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Abstract—For many information applications like alarming
services or surveillance systems, reactivity is a very important
criterion. This is also true for many applications based on
satellite data, for example in the field of remote sensing or space
system operation. These applications are currently bottlenecked
by classical satellite operation, where contact to the satellite is
only established within a few communication windows, when the
satellite is in reach of an assigned ground station. The amount
of time between collection of the data on the space system and
having it available for ground-users can take from several hours
up to days.

At our institution, we are working on a cost-efficient method
to decrease the latency until information, derived from satellite
data, becomes available for usage on ground. The basic approach
is trying to utilizing satellite based low-latency real-time telecom-
munication networks, designed for ground-based satellite phone
usage in combination with on board information extraction.
Information extraction on the satellite will be necessary as the
telecommunication networks only offer a very limited data-
transfer bandwidth in the range of a few hundred bytes and
the transmission of raw sensor data is not possible.

Index Terms—on board data processing, on board data han-
dling, system reconfiguration, commercial of the shelf compo-
nents, artificial intelligence, system architecture, software devel-
opment, quality of service, safety

I. INTRODUCTION

Currently many satellite missions follow a time-window
based, static management philosophy. When a satellite has
contact to a ground station, telecommands containing a time-
based static command list are sent to the satellite and telemetry
and payload data are received. Payload data is usually pro-
cessed at a data center on ground, after the data was down-
loaded from the satellite. Many satellites, particularly smaller
low earth orbit satellite missions, have a contact window every
6-24 hours, to reduce the operational costs. For data collection
applications, these ramifications might be quite sufficient. For
time-critical applications the long duration in-between flight
windows, where no information transfer between the ground
and space segment can be performed and no information from
the sensor data can be utilized, is quite a limiting factor for
the quality of service of the mission. Two typical application
scenarios, which are currently bottlenecked by current satellite
operations, are alarming services, for example fire detection,
and space system health services.

Having the capability to detect a critical event on board
and getting immediately informed about it, would significantly
improve the quality of service of satellite operations, due to the
opportunity of a timely reaction. At the moment, implementing
a real-time information system is challenging, especially for
smaller satellite mission designs, as real-time links are not
commonly available on these platforms and critical event
detection on board requires, compared to traditional mission
designs, advanced on board data management and processing
capabilities.

Therefore, we are currently working on the ”On-board Data
Analysis And Real-Time Information System” (ODARIS), with
the goal to be able to implement real-time services with
an information latency around a few minutes on board of
especially small- to medium-sized satellite systems.

Our approach for providing an always-on real-time connec-
tion link, especially for small satellite missions, is to re-utilize
satellite telecommunications networks like the Iridium network
[1]. These networks are designed for ground usage but have
also been successfully used in a space environment for low
earth orbit satellites [2]. These communication networks may
be able to provide a low latency 24/7 communication link,
with the downside that the data bandwidth is very limited.
The service we are currently using enables us to send and
receive text messages from the ground with a size of around
200 bytes and a total volume of up to 1 MB / day, assuming
very good connectivity with the communication network [3].
To circumvent these limitations, we are currently working on
an on board data processing and management software system
which collect and extract useful information from sensor data
on board as well as sending alarming messages to the ground
via the real-time communication link. Furthermore, the system
shall also enable us to access information at any time from the
satellite platform.

II. RELATED WORK

The EO-ALERT project founded by the European Commis-
sion H2020 program, has similar goals as ODARIS. The aim of
the project is to propose, design and validate a next generation
data processing chain for earth observation satellites through
ground testing. The goal of the EO-ALERT architecture for
providing SAR and optical EO products to the end user with a



latency of less than five minutes, and targeting a latency of one
minute for alarming services. The prototype application chosen
to show the concept are ship detection based on SAR data
and extreme weather monitoring. Data is processed on board,
using a standard LINUX ARM-based embedded computing plat-
form, based on the AMD ZYNQ computing series. For real-
time communication the INMARSAT geostationary satellite
service, providing a maximum data rate of about 250kbit/s,
was chosen [4].

The ESA OPS-SAT mission is one of the many recent
examples, using a standard ARM-based Linux operating system
embedded computing system for for the payload processing
unit. This choice enables the (re-)usage of modern software
components, like Tensorflow Lite Library [5] , in a space
environment, which were not specifically developed for space
usage [6]. It was demonstrated that even a 3U Cubesat could
provide enough computing resources to run state of the art
AI-based data analysis applications [7].

III. HISTORY

The first phase of ODARIS development started 2015 with
a requirements analysis and the creation of a concept for a
real-time information system. 2018 a first prototype of the
information system was demonstrated on an aircraft platform
performing on board ship detection. The goal was to detect
ships from high resolution visible optical camera data and
identify ships which are not sending mandatory Automatic
identification system (AIS) signals [8]. With begin of 2019,
we started to prepare a couple of satellite missions, with the
goal to be able to demonstrate the ODARIS concept within a
space environment [9], [10]. These involve tasks, like finding
a flight opportunity, identifying system requirements for space
operation, identify strategies for implementation and set up a
development and test environment.

IV. OBJECTIVES OF THIS PAPER

The object of this article is to give an overview of the
background, motivation, goals, features, system architecture,
boundaries and planned verification missions of the ODARIS
project.

V. SYSTEM ARCHITECTURE

In the following section a brief overview over the system
architecture is presented. The main design targets of the
ODARIS system are to enable satellite-based real time alarming
services, increase the efficiency of satellite operation, a broad
support for flight platforms and providing a host platform for
space service applications. Based on these design targets, the
design of ODARIS has been derived.

A. Hardware architecture

In figure 1 a schematic of the hardware components of a
typical ODARIS implementation is shown. The system consists
of

• an on board payload processing unit, responsible for
sensor data processing and system management

• an real-time communication link for enabling real time
communication

• various sensors, typically cameras or system monitoring
sensors

• an connection to the satellite bus

Fig. 1. Schematic of the hardware architecture of a typical ODARIS imple-
mentation

At the moment a ”RaspberryPi-1” [11] like computing
system running a Linux operating system (LINUX) is sufficient
to execute the ODARIS software system. For developing and
testing we are currently using a Commercial Off-The-Shelf
(COTS) AMD Zynq-7020 SoC, which contains a dual core
ARM Cortex-A9 processor [12]. For the real-time commu-
nication link the EyeStar-S4 Radio from Near Space Launch
(NSL) [13] is planned for usage. Derived from the specification,
it should enable us to send and receive text messages with
a size of around 200 Bytes and a latency of 5-30 seconds.
The maximal data rate is stated with 13.5 bytes/sec which
adds up to around 1 MB per day [3]. Additionally, a sensor,
like a camera or system monitoring sensors, will be attached
to the ODARIS system as a data source. Finally, the ODARIS
system will be attached to the satellite bus for power and
TM/TC communication. To show the size of the ODARIS hard-
ware components, the currently used development hardware is
shown in figure 2.

B. Software architecture

Based on the design targets, the following requirements for
the software system have been derived. The software systems
should be:

• responsive, to allow immediate reaction on user requests
and data input

• sufficient reliable and efficient to be executed in a space
environment

• extensible to be able of adding third-party data processing
applications and attach a broad range of sensors



Fig. 2. Image of the development hardware components currently used. Top:
Zynq-7020 MicroZed Board [14], Botton-right: EyeStar-S4 radio, Botton-left
Iridium patch antenna

• flexible for adequate usage in highly dynamic mission
scenarios, and at last provide sufficient computing re-
sources to be able to perform modern data processing
tasks as AI-based object detection

To suite these requirements, we decided to use a service
driven, database centric, message-based software architecture
The core components of the ODARIS software system are
on one hand stateless software services for performing data
processing and system management task. And on the other
hand, a database system for information storage and intra-
service communication. Currently the ODARIS core services
are implemented as C++/Linux applications, but in principle
every application which is able to be connected to a database
can be attached. As database system we are at the moment
using the SQLite [15] file-based database engine.

A schematic of the service architecture is shown in figure
3. Currently the ODARIS system is developed and tested on an
embedded LINUX system [16] executed on the ArmV7 archi-
tecture and additionally to identify architecture specific issues
also on an LINUX based x86-64 system. For an exemplary AI-
based object detection application the Tensorflow Lite Library
[5] (TFLite) is utilized.

.

C. Service architecture

The services itself can be executed as standalone appli-
cations on a LINUX system. Or they can be integrated in
a host application via (library) function calls. If started as
standalone processes a dedicated service manager is required
for starting and stopping the ODARIS services. Currently we use

Fig. 3. Schematic of the ODARIS system service architecture

Bourne-again shell (Bash) shell script for starting, observing
and stopping the services for standalone applications. If the
services are integrated via function calls, the host application
is responsible for the service management. Initial configuration
of the services is performed at startup time using configuration
files. The services are only loosely coupled, in the sense, that
they can be started and stopped independently of other services
execution states. Services are also not directly communicating
with each other. There is no point to point communication
channels necessary between the services. The services exclu-
sively exchange information via the system databases. There
is also no service communication protocol used. The services
write data they want to publish in the system databases. Other
service are able to consume the information, by querying
the database. The (consuming) services are designed not to
require any input from another service to increase flexibility
and safety. External system resources are accessed by exactly
one (interfacing) service. As an example, an TM/TC service
will query a TM database table for TM data, inserted by
other services, and propagate it to one of the available TM
channels. As another example, an image analysis service will
directly access image data from a camera, analyze it and also



write the result in a database, which could be consumed by
other services. More details about this process is provided in
the next section. Different application modes can be defined
simply via a mode specific list of active services and mode
specific configuration files. The services itself are currently
implemented as stateless application which have periodically
triggered activity windows. State data is read and written from
the databases.

D. Communication architecture

As explained, intra-service communication is performed
over system databases. Communication with external devices
is performed via dedicated services, which are exclusively
communicating over the specific device interfaces. The ODARIS
services can be categorized in three service classes: data
processing services, communication services and information
management services. In figure 4 a typical data flow is
presented, visualizing the role of the service classes. Data
processing services fetch data from a data source, like a
camera, compute it, and write mission relevant data to a system
database. Communication services are responsible for sending
and receiving data over one of the available communication
channels. For example, the ServiceComRT is responsible for
sending and receiving data over the real-time (RT) communica-
tion link and the ServiceTM/TC is responsible for sending and
receiving data over the TM/TC channel. If a service wants to
send or receive data from one of the communication channels,
it uses the internal ODARIS message system, by fetching and
storing messages from internal post-in or the post-out boxes.
Post-in and post-out boxes are implemented as databases tables
with a specific format. Internal ODARIS message functions
are used by the services to ensure that the messages are
inserted in the database table in the expected format. The
ODARIS message system is exclusively used by the communi-
cation and information management services. The information
management services are responsible for generating messages
which are sent to the user on the ground. Currently the only
representatives of this class are the ServiceQuery and the Ser-
vicePush. The ServiceQuery fetches user query messages from
the post-in box, generates a response message by querying
the system databases based on the query message content
and puts the response message back to a post-out box. The
ServicePush periodically accesses the entries of a push event
database table and checks regularly if the event has occurred,
by also querying system databases. If an event occurs, an event
response message will be generated an put in one of the post-
out boxes. The push event database table can be modified by
the user during operation via one of the communication links.
The design choice to use different services for different tasks,
has the advantage that data generation is completely decoupled
from system communication. Data processing services do not
send or receive any data from the message system directly.
This has the advantage that all data processing services can
share the same communication infrastructure and application
developers don’t have to decide when and what data has to be
communicated to the ground segment. They just have to ensure

that their application puts the product data in an consumable
format in one of the system databases. An operator can define
alarming events and query data required directly from the
system, at mission operation time. For formulating query
requests and push events the Structured Query Language (SQL)
is used.

Fig. 4. Diagram of a typical dataflow within the ODARIS context

E. Data management
Currently all data which should be accessible via the

communication services is stored in system databases. Large
data artifacts like sensor data and data analysis results may
be stored as files. These files could be transmitted to the
ground via data downlink channels. Currently the downlink
of large data sets to the ground via the real-time channel is
not supported, as the maximal data rate mentioned by the
specification is 13.5 bytes/sec which is around 1 MB per day
[3]. Nevertheless, small sized data as for example an image
section, containing an detected object, can be sent down via
the RT link using multiple messages. Meta data, for example
the image acquisition time, is also inserted in the system
database. The database is also used for storage of system logs
and status information. A logging library is used to ensure
coherent system logging of the ODARIS services. In figure 5
an excerpt of of a ODARIS time based system log and in figure
6 the status information of the ServiceQuery is shown. Note,
that these information can be accessed by the RT link via a user
query or via an push event. During operation, we also plan to
periodically send down a snapshot of the ODARIS databases to
the ground via data downlink channels.

F. Safety concept
At the moment the ODARIS system is designed with the

requirement to be executed in an safe enclave, which enforces
that ODARIS cannot affect critical system components. On our
currently planned missions this is realized by executing ODARIS
on a dedicated payload processing unit where no mission crit-
ical tasks are performed. Furthermore ODARIS does not access



Fig. 5. Excerpt of the ODARIS system log, displayed via SQLiteBrowser [17]

Fig. 6. Status log of the ServiceQuery, displayed via SQLiteBrowser [17]

any system components which are critical to the system. The
design choice not to be classified as critical system component,
enables us to focus on functionality and reducing development
cost. The main advantage is that we can use state of the art
software components as for example the TFLite for machine
learning in a space environment. Nevertheless, high quality of
service is a very important aspect of a space applications, as
space system integration and the deployment of the system in
the space environment is very expensive compared to ground-
based applications. Furthermore, the capability to service the
application at operation time is also very restricted due to
the non-existent option of having physically access. Updating
the system software may also be not feasible or very limited
due to the available up-link capacity. To ensure high quality
of service, especially for the software components, we have
established a modern state of the art software developing
infrastructure, focusing on:

• automatically enforcing strong coding rules
• using modern software developments tools and guidelines
• a strict coding review process
• automatically checking for code safety violation
• extensive automatic testing of the system components on

the target platforms and
• regularly preforming manual system tests

In detail the ODARIS software components are written in C++,
compliant to the C++-17/20 standards [18]. We focused on
writing robust and safe code, by trying to avoid unsafe and
error prone programming constructs and by utilizing modern
safe language features. For test and integration of the software
components an automatic GitLab [19] CI-pipeline is set up,
building the software for several target specific architectures.
Automatic software tests are executed directly on the develop-
ment hardware used for mission specific system development.
Only code which has at least reviewed by one person is
allowed to be merged in the code base. We enforce usage
of coding guidelines by very strict compiler settings (-Werror)
and the usage of the static-code analysis tool clang-tidy [20],
with a large testing set activated. For detection of dynamic

memory access violations, we use address sanitizers [21],
which are built-in in modern compilers like the GNU compiler
collection [22] (GCC) or the LLVM-CLANG Compiler [23]
(CLANG). Also, we have the rule, that any operation performed
in space has to be tested on ground before usage. The hardware
is also tested extensively in a laboratory environment to ensure
functionality and safety. At the moment we have not built-
in sophisticated countermeasures addressing hardware failures.
We expect that the hardware is capable to be executed in a
space environment. Nevertheless, as ODARIS is a non-critical
system component, we can accept sporadic system failures. As
ODARIS services are stateless there should not be an issue to
restart some or all of them, if a critical system error occurs.
The only hardening measure we are currently planning to
implement, is to ensure, that the ODARIS system is capable
of handling corrupt configuration and database files, and that
abortions of services are detected and an automatically restart
of the service is performed. For being able to inspect the
health status of the ODARIS system, the services provide status
information and logging information via databases. Status
and logging information can therefore be accessed via the
communication system when required.

VI. CONCEPT VERIFICATION

We are currently in preparation of two satellite missions
with the goal to demonstrate the ODARIS concept. The overar-
ching goal of the experiments is to verify, that the proposed
methodology is in general a feasible approach for implement-
ing satellite based real-time information systems on ”low earth
orbit” space missions. The experimental results shall provide
sufficient information to evaluate the potential of using the
proposed real-time information concept within future regular
satellite mission operations. To achieve these scientific goals,
first, it shall be shown, that the proposed methodology can
be implemented for a real-world space mission. Second, to
evaluate the feasibility for operational usage of the method,
performance criteria of different aspects of the system shall be
derived in a real-world experiment scenario. Third, weaknesses
of the system and development potential of the methodology
shall be identified. There are three major aspects which shall
be evaluated within the ODARIS experiments, the performance
of the real-time communication system, the usability of the
information system in a real space-mission environment and
the feasibility to perform data analysis on board a satellite.
The start of both missions is planned around 2025 and they are
both based on different on board computing architectures. For
one mission we are part of the Scalable On-board Computing
for Space Avionics (ScOSA) project team, which has the goal
to demonstrate the concept of a next generation high perfor-
mance distributed heterogeneous computing system, utilizing
a combination of high performance COTS processing nodes
for computationally intensive tasks and reliable nodes based
on traditional certified space hardware for system management
and supervision tasks [24]. For the mission the ODARIS system
has to be integrated in a software system supporting the
operation of the distributed heterogeneous computing system



[24]. The second experiment in preparation is planned to
be conducted within the Seamless Radio Access Networks
for Internet of Space (SERANIS) satellite mission from the
University of the Bundeswehr Munich [25]. It is planned to
integrate ODARIS as a standalone application within a Docker
container on a rather powerful GPU accelerated Linux based
payload processing unit.

VII. CONCLUSION AND NEXT STEPS

With this article we gave a comprehensive overview of the
background, the goals, the system architecture and the concept
verification approach of the ODARIS on board data analysis and
real time information system. The next development steps are
as mentioned in the last section preparing and performing two
concept demonstration satellite experiments. If the feasibility
of the concept can be demonstrated, the next step will be the
deployment of the system on a variety of space missions to
increase the quality of service and simplify the operation.
Additionally, the information system shall serve as a host
platform for all kinds of applications, enabling developers to
bring their application in a space environment without deep
understanding of space system software development.
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