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Abstract: The concept of a representative elementary volume (REV) is key for connecting results of
pore-scale simulations with continuum properties of microstructures. Current approaches define
REVs only based on their size as the smallest volume in a heterogeneous material independent
of its location and under certain aspects representing the same material at the continuum scale.
However, the determination of such REVs is computationally expensive and time-consuming, as
many costly simulations are often needed. Therefore, presented here is an efficient, systematic,
and predictive workflow for the identification of REVs. The main differences from former studies
are: (1) An REV is reinterpreted as one specificsub-volume of minimal size at a certain location that
reproduces the relevant continuum properties of the full microstructure. It is therefore called a local
REV (lREV) here. (2) Besides comparably cheap geometrical and statistical analyses, no further
simulations are needed. The minimum size of the sub-volume is estimated using the simple statistical
properties of the full microstructure. Then, the location of the REV is identified solely by evaluating
the structural properties of all possible candidates in a very fast, efficient, and systematic manner
using a penalty function. The feasibility and correct functioning of the workflow were successfully
tested and validated by simulating diffusive transport, advection, and electrochemical properties for
an lREV. It is shown that the lREVs identified using this workflow can be significantly smaller than
typical REVs. This can lead to significant speed-ups for any pore-scale simulations. The workflow
can be applied to any type of heterogeneous material, even though it is showcased here using a
lithium-ion battery cathode.

Keywords: representative elementary volume; porous media; pore network modeling; lattice
Boltzmann method; computational electrochemistry; lithium-ion battery

1. Introduction

Modeling and simulation of pore-scale processes with realistic microstructures has
extensively developed into an important and predictive tool in the context of electro-
chemical energy storage materials [1–4], digital rock physics [5–7], and other composite
materials [8,9]. This was mainly facilitated by improvements in both computer hardware
and imaging technologies, such as micro- and nano-computed tomography (CT) [10], FIB-
SEM [11,12], and statistical reconstruction methods [13–15]. Together, they enable the simu-
lation of highly resolved images down to the nanometer scale and thereby open the door to
computational studies of processes that are hard to access with experimental techniques.

The most common numerical methods used to compute properties from these images
are pore network modeling (PNM) [16–18] and direct numerical simulation, such as the
lattice Boltzmann method (LBM) [5,6,19–22] and traditional computational fluid dynamics
(CFD) [7,23–26]. Whole software packages have been developed that allow for a detailed
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digital analysis of microstructural properties and their effect on transport processes [27–29].
However, to achieve accurate and predictive simulations, the microstructure volume needs
to fulfill the following requirements: (1) It has to be sufficiently large to represent the
macroscopic properties of the full microstructure. These properties can either describe
the structure (e.g., porosity, pore size distribution, specific surface area, geometric tor-
tuosity, or material composition) or a physical process (e.g., permeability, diffusivity, or
conductivity). (2) It has to be small enough to handle computationally, which is limited by
available hardware.

Therefore, half a century ago, the concept of a representative elementary volume (REV)
was introduced for continuum mechanical stresses [30] and it has since been adapted to
flow in porous media [31]. Nowadays, it has become increasingly important in the fields
of petroleum engineering and geoscience [5–7,16,20,23,32,33], as well as in computational
electrochemistry; i.e., battery [19,25,34] and fuel cell materials [17,21,22,24,26,35,36]. An
REV is typically defined as the smallest volume in a heterogeneous porous medium for
which fluctuations in the properties under investigation converge and become independent
of the volume size [31,37]. Two variants of REVs are used in the literature: (1) deterministic
REVs (dREVs) and (2) statistical REVs (sREVs) [23,38]. While a dREV is determined by the
influence of the domain size at an arbitrary but constant position (mostly at the center of
the full microstructure), an sREV is determined by a domain with a fixed size but variable
position scanning the full microstructure.

Although simple in their application, both variants require significant computational
resources, which renders the process time-consuming. Both employ a definition of an REV
as the smallest volume (i.e., V̄global) that is globally representative for the full microstruc-
ture. This means, once V̄global is known for a certain microstructure, all subsets of this
microstructure with size V̄global should show similar results; e.g., when being used for
image-based simulations. However, V̄global is not necessarily the smallest representative
volume of a microstructure; i.e., there exists a volume Vlocal ≤ V̄global [38] that is by itself
equally representative of the full microstructure. Due to its smaller size, knowing Vlocal is
what is most desirable for most resolved image-based simulation studies. For the deriva-
tion of continuum properties [39], the original definition of REVs based on V̄global remains
favorable. This means that finding the smallest and most representative volume element in
a given microstructure can reduce computational efforts significantly while maintaining
the quality of the results. Therefore, in this study, first, a new type of REV is introduced.
It is called the local REV (lREV). A conceptually related REV definition is already part of
the literature concerning battery simulations [25]. Second, an approach is presented that,
in a reliable and efficient manner, can identify such lREVs using a predictive and purely
structurally informed search algorithm.

This approach is very different from other recently published approaches for efficient
REV detection that either use neural networks [20] or replace simulations with image
analysis of non-segmented raw micro-CT data [23]. It works as follows: (1) A pore network
including a broad variety of geometrical pore-scale information is extracted from the full
microstructure. This information is then stored, which guarantees easy and fast access for
further post-processing; (2) For a given segmented image of a microstructure, the lower
bound of the lREV size is estimated using statistical analysis; i.e., a two-point correlation;
(3) Similar to the sREV concept, the lREV size is tested by moving a domain through the full
microstructure while keeping the domain size constant. The aforementioned geometrical
pore-scale information is evaluated for each domain; (4) The data from step three are used
to derive a penalty function that predicts the locations of the most favorable lREVs of a
given size. Here, “most favorable” means that these lREVs show the least deviation from
the full microstructure with respect to geometrical pore-scale properties included in the
penalty function. Thus, they are most representative from a geometrical perspective.

This approach is general and almost independent of the microstructure that is used.
The only necessary requirement for the microstructure is that all structural heterogeneities
occur on a similar length scale. The underlying assumption is always that the full image is
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already representative of the medium under investigation. Considering this, the approach is
applicable to a broad range of research fields that require structurally resolved porous media
simulations; e.g., the development of better energy storage materials. In the following,
it is showcased using a lithium-ion battery cathode consisting of NMC622. To prove the
quality of the predicted lREVs and thus validate the workflow proposed here, common
observables with different physicochemical simulations were employed for the lREVs.
These were diffusive transport within both the fluid and the solid, advection of a fluid
in the pore space, and simulations of electrochemical characteristics. The results showed
that using an informed approach, such as the lREV concept, can lead to REVs that are
significantly smaller while still providing statistically similar results in physicochemical
simulations. Therefore, to reduce computational efforts and time, it is highly recommended
that this efficient approach be used as an intermediate step between image generation and
simulation. Although optional, the penalty function should ideally be optimized with
respect to the physical process studied on the basis of the lREV.

This paper is organized as follows. In Section 2, the image generation of the mi-
crostructure, the geometrical and statistical analysis, and the numerical methods used
in this study are described. Results are presented in Section 3. In Section 4, how lREVs
can be determined using the methodology suggested in this study is discussed . Finally,
conclusions are drawn in Section 5.

2. Methods
2.1. Image Generation and Post-Processing

The 3D image of the cathode used in this study was obtained using nano-CT (SkyScan2211,
Bruker Corporation, Billerica, MA, USA) with a resolution of 0.30µm. The reconstructed
grayscale image was then segmented using the commercial software GeoDict® [27]. This
software uses a neural network algorithm that has specifically been trained to distin-
guish pore space, active material, and the carbon-binder domain (CBD) in NMC-like
battery electrode microstructures. A similar workflow for graphite-like battery electrode
microstructures can be found in a recent related publication [40].

2.2. Application of the lREV Workflow

This section describes the theoretical background of the selection algorithm for lREVs.
After some general definitions, the four-step process outlined in the introduction is further
specified with a special focus on the methodological approach.

(1) General definitions

A 3D image with dimensions (Lx, Ly, Lz) representing a porous material consisting of
N phases can mathematically be described as a function I that maps vectors of discrete
coordinates~c ∈ C to a phase label i ∈ {0, . . . , N − 1}; i.e.,

I : C → {0, . . . , N − 1}, ~c 7→ I(~c) = i. (1)

Here, the set C is a subset of N3 including all vectors~c = (cx, cy, cz) with 0 ≤ ck < Lk.
Based on Equation (1), a sub-image can be defined as an image with dimensions

(lx, ly, lz), where lk ≤ Lk. This corresponds to a set of vectors~r = (rx, ry, rz) ∈ R ⊆ C, with
sk ≤ rk < sk + lk, (sx, sy, sz) being the origin coordinates of the sub-image.

Some properties (e.g., the material composition) can be easily determined directly from
the images. Using the standard delta distribution δ(·), one can define a phase indicator
function F (i) as

F (i)(~c) = δ(I(~c)− i). (2)
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It labels voxels belonging to phase i with 1, while all other voxels are labeled with 0.
Using Equation (2), the volume fraction of phase i is defined as

φi =
∑{~c} F (i)(~c)

V
, (3)

where V is the volume of the (sub-)image in voxels. The porosity is trivially the volume
fraction of the void phase (here i = 0). Other properties like geometric tortuosity, pore
surface area, or pore size distributions require greater computational efforts when being
determined directly based on the image data. This is especially true when repeating the
procedure for many thousands of sub-images that are possible REV candidates. In the
current study, the number of candidates was of the order of 105. To reduce computational
times, pore networks were employed instead.

(2) Extraction of Pore Network Information

A pore network (PN) is an abstract and simplified representation of the original
pore space. It simplifies the geometry of the pore space while conserving its topology. A
PN can be extracted from a 3D image by segmenting the pore space into pore regions
using a watershed algorithm. The confined connections of pore regions are called throats.
Fitting spheres into the pore regions and disks into the throat regions yields the simplest
geometrical representation; i.e., spheres connected by cylinders.

In this work, the open-source Python package PORESPY (version 2.2.2) [29] was used
to extract PNs from segmented image data using the so-called SNOW-correction [41]. The
latter avoids oversegmentation of the pore space, which is usually observed in highly
porous energy storage materials due to spurious maxima in the distance maps.

Once the PN for the full image is extracted, all computations with sub-images are
computationally inexpensive. Results for the sub-images are determined by masking the
full PN. This is done by selecting only pores with centers that lie inside the sub-image,
providing fast access to properties of the PN, including pore size distribution and pore
surface area.

Tortuosity is a property that correlates with the diffusive behavior of a material. It is a
directional property that can be defined as the average of the shortest paths between two
opposite sides of a cuboid that are only contained in a predefined phase. To avoid very
expensive image-based computation, it can be approximated from the PN instead. In this
work, the geometric tortuosity τ was determined by converting the PN into a mathematical
graph, taking its pores as nodes and its throats as edges. The lengths of the throats then
serve as weights of the edges.

The shortest geometrical path is then the shortest way along the graph between inlet
and outlet nodes. This path is determined for each inlet pore connected to any outlet
pore. Pores are defined as inlet or outlet pores, respectively, if their centers are within a
distance of 5 voxels from the boundary along the direction of interest. The results were
determined using the sparse.csgraph.shortest_path function of the Python package
SCIPY (version 1.10.1) [42] and averaged over all inlet pores.

(3) Estimation of lower bound REV

The second step of the workflow is to determine the minimal size of the lREV for a
given image. This can be done using statistical analysis [35]. Here, we present an approach
using the two-point correlation function (TPC), which is known to be able to capture
important microstructural properties [43]. It is determined for each phase of interest. Using
Equation (2), the TPC for phase i is given by

S(i)
2 (|~c1 −~c2|) =

〈
F (i)(~c1)F (i)(~c2)

〉
, (4)
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where 〈·〉 denotes the ensemble average. The TPC is a function of the Euclidean distance
between two points; i.e., d = |~c1 −~c2|. It can be interpreted as the probability that two
voxels with distance d belong to the same phase.

Applying the TPC to a large microstructure can provide an indicator for the size of
an lREV. For sufficiently large values of d, the probability density converges to a constant
value; i.e., φi. Note that this statement is only true for image data with a certain structural
heterogeneity. Most natural materials and materials used in technical applications show
such structural heterogeneity. This is, however, not the case for some artificially created
materials with pattern-like repeating structures; e.g., with equidistant protrusions or holes.
There, the TPC fluctuates around a constant value and does not converge. However, those
type of structures render the concept of an REV meaningless anyway.

TPCs are typically defined for 3D images (cf. Equation (4)). The determined S(i)
2 for

each phase typically converges at a distance d̂i. The overall value for d̂ is then given by the
maximum of the set; i.e.

d̂ = max
i

d̂i. (5)

Using this value as a size for the lREV candidates results in cubic sub-images with the
shape (d̂, d̂, d̂).

There are, however, microstructures that require a certain length for the simulation
domain along one direction. This is, for example, the case for electrochemical energy
storage materials, where the full thickness of the electrodes has to be considered for them to
be physically meaningful. In such cases, instead of using cubic sub-images and computing
the TPC radially for a 3D image, the TPC is computed between planar slices that are
perpendicular to the direction k. This evaluation is similar to the planar radial distribution
function typically used to study structural properties at the molecular scale (cf. ref. [44]).
The value for d̂i is then defined as the maximum value of d̂ for all slices such that the overall
convergence distance is given by

d̂ = max
i

d̂i, with d̂i = max
{slices}

d̂(slice)
i . (6)

This results in sub-images of cuboid shape with square bases (d̂, lk, d̂); such sub-
images are sometimes called the representative elementary area (REA). Note that, when
using this approach, d̂ can be larger than lk, while radial 3D TPCs are always limited by lk.

(4) Striding Windows

Depending on the size of the full image, the value of d̂ can still result in a large
number of possible lREV candidates. The selection is undertaken using a striding-windows
algorithm. A window of fixed dimensions, here (d̂, lk, d̂), is moved through the image
using the same step size along all directions. This is done until the full image is covered.
Figure 1 shows a corresponding example for a 2D image of 2000 × 2000 voxels and a
window of 300 × 300 voxels for an exemplary step size of 100 voxels.

Although a step size of 1 voxel would capture every possible candidate, for practica-
bility, larger step sizes are sufficient, since the resulting sub-images differ only slightly in
image-based properties and even less in PN-based parameters.

(5) Penalty Function

In order to rank lREV candidates, we define a so-called penalty function P depending
on the geometrical properties of the microstructure or PN, respectively. In general, a penalty
function maps a sub-image I to a real number; i.e.,

P : I 7→ P(I) ∈ R. (7)



Batteries 2023, 9, 390 6 of 18

Figure 1. A schematic representation of the striding-window selection in 2D for an image with a size
of 2000 × 2000 voxels and a window size of 300 × 300 voxels. The step size is 100 voxels (grid lines)
for illustration purposes. In practice, smaller step sizes are recommended. For illustration purposes,
only some exemplary windows are shown. However, when applying the workflow, the full image
is covered.

It should be suitable to quantify the degree of agreement of a sub-image with the full
image in certain aspects. In this study, a penalty function of the form

P(I) =
M

∑
α=1

wα| p̄α − pα(I)| ≥ 0, (8)

is used. It is the weighted sum of the absolute deviation of a local property of the sub-image
pα(I) from the global property of the full image p̄α for a set of M properties; i.e., the
deviations are weighted by weight factors w. Examples for such properties are the volume
fraction of phase i, the specific surface area S, or the geometric tortuosity τ, to name only a
few. For the full image, p̄α = pα such that P = 0. The weighting factors should be chosen
such that the penalty reflects the importance of the influence of each property pα on the
relevant physical and chemical processes of interest. For a given set of sub-images {I}, the
best lREV candidate Î is the sub-image with the lowest penalty; i.e.

P(Î) = min
{I}
P(I). (9)

Normalizing the parts of the sum in Equation (8) to the maximum value in the sub-image
set {I} and applying the constraint ∑α wα = 1 normalizes the penalty function to 1; i.e.,

P(I) =
M

∑
α=1

wα
| p̄α − pα(I)|

max{I} | p̄α − pα(I)|
≤ 1. (10)
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In a complementary fashion, an additional set of parameters p̃β can be introduced
imposing hard cutoffs in a determined range p̃min

β ≤ p̃β ≤ p̃max
β . Finally, the penalty

function is given by

P̃(I) =
{
P(I) if p̃min

β ≤ p̃β ≤ p̃max
β ∀β,

∞ otherwise.
(11)

The use of this extended penalty function P̃ is demonstrated in the following. It is
there denoted as a ”hard” penalty, while P is referred to as a ”soft” penalty.

2.3. Simulation Methods
2.3.1. Diffusion

The effective diffusivity Deff is used as a characteristic and representative measure for
diffusive transport processes. Here, it was determined for both the fluid and the solid phase.
Depending on the phase, it can be interpreted as mass diffusion showing pore connectivity
or thermal and electrical conductivity showing particle connectivity, respectively. In both
cases, the diffusivity was determined only in the +y-direction using 3D LBM simulations.
As the simulation setup is similar for fluid and solid diffusivity, it is only described for the
fluid diffusivity in the following. All LBM model parameters and results are given in lattice
units (e.g., cf. [4]).

The simulation setup consisted of the microstructure sample, from which both the
AM and CBD, for simplicity, were assigned equal diffusion coefficients. A concentration
gradient ∆C/∆y was prescribed by setting the concentrations at y = 0 and y = ly to C = 1.0
and C = 0.01, respectively, using Zou–He boundary conditions [45]. The concentration in
the fluid was initially set correspondingly, assuming a linear concentration gradient along
the y-direction. The velocity was set to zero. No-slip boundary conditions were applied
along the x- and z-directions using bounce-back.

From the simulations, the effective diffusivity Deff was determined as

Deff = D
Jlocal

J
, (12)

where D = 1/8 is the bulk diffusion coefficient, and Jlocal and J are the microscopic and
macroscopic diffusive fluxes, respectively. They are defined as

Jlocal = −
1
V

∫∫∫
V

j dV, J = −D
∆C
ly

, (13)

where V = lxlylz is the total volume of the simulation domain and j can be determined
as given in [22], for example. Technically, a D3Q7 lattice with a BGK collision operator
was applied [46]. Simulations were conducted using the open-source software PALABOS

(version 2.3) [47]. Each simulation was stopped when the density converged; i.e., its
standard deviation went below 1.0× 10−6 within 5000 consecutive iterations.

2.3.2. Hydrodynamics

The permeability k is used as a characteristic and representative hydrodynamical
measure for fluid flow and pore connectivity. Again, it was determined only in the +y-
direction using 3D single-phase flow LBM simulations.

The simulation setup was motivated by experimental setups typically used to deter-
mine permeabilities. It consisted of the microstructure sample, from which the AM and
CBD were considered as impermeable solid phases. The pore space was initially filled with
a liquid of constant density ρ = 1.0. Along the +y-direction, an external force density f and
periodic boundary conditions were applied. In contrast, no-slip boundary conditions were
applied along the x- and z-directions using bounce-back.
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From the simulations, the permeability k was determined as

k =
uDarcyν

f
, (14)

where ν = 1/6 is the kinematic viscosity, f = 5× 10−4 is the external force density, and
uDarcy is the Darcy velocity (i.e., the velocity in the +y-direction), averaged over all fluid
lattice cells. Technically, a D3Q19 lattice and a BGK collision operator were applied [46].
Simulations were conducted using the open-source software Palabos (version 2.3) [47]. Each
simulation was stopped when the kinetic energy of the full simulation system converged;
i.e., its standard deviation went below 1× 10−6 within 5000 consecutive iterations. Further
details regarding the model and simulation setup can be found in previous publications
from our group [3,4].

2.3.3. Electrochemistry

Electrochemical simulations were performed within the framework of the Battery
and Electrochemistry Simulation Tool (BEST) [48], which is a versatile software tool for dif-
ferent kinds of battery simulations. It was jointly developed by the Fraunhofer Institute
for Industrial Mathematics (ITWM) and the Institute of Engineering Thermodynamics of
the German Aerospace Center (DLR). BEST builds upon a consistent non-equilibrium
reversible-thermodynamics ansatz for the description of battery cell operation at the con-
tinuum scale [49,50]. It couples the solutions to the mass, charge, and heat conservation
equations in each phase with the corresponding electrochemical reactions at the interfaces.
The tool enables microstructure-resolved simulations by integrating the aforementioned
mathematical model into a finite volume scheme. It employs the Algebraic Multigrid
Methods for Systems (SAMG) library, which is a collection of subroutines developed to
efficiently solve large systems of linear equations.

The simulation setup consisted of a half-cell with an NMC622 porous electrode and a
flat lithium foil as the counter electrode, with two partially compressed Whatman separators
(GF/A layers) with a total thickness of 380µm sandwiched in between. The simulation
protocol employed constant-current (CC) charging in the voltage range 2.6–4.3 V with a
nominal current of 1 C, which was defined based on the capacity of the full microstructure.

The electrochemical parameterization of the battery materials was undertaken through
dedicated fits from experiments or using literature data[51]. An overview of the parameters
of the electrochemical simulation is provided in Table S1 in the Supplementary Materials.
They correspond to an LiPF6 in an EC + DEC electrolyte.

3. Results

The workflow for efficient identification of lREVs is showcased using a microstructure
of a lithium-ion battery cathode. For validation of the workflow and to prove the concept,
different tests were conducted with respect to the physical and chemical properties of
the lREVs. Three different lREVs were selected that, according to the penalty function
(i.e., regarding their structural properties), showed the best agreement with the full image
or microstructure. They are denoted as ”TOP” in the following. Based on those lREVs,
different physical processes were simulated; i.e., diffusive transport within both the fluid
and the solid, advection, and electrochemical simulations. The results were then compared
to the results from corresponding simulations with the full microstructure. Moreover, they
were also compared to simulations with sub-images that, according to the penalty function,
showed ”LOWv and ”SUPERLOW” accordance with the full microstructure. Here, ”LOW”
and ”SUPERLOW” are defined as the worst agreement with the full microstructure based
on soft and hard penalties, respectively. In essence, they correspond to the worst candidates
in this size class that could be selected using the sREV or dREV concepts. Finally, in addition
to the optimum sub-image size (i.e., by definition, the lREV), results were determined for
three different sub-image sizes that differed from the optimum image size by factors of 0.5,
2, and 4, respectively.
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The full microstructure used in this study had the dimensions (Lx, Ly, Lz) = (2000, 130,
2000) voxels. The y-dimension corresponds to the total thickness of a typical lithium-ion
battery cathode. The x- and z-dimensions are limited by the field of view of the nano-CT
instrument. They are, however, large enough to contain an REV [24,34] and, thus, fit the
purpose of this investigation. The microstructure consisted of three phases; i.e. the pore
space, AM, and CBD. A cross-section of the microstructure is shown along with other types
of porous materials in Figure S1 in the Supplementary Materials.

In the following, the full workflow, including the validation, is presented step by step;
i.e., from steps one to four as outlined above.

Step One: Extraction of Pore Network Information

The PN that was extracted from the full microstructure consisted of more than
39,000 pores and 69,000 throats. The median equivalent pore diameter was determined as
4.33µm with a standard deviation of 1.74µm. The geometrical information for the pore
centers was used to compute the geometric tortuosity τ. The specific surface area S was
determined by summing up the surface areas of all pores, which were provided by the PN,
and normalizing the sum by the volume V of the microstructure. The material composition
and the corresponding PN properties of the full microstructure are given in Table 1.

Table 1. Pore network and image properties p̄α of the full image.

Porosity φ0
(%)

Binder Vol. Frac. φ2
(%)

Tortuosity τ
(-)

Spec. Surf. Area S
(1/m)

21.09 13.02 1.2 188,209

Step Two: Estimation of the lower bound of the REV

As described in Section 2.2, the TPC was applied to the full microstructure to estimate
the lower bound of the REV size. The results are shown in Figure 2 separately for all three
phases or components. The lower bound d̂i for each phase was visually determined as
(d̂0, d̂1, d̂2) = (100, 90, 130) voxels for the pore space, AM, and CBD, respectively. Thus,
the minimum size of the lREV was set as d̂ = 130 voxels along the x- and z-dimensions
to be representative for all three phases. For convenience, this value was rounded up to
d̂ = 150 voxels.
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Figure 2. TPCs for all 130 image slices (solid opaque lines) and their means (dashed line). From top
to bottom: pore space (phase zero, blue), AM (phase one, orange), and CBD (phase two, green). The
convergence of all functions is clearly visible.
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Step Three: Striding Windows

The striding-window algorithm is schematically shown in Figure 1. It was applied to the
full image using sub-images with a size of (l, 130, l) voxels, with l = 75, 150, 300, 600 voxels.
The step size between adjacent sub-images was 20 voxels in all directions. As mentioned above,
this step size was chosen for reasons of practicability while simultaneously ensuring a close
and continuous scan of the full image.

Step Four: Penalty Function

Finally, an appropriate soft penalty function was defined on the basis of the structural
properties. Only those properties were chosen for which it was known that they correlate
with diffusive transport, advection, and electrochemical processes. These were porosity φ0,
CBD fraction φ2, specific surface area S, tortuosity τ, and pore size distribution. The AM
fraction φ1 was not included separately, as it inherently results from the other phases as
φ1 = 1− φ0 − φ2 and strongly correlates with S.

As described above, the data for φ0 and φ2 were determined from the image data,
while S and τ were determined from the PN. The pore size distribution and corresponding
χ2-distribution were computed as described in Appendix A. The influences of S, τ, and
χ2(I) were considered equally important, leading to the identical weights wα = 1/3 for
all α. Porosity φ0 and CBD fraction φ2 were additionally incorporated as hard penalties,
allowing only for deviations of±1% point around the corresponding value of the full image
(cf. Table 1). Numerically, a hard penalty was also assigned to the tortuosity to ensure
that it remained finite. The latter removed lREV candidates for which there was no pore
connection between the inlet and the outlet, which occurs only for very small lREV sizes.

Figure 3 shows the deviations (cf. Equation (10)) of the local values from the global val-
ues; i.e., the deviation of values determined from the sub-images I from the corresponding
values from the full image (cf. Table 1). Deviations are shown for all the aforementioned
influencing factors that entered the penalty function P(I). The cut size l = 300 is used as
an example, while similar plots for the different cut sizes can be found in Figures S2–S4 in
the Supporting Information.

Results are shown without applying the hard limits. The position in each heatmap is
practically equivalent to the position of the window in the full image. More precisely, the
xy-coordinates of a pixel in the heatmaps correspond to the coordinates of the origin point
(”lower left corner”) of the corresponding window. For improved readability, the χ2 sum
was normalized to its 90th percentile. Outliers from this range are depicted in dark blue.

The heatmaps indicate a correlation between the porosity φ0 and the specific surface
area S, which was also observed in the literature [35,36]. Similar behavior is shown for all
other cut sizes in Figures S2–S4 in the Supplementary Materials. In these figures, it can also
be observed that deviations in all properties decrease with increasing cut size l.
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Figure 3. Deviation between the local and global results for the structural influencing factors. In
addition, results for the penalty function are given. Values are shown as heatmaps in the range
indicated by the legend and color map. Each pixel corresponds to one window (details in text).

3.1. Diffusion and Hydrodynamics Benchmark

Figure 4 shows simulation results for Deff/D, both for the pore space (top) and the
solid phase (bottom). The results are given for sub-images (symbols) at different cut sizes
(l = 75 to 600). They are compared to the result for the full image (dashed line). The global
values are given in Table 2.
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Figure 4. LBM simulation results for Deff/D for the four different cut sizes (symbols) compared to
the value for the full image (dashed lines).
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Table 2. LBM results for diffusion and permeability simulation with the full image.

D(void)
eff /D (-) D(solid)

eff /D (-) k (1/m2)

0.085 0.690 9.89× 10−13

Simulation results for the permeabilities (symbols) are shown in Figure 5 for cut sizes
l = 75 to 600. They are again compared to the result of the full image (dashed line).

75 150 300 600
Cut size [voxels]

10 13

10 12

10 11

k 
[1

/m
²]

SUPERLOW
LOW
TOP
Full image

Figure 5. LBM simulation results for the permeability k for the four different cut sizes (symbols)
compared to the value for the full image (dashed line).

3.2. Electrochemical Benchmark

Figure 6 shows the results for the total transferred charge during the charging sim-
ulation. Results for the sub-images are shown for the four different cut sizes (symbols)
and compared to a value corresponding to the result for the full image (dashed line). This
value was determined as the median value of the results for the nine sub-images with
size (666, 130, 666), each distributed in a three-by-three layout that covered the whole
structure. This was undertaken as the maximum volume size that could be handled using
the electrochemical simulations was significantly smaller than the full image. Numerical
values are given in Table 3. Additionally, for comparison, the min–max range (lighter
shaded area) and the standard deviation around the mean range (darker shaded area) for
these largest simulations are shown. The full charging curves are provided in Figure S5 in
the Supplementary Materials.

Table 3. Electrochemical simulation results for total transferred charge simulated with sub-images of
shape (666, 130, 666) to determine properties of the full image.

Median (mAh/cm2) min|max (mAh/cm2)
Mean ± Std. Deviation

(mAh/cm2)

1.840 1.813|1.864 1.836± 0.017
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Figure 6. Total transferred charge in charging simulations for the different cut sizes (symbols). For
comparison, the median (dashed line), min–max range (lighter shaded area), and the standard
deviation range around the mean (darker shaded area) for the nine largest simulations are shown
(details in text).

4. Discussion

The size of an REV is not only dependent on the structure but is also known to depend
on the physical property being investigated [8,31,52]. It is typically larger for transport
properties than for static or structural properties [20,52], but it also depends on the accuracy
desired for the results.

From Figure 4, the following general observations can be made: (1) The normalized
effective diffusivity in the solid is larger than in the pore space as transport properties at
interfaces are typically lower than they are in the bulk [53]. (2) Deviations from the full
image decrease with increasing cut size, as is also shown in the literature [26,33]. (3) lREV
candidates from the category SUPERLOW show larger deviations from the full image than
TOP and LOW.

The results from the LBM and BEST simulations also confirmed the predicted optimum
lREV size coming from the TPC. For cut sizes l < 150, large deviations were observed for
all categories. They decreased, however, for l ≥ 150, where the categories TOP and LOW
especially showed good accordance with the results from the full image. Thus, applying
suitable hard penalties leads to lREVs that already capture many of the structural features
that determine diffusive transport.

Similar conclusions can be drawn for the permeability results shown in Figure 5.
Starting from l = 150, the values for TOP and LOW approach the value of the full image.
Only in one case was a value from the category LOW in better accordance with the value
of the full image than the corresponding values from the category TOP. The exact reason
for this is unclear. It might be an indication that the weight factors in the penalty are not
yet fully optimized for this physical process. Applying hard penalties results in lREVs that
show at least good agreement with results from the full image.

The results of charging simulations showed similar behavior. For cut sizes l < 150,
large deviations can be observed for all categories. Starting from l = 150, the results from
the category TOP show the best accordance overall with the results corresponding to the full
image. Moreover, applying hard filters had significant consequences. In this case, all results
for l ≥ 150 from the category TOP fall at least into the min–max range, while most results
for LOW fall into this range only for l ≥ 300. The results for SUPERLOW deviate from that
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range in most cases. Considering that an lREV from the category SUPERLOW corresponds
to a randomly chosen REV for which only the size but not the location is known, the
simulation results show the need for a systematic REV workflow as presented here.

The most important findings can be summarized as follows: (1) The workflow is
predictive only for cut sizes corresponding to at least the lower bound of an REV, as
determined in the analysis of the TPC. (2) The cut size predicted by the TPCs is sufficient
for most practical applications. (3) Including the right properties or influencing factors in
the penalty function is key; however, the exact value of the corresponding weight factor
is less important for many use cases. (4) For sufficiently homogeneous materials, hard
penalties have a significant effect on the accuracy. Then, even the worst candidates in terms
of the soft penalty (i.e., the category LOW) show good accordance with the results from
the full image. (5) The BEST simulations illustrate the need for an REV algorithm that
results in sub-images that are as small as possible, as the electrochemical simulations are
computationally more demanding.

5. Conclusions and Outlook

An efficient and systematic workflow for reliable identification of representative ele-
mentary volumes (REVs) was presented. For a given volume size, the workflow successfully
predicts the location of the most representative REVs. They were therefore denoted as
lREVs. This prediction is based on a penalty function that is purely informed by structural
information coming from pore networks (PNs) and image data. No simulations of physical
processes, such as diffusion or flow, have to be conducted. Thus, the workflow runs with
low computational costs. These benefits can be useful for a broad range of application
fields. They are, however, especially useful for battery research, where development times
are short and the field is highly competitive. There, using lREVs instead of the full mi-
crostructure can save significant computational effort while achieving comparably accurate
simulation results. This frees up computational resources, speeds up studies, and enables
investigations of larger parameter spaces.

The workflow was demonstrated using cathode materials for lithium-ion batteries.
However, it can be readily applied to electrodes made of other materials, such as graphite.
Then, the only adaptions that have to implemented concern the estimation of the size
of the REV lower bound, as well as the weights in the penalty function. Moreover, the
workflow can be applied to any kind of microstructure and, thus, is useful to researchers
from a broad range of research fields. Depending on the relevant physical and chemical
processes, different structural properties with corresponding weights can be considered
in the penalty function. For the penalty function used in this work for lithium-ion battery
cathodes, the following structural properties were considered: porosity φ0, carbon-binder
domain (CBD) fraction φ2, specific surface area S, tortuosity τ, and pore size distribution.
The predicted lREVs were tested and validated by simulating different physical processes
with sub-images; i.e., diffusive transport, advection, and electrochemical processes during
charging. No special focus was laid on the parameterization of the penalty weights, which,
however, was shown to have only a minor influence on the overall quality of the results.

This study shows that using a systematic workflow for the identification of lREVs can
significantly reduce the size of REVs, as well as the computational efforts needed to run
simulations with such REVs. Using so-called hard penalties can further improve the quality
of REV identification. Compared to other methods, this workflow is computationally very
favorable, as it makes use of one single global PN for the derivation of local structural
properties. For the consideration of nonlinear effects; capturing specific electrochemical
phenomena, like lithium plating; or handling more complex materials (e.g., anodes or
separators; cf. Figure S1 in the Supplementary Materials) with the workflow, different soft
penalties and a more sophisticated parameterization of the penalty weights may be required.
In particular, lithium plating and stripping are still a topic of elevated interest for many
researchers (e.g., cf. ref. [54]). All these aspects will be part of our future investigations.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Active material
CBD Carbon-binder domain
CFD Computational fluid dynamics
CT Computed tomography
dREV Deterministic REV
FIB Focused ion beam
LBM Lattice Boltzmann method
lREV Local REV
PN Pore network
PNM Pore network modeling
REA Representative elementary area
REV Representative elementary volume
SEM Scanning electron microscope
sREV Statistical REV
TPC Two-point correlation

Appendix A. Penalty for the Pore Size Distribution

The pore size distribution in the full image was separated into 30 bins of equal width,
yielding a relative frequency Fk for the kth bin. For a consistent comparison, the distribution
of the sub-images I was then constructed using the same binning and yielding the relative
frequencies fk(I). Based on both Fk and fk(I), the χ2-distribution was defined as

χ2(I) = ∑
k

(Fk − fk(I))2

Fk
. (A1)

It is a measure for the deviation of the pore size distributions in the sub-images from
that of the full image and enters the penalty function. The larger the values of χ2(I) are,
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the worse the agreement of both pore size distributions is. Perfect agreement is denoted by
χ2(I) = 0.
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