since eq. (C.2) defines a coordinate transformation between Euler - / and Lagrange
coordinates, ϕ is a diffeomorphism, and the determinant of the deformation tensor is
the Jacobian of the coordinate transformation. Thus, the asumption that the body
B is not self-permeating transfers to the requirement that det F , 0. However, since
det F = 1 at t = t0, the Jacobian is strictly positive, i.e. det F > 0 always. Another
important property is that the deformation tensor is not independent from the mass
density (see Lemma 1). The material description of a field quantity at a position x
occupied by the material point X at time t (i.e. x = x(X , t)) is given by ψ = A(X , t),
where the Eulerian description is ψ = a(x, t), such that A(X , t) = a(x(X , t), t). The
Eulerian time derivative ∂ψ/∂t measures the local evolution at a fixed point in
space, i.e. relative to fixed external coordinates , whereas the comoving material
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time derivative folows via the chain rule

ψ̇ = ∂A(X , t)/∂t = ∂ψ/∂t + (v ·∇)ψ. (C.5)

The nine spatial derivatives of the Eulerian velocity define the velocity gradient, and
the strain rate tensor (see appendix D.6)

(grad v)ij = ∂vi(x, t)/∂xj , and κ = [grad v + (grad v)T ]/2 . (C.6)

C.2 Global Structure of Balance Laws for Volumes

In this section, we state the general form of the global balance equations. For this
purpose, we consider Let V (t) ⊆ Ω(t) ⊂ Rn be a time-dependent volume with
boundary surface A = ∂V , where n̂A is the outward pointing unit-normal vector,
and let Ψ : I → Rn be a field quantity with local representation ψ : I ×Ω → Rn,

Ψ(t) =
∫

V
dV ψ(x, t). (C.7)

In general, a field quantity Ψ changes due to convective fluxes ψ ⊗ (v− vA) · n̂A,
where (v − vA) · n̂A is the velocity-difference between the evolving surface and the
material points measured along the direction of the surface normal, due to non-
convective fluxes Ξ, and due to local source-terms P,

d
dtΨ= d

dt

∫
V

dV ψ=−
∫
A

dAψ ⊗ (v− vA)n̂A−
∫
A

dAΞ ⊗ n̂A+
∫

V
dV P (C.8)

=−
∫

V
dV ∇ [ψ ⊗ (v− vA)+Ξ]−P. (C.9)

Convective fluxes are covariant under to Euclidean transformations (see appendix B).

C.3 Transport Theorems for Volumes and Surfaces

In this section, we state the Leibnitz-Reynolds Transport Theorems (LRTTs) for
volumes and surfaces (see, e.g., Ref. 437 for more details).

Theorem 3 (Transport Theorem for volumes). Let Ψ be a scalar, vector or tensor-
valued field quantity, and V (t) a time-dependent volume as in appendix C.2. Then,

dΨ
dt = d

dt

∫
V (t)

dV ψ =
∫

V (t)
dV

[
∂ψ

∂t
+ ∇ (ψ ⊗ vA)

]
. (C.10)
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Next, we define flux derivatives with respectto the dynamic geometry of the sur-
face, [81] which we use for the covariant formulation of electromagnetism (see sec-
tion 5.2.1).

Definition 7. Let A(t)⊂R3 be a hypersurface, with surface-flux vA. The flux deriva-
tive of a vector field X on A is defined by

∗
X=Ẋ+X·∇vA−(X·∇)vA.

Theorem 4. (Transport Theorem for surfaces) Let A(t) ⊂ R3 be a two-dimensional
hypersurface, and let ψ be a vector field on A, where Ψ =

∫
A dAψ. Then,

d
dtΨ = d

dt

∫
A(t)

dAψ · n̂A =
∫
A(t)

dA
∗
ψ · n̂A. (C.11)

From vector analysis follows that (where v = vA),

∗
X = ∂tX + vA(∇X)−∇ ∧ (vA ∧X) = Ẋ + X (∇vA)− (X ·∇) vA,

= ∂tX + ∇ (X⊗ vA)− (X ·∇) vA. (C.12)

Next we substitute eq. (C.10) for Ψ̇ in eq. (C.9),∫
V

dV [∂tψ + ∇ (ψ ⊗ vA)] = −
∫

V
dV [∇ (ψ ⊗ [v− vA]) + Ξ − P] . (C.13)

Thus, the local form of the balance equations for volumes, in the material description,
and in the Eulerian description, are (see section 5.1)

∂tψ = −∇ (ψ ⊗ v + Ξ) + P, (C.14)
ψ̇ = −ψ (∇v)−∇Ξ + P. (C.15)
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D.1 Dimensional Analysis of Maxwell’s Equation

In this section, we briefly discuss the non-dimensional form of Maxwell’s equations,
which give rise to the electrostatic limit (see section 5.2.4).

We non-dimensionalize and scale Maxwell’s eqs. (5.41) and (5.42) by introducing
reference-values for length (xref), time (tref), concentration (cref), electric field (Eref),
and magnetic field (Bref) using an aether-frame Faether, where DF = ε0E + P and
HF = B/µ0 −M. In addition, we set P ref = ε0E

ref and M ref = Bref/µ0 . We denote
non-dimensional quantities using a star,

∇∗=xref ·∇, ∂∗
t =tref · ∂t, E∗=E/Eref ,

B∗=B/Bref , P∗=P/P ref , ϱ∗
F=ϱF/ΣαFzαc

ref
α ,

j∗
F=jF/ΣαFzc

ref
α (xref/tref) , (E∗+P∗)=DF/ε0E

ref , (B∗−M∗)=HF/(Bref/µ0) .

Due to the scaling, these quantities have magnitude of order one. Substituting
the corresponding dimensional quantities by the quantities above, we obtain the
Maxwell-equations in their non-dimensional form,

0=∇∗B∗, 0=β·∂∗
t B∗+∇∗∧E∗, (D.1)

ϱ∗
F=λ·∇∗ (E∗+P∗) , j∗

F=−λ∂∗
t (E∗+P∗) +δ∇∗∧ (B∗ −M∗) , (D.2)

where ϱref
F = ΣαFzαc

ref
α . Furthermore, we obtain the non-dimensionalized form of

the Galilei-invariant quantities
E∗=E∗+βv∗∧B∗, M∗=M∗+λ/δ · (v∗∧P∗) , (D.3)

with dimensionless scaling-parameters β, λ and δ

β = vrefBref/Eref , λ = ε0E
ref/ϱref

F xref , δ = λβ · (c/vref )2 (D.4)

We estimate the parameter-scales, by assuming a binary ionic liquid, confined in an
electrochemical double-layer, which is subject to moderate changes in time. Thus,
we set xref = 1 nm and tref = 1 s such that vref = 1·10−9 m. Typically, the bulk-value
of ILs is of the order cref

± = 3·103 mol m−3, hence we set ϱref
F = 6·107 A s m−3. Typical
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potential-drops throughout the double-layer towards the bulk are ∆Φ = 1 V, such
that Eref = ∆Φ/xref = 1·109 V m−1. The magnetic field of a horseshoe is roughly
1·10−1 T, whereas the magnets of the circular accelerators at the LHC are up to
10 T strong. Here, we set Bref = 1 T. Altogether, we obtain

β = 1·10−18, λ = 1·10−1, δ = 1·1016. (D.5)

Apparently, β ≪ λ and 1/δ ≪ λ. Hence, the electromotive intensity equals the
electric field, E = E (see eq. (D.3)), and Maxwell equations read

0 = ∇B, 0 = ∇ ∧E, (D.6)
ϱF = ∇ (ε0E + P) , 0 = ∇ ∧ (B/µ0 −M) . (D.7)

This defines the electrostatic limit and justifies that in the description of electrolytes,
we can safely neglect effects stemming from magnetic fields. From eq. (D.6)2 follows
the existence of the electrostatic potential Φ, such that

E = −∇Φ. (D.8)

D.2 Unimodular Deformation Energy

Here, we derive eq. (5.66). For this puprose, we first calculate the expression
d Funi /dt , and then evaluate it’s contraction with ρφH/∂ Funi .

Lemma 22. grad v = Ḟ · F−1.

Proof. Componentwise, the deformation is defined by the derivative F ij = ∂xi/∂Xj .
Thus, the total derivative of these components reveals

Ḟ ij = ∂

∂t

∂xi

∂Xj
= ∂vi

∂Xj
=
∑

k

∂vi

∂xk

∂xk

∂Xj
=
∑

k

(grad v)ik F kj . (D.9)

Mutiplying from the right with F−1 solves for grad v. □

Lemma 23. For any non-singular matrix M(t), the following relation holds,

d
dt (detM) = (detM) · tr

(
M−1 · Ṁ

)
. (D.10)

Proof. We prove the claim using a perturbation analysis. From det(M) , 0, we ob-
serve that δ ln(detM) = ln[det(M+ δM)]− ln(detM) = ln(det(M+ δM)/detM ).
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D.2 Deformation Energy

Next, we use the two elementary matrix properties (detM)−1 = det(M−1), and
det(M) · det(N) = det(M · N). Therefore, δ ln(detM) = ln(det[M−1 · (M +
δM)]) = ln(det[Id +M−1δM]). By construction, the variation δMij ≪ Mij , such
that that M−1 · δM ≪ Id. Hence, we can use the standard approximation, [438]

ln(det[Id +M−1δM)]) ≈ ln[1 + tr(M−1 · δM)]. Next, we expand the “small” trace-
part in a Taylor-series, δ ln(detM) ≈ tr(M−1 · δM). We evaluate the general varia-
tion for the total time derivative, which yields d

dt ln detM ≈ tr(M−1 · Ṁ). This can
be solved for d

dt detM ≈ detM · tr(M−1 · Ṁ), which completes the proof. □

With the help of Lemma 22 and Lemma 23, we can compute Ḟuni,

Ḟuni = d
dt
[
(det F )1/3 · F

]
(D.11)

= −1
3 (det F )−4/3 · F · ddt (det F ) + (det F )−1/3 · Ḟ (D.12)

= −1
3 (det F )−1/3 · Funi · (det F ) · tr

(
F−1 ·Ḟ

)
+ grad v · Funi (D.13)

= −1
3 Funi · tr

[
F−1 ·(grad v · F )

]
+ grad v · Funi . (D.14)

Lemma 24. tr (M ·N) = M : NT .

Proof. tr(M ·N) = Id : (M ·N) =
∑

i,j,k δijMikNkj =
∑

j,k NkjMjk = N : MT =
NT : M.. □

Lemma 25. tr
[
M−1 · (N ·M)

]
= tr (N).

This follows from a short calculation.

tr
[
M−1 · (N ·M)

]
= Id : [M−1 · (N ·M)] (D.15)

=
∑
i,j

δij(M−1 · [N ·M])ij (D.16)

=
∑
i,j,k

δij(M−1)ik · (N ·M)kj (D.17)

=
∑

i,j,k,m

δij(M−1)ik ·Nkm ·Mmj (D.18)

=
∑

j,k,m

Nkm ·Mmj(M−1)jk (D.19)

=
∑
k,m

Nkm(M ·M−1)mk (D.20)
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=
∑
k,m

Nkmδmk = trN. (D.21)

From these two Lemmata follows tr[F−1 ·(grad v · F )] = tr(grad v) = Id : κ, such
that we obtain

Ḟuni = grad v · Funi−1
3 Funi · (Id : κ) =

[
grad v− 1

3 (tr grad v) · Id
]
· Funi . (D.22)

Hence, the contribution from the unimodular deformation to the formal expansion
of the free energy density ρφ̇H(Υ ), see eq. (5.66), becomes

∂(ρφH)
∂ Funi : Ḟuni = ∂(ρφH)

∂ Funi :
(
grad v · Funi

)
− 1

3

(
∂(ρφH)
∂ Funi : Funi

)
·∇v. (D.23)

We can transform the contraction appearing in the first term on the right side of
eq. (D.23) by using the following property.

Lemma 26. M : (N ·Q) =
(
M ·QT

)
: N.

Proof. M : (N · Q) =
∑

i,j,k MijNikQkj =
∑

i,k Nik(M · QT )ik = N : (MQT ) =(
M ·QT

)
: N. □

Thus, using the result from Lemma 26 in eq. (D.23) yields

∂(ρφH)
∂ Funi : Ḟuni =

[
∂(ρφH)
∂ Funi · (F

uni)T
]

: grad v− 1
3

(
∂(ρφH)
∂ Funi : Funi

)
·∇v. (D.24)

We apply Theorem 2 for ∂(ρφH)/Funi ·(Funi)T = [∂(ρφH)/Funi ]T · Funi. Hence,
the bracked expression of the first term on the right side of eq. (D.24) is symmetric,
and it’s contraction with grad v equals the contraction with κ. Furthermore, using
Lemma 24, we obtain

∂(ρφH)
∂ Funi : Ḟuni =

(
∂(ρφH)
∂ Funi · (F

uni)T − 1
3 tr

[
∂(ρφH)
∂ Funi · (F

uni)T
]
· Id

)
: κ. (D.25)

Apparently, the bracked term on the right side is the trace-free part of the irre-
ducible representation of a symmetric matrix D = ∂(ρφH)/∂ Funi ·(Funi)T such
that eq. (D.25) becomes ∂(ρφH)/∂ Funi : Ḟuni = Dtf : κ, which is exactly the con-
tribution from the unimodular deformation tensor in the materials law to the formal
expansion of ρφ̇H(Υ ), see eq. (5.66).
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D.3 Evaluation of the Poynting Flux

Poynting’s Theorem follows from inserting the covariant Maxwell’s equations eqs. (5.48)
and (5.49) into the expansion ∇(HF ∧ E) = E(∇ ∧HF)−HF(∇ ∧ E),

∇(HF ∧ E) = EJ F + E
∗

DF + HF
∗
B. (D.26)

Next, we use the definition Definition 7 for the flux-derivative,
∗
X = Ẋ + X ·∇v −

(X ·∇) v, see definition 7. However, the flux derivative has the following property.

Lemma 27. X ·
∗
Y = X · Ẏ + [(XY) Id−X⊗ Y] : grad v.

Proof. We use ∇v= tr grad v= Id : grad v, such that

X(Y∇)v=X(Yµ∂µ)v=Xα(Yµ∂µ)vα=(XαY
µ)(∂µv

α)=(X⊗ Y): grad v

and XY(∇v)=XY(Id : grad v)=(XY) Id : grad v. These two results prove the Lemma.
□

Thus, using Lemma 27, Poynting’s Theorem (eq. (D.26)) becomes ∇(HF ∧ E) =
EḊF +HFḂ +EJ F + [(EDF +HFB) Id−HF⊗B−E⊗DF] : grad v. Next, we use
the aether relations DF = ε0E+P, HF = B/µ0−M−(v∧ε0E) and E = E+v∧B,
which yields

∇(HF ∧ E)=EJ F+d/dt
(
ε0E2/2 +EP+B2/2µ0

)
−ĖP−MḂ+ε0 (v∧B) Ė

−ε0 (v∧E) Ḃ+
[(
ε0E2+EP+B2/µ0−MB

)
Id− (ε0E⊗E+E⊗P+B⊗B/µ0−M⊗B)

+ [ε0 (v∧B) E+ε0 (E∧v) B] Id−ε0 (v∧B)⊗E− (E∧v)⊗B
]
: grad v. (D.27)

Apparently, the nested permutations (appearing in the last line) implying wedge
products look similar to the ones implying tensor products. Indeed, they can be
translated via the following property: Let X,Y,Z be arbitrary three-dimensional
vectors. Then, [(X ∧ Y) ·Z] Id = (X ∧ Y) ⊗ Z + (Y ∧Z) ⊗ X + (Z ∧X) ⊗ Y(for a
proof, see e.g. 81, exercise 55.2). In addition, we use B(E ∧ v) = −v(E ∧B), such
that

∇(HF ∧ E) = d/dt
[
ε0E2/2 + EP + B2/2µ0 − ε0(E ∧B)v

]
+ EJ F −MḂ

+ ε0(E ∧B)v̇−PĖ +
[(
ε0E2 + EP + (B/µ0 −M) B− ε0(E ∧B)v

)
Id

−ε0E⊗E− E⊗P−B⊗B/µ0 + M⊗B− ε0(E ∧B)⊗ v] : grad v. (D.28)
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D.4 Derivation of Stress Imbalances

In section 5.2, we derived the constitutive equation for the stress tensor (see eq. (5.85)),

σ = τ−
(
ε0E2/2 + B2/2µ0 −MB +

N∑
α=1

cαµα−ρφH
)

Id +Dtf + ε0E⊗E +E⊗P

+ B⊗B/µ0 −M⊗B + (ε0E ∧B)⊗ v, (D.29)

from which we want to calculate ∇σ. We use the relations ∇(X⊗Y)=(∇Y)X+X(∇Y)
(which follows from the chain rule) and ∇(X·Y)=(X∇)Y + X∧(∇∧Y) + (Y∇)X +
Y∧(∇∧X), [75]

∇
(
E⊗E−E2/2 · Id

)
= E (∇E)−E ∧ (∇ ∧E) , (D.30)

and
∇ [(MB) · Id−M⊗B] = (M∇) B + M ∧ (∇ ∧B) + B ∧ (∇ ∧M) , (D.31)

where we used ∇B = 0. In the aether-frame (where HF = B/µ0−M), the relations
M = M + v ∧P, and ∇ ∧HF = jF − ∂tDF, imply

∇ [(MB) · Id−M⊗B] = (M∇) B + M∧ (∇ ∧B) + B∧ (∇ ∧B/µ0)−B∧ jF

−B ∧ ∂tDF + B ∧ [∇ ∧ (v ∧P)] . (D.32)

Next, using the aether frame property P = DF − ε0E, we obtain

∇ (E⊗P) = (P∇)E + ϱFE + (v ∧B) ·∇P−E (∇ε0E) , (D.33)
and

∇ [(ε0E ∧B)⊗ v] = (ε0E ∧B) ·∇v + (v∇) · (ε0E ∧B) . (D.34)

Using ρ̇ = −ρ∇v and ∂tX = Ẋ − (v∇)X, such that (ε0E ⊗ B)(∇v) = ρ d
dt(ε0E ∧

B/ρ)− ∂t(ε0E ∧B)− (v∇)(ε0E ∧B), eq. (D.34) becomes

∇ [(ε0E ∧B)⊗ v] = ρ
d
dt (ε0E ∧B/ρ)− (ε0∂tE) ∧B + ε0E (∇ ∧E) . (D.35)

Next, we use
∗
P = ∂tP + v(∇P)− v ∧ (v ∧P) and B ∧ (∇ ∧B/µ0) = ∇B2/2µ0 −

∇(B⊗B)/µ0 + B(∇B/µ0), and eqs. (D.30), (D.32), (D.33) and (D.35) find

∇σ = ∇τ−∇
[ N∑

α=1
µαcα − ρφH

]
+ ∇Dtf + (M∇) B + M ∧ (∇ ∧B) + (P∇)E
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+
∗
P ∧B + ρ d

dt (ε0E ∧B/ρ) + ϱFE + jF ∧B. (D.36)

The last two terms are Galilei-invariant ( ϱFE+jF ∧B=ϱFE+J F ∧B).

D.5 Modeling Energy of Deformation

We model the bulk free energy density stemming from volume-deformations, Ψ(V, p, T ),
via a linear response to volume-perturbations around the stable reference state
ΨR(V R, pR, TR) = 0 of minimal deformation-energy.Because of the stability cri-
terion ∂Ψ/∂V |V R = 0, the Taylor-expansion of Ψ reads,

Ψ(V R + ε) = 1/2 · ∂2Ψ/∂V 2 |V R ·
(
V − V R

)2
, (D.37)

where V = V R + ε, and ε≪ V . Usually, the bulk-modulus is derived from pressure
variations, K/V = −V · ∂p/∂V = K/V = −V · ∂2Ψ/∂V 2 (using thermodynamical
Maxwell-relations). This motivates defining the bulk-modulus-density by K = V 2 ·
∂2Ψ/∂V 2|V R . Hence, eq. (D.37) becomes Ψ=K · (1 − V R/V )2/2 = K/2 · (1 −∑N

α=1 ν
0
αcα)2 (using V R =

∑N
α=1Nαν

0
α), which is well-defined for compressible and

incompressible electrolytes, where the bulk modulus K = 2Ψ/(1− V R/V )2 diverges
in the incompressible limit, limV →V R K→∞.

D.6 Interpretation of The Strain Rate Tensor

In this section we discuss that the strain rate tensor describes the geometric evolution
of the system. This includes volume-change (i.e. isotropic expansion/contraction)
and shape-change (i.e. shearing, rotation).

We examine the evolution of a set of neighboring material points, which are sub-
ject to surface forces comprised in the Cauchy-tensor. Thus, their relative position
changes with time. As reference, we choose an arbitrary material point p (coordi-
nate x), and an arbitrary small neighborhood Up which contains two material points
A,B ∈ Up. We define ξA,ξB by xA = x + ξA and xB = x + ξB. Thus, the rela-
tive evolution of the material points is determined by the change of the separation
vectors. The corresponding velocity field is vA,B = dxA,B/dt, and the separation
velocity fields are vξA,B = d(ξA,B)/dt = vA,B−v, with the separation velocity fields
vξ = (ξ ·∇)v = grad v · ξ, and velocity gradients (grad v)αβ = ∂βvα. Hence, the
evolution of the separation vector (the relative position of neighbouring material
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points) is determined by the deviation tensor

dξ/dt = grad v · ξ. (D.38)

The three material points p,A,B span a surface, which can be extended to a volume
element δV by introducing an additional direction from p to a material point C ∈ Up,
measured by the separation vector xC = x + ξC. The three directions êA,B,C span
R3, and the volume spanned by the separation vectors ξA,B,C is the scalar triple
product δV = ξA(ξB ∧ ξC) = ϵijkξ

i
Aξ

j
Bξ

k
C. Thus,

d/dt δV = ϵijk

(
(∂mv

i)ξm
Aξ

j
Bξ

k
C + (∂mv

j)ξi
Aξ

m
B ξ

k
C + (∂mv

k)ξi
Aξ

j
Bξ

m
C

)
(D.39)

= (∂mv
m)ϵijkξ

i
Aξ

j
Bξ

k
C (D.40)

= tr(grad v) · δV, (D.41)

(using anti-symmetry of the Levi-Civita symbol). Since tr grad v = trκ = ∇v,

trκ = ∇v = 1/δV · d(δV )/dt . (D.42)

Thus, the trace of the strain rate tensor measures the relative change in local volume
per unit time. Since, the trace is an invariant of the strain rate tensor, this result
is true for any choice of coordinates. Equation (D.42) shows that from ∇v =
0 follows that the volume is constant in time. Vice versa, it also proves that a
constant volume implies ∇v = 0. A similar investigation reveals that the shear-part
Σgrad v = κ − ∇v/3 · Id measures shearing, and ωgrad v = (grad v − grad vT )/2
measures rotation of the medium (see, e.g. section 2.2 in 438). The same property
holds for the shearing of the strain rate tensor. However, since the strain rate tensor
is symmetric by construction, κ has no spin-part.

D.7 Matrix Formulation of Transport Equations

Here, we reexpress the transport equations eqs. (5.244) to (5.246), and the fluxes
eqs. (5.247) and (5.248) using matrices.

We comprise different sets of thermodynamic forces in

X T =(∇µα,∇T ), X̃ T =(∇ µ̃α|2≤α≤N ,∇T ), X T
red=(∇ ˜̃µα

∣∣
3≤α≤N ,∇T ) (D.43)

and different sets of thermodynamic fluxes in
ψT = (N2, . . . ,NN, ξs), and ψT

red = (N3, . . . ,NN, ξs). (D.44)
Likewise, we collect parameters of material and transport in the vectors,

z̃ = (z̃2, . . . , z̃N)T , (D.45)
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ν̃ = (ν̃2, . . . , ν̃N)T , (D.46)
TT = (T2, . . . ,TN,TT ) = (t2/F z̃2, . . . , tN/F z̃N,β), (D.47)

TT
red = (t3/F z̃3, . . . , tN/F z̃N,β). (D.48)

First, we reduce the set of all thermodynamic forces X , and then evaluate the gra-
dients ∇µα(Υ ) according to their materials law. Let diag[N×N](Θ) be a quadratic N-
dimensional diagonal-matrix with equal entries “Θ”, we define the N-1×N-dimensional
valency-matrix Z, and the N×N+1-dimensional mass-matrix M

Z(zα,Mα) =



−z̃3/z̃2

...
−z̃N/z̃2

0



. . .

diag[(N−1)×(N−1)](1)
. . .



 , (D.49)

and

M(Mα) =



−M2/M1

...
−MN/M1

0



. . .

diag[N×N](1)
. . .



 . (D.50)

Z and M relate the different sets of chemical potentials via simple products,
(µ̃2, . . . , µ̃N, T )T = M · (µ1, . . . ,µN, T )T , (D.51)

and
(˜̃µ3, . . . , ˜̃µN, T )T = Z · (µ̃2, . . . , µ̃N, T )T = Z ·M · (µ1, . . . ,µN, T )T . (D.52)

Since Z and M depend on constant material-parameters, we can transfer eq. (D.43)
to the vector-representation of the thermodynamic forces,

Xred = Z ·M · X . (D.53)

We express J F via thermodynamic forces X . Using eq. (5.248), we find

J F = −κ · (∇Φ)− κ · TT ·M · X = −κ ·
(
1, [MT · T]T

)
·
(

∇Φ
[X ]

)
(D.54)

In the next step, we derive a similar expansion for the thermodynamic fluxes,
where the components of this vector of fluxes are determined by eqs. (5.131) and (5.132)
(N2 follows from J F =

∑N
α=2 F z̃αNα). For this purpose, we define a special nota-
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tion for the vector-valued multiplication of two vector-quantities,

J F ⊙ T= (J F·T2, . . . ,J F·TN,J F·β)T , such that ψ=J F⊙T−D·Z·Xred. (D.55)

In contrast to ψred, the quantity ψ cannot be expressed solely via Xred, since J F ⊙
T = −κ(∇Φ)⊙ T − κ · T ⊗ T · X̃ . However,

ψ = −κ · (∇Φ)⊙ T − (D ·Z + κ · T ⊗ T) ·M · X T (D.56a)

= −




...
κ · T
...



. . .

(D ·Z + κ · T ⊗ T) ·M
. . .


 ·

∇Φ[
X
] . (D.56b)

and

ψred=− κ · (∇Φ)⊙ Tred − (DredZ + κ · Tred ⊗ T) ·M · X (D.57a)

=−

Tred⊗κ

 1[
MT · T

]+


0
...
0

[ D ·Z ·M

]

∇Φ[
X
] . (D.57b)

From the expansion of the conduction current density and the mass fluxes, eq. (D.54)
and eqs. (D.57) follows directly the matrix-form of the convection-equation (see
eq. (5.246)),

∇v = −
(
[ ν̃T ], 0

)
· (∇⊙ ψ) = −

(
ν̃2/F z̃2 , ˜̃ν3, . . . , ˜̃νN, 0

)
·

 ∇J F

∇⊙
[
ψred

] . (D.58)

Since the quantity X depends upon the model free energy and the materials law,
the fluxes eq. (D.54),eqs. (D.57),eqs. (D.56) and eq. (D.58), are also subject to the
specific electrolyte model. In general, any reasonable model comprises the species-
concentrations in it’s materials law, such that

∇µα(Υ ) = (
∑
A

∂µα/∂ΥA ·∇)ΥA|ΥA,cγ +
N∑

γ=1
∂µα/∂cγ ·∇cγ . (D.59)

In the last term on the right side of eq. (D.59), we must take account for the fact
that the set of independent variables is ϱF, c3, . . . , cN. Thus, for any N-component
mixture, there exists a N×N-dimensional matrix M(zα,να), such that

(c1, . . . , cN)T = M · (1/z[2ν1] , ϱF/F , c3, . . . , cN)T , (D.60)
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where z[2ν1] = z2ν1 − z1ν2 denotes the anti-commutator, and

M(zα,να) = 1
z[2ν1]




z2z[2ν1] −ν2
−z1z[2ν1] ν1

0 0
...

...
0 0



[
z[3ν2] z[4ν2] . . . z[Nν2]
−z[3ν1] −z[4ν1] . . . −z[Nν1]

]
 diag(N−2)×(N−2)(z[2ν1])



 .
(D.61)

Material Parameters Transport Parameters Thermodynamic Quantities

M(Mα) L J F
Z(zα,Mα) κ = F z̃T ·L · F z̃ ψ, ψred
να, ν̃α, ˜̃να T = 1/κ ·L · F z̃ X , Xred

z̃ = (z̃2, . . . , z̃N) D = L− κ · T ⊗ T

M(zα,να)

Table D.1: Summary of the vector-expressions for the constant material parameters,
the transport parameters, and the thermodynamic quantities.

We now consider the isothermal case (∇T = 0) in which the thermal coefficients
in the quantities ψred, T, D, Z, M and X can be ommitted. In this case, the
matrix-form of the model equations become

∂tϱF = −∇ (J F + ϱFv) , (D.62)
(∂tc3, . . . , ∂tcN)T = −∇⊙ ψred −∇⊙ (v · c3, . . . , v · cN))T , (D.63)

Equations (D.62) and (D.63), together with eq. (D.60) determine c1 and c2, whereas
the fluxes J F, and ψred are determined by eq. (D.54) and eqs. (D.57). The convec-
tion velocity is determined by eq. (D.58). Note that, if neccessary, these equations
must be supplemented by reaction-terms. In table D.1 we summarize our findings.

Example: Quaternary Electrolyte Mixture

We apply the above notation to the system composed of four species which is in
electroneutral and isothermal state, see chapter 6. We eliminate the last column in
the matrices Z and M, and the last entry in X and T. Due to electroneutrality, we
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omitt the second row in M. Altogether,

Z =
(
−z̃3/z̃2 1 0
−z̃4/z̃2 0 1

)
, (D.64)

M =

−M2/M1 1 0 0
−M3/M1 0 1 0
−M4/M1 0 0 1

 , (D.65)

M = 1
z[2ν1]


z2z[2ν1] z[3ν2] z[4ν2]
−z1z[2ν1] −z[3ν1] −z[4ν1]

0 z[2ν1] 0
0 0 z[2ν1]

 , (D.66)

(c1, c2, c3, c4)T = M · (1/z[2ν1] , c3, c4) (D.67)
X T = (∇µ1, ∇µ2, ∇µ3, ∇µ4)T , (D.68)

L =

L22 L23 L24
L23 L33 L34
L24 L34 L44

 . (D.69)

However, the quantity X is subject to the model free energy. For example, if we use
our model free energy eq. (5.153), and neglect interactions, we get
X=−ϱF∇Φ⊙(ν1,ν2,ν3,ν4)T +RT∇⊙(ln f 1c1, ln f 2c2, ln f 3c3, ln f 4c4)T . (D.70)

D.8 Transformation of Reference Species

In section 5.3 we made use of the property that N-1 mass-fluxes Nα are independent
in a N-component mixture and introduced one designated species (by convention,
the first species), see eqs. (5.105), (5.106) and (5.225). Because the choice for the
designated species is arbitrary, the mesoscopic predictions of our transport theory
must be invariant under changing the reference species. Here, we derive conversion
relations between different reference-species.

Reduced Valencies, Molar Volumes and Chemical POtentials We designate a
fixed sequence of physical species, denoted by capital latin letters A,B,C, . . ., and
assume a bijective assignment between the physical species A,B,C, . . ., and the
species-indices α, β, γ, . . ..

We use the notation introduced in appendix D.7, and neglect thermal aspects
such that all vector-quantities introduced above are to be reduced as explained in
appendix D.7. We define reduced sets of valences relative to any designated species
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A,
z̃

(A)
B |B,A = zB|B,A −MB/MA · zA|B,A. (D.71)

Apparently, two sets (z̃(A)
B ) and (z̃(C)

D ) of reduced valences (defined relative to dif-
ferent designated species A, and C), are related by

z̃
(A)
B = z̃

(C)
B |B,A,C −MB/MA · z̃(C)

A |B,A,C (D.72)

This relation can be expressed “species-independent”, using transformation matrices.
Let A and C be two distinct designated species. Then, the corresponding two sets
of reduced quantities are related by transformations M(A→C) (see ),

z̃(A) = M(C→A) · z̃(C), ν̃(A) = M(C→A) · ν̃(C), X̃ (A) = M(C→A) · X̃ (C), (D.73)

where the transformation M(A→C) has a (N-1)×(N-1)-dimensional matrix-represen-
tation,

M
(C→A)
DB |D,C

B,A
= δDB|D,C

B,A
−MB/MD · δAD|D,C

B,A
. (D.74)

Note that there is no sum over the index “D” (despite the twofold appearance).
The mass-matrices defined by eq. (D.50) represent special cases of the more general

definition eq. (D.74). There, the designated species is α = 1, and relates to the trans-
formation matrix M(2→1) by elimination of the second column (see appendix D.7).
By construction, the matrix representation of the trivial transformation eq. (D.74) is
exactly the neutral element M(A→A) = Id. We derive the inverse transformation via
the requirement that the cyclic transformation M(C→A) ◦M(A→C) ≡M(C→C) = Id.
By construction,

∑
B,A M

(C→A)
DB |D,C ·M(A→C)

BE |D,C = δDE |E,D,C , such that

M(C→A) =
(
M(A→C)

)
−1. (D.75)

Transformation of Mass Fluxes In the isothermal case, The vector of thermody-
namic fluxes defined by eq. (D.44) reduces in the isothermal case to ψT = (N2, . . . ,NN).
We generalize this notation to ψ(A), where eq. (D.44) represents the special ψ(1). We
recover the vector of all fluxes from the universal flux constraint

∑
AMA ·NA = 0,

ψT
all = (N1, . . . ,NN) (D.76)

from any given representation ψ(A). We account for the initial reference species via

ψ
(A)
all (ψ(A)) = M[N] (A) · ψ(A), (D.77)
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where the matrix representation of the transformation M[N] (A) is
M

[N] (A)
BD = δBD −MD/MA · δBA. (D.78)

The inverse transformation calculates ψ(A) from the vector of all fluxes ψall,

ψ(A) = M(A) [N] · ψall, where M
(A) [N]

BD = δBD − δAD. (D.79)

The transformation rules between independent sets of fluxes, defined relative to
different designated species A and C, follow directly from eqs. (D.77) and (D.79),

ψ(C)
(
ψ(A)

)
=
(
M(C→A)

)
T · ψ(A), (D.80)

where [
(M(C→A))T

]
BD

= δBD −MD/MB · δBA. (D.81)

Thus, the fluxes ψ(A) transform inversely and conjugated (via transposed represen-
tation-matrices), as compared to z̃(A), X̃ (A) and ν̃(A) (see eq. (D.73)).

The concatenation of transformations between sets of all fluxes and different sets
of independent fluxes exhibits the property,

M[N] (A) · (M(A→C))T = M[N] (C), (D.82)
Thus, the set of all fluxes, obtained from different representations, is invariant under
changing the designated species,

ψ
(A)
all = ψ

(C)
all . (D.83)

Onsager Matrix and Transport Parameters Here, we derive the transformation
behaviour of the Onsager matrix L from which follow the correct transformation
rules for the transport parameters.

In section 5.3, we introduced L as coupling between the fluxes ψ(1) and the reduced
set of forces X̃ (1) (see eq. (5.115)). Thus, the Onsager matrix depends upon the
choice of reference species. Relative to any such choice “A” for the designated
species, specific Onsager matrices L(A) exist. The transformation rules for L(A)

follow directly from the transformation rules of the fluxes, and reduced potentials
(see eq. (D.80)),

L(C) = (M(C→A))T ·L(A) ·M(C→A). (D.84)

Because the transport parameters κ(A), T(A) and D(A) are functions of L(A),
eq. (D.84) determines their transformation behaviour. From eq. (5.118), which rep-
resents the definition of the electric conductivity relative to the designated species
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α=1, follows the generalized definition of the electric conductivity relative to any des-
ignated species A, κ(A) = F 2 ·(z̃(A))T ·L(A) · z̃(A). Thus, from eqs. (D.73) and (D.84)
then follows that the electric conductivity is invariant under transformations of the
reference species,

κ
(A)=F 2·(z̃(A))T ·L(A)·z̃(A) (D.85a)

=F 2 · (M(C→A)·z̃(C))T ·(M(A→C))T ·L(C)·M(A→C)·M(C→A)·z̃(C) (D.85b)
=F 2·(z̃(C))T ·(M(A→C)·M(C→A))T ·L(C)·z̃(C) (D.85c)
=κ(C). (D.85d)

Hence, κ(A) transforms as a “scalar” under the action of the transformation M(A→C).
Next, we derive the transformation behaviour of the transference numbers. How-

ever, due to the effective valence appearing on the right side of the definition for
tα (eq. (5.120)), we must first derive the transformation behaviour of the vector
T(A) = tα/F z̃α. Using the invariance of the electric conductivity, the transforma-
tion behaviour of the Onsager coefficients, and the valences, we find

T(A) = F/κ(A) ·L(A) · z̃(A) (D.86)
= F/κ(C) · (M(A→C))T ·L(C) ·M(A→C) ·M(C→A) · z̃(C) (D.87)
= (M(A→C))T · T(C), (D.88)

i.e. T(A) transforms similar to the fluxes ψ(A). Next, we split the transformation
rule eq. (D.88) into two cases.

First, the transformation rules for transference numbers of species which aredo
not the two designated reference-species (betweeen which we “transform”), are

t
(A)
B |B,A,C = z̃

(A)
B /z̃

(C)
B · t(C)

B . (D.89)

Second, we calculate the transformation rule of the transference number corre-
sponding to the initial designated species t(A)

C |C,A,

t
(A)
C |C,A = −

∑
D,C

MD/MC · z̃(A)
C /z̃

(C)
D · t(C)

D . (D.90)

However, due to the normalization constraint (z̃(A))T ·T(A) = 1/F , only N-2 transfer-
ence numbers are independent, and eq. (D.90) becomes redundant. Thus, eq. (D.89)
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suffices for the calculation of all parameters,

t
(A)
C |C,A = 1−

∑
D,A,C

t
(A)
D . (D.91)

Finally, the transformation behaviour of the diffusion matrices D(A) = L(A) − κ ·
T(A) ⊗ T(A) follow trivially from the transformation rules of the Onsager matrix,

D(C) =
(
M(C→A)

)
T ·D(A) ·M(C→A). (D.92)

Invariance of the Equations of Motion From eq. (5.248), and since ψ(A) and T(A)

transform similarly, it follows that J F is invariant under transformations of the
designated species. Although the matrix formulation of the convection equation,
eq. (D.58),

(∇v)(A) = −(ν̃(A))T ·∇⊙ ψ(A). (D.93)

relates to a designated species A, it is invariant under transformations of the desig-
nated species. This follows from the invariance of the product(

ν̃(A)
)T
· ψ(A) =

(
M(C→A) · ν̃(C)

)T
·
(
M(A→C)

)T
· ψ(C) (D.94a)

=
(
ν̃(C)

)T
·
(
M(A→C) ·M(C→A)

)T
· ψ(C) (D.94b)

=
(
ν̃(C)

)T
· ψ(C). (D.94c)

Because the transformation matrices are functions of the constant molar masses, we
can generalize this result to the convection equation,

(∇v) (A) = (∇v) (C). (D.95)

Therefore, the equation of motion for the charge density is invariant under transfor-
mation of the designated species,

∂tϱF = −∇J F −∇(ϱFv). (D.96)

The independent transport equations eqs. (D.62) and (D.63), derived in appendix D.7
relate to the special case where the two designated species are α = 1 and α = 2.
Here, we generalize the matrix formulation to arbitrary reference-species M , and N
and define the vector of the reduced concentrations,

c(M,N) = {(cD)} |D,M,N , (D.97)
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such that for constant partial molar volumes

∂tc
(M,N)
all = ∂t


c1(ϱF, c

(M,N))
...

cN(ϱF, c
(M,N))

 = M(M,N) · ∂t ·

 ϱF/F[
c(M,N)

] . (D.98)

The N×(N-1)-dimensional matrix M(M,N)(να, zα) is constant if we assume constant
partial molar volumes of the species. In components, it is defined by

M(M,N)
F ϱF

=
δF [NνA]
ν[M zN ]

, M(M,N)
F D =δDF−

δF M ·ν[D zN ]−δF N ·ν[D zM ]
ν[M zN ]

. (D.99)

We relate sets of independent forces defined relative to designated sets of species
(A,B) and (M,N), using the representation matrix of the transformation (A,B)→
(M,N),


∂tϱF/F

∂t

c(M,N)


=S(A,B)→(MN)


∂tϱF/F

∂t

c(A,B)


=


1 0 . . . . . . 0

S
(A

,B
)→

(M
N

)
ϱ

F


 S
(A,B)→(MN)
GD





∂tϱF/F

∂t

c(A,B)


 ,

(D.100)

where the components of the (N-1)×(N-1)-dimensional representation matrix S(A,B)→(MN)

of the transformation (A,B)→ (M,N) are

S
(A,B)→(MN)
F ϱF

=M(A,B)
F ϱF

|F,M,N , and S
(A,B)→(MN)
GF =M(A,B)

GF |F,M,N . (D.101)

A lengthy calculation shows that the concatenation of the expansion matrixM(M,N)

with the representation matrix of the transformation (A,B) → (M,N) equals the
expansion matrix relative to the species (A,B),

M(M,N) · S(A,B)→(MN) =M(A,B), (D.102)
which implies that the set of independent transport equations is invariant under
transformation of the set of designated species,

∂tc
(M,N)
all = ∂tc

(A,B)
all . (D.103)

Example: Quaternary Electrolyte As example, we consider our quaternary elec-
trolyte from chapter 6, and we state the transformation matrices corresponding to
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three different reference-species,

M(1→2) =

−M1/M2 0 0
−M3/M2 1 0
−M4/M2 0 1

 , and M(2→1) =

−M2/M1 0 0
−M3/M1 1 0
−M4/M1 0 1

 (D.104)

M(1→3) =

1 −M2/M3 0
0 −M1/M3 0
0 −M4/M3 1

 , and M(3→1) =

−M2/M3 0 0
−M1/M3 1 0
−M4/M3 0 1

 , (D.105)

M(1→4) =

0 0 −M1/M4
1 0 −M2/M4
0 1 −M3/M4

 , and M(4→1) =

−M2/M1 1 0
−M3/M1 0 1
−M4/M1 0 0

 . (D.106)

Thus, comparing eqs. (D.65) and (D.104) shows that M(2→1) follows from the mass-
matrix in eq. (D.65) by deleting the second column.

D.9 Validation: Supporting Information

In this section, we supplement our dicussion in chapter 6, and provide additional
informations.

Species Text Abbreviation Structure Formula

Choline acetate [Ch]OAc C7H17NO3
Zinc acetate Zn(OAc)2 ZnC4H6O4
Choline Ch+ C5H14NO
Acetate OAc– C2H3O2
Charged zinc-acetate complex [Zn(OAc)3]– ZnC6H9O6

Table D.2: Molecular complexes in the electrolyte.

Initial Concentrations and Partial Molar Volumes The initial species concentra-
tions follow from the data presented in the experimental work Ref. 311. The electro-
lyte consists of [Ch]OAc with 30 wt % water, with ratio b = Mwater/M[Ch]OAcWater =
0.3, to which 1.00·103 mol m−3 Zn(OAc)2 was added. Thus, the initial concentra-
tions of [Ch]OAc and of the water are determined by the electrolyte mass-denisty
ρelyte = 1.35·103 kg m−3, [314], via

c0
[Ch]OAc=(1−b)·(ρelyte−c0

Zn(OAc)2 ·MZn(OAc)2)/M[Ch]OAc =5·103 mol m−3, (D.107)
c0

water=(ρelyte−c0
Zn(OAc)2 ·MZn(OAc)2−c

0
[Ch]OAc·M[Ch]OAc)/Mwater . (D.108)
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Because of complete salt-dissociation, eqs. (D.107) and (D.108) imply c0
Ch+=c0

[Ch](OAc),
c0

[Zn(OAc)3]−=c0
Zn(OAc)2

=1 mol L−1, and c0
OAc−=c0

Ch+−c0
[Zn(OAc)3]− .

We model the electrolyte as incompressible mixture with constant partial molar
volumes. We fix νwater via data from the literature, [439], assume νOAc−/νCh+ =
0.8, and model the value for ν[Zn(OAc)3]− using the molar volume of zincate in the
electrolyte described in Ref. 440. Altogether,

νCh+=(1− c0
waterνwater − c0

[Zn(OAc)3]−ν[Zn(OAc)3]−)/(c+
Ch+ + 0.8 · c0

OAc−) . (D.109)

Table 6.1 comprises all initial concentrations and the molar volumes.

Transport Parameters and Viscosity There are six independent transport parame-
ters in the isothermal case, which all follow from the Onsager matrix (see eqs. (5.118)
to (5.121) and (5.126))

κ, t3, t4, D33, D34, D44. (D.110)

Although the Onsager matrix depends upon the choice of designated species, we
can easily transform into alternate reference frames (see appendix D.8). Thus, it
suffices to model the Onsager matrix relative to one particluar choice for the desig-
nated species. Here, we choose water as reference (α = 1) and model all transport
parameters relative to this choice. We derive the symmetric Onsager matrix from
hydrodynamical diffusion coefficients via Lα = Ðαcα/RT . These follow from a
naïve Stokes-Einstein approach Ðα = RTλdilute

α ηdilute/ηF 2zα. Here, λdilute are the
limiting equivalent conductivities under indefinite dilution. We take water as ref-
erence for the dilute viscosity ηdilute

α , whereas the viscosity of the electrolyte η was
measured by IoLiTec. [314] Thus, the final model for the Onsager coefficients reads
Lα = ηdiluteλdilute

α cα/F
2|zα|. We present all relevant parameters in table D.3.

Parameter Species Value Ref.
λdilute

α / S m2 mol−1 Ch+ 42.00·10−4 441
OAc– 40.89·10−4 442
[Zn(OAc)3]– 105.60·10−4 442

η / kg m−1 s−1 Electrolyte 25.30·10−3 314
Reference (water) 0.89·10−3 442

Table D.3: Parameters of the electrolyte-species.

Formalizing Chemical Reactions We neglect chemical reactions in the bulk elec-
trolyte, and focus on reactions at the interface of electrolyte and active particles,
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D Appendix to Part II

where they serve as source-terms. These Faradaic reactions couple the solid phase
with the electrolyte as they determine the boundary conditions for the fluxes. For
any species α, we model the surface reactions at the interface Γ by

rα =
∑

k

aΓ · ν Γ
k;α · iΓk . (D.111)

Here, aΓ is the specific electrode surface, and ν Γ
k;α are the stoichiometric coefficients

of reaction k. We use the convention that sign(ν Γ
k;α) = +1 for reactions k which in-

crease the amount of species α, and sign(ν Γ
k;α) = −1 for reactions k which reduce the

amount of species α. The stoichiometric coefficients of our model electrolyte can be
read off eqs. (6.5) and (6.6), and are summarized in table D.4. We model the surface

Electrode Species α ν Γ
k;α Type Reaction

Zinc-anode OAc– −3 educt Equation (6.6)
Zn −1 educt Equation (6.6)
[Zn(OAc)3]– 1 product Equation (6.6)
Electrons (e– ) 2 product Equation (6.6)

PBA-cathode OAc– 3 product Equation (6.5)
[ZnFe(III)(CN)6] 1 product Equation (6.5)
[Zn(OAc)3]– −1 educt Equation (6.5)
Electrons (e– ) −2 educt Equation (6.5)

Table D.4: Heterogeneous chemical reactions as product terms weighted by ν Γ
k;α.

The sign of stoichiometric coefficients ν Γ
k;α determines the type of reaction. Positive:

product; negative: educt.

reaction rates iΓk ([mol m−2 s−1]) using Butler-Volmer interface conditions, [316]

iΓ = iΓ0 · sinh(FzΓ
elη

Γ /2RT ). (D.112)

Here, FzΓ
el is the amount of charge per mole transferred across the interface in

the course of reaction k (zΓ
el is the electron-stoichiometry). We define the offset iΓ0

and the interface overpotential ηΓ , which are both functions of salt concentration, as
follows. Consider an arbitrary surface reaction of type νA ·A+νB ·B ⇋ νD ·D+νE ·E.
For this reaction, we define oxidation-/ reduction-constants

aox =
(
cA/c

0
A

)|νA|
·
(
cB/c

0
B

)|νB |
, and bred =

(
cD/c

0
D

)|νD|
·
(
cE/c

0
E

)|νE |
. (D.113)
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The fractions cJ/c
0
J measure the state-of-charge (SOC) of the particular species. For

example, in the case of conversion electrodes, ratios cJ/c
0
J = 1 (cJ/c

0
J = 0) imply

that the electrode is completely charged (discharged) with respect to the species
J . We use these oxidation-/ reduction-constants and determine the offset iΓ0 =
2k Γ
√
aoxbred. Here, k Γ are constant reaction rates which are material parameters.

We assume two contributions to the interface overpotentials ηΓ . First, a potential
difference ΦΓ

s −ΦΓ
l −UΓ

0 , where ΦΓ
s is the electrode-potential, ΦΓ

s is the electrolyte
potential, and UΓ

0 (SOC) is the respective half-cell open circuit potential. Second,
an “entropic” contribution, such that

ηΓ = ΦΓ
s − ΦΓ

l − UΓ
0 −RT/FzΓ

el · ln (aox/bred ) . (D.114)

Solid Phase (Electrodes): Model Equations We model the anode as zinc foil
and set the half-cell voltage to Φanode = 0. For the flux boundary conditions of
[Zn(OAc)3]– -/ and OAc– -ions, we use Butler-Volmer type reactions (see eq. (D.112)).
In contrast, we describe the PBA-cathode via the two solid-phase variables cPBA

Zn
and ΦPBA, and apply porous electrode theory, [315] where we neglect diffusion of zinc
in the cathode. Thus, the net loss of zinc-salt in the electrolyte equals the zinc-
concentration in the PBA-cathode, where the electrolytic salt-loss is determined by
the reaction rate eq. (D.111),

∂tc
PBA
Zn = −rPBA

Zn /(1− εPBA). (D.115)

The denominator on the right side accounts for the porous structure, where εelyte +
εPBA = 1. However, instead of the absolute concentration cPBA

Zn , we shall use the
more accessible weighted expression SOC = cPBA

Zn /cPBA;max
Zn as primary variable,

which measures the state of charge of the PBA-cathode (SOC = 1 corresponds to a
fully charged state). Thus, the model equation reads

∂tSOC = −rPBA
Zn /[(1− εPBA) · cPBA;max

Zn ] . (D.116)

We determine the half-cell-voltage ΦPBA from flux the cathode-electrolyte boundary
condition. Integration of eq. (6.8) yields for the interface condition

0 = I +
∫

dx
4∑

α=1
Fzα · rPBA

α

(
ΦPBA

)
, (D.117)

which implicitely determines the half-cell potential via rPBA
α (ΦPBA).
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Electrode Parameters Similar to the liquid phase, we assume constant volume
fractions of the zinc-anode, separator and PBA-cathode. The experimental data
provided in Ref. 311 allows to calculate the volume-fraction of the PBA-cathode

εPBA = 1−mload/l
PBAρPBA ≈ 0.26. (D.118)

Here, mload denotes the mass-loading, and lPBA is the cathode-thickness. The maxi-
mal zinc concentration in the PBA-structure is cPBA;max

Zn =ρPBA/(4MPBA). We sum-
marize the electrode parameters of the PBA-cathode in table D.5.

Parameter Electrode Value Source
Specific surface area a / m−1 Anode 1.0·105 Fit parameter

Cathode 1.0·104 Fit parameter
Reaction rate k / mol m−2 s−1 Anode 1.0·10−7 Fit parameter

Cathode 1.0·10−7 Fit parameter
Volume fraction ε Anode 3.0·10−1 Fit parameter

Separator 3.0·10−1 Fit parameter
Cathode 2.6·10−1 Calculated

Mass loading mload / kg m−2 Cathode 9.5·10−2 312
Thickness l / m−1 Cathode 1.5·10−4 312
Mass density ρPBA / kg m−3 Cathode 1.8·103 312

Table D.5: Battery-Parameters.

Implementation: Computational Details For the numerical simulations, we im-
plement the as-discussed model in a one-dimensional finite-volume model in MAT-
LAB. We erect a grid of length Lcell = 300 µm, which consists of the zinc anode
(x = [0; 150 µm]), followed by the separator (x = [150 µm, 200 µm]), and the PBA-
cathode (x = [200 µm;Lcell]). The step size of our grid is ∆x = 2.8 µm. We solve
the model equations using the fully implicit ode15i MATLAB-solver for differential
algebraic equations. Relative and absolute tolerances were both set to 10−6.

D.10 Thermal Aspects

In this section, we discuss thermal aspects of our electrolyte transport theory.
First, in appendix D.10.1, we derive the missing transport equation for tempera-
ture (“heat equation”), which closes the system of transport equations. Next, in
appendix D.10.2, we expand the chemical potentials in the variable-set determined
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by the materials law eq. (5.65). Thereby, we obtain a detailed understanding of the
temperature-evolution, and identify various thermal effects.

D.10.1 Heat Equation

As shown in Ref. 64, it can be a bad approximation to neglect temperature varia-
tions, since these can have a significant impact on lifetime and degradation processes
occurring in lithium ion batteries. Here, we account for such effects, and derive an
equation for the temperature using the entropy inequality eq. (5.39). We bring the
entropy inequality in the form of a balance law, and neglect the source-term h,

ρT ṡ = R− T∇ξs. (D.119)

Next, we use the materials law eq. (5.65), the set of isothermal transport equations,
and eq. (D.119) to describe the evolution of entropy (where s(T, cα,E,B,Funi,κ)),

ρṡ=ρ

 ∂s
∂T

Ṫ+
N∑

β=1

∂s

∂cβ
ċβ+ ∂s

∂E
Ė+ ∂s

∂BḂ+ ∂s

∂κ
:κ̇+ ∂s

∂ Funi : ˙Funi

 . (D.120)

Here, C = ρT · ∂s/∂T is the total heat capacity. Next, we solve eq. (D.120) for Ṫ ,
and substitute for ṡ in eq. (D.119),

C Ṫ=R−T∇ξs−ρT

 N∑
β=1

∂s

∂cβ
·ċβ+ ∂s

∂E
·Ė+ ∂s

∂B ·Ḃ+ ∂s

∂κ
:κ̇+ ∂s

∂ Funi : Ḟuni

 . (D.121)

From the constitutive equations and the independency of the primary variables in
the materials law, it follows that we can transfer the total time-derivatives to flux-
terms, using the Abelian property

∂s/∂ΥA = −∂/∂T [∂φH/∂ΥA], (D.122)

Also, we use ċα = −cα ·∇v −∇Nα, and ∂(ρφH)/∂ Funi : (d Funi /dt) = Dtf , see
appendix D.2. Furthermore, since ∂(ρφH)/∂κ = 0, we find

C Ṫ=R−T∇ξs−T
∂(Pel Id +Dtf)

∂T
:κ−T

N∑
α=1

∇Nα·
∂µα

∂T
+T ∂P

∂T
Ė+T ∂M

∂T
Ḃ. (D.123)

Here, Pel =
∑N

α=1 cαµα − ρφH is the elastic pressure introduced in section 5.2.3.
However, eq. (D.123) contains redundant fluxes, as the sum appearing in the fourth
term on the right hand side begins with α = 1. We reduce this term to the inde-
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pendent set of N-1 fluxes using eqs. (5.108) and (5.246) (R is given by eq. (5.140)),

C
T
Ṫ=R

T
−∇ξs−

∂(µ̃2+ν̃2P
el)

∂T

T

F z̃2
∇J F−

N∑
α=3

∂(˜̃µα+˜̃ναP
el)

∂T
∇Nα−

∂Dtf
∂T

+ ∂

∂T

(
PĖ+MḂ

)
(D.124)

When temperature influences on the polarization, magnetization and on D can be
meglected, this becomes

C
T
Ṫ = R

T
−∇ξs −

∂
(
µ̃2 + ν̃2P

el
)

∂T

T

F z̃2
∇J F −

N∑
α=3

∂(˜̃µα + ˜̃ναP
el)

∂T
∇Nα. (D.125)

D.10.2 Hydrodynamical Expansion

To obtain a better understanding of the mixing-term in eq. (5.140), we evalu-
ate the gradients of the chemical potentials appearing in the reduced set of ther-
modynamic forces Xred. The chemical potentials ˜̃µα(Υ ) inherit the variable set
Υ = (T, cβ,E,B,Funi,κ) from the free energy. In particular, using the chain-law,

∇µα=
[(

∂

∂cα

∑
A

∂(ρφH)
∂ΥA

)
∇
]
ΥA=

N∑
β=1

∂µα

∂cβ
∇cβ−

∂(ρs)
∂cα︸    ︷︷    ︸
−∂µα

∂T

∇T−
(
∂P
∂cα

∇
)

︸         ︷︷         ︸
−∂µα

∂E
∇

E

−
(
∂M
∂cα

∇
)

︸          ︷︷          ︸
−∂µα

∂B ∇

B+
[
∂2(ρφH)
∂cα∂ Funi⊗∇

]
︸                   ︷︷                   ︸

∂µα

∂ Funi

⊗∇ Funi . (D.126)

Therefore, ∂P/∂cα determines if the chemical potential depends on E, and ∂M/∂cα

determines if the chemical potential depends on B. In contrast to, e.g., ion-conducting
solid-electrolytes, where the polarizability of the electrolyte depends on ion concen-
tration, such contributions are usually neglected in liquid electrolytes. [64] In par-
ticular, in linear constitutive models, where, e.g. P = ε0χE, the susceptibility
determines whether the chemical potential depends on the electric field, ∂µα/∂E ∝
E · ∂χ/∂cα. Here, we assume ∂P/∂cα = ∂M/∂cα = 0, and neglect ∂µα/∂ Funi .

Next, we expand ∇µα in the gradients of the concentrations and temperature
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alone. However, the independent potential-gradients are (see eqs. (5.222) and (5.223))

Z = (∇ϱF/F ,∇c3, . . . ,∇cN,∇T )T . (D.127)
There exists a (N+1)×N matrix M(να,Mα) such that

(∇c1, . . . ,∇cN,∇T )T = M · Z. (D.128)

Therefore, we define a (N−1) × N matrix đ , such that the independent force-
expansion becomes

Xred=



∂ ˜̃µ3
∂c1

. . .
∂ ˜̃µ3
∂cN

∂ ˜̃µ3
∂T

...
. . .

...
...

∂ ˜̃µN
∂c1

. . .
∂ ˜̃µN
∂cN

∂ ˜̃µN
∂T

0 . . . 0 1





∇c1
...
...

∇cN
∇T


=


đ3ϱ đ33 . . . đ3N ∂T

˜̃µ3
...

...
. . .

...
...

đNϱ đN3 . . . đNN ∂T
˜̃µN

0 0 . . . 0 1




∇ϱ/F
∇c3
...

∇cN
∇T


=đ ·Z. (D.129)

Using eq. (5.138) suggests defining a (N−1)×N-matrix Ð = Dred · đ , such that

Ψred = −Ð · Z, (D.130)

with the independent diffusion-matrix

Ð =



Ð3ϱ Ð33 . . . Ð3N S3
...

...
...

...
...

...
...

...
...

...
ÐNϱ ÐN3 . . . ÐNN SN
Dϱ D3 . . . DN λ


. (D.131)

We define the thermal coefficients Sα,Dα and λ of Ð in table D.6. Above, we use
a special notation defined as follows. Greek indices denote independent species, viz.
3 ≤ α ≤ N, and α , T and α , ϱF. The index “ϱ” relates to the first non-vanishing
independent force ∇ϱF/F , whereas the index “T” relates to the independent force
∇T . Furthermore, the definition of Ð = Dred · đ is subject to the rule that it acts
on Z according to ÐZ = Dred · (đZ). Thus, the entropy inequality expanded in the
independent forces, eq. (5.140), becomes

R = τ : κ + J 2
F/κ + ZT ·H · Z, where H = ÐT đ . (D.132)

Lemma 28. The N×N hydrodynamic diffusion matrix H is symmetric and semi-
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Term Name Effect

Sα=DαT +
∑N

γ=1Dαγ ·∂ ˜̃µγ/∂TđγT Soret coefficients. Thermophoresis.
β̆=β+

∑N
β=3 tβ/F

2z̃β·∂ ˜̃µβ/∂T Seebeck coefficient. Thermophoresis.
Dα=ÐαT Dufour coefficients. “Inverse” thermophoresis.
Dϱ=ÐϱT Dufour coefficient. Double-layer effect.
λ=ÐT T =γ/T−β2κ+

∑N
γ=3DT γ∂T

˜̃µγHeat conductivity. Thermal conduction.

Table D.6: Hydrodynamical thermal coefficients.

positive definite.

Proof. By construction, HT = đT Ð = đT Dredđ = (DT
redđ)T đ = H. Furthermore,

the mixing part in the entropy inequality becomes X T
redDredXred = ZT HTZ ≥ 0.

Thus, due to symmetry, H is semi-positive definite. □

The hydrodynamical matrix Ð comprises various thermal effects. These can be
evaluated by expanding the thermodynamic fluxes Ψred in the independent forces Z,
as described by eq. (D.130),

Nα −
tα
F z̃α

J F = − 1
F

Ðαϱ ·∇ϱF −
N∑

β=3
Ðαβ ·∇cβ − Sα ·∇T, (D.133)

ξs − βJ F = − 1
F

Dϱ ·∇ϱF −
N∑

β=3
Dβ ·∇cβ − λ ·∇T, (D.134)

J F = −κ∇φ− κ
F 2

N∑
β=3

tβ
F z̃β

đβϱ ·∇ϱF −
κ

F

N∑
γ,β=3

tβđβγ

F z̃β
·∇cγ − κβ̆ ·∇T. (D.135)

The Soret coefficients Sα and the thermophoretic Seebeck coefficient β̆ describe
fluxes of mass and charge due to temperature gradients (thermophoresis / “Ludwig-
Soret-effect”). The “inverse”-Soret effect (flux of heat due to concentration-gradients,
or gradients in ϱ) are described by Dufour-coefficients Dα,Dϱ. The coefficient Dϱ

measures a thermal double-layer contribution (regions where ϱ , 0).
Next, we express the heat equation via Z, to study the influence of these ther-

mal phenomena on temperature. For this purpose, we substitute eqs. (D.133)
and (D.134) into eq. (D.125), and neglect terms ∇[∂T (µ̃2 + ν̃2P

el)] and ∇[∂T (˜̃µα +
˜̃ναP

el)] (hence temperature inhomogeneities in the chemical potentials and the pres-
sure are equilibrated very fast). Using eq. (5.119), this yields ∇β = −β∇ log κ +
F/κ ·

∑N
α=2 ∇LαT · z̃α. We neglect the logarithmic term and assume that the only
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term depending on T is LαT (T ). Hence, ∇β(T ) = ∂β/∂T ·∇T , for which we use the
Thomson-relation µT = T · ∂β/∂T . Thus, µT = F/κT ·

∑N
α=2 ∂TLαT z̃α. Altogether,

the hydrodynamical expansion of the heat equation becomes

C Ṫ =R− µTJ F∇T − T
[
β+ ∂

∂T

(
µ̃2 + ν̃2P

el

F z̃2
+

N∑
α=3

tα
˜̃µα + ˜̃ναP

el

F z̃α

)]
∇J F

+ T

F
∇

Dϱ +
N∑

α=3

∂
(

˜̃µα + ˜̃ναP
el
)

∂T
·Ðαϱ

∇ϱ


+ T

N∑
γ=3

∇

Dγ +
N∑

α=3

∂
(

˜̃µα + ˜̃ναP
el
)

∂T
·Ðαγ

∇cγ


+ T∇

λ+
N∑

α=3

∂
(

˜̃µα + ˜̃ναP
el
)

∂T
· Sα

∇T

 . (D.136)

Apparently, all hydrodynamical thermal coefficients β,Dϱ,Dγ , λ are supplemented
by corrections (stemming from the derivatives ∂s/∂cγ), which take account for
temperature-inhomogeneities of the chemical potentials and pressure,

β̃p = β̃+ 1
F z̃2

∂(ν̃2p)
∂T

+
N∑

α=3

tα
F z̃α

∂(˜̃ναP
el)

∂T
, where β̃ = β̆+ 1

F z̃2

∂µ̃2
∂T

, (D.137)

D̃p
ϱ = D̃ϱ +

N∑
α=3

Ðαϱ ·
∂(˜̃ναP

el)
∂T

, where D̃ϱ = Dϱ +
N∑

α=3
Ðαϱ ·

∂ ˜̃µα

∂T
, (D.138)

D̃p
γ = D̃γ +

N∑
α=3

Ðαγ ·
∂(˜̃ναP

el)
∂T

, where D̃γ = Dγ +
N∑

α=3
Ðαγ ·

∂ ˜̃µα

∂T
, (D.139)

λ̃
p = λ̃+

N∑
α=3

Sα ·
∂
(

˜̃ναP
el
)

∂T
, where λ̃ = λ+

N∑
α=3

Sα ·
∂ ˜̃µα

∂T
. (D.140)

Using these definitions, we find for the hydrodynamical heat equation eq. (D.136)

C Ṫ =τ : κ + J 2
F/κ + ZT HZ− µTJ F∇T − T β̃∇J F + T/F ∇D̃ϱ∇ϱ

+ T
N∑

γ=3
∇D̃γ∇cγ + T∇λ̃∇T + T∂Pel/∂T ·∇v

=τ : κ + J 2
F/κ + ZT HZ− µTJ F∇T − T β̃p∇J F + T/F ∇D̃p

ϱ∇ϱ

+ T
N∑

γ=3
∇D̃p

γ∇cγ + T∇λ̃p∇T. (D.141)
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Various heating effects can be identified. Mechanical stress / viscous friction (first
term), Joule heating (second term), and entropy of mixing (third term) strictly
increase temperature. The fourth term describes heat-transport along electric cur-
rents, which either decrease or increase temperature (“Thomson effect”). The fifth
and sixth term describe thermo-migration and thermo-charging. Both vanish in
electroneutral regions (bulk electrolyte). The seventh term describes temperature
variations due to species-diffusion (“Dufour-effect”). The last term describes thermal
conduction. For incompressible electrolytes, λ̃ ≥ 0, and hence this term equilibrates
temperature-inhomogeneities (see eq. (D.143)).

Still, the constraint implied by Lemma 28 on the coefficients of H must be taken
account for. Since the mixing term appearing in the entropy inequality, eq. (D.132),
fullfills ZT ·H · Z ≥ 0, we thus find

ZT HZ = Hϱϱ/F
2 ·(∇ϱ)2+

N∑
α,β=3

Hαβ(∇cα)(∇cβ)+2
[ N∑

α=3
HT α∇cα + HT ϱ∇ϱ

]
∇T

+ 2Hαϱ (∇ϱ) (∇cα) + HT T (∇T )2 ≥ 0. (D.142)

As consequence, the diagonal elements Hϱϱ,Hαα,HT T are non-negative, whereas the
submatrix Hαβ is semi-positive definite. We introduce the hydrodynamical coeffi-
cient λ̆ = HT T , such that

λ̆ = λ+
N∑

γ=3
Sγ · ∂ ˜̃µγ/∂T = λ̃−

N∑
γ=3

Sγ · ∂(˜̃νγP
el)/∂T ≥ 0. (D.143)

Above, we showed that ∂TP
el can be neglected for incompressible electrolytes. [274]

Hence, in this limit, λ̆ = λ̃ ≥ 0. Thus heat conduction (last term in eq. (D.142))
increases temperature, and equilibrates temperature inhomogeneities.

Thermal Model Yet, the temperature dependence of our model free energy eq. (5.153)
is only comprised in the entropic mixing-term, RT

∑N
α=1 cα ln(cα/c), and in the inter-

action free energy. Since the mixing term is linear in T , the internal energy density,
determined by eq. (5.74), and the entropy density, determined by the constitutive
equation eq. (5.68), do not depend on temperature. However, this contracdicts ex-
perimental observations, and suggests that we extend our model for φH by a thermal
term.

We state our thermal entropy model relative to a reference temperature TR and
neglect ρφint

H for dilute electrolytes (f αc = 1). We demand from our thermal model:
(i) it vanishes for constant temperature (T = TR), (ii), it is strictly positive, and,
(iii), increases for cooling and heating relative to the reference-temperature TR. It
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Term Effect Interpretation

τ : κ ≥ 0 Viscous friction. Increases temperature.
J 2

F/κ ≥ 0 Joule heating Increases temperature.
−µTJ F∇T Thomson effect. Thermoelectric effect.(
Z(α)

)T
·H ·Z(α) Multi-component mixing. Increases temperature.

T/F∇D̃ϱ∇ϱ−T β̃∇J FElectric / double-layer effect. Vanishes in bulk.
T∇

∑N
γ=3 D̃γ∇cγ Dufour-effect. Species diffusion.

T∇ (λ̃ ·∇T ) Thermal conduction. Equilibrates temperature.
T ·∇v · ∂Pel/∂T Pressure effect. Vanishes if ∇v = 0.

Table D.7: Contributions to the heat equation.

can easily be shown that these requirements are satisfied by the following model,

ρsth = ln(T/TR) ·
N∑

α=1
ραCα. (D.144)

Upon integration of the constitutive equation for s, and using the integral law∫
dx log(x/const ) = x log(x/const ) − x, this model implies a thermal contribution

to the free energy density, [140]

ρφtherm
H = (T − TR − T lnT/TR)

N∑
α=1

Cαρα. (D.145)
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E.1 Gradient Expansion

In this section, we show that the assumption of short-ranged potentials F in eq. (8.27)
can be used to approximate the convolution integral F int by an expansion in gradi-
ents of the species-concentrations as discussed in section 8.4.

For simplictiy, we focus on the one-dimensional case. However, the generalization
to three dimensions is straightforward. Starting point for our discussion is the Ansatz
for the one-dimensional interaction functional,

F int = 1
2

N∑
α, β

∫
Ωy

dy cα(y)

 ∫
Ωx

dx Fαβ(|x− y|)cβ(x)

 . (E.1)

The spherically symmetric hardcore potential Fαβ = V0(NA)2F̃(ℓint)αβ determines
F int[cα], see eq. (8.28). Our basic argument is that the non-local correlations decay
after some ion-sizes, i.e. that there exists a correlation length ℓint which determines
an effective support Ωx → Ω[ℓint] of the function F̃ (typically, ℓint is not larger than
some nanometers). Thus we use the approximation∫

Ωx

dx Fαβ(|x− y|)cβ(x) ≈
∫

Ω[ℓint]

dx Fαβ(|x− y|)cβ(x). (E.2)

Next, we make use of the fact that the variable “y” appearing in the integral on the
right side of eq. (E.2) is merely a constant. Thus, for any position “y”, we reduce
the integration limits to an interval around y, which is determined by the correlation
length, Ω[ℓint] = [y − ℓint; y + ℓint]. Altogether,

F int[cγ ] = 1
2
∑
α, β

∫
Ωy

dy cα(y)

 y+ℓint∫
y−ℓint

dx Fαβ (|x− y|) cβ(x)

 . (E.3)

Our next step is to decouple the two nested integrals appearing on the right side
of eq. (E.3). For this purpose, we make a coordinate transformation g : x → y + ε
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to relative coordinates. Hence, ε = x − y, where x = ε + y and ε = g−1(x0) =
x0 − y. Taking account for the correct transformation of the integration limits
(g−1(y − σαβ) = −σαβ and g−1(y + σαβ) = σαβ), we find

F int[cγ ] = 1
2
∑
α, β

∫
Ωy

dy cα(y)

 ℓint∫
−ℓint

dε Fαβ (|ε|) cβ(y + ε)

 . (E.4)

Without loss of generality, we assume that |ε| ≪ |y|, and Taylor-expand the ion-
concentration cβ(y + ε) =

∑∞
n=0 ε

n/n! ·∇ncβ(y). By substitution of the concentra-
tion, eq. (E.4) decouples into the product of two independent integrals

F int[cγ ] = 1
2
∑
α, β

∞∑
n=0

1
n!

 ℓint∫
−ℓint

dε Fαβ (|ε|) εn

 ·
 ∫

Ωy

dy cα(y) ·∇ncβ(y)

 . (E.5)

The spherical symmetry of the interaction potential appearing on the right side of
eq. (E.5) implies all integrals over odd modes n vanish identically. Thus, it suffices
to reduce the expansion on the right side of eq. (E.5) to the sum over even modes
n. Furthermore, the integration limits in all remaining terms can be translated,∫ ℓint

−ℓint
dεFαβ (|ε|) ε2n =

∫ ℓint
0 dεFαβ (|ε|) ε2n. Therefore, using again the approxima-

tion eq. (E.2), we can expand the free energy via

F int[cγ ] = 1
2
∑
α, β

∞∑
n=0

Γ 2n
αβ ·

∫
Ωy

dy cα(y) ·∇2ncβ(y), (E.6)

where we introduced perturbation modes

Γn
αβ = 1/(n!) ·

∞∫
0

dε Fαβ(|ε|) · εn. (E.7)

Finally, we note that the expansion eq. (E.6) can be re-expressed if all derivatives
vanish at the boundaries of the integration-domain, i.e. ∇ncγ |Ω = 0. In this case,
the n-fold application of the method of integration by parts yields

F int[cγ ] = 1
2
∑
α, β

∞∑
n=0

(−1)n · Γ 2n
αβ ·

∫
Ωy

dy (∇ncα) · (∇ncβ) . (E.8)

However, if the derivatives do not vanish at the boundary, then eq. (E.8) must be
supplemented by corresponding surface-integrals.
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E.2 Functional Derivative

In this section, we briefly introduce the formal definition of functional derivatives,
and apply them to the functionals appearing in our theory.

In general, the functional derivative of a quantity F [cγ ] =
∫

Ωx
dxΨ(cγ ,∇ncγ),

denoted δF/δcγ , is defined using an arbitrary auxiliary function ϕ(x), [443]

∫
Ωx

dx δF
δcγ
· ϕ = lim

ε→0

F [cγ + εϕ]− F [cγ ]
ε

(E.9)

= d
dε

∣∣∣∣
ε=0

∫
Ωx

dx Ψ (cγ + εϕ,∇ncγ + ε∇nϕ) (E.10)

=
∫

Ωx

dx

 ∂Ψ

∂cγ
+

∞∑
i=1

(−1)i ·∇i

 ∂Ψ

∂
(
∇icγ

)
 · ϕ. (E.11)

Next, this formula to the chemical potentials appearing in our framework, which
are defined via the functional derivative of the free energy functional with respect to
species concentrations, see eq. (8.15). Hence, we calculate the functional derivatives
of the quantities appearing in eqs. (E.6) and (E.7).

Hence, we substitute Ψ(cγ ,∇ncγ) = 1/2 ·
∑

α, β

∑∞
n=0 Γ

2n
αβ · cα ·∇2ncβ into the

recipe for the functional derivatives eq. (E.11). We find for the different terms,

∂Ψ

∂cγ
=
∑

α

Γ 0
γα · cα + 1

2
∑

α

∞∑
n=1

Γn
γα ·∇2ncα, (E.12)

and

∞∑
i=1

(−1)i ·∇i ∂Ψ

∂(∇icγ)
= 1

2

∞∑
i=1

(−1)i ·∇i

∑
α, β

∞∑
n=1

Γn
αβ · cα · δβ

γ · δ2n
i


= 1

2
∑

α

∞∑
n=1

Γ 2n
γα ·∇2ncα.

(E.13)

Altogether, we thus find for the excess chemical potentials due to the interaction
contributions in the free energy,

δF int

δcα(z) =
N∑

β=1

∞∑
n=0

Γ 2n
αβ ·∇2ncβ(z). (E.14)
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E.3 Symmetry of Conservative Interaction Potentials

In this section we discuss a consequence of the spherical symmetry of interaction
potentials on the excess chemical potential. In particular, we rationalize the step
from eq. (9.21) to eq. (9.22).

Lemma 29. For any spherically symmetric potential Fαβ(|r|), ∇x
∫

dy3 Fαβ(|x −
y|) = 0.

Proof. We exploit the symmetry porperty of Fαβ and make a coordinate transfor-
mation to spherical coordinates. Without loss of generality, we choose x = 0, such
that the coordinate of radial distance becomes r = (|x − y|) = |y|. Here, the cor-
responding radial vector is defined by r = r · êr = r · (sin θ cosϕ, cos θ sinϕ, cos θ)T ,
whereas the angular coordinates are comprised in the element dΩ = sin θ · dθdϕ.
Thus, we find

∇x

∫
dy3 Fαβ(|x− y|) = −

∫
drF′

αβ(r)/r ·
"

dΩ r. (E.15)

Above, we used the notation F′
αβ = ∂Fαβ/∂r. However, it is easy to show that!

dΩ r = r ·
!

dΩ êr = 0, when one integrates over the complete sphere (i.e.
θ ∈ [;π], and ϕ ∈ [0; 2π]). This completes the proof. □

E.4 Phase Space Analysis

In this section we prove Theorem 1, i.e. show that there exist three independent
phases for the of screening profiles. To improve the logical structure of the proof,
we first present some Lemmata, before we state the explicit proof of the Theorem.

For completeness, we restate our finding for the eigenvalues α̃1,2, and the phase
boundaries V0

± from section 10.3.2, using the (strictly positive) parameters ζ =
1/Γ̃ 0

+− and χ = 8/πν̃Γ̃ 0
+−,

α̃1,2=−22ζEth/χEel ·
[(

1− ζ · Eth/V
0
)
∓
√

(1− ζ · Eth/V0 )2 − χ · Eel/V0
]
.

(E.16)
The eigenvalues α̃1,2 in eq. (E.16) determine the screening phase via the wave-
length k̃ =

√
α̃1,2. Thus, the number-field of α̃1,2 is critical for the interface-profile.

This suggests that we examine, the root W appearing in the eigenvalue-equation
eq. (E.16),

W(V0) = 1− [2ζ · Eth + χ · Eel] /V0 + ζ2 · E2
th/(V0)2. (E.17)
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The sign of the root W determines if α̃1,2 is complex-valued or real-valued. Thus,
we need the critical interaction energies W(V0

±) = 0, viz.

V0
± = ζ · Eth + χ · Eel/2±

√
χ · Eel (χ · Eel/4 + ζ · Eth). (E.18)

Lemma 30. ζEth + χEel/2 < V0
+ ≤ χEel + ζEth +

√
χζEelEth.

Proof. The left side of the inequality follows trivially from eq. (E.18). However, the
righ side follows from the triangle-inequality,

√
χ · Eel (χ · Eel/4 + ζ · Eth) ≤ χEel/2+√

χζEelEth. This completes the proof. □

Lemma 31. Both roots V0
± are positive.

Proof. Positivity of V0
+ is trivial. In order to prove positivity of V0

−, we re-express
V0

− via V0
− = χEel/2 · (1+2ζ ·Eth/χ ·Eel−

√
1 + 4ζ · Eth/χ · Eel). Next, we note that

for any x > 0, the relation 1 + x < 1 + x + x2/4 implies
√

1 + x < 1 + x/2. Thus,√
1 + 4ζ · Eth/χ · Eel < 1 + 2ζ ·Eth/χ ·Eel, such that the bracked term appearing in

V0
− is positive and not zero (see above). □

In order to identify the sign of th root W in the three different regions separated
by V0

±, we calculate the derivative of W with respect to V0, i.e. W′ = dW/dV0 =
(V0 · [2ζ ·Eth + χ ·Eel]− 2ζ2 ·E2

th)/(V0)3, and identify the extremum W′(V0
□) = 0 via

V0
□ = ζ · Eth/(1 + χ · Eel/2ζ · Eth) .

Lemma 32. V0
− < V0

□ < V0
+.

Proof. From the result for V0
□ follows directly that V0

□ < ζ · Eth. Hence, due to
Lemma 30, V0

□ < V0
+. In order to prove the second claim of the Lemma, we expand

V0
− in V0

□,

V0
−=V0

□

(
1+ χEel

2ζEth

[
1+
(

1+ χEel
2ζEth

)
·
(

1−
√

1+4ζEth/χEel

)])
. (E.19)

The square-root on the right side is larger than one. Simple algebra then implies
that the outermost bracked term is smaller than one, which completes the proof. □

Lemma 33. V0
− < ζEth.

Proof. Apparently, the results for V0
□ from above implies that V0

□ < ζ · Eth. Thus,
due to transitivity, Lemma 32 completes the proof. □
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Lemma 34. W(V0
□) < 0.

Proof. Insertion of the result for V0
□ from above into eq. (E.17) yields W(V0

□) =
−(4 + χ · Eel/ζ · Eth) · χ · Eel/4ζ · Eth. All prefactors are positive, which completes
the proof. □

The roots V0
± define three regions along the direction of increasing parameter V0.

Region I : 0 < V0 < V0
−; region II V0

− < V0 < V0
+; Region III : V0

+ < V0 V0.

Lemma 35. The root W is positive in regions I&III, and negative in region II.

Proof. This follows from Lemma 34, together with the relations implied by Lemma
32. □

Lemma 36. In regions I&III, 0 < χEelV
0/(ζEth − V0)2 < 1.

Proof. In these regions, W > 0. Hence, (1 − ζEth/V
0)2 > χEel/V

0. This completes
the proof. □

The inequality stated in Lemma 36 is useful to check for the sign of the eigenvalues
α̃1,2. For this purpose, we write eq. (E.16) in the form

α̃1,2 = −2ζEth/χEel ·
(
1− ζ · Eth/V

0
)
·
[
1∓

√
1− χEelV0/(ζEth − V0)2

]
. (E.20)

Lemma 37. All eigenvalues are real and positive in region I, i.e. 0 < α̃1,2(V0 <
V0

−) ∈ R.

Proof. Let V0 < V0
−. Thus, α̃1,2 ∈ R, since W > 0 according to Lemma 35. Due to

Lemma 36, the last factor in eq. (E.20) is always positive in this region. Thus, the
sign of the eigenvalues are determined by the relative magnitude of V0 and ζEth.
However, due to Lemma 33, V0 < ζ ·Eth in this region such that 1− ζ ·Eth/V

0 < 0.
This completes the proof. □

Lemma 38. All eigenvalues are real and negative in region III, i.e. 0 > α̃1,2(V0
+ <

V0) ∈ R.

Proof. We apply the same argument as in the proof for Lemma 36. Again, the sign
of the eigenvalues are determined by the ratio ζEth/V

0. However, in region III,
ζEth < V0, which completes the proof. □
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Lemma 39. All eigenvalues are complex in region II, i.e. α̃1,2(V0
− < V0 < V0

+) ∈
R× i · R.

Proof. Due to Lemma 35,
√
W ∈ i ·R. Thus, according to eq. (E.20), the eigenvalues

have the form α̃1,2 = 2ζEth/χEel · (ζEth/V
0 − 1) · (1± i ·w), where w = Im(

√
W) ∈

R. □

Lemma 40. 0 > α̃1,2(V0
+) ∈ R, and 0 < α̃1,2(V0

−) ∈ R.

Proof. By construction, W(V0
±) = 0, such that the eigenvalue-equation is real-

valued, and becomes α̃1,2(V0
±) = 2ζEth/χEel · (ζ ·Eth/V

0
± − 1). Lemmata 30 and 33

then complete the proof. □

Finally, we state the proof of our main Theorem.

Proof of Theorem 1. The screening parameter k̃± = ±
√
α̃1,2 determines the profile

of the solution eq. (10.28). Thus, the profile depends upon the number-field of α̃1,2.
Using Lemmata 37-40 then completes the proof. □

E.5 Validation: Supporting Information

Parameters PYR[1,4 ]TFSI Here, we give supplementary information for the neat
IL electrolyte PYR[1,4 ]TFSI, see chapter 12. The structure formula of the IL is
C11H20F6N2O4S2. We state all parameters which are relevant for our numerical
discussion in table E.1. The parameters for mass density and conductivity were
provided by Iolitec. [444] Experimental measurements of relative dielectric constants
for IL-electrolytes are challenging. [445] Usually, values for εR are taken between 10-20
in continuum simulations of IL electrolytes near electrified interfaces. [69,232] Here, the
value for the relative dielectric constant, εR=15, was taken from the literature. [446]

The ion-size a was estimated (see also Ref. 345). The molar masses were calculated
from the structure formulas of the dissociated IL-ions (structure formula of PYR1,4:
C9H20N; structure formula of TFSA: C2F6N2O4S2). Since the anion-mass is roughly
twice the cation-mass, the mass-ratio appearing in the asymmetry parameter χ (see
eq. (9.45)) is thus MPYR[1,4 ]/MIL =1/3 . Hence, the correction in the transport
equations (see eqs. (9.39) and (9.41)) can be assumed small (χ ≈ 0) over a broad
range of relative molar volumes γ+, see also fig. 9.1. We calculate the total molar
volume ν=3.1·10−4 m3 mol−1 as explained in Ref. 345, which corresponds to a bulk-
concentration of cb=3.4·104 mol m−3, see eq. (9.4).
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Parameter Values Source
Total mass density ρ / kg m−3 1.4·103 Ref. 444
Electric conductivity κ / S m−1 2.1·10−1 Ref. 444
Dielectric constant εR / - 1.5·101 Ref. 446
Ion size a / nm 0.7 Ref. 345
Molar mass MPYR[1,4 ] / kg mol−1 142.3·10−3 calculated
Molar mass MTFSA / kg mol−1 280.1·10−3 calculated
Partial molar volume ν / m3 mol−1 3.0·10−4 Ref. 345

Table E.1: Parameters for the IL-electrolyte PYR[1,4 ]TFSI.

Parameters PYR[1,4 ]TFSI+ AgTFSI In this section we give supporting informa-
tion for the discussion of the ternary electrolyte PYR[1,4 ]TFSI added by a minor
amount of AgTFSI.

We use the same value for the electric conductivity as stated for the binary system,
see table E.1. Furthermore, we set ts=1 and Ds=1·10−12. In our simulations, we
use the molar volume of the binary IL PYR[1,4 ]TFSI as stated in table E.1 for νIL,
and assume that ν+=ν−. Furthermore, we assume that νs=0.05 · νIL and use the
minor amount of silver salt, cb

s , as input parameters from which we calculate the
initial bulk concentrations of the IL species. From electroneutrality and the Euler
equation of the volume follows that

cb
+(cs,νs,νIL) = [1− cb

s · (νs + νIL)]/νIL , and cb
− = cb

+ + cb
s . (E.21)

Implementation: Computational Details We implement a one-dimensional simu-
lation set-up which consists of the IL-electrolyte, and two ideal planar electrodes in
the case of a full-cell set-up, or one ideal planar electrode in the case of a half-cell
set-up. The full-cell has a length of L = 60 nm. In both cases, we erect equidis-
tant spatial grids and implement the system in Matlab. We solve simultaneously
for charge density, and the electric potential. Thus we do not consider chemical
interactions between electrolyte and the electrodes. Also, chemical reactions are not
considered. The corresponding system of equations comprises coupled differential
and algebraic equations. In order to solve this system of equations, we use the fully
implicit Matlab solver ode15s.

To avoid numerical issues, we start from the equilibrium state and increase the
electrode potential from zero up to the terminal value ∆ϕ (thereby we set the po-
tential of zero charge to zero, Φpzc = 0). In this discussion, we neglect specific
ion-adsorption at the interfaces.
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