
A Look at Performance and Scalability
of the GPU Accelerated Sparse Linear

System Solver Spliss

Jasmin Mohnke(B) and Michael Wagner

German Aerospace Center (DLR), Institute of Software Methods for Product
Virtualization, Dresden, Germany

jasmin.mohnke@dlr.de

Abstract. A significant part in computational fluid dynamics (CFD)
simulations is the solving of large sparse systems of linear equations
resulting from implicit time integration of the Reynolds-averaged Navier-
Stokes (RANS) equations. The sparse linear system solver Spliss aims to
provide a linear solver library that, on the one hand, is tailored to these
requirements of CFD applications but, on the other hand, independent
of the particular CFD solver. Spliss allows leveraging a range of available
HPC technologies such as hybrid CPU parallelization and the possibility
to offload the computationally intensive linear solver to GPU accelera-
tors, while at the same time hiding this complexity from the CFD solver.

This work highlights the steps taken to establish multi-GPU capabil-
ities for the Spliss solver allowing for efficient and scalable usage of large
GPU systems. In addition, this work evaluates performance and scala-
bility on CPU and GPU systems using a representative CODA test case
as an example. CODA is the CFD software being developed as part of a
collaboration between the French Aerospace Lab ONERA, the German
Aerospace Center (DLR), Airbus, and their European research partners.
CODA is jointly owned by ONERA, DLR and Airbus. The evaluation
examines and compares performance and scalability in a strong scaling
approach on Nvidia A100 GPUs and the AMD Rome architecture.

Keywords: sparse linear solver · computational fluid dynamics · CFD
solver · high performance computing · heterogeneous computing · GPU

1 Introduction

Computational fluid dynamics (CFD) simulations for aircraft aerodynamics are
a non-negotiable part in today’s aircraft design process. They allow to reduce
cost and time of aircraft development and help accelerating the introduction of
progressive technologies and improvements. Moreover, high-precision CFD sim-
ulations are inevitable for the assessment of future aircraft designs by providing
reliable insight into new aircraft technologies and reach best overall aircraft per-
formance. They allow to design quieter, safer, and more fuel-efficient planes.
c© The Author(s) 2023
J. Cano et al. (Eds.): Euro-Par 2023, LNCS 14100, pp. 637–648, 2023.
https://doi.org/10.1007/978-3-031-39698-4_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-39698-4_43&domain=pdf
http://orcid.org/0009-0008-4942-6906
http://orcid.org/0000-0002-5767-1716
https://doi.org/10.1007/978-3-031-39698-4_43


638 J. Mohnke and M. Wagner

For CFD simulations in the aircraft design process, solving the large systems
of linear equations that result from implicit time integration of the Reynolds-
averaged Navier-Stokes (RANS) equations plays a significant role. Consequently,
the utilized linear solver must be tailored to the requirements of the problems
and efficiently complete these computations. The sparse linear system solver
Spliss meets these requirements independently of a specific CFD solver while
leveraging various available HPC technologies [1].

Many current HPC systems take advantage of GPU compute power, as can
be seen in the current Top500 list [2]. Of the first ten systems on the list, six
have a heterogeneous architecture with accelerators available on compute nodes.
Spliss takes advantage of such architectures with the wide range of parallelization
approaches it implements, including a hybrid CPU parallelization and offloading
to GPU accelerators. Spliss provides CFD solvers the capabilities to efficiently
and transparently execute the computationally intensive linear solver on new
architectures and hardware accelerators such as GPUs. This way, the CFD solver
can leverage new architectures and hardware accelerators without the necessity
of any code adaptation in the CFD solver. One of the CFD solvers that utilize
Spliss is CODA. CODA is the CFD software being developed as part of a col-
laboration between the French Aerospace Lab ONERA, the German Aerospace
Center (DLR), Airbus, and their European research partners. CODA is jointly
owned by ONERA, DLR and Airbus.

The contribution of this work is, first, a presentation of the improvements
made to Spliss to allow an efficient scaling to a large number of GPUs and,
second, an evaluation of the achieved performance and scalability using a test
case with the CODA CFD software as an example. The evaluation includes a
performance assessment of GPU accelerated Spliss with CODA on the JUWELS
Booster system with Nvidia A100 GPUs in comparison to a CPU-only execution
on German Aerospace Center’s CARO HPC system based on AMD Rome CPUs.

This work starts by introducing the software ecosystem in Sect. 2, followed by
discussing the improvements to enable acceleration distributed among multiple
GPUs in Sect. 3 and their impact on overall performance. In Sect. 4, the evaluated
HPC systems and the test case are described and performance and scalability
results are presented and compared. Finally, Sect. 5 summarizes the presented
work and draws conclusions.

2 Background

At the German Aerospace Center (DLR), the development of computational
fluid dynamics software has a long history. Today, the TAU CFD package [3]
has been in production in the European aircraft industry, research organizations
and academia for more than 20 years and was, for instance, used for the Airbus
A380 and A350 wing design. As state-of-the-art for its time, TAU implements a
classical MPI parallelization to compute steady and unsteady external aerody-
namic flows using a second order finite-volumes discretization.

In 2012 DLR began the development of a new, flexible, unstructured CFD
solver called Flucs [4] from the ground up. The focus of this new development



Performance and Scalability of the GPU Accelerated Spliss 639

was set on, first, a flexible and comprehensive parallelization concept suited for
current and future HPC systems and, second, on algorithmic efficiency using
strong implicit solvers, higher-order spatial discretization via the Discontinuous
Galerkin method featuring hp-adaptation in addition to finite volumes with max-
imum code share, and seamless integration into Python-based multi-disciplinary
process chains via FlowSimulator [5,6]. While the development of Flucs had been
started at DLR, it since has become part of a larger cooperation that is driven
by Airbus, the French aerospace lab ONERA, and DLR. The joint development
of the CFD software based on Flucs was named CODA (CFD for ONERA, DLR
and Airbus) to honor the new collaboration and the involvement of all three
partners pursuing the joint effort and co-development.

Similar to TAU, the CODA CFD software uses classical domain decompo-
sition to utilize distributed-memory parallelism via MPI and, additionally, the
GASPI [7] implementation GPI-2 as an alternative to MPI, which allows for
efficient one-sided communication to reduce network traffic and latency. In addi-
tion, CODA supports the overlapping of halo-data communication with com-
putation to hide network latency and further increase scalability. Besides clas-
sical domain decomposition, CODA employs a hybrid two-level parallelization
to utilize shared-memory parallelism for multi- and many-core architectures [8].
CODA implements sub-domain decomposition, where each domain is further
partitioned into sub-domains, each of which being processed by a dedicated
software thread that is mapped one-to-one to a hardware thread to maximize
data locality. The hybrid approach allows utilizing all layers of parallelism and
providing a flexible adaption to different hardware architectures [9,10].

An integral part of the CODA software architecture is the integration of the
before mentioned sparse linear system solver Spliss [1]. Spliss is used for solving
linear equation systems for implicit time integration methods, e.g. for the test
case used in this work and is a linear solver library that, on the one hand, is
tailored to the requirements of CFD applications but, on the other hand, inde-
pendent of the particular CFD solver. It is specialized to solve large sparse sys-
tems of linear equations, providing a sparse matrix structure with dense blocks
of fixed or variable sizes and a range of different iterative solver components and
preconditioners that can be stacked as needed. Spliss leverages available com-
pute resources through mechanisms such as one-sided communication, hybrid
parallelization and the use of accelerators, i.e. GPUs, to take advantage of het-
erogenous architectures while hiding the complexity of these hardware-specific
optimizations from a CFD solver such as CODA.

3 Porting Spliss to GPU

This section takes a look at GPU acceleration for the sparse linear system solver
Spliss. This can be taken advantage of from CPU-only codes such as CODA by
simply linking against a version of Spliss compiled for GPU.

Porting the linear solver components to GPU consists of both the initial
implementation enabling single GPU usage through computation kernels as well



640 J. Mohnke and M. Wagner

as ensuring that performance scales to multiple GPUs. The process was aided by
the Nvidia performance analysis tools [11] NSight Systems (profiling the timeline
of GPU usage) and NSight Compute (analysis on a GPU kernel level) for multi-
ple iterations of improvements on general GPU usage and specific computation
kernels. The focus of this work is to enable efficient multi-GPU usage including
good scalability. This ensures that future improvements made on computation
kernel level can also benefit at scale for distributed execution.

A baseline for all following changes and measurements is established as the
initial GPU port with multi-GPU usage enabled in code. The computational load
is expected to be close to balanced across all processes since this is provided by
the according CFD solver. In addition, we assume that the targeted compute
architectures are comprised of multiple of the same type of GPU, which is the
case for most or all available systems. As a result, Spliss multi-GPU means each
process is offloading to a single GPU, which stays consistent throughout the
entire runtime. This baseline is displayed as the gray set of bars in Fig. 1, where
the solid bar represents the runtime of the entire iteration phase and the shaded
bar the time spent within the linear solver (including host to device and vice
versa data transfers), which makes up about 75 % of the runtime.

3.1 Implementation Changes

By performing an initial analysis we found that the following steps need to
be implemented to establish efficient multi-GPU capability and to enable the
acceleration that can be achieved by offloading computation to a single GPU
also to scale to a distributed use-case using multiple GPUs.

Data Movement. At the start, measurements showed an increased runtime
for distributed GPU usage. An analysis of the runtime behavior with the Nvidia
tools revealed redundant data copy operations from host to device as well as
within host memory. We resolved all redundant transfers from host to device
and all redundant copy operations in the host memory. The impact of these
improvements is highlighted with the blue set of bars in Fig. 1. The improved
version achieves a performance gain of about 20 % for the entire iteration phase
and about 30 % for linear solver.

CUDA-aware MPI. In addition, we identified that when offloading data and
computation to GPU the amount of time spent in point-to-point MPI communi-
cation needed for halo updates during the key computation of the matrix-vector
multiplication was significant. By taking advantage of CUDA-aware MPI capa-
bilities [12], we avoid the need to transfer notable amounts of data between host
and device when the MPI communication is executed via the CPU host. We used
this to improve the halo exchange by directly passing a pointer to GPU memory
to MPI. As a result, an explicit data transfer from device to host on the sender
and an explicit data transfer from host to device on the receiver is no longer
needed. In order to facilitate this halo exchange we pack the non-contiguous



Performance and Scalability of the GPU Accelerated Spliss 641

Fig. 1. Runtime of different improvements in relation to initial GPU port for a small
test case on four A100 GPUs with the entire time integration iterate phase in solid
colors and the linear solver within that in shaded colors.

halo data on the device to a contiguous GPU buffer that can be passed directly
to the CUDA-aware MPI installation. This allows the MPI library and under-
lying frameworks to make the decision if and when to copy relevant chunks of
data to host memory or communicate directly from and to device memory for
best performance. Figure 1 shows that the improvements using CUDA-aware
MPI reduce the runtime of the iteration phase to about 50 % of the baseline. In
this case, the time spent in the linear solver, i.e. the part running on GPUs, is
reduced to about half of the iteration time.

3.2 Adjustments at Runtime

Next to the above changes made to enable multi-GPU usage, we can take advan-
tage of optimizations at runtime: GPUDirect Accelerations [12,13] and Nvidia
Multi Process Service (MPS) [14]. While the former is automatically applied as
deemed appropriate by the CUDA-aware MPI software stack, the latter can be
enabled by the user when considered necessary.

Nvidia Multi Process Service. Generally, the goal for GPU acceleration is
using the hardware as efficiently as algorithmically possible while maintaining
little overhead. This favors having only one MPI process offload computation to
one distinct GPU each. However, other components of the software framework for
the CFD solver (except the linear solver) may benefit from not constricting the
number of processes by the number of available GPU accelerators. For instance,
with CODA when no GPU acceleration is used the time spent in the non-linear
part of the iteration phase is about 5–10 % and the time in the linear solver
about 90–95 %. With enabled GPU acceleration the ratio is closer to half and
half. As a result, all computation outside of the accelerated linear solver needs
to also be executed as efficiently as possible. As will be discussed in Sect. 4, for
example, on the AMD Naples and Rome architecture best hybrid performance



642 J. Mohnke and M. Wagner

can be achieved using only four OpenMP threads per MPI rank, i.e. using 16 or
32 MPI processes, respectively. This suggests that a further performance gain
could be achieved through using Nvidia’s MPS to mitigate a restriction on the
number of MPI processes given by the number of available GPUs. MPS enables
multiple processes to simultaneously offload to the same GPU as efficiently as
possible. While this predominately benefits the parts of computation that take
place on CPU by being able to use the best hybrid parallel configuration, there
is also a minimal benefit for the Spliss linear solver as long as there are only a
few processes submitting to each GPU. The observation can be traced back to
the host to device copies necessary at the start of the linear solver execution and
is negated by overhead when more processes offload work to the same GPU.

4 Evaluation

This section, first, introduces the test systems and the test case, second, provides
an assessment of the scalability of Spliss with CODA on the German Aerospace
Center’s CARO HPC production system and, third, compares the performance
and scalability of CODA with Spliss executed on Nvidia A100 GPUs on the
JUWELS Booster module at Jülich Supercomputing Center.

4.1 The Test Systems

The Cluster for Advanced Research in Aerospace CARO is one of the two German
Aerospace Center’s main HPC systems. It was ranked at 135 in the Top500 list of
11/2021 providing 3.5 TFlop/s out of 5.6 TFlop/s theoretical peak performance
[2]. The system offers 1364 compute nodes, whereas each compute node consists
of two AMD EPYC 7702 (64 cores at 2.0 GHz). In total, the system offers 174,592
compute cores.

Similar to the AMD Naples architecture, the AMD Rome architecture within
this system includes 16 NUMA (non-uniform memory access) domains and three
NUMA distances: first, to the memory of the seven other cores on the same die,
second, to the memory on the 7 other dies on the same chiplet (socket) and,
third, to the memory located on the other chiplet. In addition, only four of
the eight cores on each die share a last level cache (L3 cache), which presents
an additional difference in memory access latency depending on the locality of
the data; whether it is in the shared L3 cache of the according core or in the
adjoining L3 cache on the same die.

The second test system is the JUWELS Booster module at Jülich Supercom-
puting Center. The JUWELS Booster module was ranked at 7 in the Top500
list of 11/2020 providing 44.1 PFlop/s out of 71.0 PFlop/s theoretical peak
performance; making it the most powerful system in Europe at that time. The
system offers 936 compute nodes, whereas each compute node consists of two
AMD EPYC 7402 and four Nvidia A100 GPUs with four-times InfiniBand HDR
(Connect-X) interconnect. In total, the system offers 3744 GPUs.



Performance and Scalability of the GPU Accelerated Spliss 643

4.2 The Test Case

The test case for the evaluation is based on the NASA 3D Onera M6 wing test
case [15], which simulates the external airflow at transonic speed and computes
typical characteristics like air velocity and direction, pressure and turbulence via
a turbulence model. The NASA 3D Onera M6 wing test case is well studied and
provides experimental data as well as numerical solutions by other CFD appli-
cations for comparison. For the test case, CODA solves the Reynolds-averaged
Navier-Stokes equations (RANS) with a Spalart-Allmaras one-equation turbu-
lence model in its negative form (SAneg). It uses a second-order finite-volume
spatial discretization with an implicit Euler pseudo-time integration based on
local (pseudo) time steps scaled via an up-ramping CFL number starting at 5.0.
For the linear problem, a Block Inversion preconditioned Block-Jacobi Solver
is applied to solve the linear system. The flow conditions are outlined by the
following parameters: the Mach number is set to 0.84, the Reynolds number to
14.6e6, and a fixed 3.06◦ angle of attack is set.

For this case, the vast majority of the iteration phase is spent in the linear
solver, which makes it ideal to offload the computationally intensive linear sys-
tem solving to GPUs. Measuring the iteration time of CODA provides a very
close estimation of the performance and scalability of Spliss within a real-world
example. In addition, it highlights the performance of the entire simulation, i.e.
it includes all time spent for data transfer between CPU and GPU, CPU-only
sections as well as communication and synchronization; not just the time for
the GPU kernels. While results may be biased by CODA, the measurements
show the combined performance and scalability of CODA with Spliss since per-
formance degrading effects accumulate. In this sense, CODA and Spliss may
achieve better performance and scalability individually.

The test case operates with a medium-sized, unstructured mesh with 69.2
million volume elements. This way, it is large enough to achieve good perfor-
mance per GPU with the chosen linear solver components but still small enough
to allow for a reasonable strong scaling evaluation.

4.3 Measurement Setup

As a reference, we evaluated the scalability of CODA with the above test case
on the CARO HPC system. For the scalability evaluation all software threads
are bound to a hardware thread to ensure thread affinity and using one hard-
ware thread per core. For the reference, we compared different hybrid-parallel
setups suitable for the specific memory and NUMA layout of the AMD Rome
architecture. The comparison showed that best hybrid-parallel performance is
reached when using only four OpenMP threads per MPI process, so that these
threads share the same last level cache. This is consistent with its predecessor,
the AMD Naples architecture, and stands in contrast to other architectures, for
instance, the Intel Cascade Lake architecture, where comparable performance for
all hybrid setups was obtained [10,16]. Consequently, we chose the best hybrid
setup, i.e. with 32 MPI ranks and 4 OpenMP threads per node, as a reference.



644 J. Mohnke and M. Wagner

For the GPU measurements all software threads are bound to a hardware
thread to ensure thread affinity and using one hardware thread per core, too.
Similarly, we compared different hybrid-parallel setups that matched well with
specific memory and NUMA layout of the AMD Rome architecture on the host as
well as the number of installed GPUs, namely 4 MPI processes with 12 OpenMP
threads each, 8 process with 6 threads, 16 processes with 3 threads and 48
processes MPI-only. Out of these, the setup with 8 MPI processes and 6 OpenMP
threads each achieved the best overall performance and, as a result, was selected
to represent the GPU measurements.

For all GPU measurements the linear systems solving via Spliss is offloaded
to the Nvidia A100 GPUs, while the non-linear part in CODA is executed on the
host CPU. The offloading is achieved by simply linking against the GPU-version
of Spliss; without any modifications to the CODA source code or installation.

4.4 Comparing CPU and GPU Performance and Scalability

The CPU reference measurement runs the above described test case as strong
scaling setup, i.e. the problem size is fixed for increasing core counts, and contains
measurements from 2,048 to 12,288 cores or 16 to 96 nodes, respectively. This
represents an appropriate range for the given mesh size, with on average about
5600 elements per thread at the largest core count. In this range, the test case
achieves a near ideal speedup and a compute performance that matches experi-
ences from previous measurements, which makes it a valid and strong reference
to compare the GPU measurements against.

The GPU measurement runs the same strong-scaling test case from 8 to
128 GPUs or 2 to 32 nodes, respectively. This represents an appropriate range
for the given mesh size, where two nodes is the minimum number of nodes
to fit the simulation data into main memory and at 32 nodes the individual
GPU utilization starts to decline. At 32 nodes and 128 GPUs, respectively, the
given test case can theoretically achieve about 85 % of the maximum single GPU
performance since there is simply not enough computational load to meet the
massive demand of parallel load for the A100 GPUs. Since there is an additional
decrement for running multiple processes via MPS (two in this case) the resulting
utilization is about 70 % of the maximum single GPU performance. For further
increasing numbers of GPUs the resulting individual GPU utilization declines
faster than the parallel efficiency within Spliss or CODA, i.e. increasing the
number of GPUs would necessitate larger input data to match the GPUs demand
for computational load.

On the GPU system the test case achieves a scaling efficiency of 82 %, i.e. a
speedup of 13.1 of ideally 16 for 128 GPUs, for the entire CODA iteration phase
including the linear part in Spliss running on the GPUs, the non-linear part in
CODA running on the CPUs and all transfers between host and device. Whereas,
the linear part in Spliss makes up about 60 % for 8 GPUS up to 75 % for 128
GPUs of the iteration phase. The linear part in Spliss running on the GPUs on its
own, achieves a scaling efficiency of 66 %, i.e. a speedup of 10.5, which is mainly
due to the above described decreasing individual GPU utilization to about 70 %



Performance and Scalability of the GPU Accelerated Spliss 645

Fig. 2. Runtime comparison on CARO (AMD Rome) and JUWELS Booster (4x Nvidia
A100) with the M6 wing testcase in relation to power consumption.

on 128 GPUs. The remaining efficiency decrease of about 4 % is due to increasing
ratio of synchronization to computation, whereas the synchronization includes
MPI communication between the GPUs and transfers between host and device.

When comparing the relative performance per node, i.e. 16 CARO nodes (128
cores AMD Rome each) versus 16 JUWELS Booster nodes (48 cores AMD Rome
and 4 GPUs each), the GPU nodes outperform the CPU nodes by a factor of up
to 8.4, whereas with increasing scale the factor declines to 6.7 due to the above
described reduced GPU utilization for the given test case. While this node-wise
comparison matches two high-end nodes that were both state-of-the-art for CPU
and GPU systems at their similar installation time, it must be considered that
the GPU nodes are significantly more costly in both acquisition and operation,
the later due to their much higher power consumption.

To allow for a fairer assessment of both systems, we compare the runtime
in relation to estimated power consumption using the Thermal Design Power
(TDP) value, as well. A single CARO compute node has a power consumption
of about 400 W, which is composed of the 2× 200 W of the AMD Epyc 7702
CPUs. In comparison, a single JUWELS Booster node has a power consumption
of about 1960 W, which is made up of the 2× 180 W of the AMD Epyc 7402
CPUs and the 4× 400 W of the Nvidia A100 GPUs. Since both systems are pro-
duction systems it is infeasible to retrieve the proportionate power consumption
of further involved components such as network, storage or cooling. Nonethe-
less, their impact can be assumed to be insignificant in comparison to the nodes
themselves.

Figure 2 shows the runtime comparison for the test case on CARO and
JUWELS Booster in relation to power consumption. It depicts the runtime for



646 J. Mohnke and M. Wagner

2,048 to 12,288 cores on CARO and 8 to 128 GPUs on JUWELS Booster on
the vertical axis and the power consumption on the horizontal axis, which is
obtained by multiplying the number of nodes for each data point with the power
consumption of the according node. For the test case, Spliss achieves a signif-
icant speedup of 1.6 to 1.9 on the GPU system even when equated for power
consumption.

Key Results. The evaluation presents three key results: First, the above
described improvements enable CFD solvers such as CODA to leverage the ben-
efits of offloading the computationally intensive linear equation solver to GPU
accelerators without any modifications to the CFD solver itself and achieve a
speedup of up 8.4 in a node-wise comparison and a speedup up to 1.9 in a
power-equated comparison. Second, Spliss’ GPU version allows to achieve a sim-
ilar performance on significantly less compute nodes, which can provide better
scalability, particularly, towards exascale systems since fewer nodes allow for less
MPI processes, less MPI communication and, thus, less communication overhead.
Third, due to the significant acceleration of the linear part on GPUs, the non-
linear part that is executed on the CPU becomes more prominent: where it is
typically about 5–10 % of the iteration phase it increases to about 40 %. Since the
main purpose of the usage of Spliss is to hide the complexity of hardware-specific
optimizations from the CFD solver, the non-linear part in the CFD solver might
remain exclusive to CPUs by design. To further increase the performance in this
case would require a) larger workloads at the given scale, which would be quite
typical for industrial applications or b) move to systems that have more perfor-
mant CPUs in the GPU nodes. For instance, a hypothetical node that replaces
the CPU in the JUWELS Booster system with the state-of-the-art CPU from
the CARO system would provide an additional speedup of about 20 %, i.e. a
power-equated speedup of about 2.3 for the GPU version over the CPU version
on CARO.

5 Conclusion

The sparse linear system solver Spliss efficiently solves the large sparse systems of
linear equations that result from the time integration of the Reynolds-averaged
Navier Stokes (RANS) equations. It takes advantage of various current HPC
technologies while hiding the resulting complexity from the CFD solver. The
heterogenous compute node architecture consisting of CPUs and GPUs that can
be found on many current top HPC systems is one of them. In combination
with an efficient, hybrid CPU parallelization, Spliss and the improvements of
this work allow the performance gain achieved with a single GPU to scale to
large distributed systems consisting of hundreds of GPUs. We outlined the steps
taken to enable efficient multi-GPU usage for the Spliss linear solver reducing
the runtime in a distributed set-up on Nvidia A100 GPUs by up to 50 %. Addi-
tionally, using the NASA 3D Onera M6 wing test case for Spliss with the CODA
CFD software, we looked at performance in a strong scaling scenario on current



Performance and Scalability of the GPU Accelerated Spliss 647

HPC systems. We showed that GPU acceleration of Spliss can yield a up to 8.6
times speedup over state-of-the-art CPU systems or a up to 1.9 times speedup
when equated for power consumption.

Acknowledgements. Funded by the European Union. This work has received fund-
ing from the European High Performance Computing Joint Undertaking (JU) and Ger-
many, Italy, Slovenia, Spain, Sweden, and France under grant agreement No 101092621.

References

1. Krzikalla, O., Rempke, A., Bleh, A., Wagner, M., Gerhold, T.: Spliss: a sparse
linear system solver for transparent integration of emerging HPC technologies into
CFD solvers and applications. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C.
(eds.) STAB/DGLR Symposium 2020. NNFMMD, vol. 151, pp. 635–645. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-79561-0 60

2. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: The 60th Top500 list (2022).
https://www.top500.org/lists/top500/2022/11/ Accessed 23 Feb 2023

3. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU Code: recent applica-
tions in research and industry. In: Proceedings of the European Conference on Com-
putational Fluid Dynamics, ECCOMAS CFD (2006). https://elib.dlr.de/22421

4. Leicht, T., et al.: DLR-project digital-X – next generation CFD solver ’Flucs’.
Deutscher Luft- und Raumfahrtkongress (2016). https://elib.dlr.de/111205

5. Meinel, M., Einarsson, G.: The FlowSimulator Framework for Massively Parallel
CFD Applications. In: PARA 2010 (2010).https://elib.dlr.de/67768

6. Huismann, I., et al.: Accelerating the FlowSimulator: profiling and scalability anal-
ysis of an industrial-grade CFD-CSM toolchain. In: 9th Edition of the International
Conference on Computational Methods for Coupled Problems in Science and Engi-
neering (COUPLED PROBLEMS 2021) (2021). https://doi.org/10.23967/coupled.
2021.008

7. Alrutz, T., et al.: GASPI - a partitioned global address space programming inter-
face. Facing Multicore-Challenge III, LNCS 7686, 135–136 (2013). https://doi.
org/10.1007/978-3-642-35893-7 18

8. Jägersküpper, J., Vollmer, D.: On highly scalable 2-level-parallel unstructured
CFD. In: 8th European Congress on Computational Methods in Applied Sciences
and Engineering (2022) https://doi.org/10.23967/eccomas.2022.208

9. Wagner, M., Jägersküpper, J., Molka, D., Gerhold, T.: Performance analysis of
complex engineering frameworks. In: Mix, H., Niethammer, C., Zhou, H., Nagel,
W.E., Resch, M.M. (eds.) Tools for High Performance Computing 2018 / 2019, pp.
123–138. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-66057-4 6

10. Wagner, M.: Scalability evaluation of the CFD solver CODA on the AMD Naples
architecture. In: Sustained Simulation Performance 2021, pp. 95–106 (2023).
https://doi.org/10.1007/978-3-031-18046-0 7

11. Nvidia: Performance Analysis Tools. https://developer.nvidia.com/performance-
analysis-tools. Accessed 20 Feb 2023

12. Kraus, J.: An introduction to CUDA-aware MPI (2013). https://developer.nvidia.
com/blog/introduction-cuda-aware-mpi. Accessed 17 Feb 2023

13. Nvidia: GPUDirect. https://developer.nvidia.com/gpudirect. Accessed 20 Feb
2023

https://doi.org/10.1007/978-3-030-79561-0_60
https://www.top500.org/lists/top500/2022/11/
https://elib.dlr.de/22421
https://elib.dlr.de/111205
https://elib.dlr.de/67768
https://doi.org/10.23967/coupled.2021.008
https://doi.org/10.23967/coupled.2021.008
https://doi.org/10.1007/978-3-642-35893-7_18
https://doi.org/10.1007/978-3-642-35893-7_18
https://doi.org/10.23967/eccomas.2022.208
https://doi.org/10.1007/978-3-030-66057-4_6
https://doi.org/10.1007/978-3-031-18046-0_7
https://developer.nvidia.com/performance-analysis-tools
https://developer.nvidia.com/performance-analysis-tools
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi
https://developer.nvidia.com/gpudirect


648 J. Mohnke and M. Wagner

14. Nvidia: Multi-Process Service (2021). https://docs.nvidia.com/deploy/pdf/
CUDA Multi Process Service Overview.pdf

15. Daniel Destarac, Antoine Dumont: ONERA M6 Wing Test-Case, Original
and TMR (2016). https://turbmodels.larc.nasa.gov/onerawingnumerics val.html.
Accessed 17 Feb 2023

16. Wagner, M., Mohnke, J., Krzikalla, O., Rempke, A.: Evaluating performance and
scalability of the sparse linear systems solver Spliss. In: Methods, Tools and Tech-
nologies for Design in Aviation (to be published)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html
http://creativecommons.org/licenses/by/4.0/

	A Look at Performance and Scalability of the GPU Accelerated Sparse Linear System Solver Spliss
	1 Introduction
	2 Background
	3 Porting Spliss to GPU
	3.1 Implementation Changes
	3.2 Adjustments at Runtime

	4 Evaluation
	4.1 The Test Systems
	4.2 The Test Case
	4.3 Measurement Setup
	4.4 Comparing CPU and GPU Performance and Scalability

	5 Conclusion
	References


