

X2Rail-5

 Project Title:
Completion of activities for Adaptable

Communication, Moving Block, Fail Safe Train

Localisation (including satellite), Zero on site Testing,

Formal Methods and Cyber Security

Starting date:
01/12/2020

Duration in months:
30

Call (part) identifier:
S2R-CFM-IP2-01-2020

Grant agreement no:
101014520

Deliverable D10.2

Proposed extension of specification approach to meet

needs of RCA

Due date of deliverable Nov 30, 2021

Actual submission date Jan 13, 2022

Organization name of lead contractor for this

deliverable

DB

Dissemination level PU

Revision 1.0

Deliverable template version: 01 (21/04/2020)

This project has received funding from Shift2Rail Joint Undertaking (JU) under grant agreement

101014520.The JU receives support from the European Union’s Horizon 2020 research and innovation

programme and the Shift2Rail JU members other than the Union.

X2Rail-5 Proposed extension of specification approach to meet needs of RCA

Authors & Version Management

Author(s) Deutsche Bahn (DB)

Randolf Berglehner

Abdul Rasheeq

Felix Auris

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

Daniel Schwencke

Contributor(s) Trafikverket (TRV)

Arne Borälv

Reviewer(s) Thales (THA)

Dominik Hansen

AZD

Adam Rychtář

Version Management

Version
Number

Modification
Date

Description / Modification

0.1 June 30, 2021 First draft.
0.11 Sept 07, 2021 First revision (Meeting Sept 07, 2021)
0.2 Sept 23, 2021 Inputs from DLR, TRV and DB
0.3 Oct 15, 2021 Inputs from meeting Oct 07, 2021
0.4 Nov 24, 2021 Addition of content in chapter 6 and chapter 7
0.41 Nov 26, 2021 Addition of content in chapter 6 and chapter 7
0.42 Dec 07, 2021 Addition of content in chapter 7
0.5 Dec 09, 2021 Addition of chapters 7.1 and 7.2
0.6 Dec 15, 2021 Addition of content in chapters 7.3.1 and 7.3.2
0.7 Dec 16, 2021 Addition of chapters 7.4 and 7.5
0.8 Jan 10, 2022 Inputs from DB, TRV and DLR. References.
0.9 Jan 12, 2022 Minor edits and finalised issue of the deliverable
1.0 Jan 13, 2022 Final revision

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 3 of 68

1 Executive Summary

This document is deliverable D10.2, describing extensions of the MBSE specification approach to

needs of future Functional Railway System Architectures within Task 10.3 of work package WP10

Formal Methods for Functional Railway System Architecture, within the X2Rail-5 project.

This deliverable is concerned with a specification approach meeting the needs in ongoing and

future developments of ERTMS, and the European initiatives RCA and EULYNX. This is a rather

large scope, whose general high-level goal may be formulated as:

Determine a suitable approach to specify, verify, and validate system requirements, that

can meet the needs of initiatives and projects RCA and EULYNX that define a future system

architecture.

Different specification approaches are currently applied in RCA and EULYNX. RCA (as well as

LinX4Rail 5.2) use the ARCADIA method. EULYNX uses an MBSE approach, based on the

systems modelling language (SysML) as defined in the EULYNX Modelling Standard. These two

approaches complement each other but are not yet “connected” in a stable way. As the function

range of system elements in RCA is larger than the one in EULYNX, and there are additional

characteristics or kinds of behaviours of functions to be considered, RCA has requested to extend

or modify the current EULYNX approach correspondingly. Furthermore, LinX4Rail 5.2 seeks to

represent an ARCADIA-based architectural model in SysML, as it is used in EULYNX. The future

intention is to merge the two complementary approaches into one closely intertwined approach:

The analysis and definition of a modular, standard system architecture shall be carried out

following the ARCADIA method, and the corresponding system elements are further specified

according to an adjusted EULYNX specification approach.

This deliverable describes proposed extensions of the semi-formal EULYNX MBSE approach to

specify different types of behaviour to meet the needs of the RCA initiative, to be used as input

for the current EULYNX/RCA modelling standard and other tasks of X2Rail-5 WP10. This

deliverable also describes different types of behaviours that must be supported in the specification

of system elements and requirements in the RCA approach and their interpretation as mandatory

requirements considering the need for executable (testable) specifications that enable formal

verification of safety requirements.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 4 of 68

2 Table of Contents

1 EXECUTIVE SUMMARY .. 3

2 TABLE OF CONTENTS ... 4

3 ABBREVIATIONS AND ACRONYMS ... 6

4 INTRODUCTION .. 7

4.1 ABOUT THIS DELIVERABLE ... 7

4.2 MOTIVATION AND PURPOSE .. 7

4.3 BRIEF WORK PLAN OVERVIEW ... 8

4.4 DOCUMENT OVERVIEW .. 8

5 BACKGROUND .. 9

5.1 SCOPE AND CONTEXT ... 9

5.1.1 ERTMS .. 9

5.1.2 RCA ... 9

5.1.3 EULYNX ... 10

5.1.4 Importance of Formal Methods.. 10

5.2 GOALS FOR A FUTURE SPECIFICATION APPROACH... 11

5.2.1 Purpose and Intended Use.. 11

5.2.2 Use Case related to Creation of Specification for Tender ... 11

5.2.3 Goals related to the Creation of Specifications Used in Tenders .. 13

5.3 RCA AND EULYNX ... 15

6 SPECIFICATION APPROACHES .. 17

6.1 THE CONCEPT OF SPECIFICATION TECHNIQUE .. 17

6.1.1 Informal specification technique .. 18

6.1.2 Semi-formal Specification Technique ... 18

6.1.3 Formal Specification Technique .. 18

6.1.4 Combination of Semiformal and Formal Specification Techniques .. 18

6.2 DIFFERENT SPECIFICATION PRINCIPLES ... 19

6.2.1 Operational Property Specification .. 19

6.2.2 Stimulus-response Specifications ... 20

6.2.3 Interface-centric specification .. 21

6.2.4 Imperative and declarative specifications .. 22

6.3 EXISTING SPECIFICATION APPROACHES OF INTEREST .. 23

6.3.1 RCA specification approach .. 23

6.3.2 EULYNX specification approach .. 28

6.3.3 Merging the RCA and EULYNX specification approaches ... 36

7 NECESSARY EXTENSIONS OF THE EULYNX MBSE APPROACH ... 38

7.1 CHARACTERISTICS OF A RELEVANT RAILWAY SYSTEM .. 38

7.1.1 Control systems .. 38

7.1.2 Classification of Control systems .. 38

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 5 of 68

7.1.3 Interpretation of the concept of “function”.. 43

7.1.4 Classification of systems according to their behaviour .. 47

7.2 EVALUATION OF THE CURRENT EULYNX SPECIFICATION APPROACH ... 51

7.2.1 Analysis results and resulting requirements for a specification approach ... 51

7.2.2 Assessment of the existing EULYNX specification approach .. 52

7.3 PROPOSED ADDITIONS TO THE EULYNX SPECIFICATION APPROACH ... 54

7.3.1 Modelling of continuous-time and discrete-time dynamic behaviour .. 54

7.3.2 Modelling of static behaviour... 56

7.4 EXPRESSION OF BEHAVIOUR AS MANDATORY REQUIREMENTS ... 57

7.4.1 Current approach ... 57

7.4.2 Advanced approach .. 58

7.5 SUPPORTING AUTOMATED TEST CASE GENERATION ... 59

7.5.1 Motivation .. 59

7.5.2 TCG for different kinds of behaviour .. 61

7.5.3 Model-based system specification facilitating TCG .. 63

8 CONCLUSION .. 66

9 REFERENCES ... 67

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 6 of 68

3 Abbreviations and acronyms

Abbreviation / Acronyms Description
AL Abstraction Levels
AM MBSE Architecture Model Model-Based Systems Engineering
ARCADIA ARChitecture Analysis and Design Integrated Approach
ASAL Atego Structured Action Language
ATO Automatic Train Operation
BDD Block Definition Diagram
CBTC Communications-Based Train Control
CCS Command Control and Signalling
CENELEC European Committee for Electrotechnical Standardization
CSP Crosscutting System Properties
DEDS Discrete Event Dynamic Systems
EN European Norm
EPBS End Product Breakdown Structure
ERTMS European Rail Traffic Management System
ETCS European Train Control System
FA Functional Architecture
FE Functional Entity
FMs Formal Methods
GUI Graphical User Interface
IBD Internal Block Diagram
IM Infrastructure Manager
ISA Independent Safety Assessment
LX Level Crossing
MBSE Model-Based Systems Engineering
MBSE SF Model-Based Systems Engineering Specification

Framework
OCR Object Control Requests
PDI Process Data Interface
PDU Process Data Unit
RCA Reference CCS Architecture
ReqIF Requirements Interchange Format
ROI Return On Investment
SUC Sub Use Case
SUS System Under Specification
SysML Systems Modelling Language
TCG Test Case Generation
TD Technical Demonstrators
TDS Train Detection System
TFE Technical Functional Entity
V&V Validation and Verification
WP10 Work Package Formal Methods and Standardisation for

Smart Signalling Systems, X2Rail-5

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 7 of 68

4 Introduction

This document is deliverable D10.2, describing extensions of the EULYNX-RCA MBSE

specification approach to needs of future Functional Railway System Architectures within Task

10.3 of work package WP10 Formal Methods for Functional Railway System Architecture, within

the X2Rail-5 project [1].

4.1 About this Deliverable

In general, this deliverable is concerned with a specification approach meeting the needs in

ongoing and future developments of ERTMS, and the European initiatives RCA and EULYNX.

This is a rather large scope, whose general goal may be formulated as:

 Evaluate the existing specification approaches in EULYNX and RCA.

 Bridge the gap between the specification approaches in EULYNX and RCA.

 Determine a suitable approach to specify, verify, and validate system requirements in a railway

system architecture.

This deliverable describes proposed extensions of the semi-formal EULYNX MBSE approach to

specifying different types of behaviour to meet the needs of the RCA initiative (see Section 5.1.2),

to be used as input for the current EULYNX/RCA modelling standard and other tasks of X2Rail-5

WP10. A future specification approach must consider the impact of RCA in terms of increased

range of specification scope, increased function range and additional characteristics of functions

that are needed.

This deliverable was created by X2Rail-5 WP10 Task 10.3 (Extending the MBSE specification

approach to needs of future Functional Railway System Architectures), based on an analysis of

different kinds of behaviours that must be supported in the specification of system elements and

requirements, how they shall be interpreted as mandatory requirements, and considering the need

for executable (testable) specifications that support formal verification of safety requirements.

4.2 Motivation and Purpose

Different specification approaches are currently applied in RCA and EULYNX. Both RCA and

LinX4Rail 5.2 [25] use the ARCADIA method as a specification approach. EULYNX uses the

EULYNX MBSE approach, as defined in the EULYNX Modelling Standard [6]. Both approaches

complement each other but are not yet “connected” in a stable way. For the future, it is intended

to merge them into one closely intertwined specification approach:

 The analysis and definition of a modular, standard system architecture shall be carried out

following the ARCADIA method, and

 The corresponding system elements are further specified according to an adjusted EULYNX

specification approach.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 8 of 68

As the function range of the RCA system elements is larger than the one in EULYNX and there

are additional characteristics or kinds of behaviours of functions to be considered, it has been

requested by the RCA group to supplement or modify the current EULYNX approach

correspondingly. Furthermore, in LinX4Rail 5.2 it is increasingly demanded to be able to represent

the nascent ARCADIA-based architecture model or artefacts of it based on the systems modelling

language (SysML) as used in the EULYNX specification approach.

4.3 Brief Work Plan Overview

This deliverable was created based on the results achieved in X2Rail-5 WP10 Task 10.3. The aim

of Task 10.3 was to check whether the currently used EULYNX specification approach meets the

requirements for the specification of system elements of a future railway system architecture, such

as RCA. In the negative case, necessary additions to the EULYNX modelling approach should be

defined. The current specification approaches of the initiatives EULYNX and RCA were used as

input for the work. Due to the currently still low progress in RCA, work has had to proceed based

on assumptions. It is therefore necessary that results in this deliverable are reviewed again after

further progress in RCA and adjusted if needed.

The work was carried out in the following steps:

 Identify kinds of behaviours that must be supported in functional specifications of system

elements and interfaces (considering needs in RCA and EULYNX and requirements of Task 10.2).

 Evaluate whether the current EULYNX model-based systems engineering (MBSE) approach fully

enables the description of the identified kinds of behaviour.

 Recommend suitable supplements or proposals of modifications to describe kinds of behaviour

not yet considered in the current EULYNX MBSE approach. Care should be taken to ensure that

the recommendations are adaptable for the automated transformation of specification models

into formal models and formal verification of these models

 Define how the described kinds of behaviour shall be expressed as mandatory requirements.

 Evaluate if test case generation (TCG) can be applied to other kinds of CCS system behaviours than

those considered in X2Rail-2, how such behaviours can be modelled for the purpose of TCG, and

how an MBSE approach can support TCG best.

4.4 Document Overview

The remainder of this document is organized as follows

 Chapter 5 describes the background to this deliverable.

 Chapter 6 describes concepts and principles for the RCA and EULYNX MBSE specification

approaches.

 Chapter 7 describes necessary extensions of the EULYNX MBSE approach.

 Chapter 8 describes conclusions.

 Chapter 9 gives the references.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 9 of 68

5 Background

This chapter describes the background to this deliverable, its scope and context in relation to

ongoing initiatives that define Future Functional Railway System Architectures such as EULYNX

and RCA and the purpose and goals of specification approaches in general.

5.1 Scope and Context

The general scope and context for this deliverable D10.2 relate to a specification methodology to

define Future Functional Railway System Architectures, which in turn relates to ongoing and future

developments of ERTMS, and the European initiatives RCA and EULYNX.

The use of formal methods (FMs) in relation to a specification approach for future systems

architectures (see Section 5.1.4), and the determination of how the specified requirements of

system elements shall be interpreted as mandatory requirements play an important role.

A brief background to this scope and context is described in the remainder of this section 5.1.

5.1.1 ERTMS

The ERTMS ‘game changers’ that have been identified to have a significant impact on the ERTMS

business case are an important part of future architectures. The ERTMS ‘game changers’ involve

both trackside and on-board CCS systems.

Although ERTMS is mature and ready for large scale deployment, some argue [8] it is not possible

to reap its full benefits (e.g., lower costs and improved capacity) before legacy systems for

Command and Control have been phased out, and before potential ‘game changers’ identified to

have a significant impact on the ERTMS business case [9] have been completed. The game

changers include ATO, ERTMS Level 3 with moving block, and future systems for communication

and positioning; these technologies are being specified, developed, and demonstrated within

Shift2Rail, in different Technical Demonstrators (TDs) work streams.

5.1.2 RCA

There is growing demand from IMs that future architectures shall be standardized and modularized,

to ensure interoperability, to increase competition and to enable more reuse. The recent initiative

RCA is an example of this demand; RCA aims to create a modular, standard system architecture

for the core functionality and interfaces of the trackside safety part of the CCS system, considering

the CCS system elements outside the trackside safety part (including onboard systems) as far as

relevant, to define interfaces with these system elements.

These quotes from the RCA white paper [8] summarize high-level goals of RCA:

 Now that ERTMS is mature enough and ready for large scale deployment … it is the right moment

to try to define a common, simple reference CCS architecture to support the step from installed

base to ERTMS and to increase the capacity of the existing network, improve the deployment speed

and reduce life cycle costs for CCS. The Reference CCS Architecture (RCA), developed using

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 10 of 68

formalised methods, is the enabler for clear and unambiguous interface definitions. It is aimed to

provide generic safety approvals (plug & play), a modular split of work, independent development

of components (allowing for technical evolution), an important quality step in the specification of

operators’ needs towards the supply industry and the strengthening of this supply industry.

 Cost drivers for CCS are data collection and validation, procurement, design, installation and

commissioning, operation, maintenance, and change management. RCA is expected to reduce

costs within all these areas.

The modular, standard system architecture aimed in RCA is currently created using a specification

approach based on the ARCADIA method [7].

5.1.3 EULYNX

EULYNX is a European digitalization initiative that aims to define and standardise interlocking

interfaces of the future command control and signalling (CCS) system and specify the

corresponding system elements. The goal of this is to achieve significantly reduced lifecycle costs

for future digital CCS systems by standardising interfaces in the future. According to EULYNX, the

definition of standardised interfaces is carried out at the infrastructure manager (IM) side, creating

interface specifications that are used in tenders. These include a detailed description of system

behaviour visible at interfaces. This entails challenges to ensure correctness and security levels,

and to perform safety evaluation of specified behaviour. To meet these challenges, EULYNX uses

new approaches with model-based systems engineering (MBSE), to ensure that the created

specifications are correct, complete, and consistent. The objective of the EULYNX MBSE

approach, defined in the EULYNX Modelling Standard [6], is also to establish a seamless

development approach that facilitates reuse, automation, and innovation. To this end, the

exchange of specified system elements and interface behaviour as executable models are

foreseen, rather than (only) using natural language requirements.

EULYNX was started in 2014, and after seven years, the project has evolved into an organisation

for the standardisation of interfaces that have published updated documentation known as the

baselines that are regularly published on the EULYNX website [6].

5.1.4 Importance of Formal Methods

TD2.7 recommends [2] using Formal Methods (FMs) for railway control to achieve a sufficient

level of trust that critical system properties are satisfied, to raise the quality and verifiability of

implementations, and to achieve interoperability goals, because:

 Compared to traditional V&V methods, FMs enable a significantly higher level of trust, and

furthermore, FMs can automate tedious V&V tasks.

 Applying FMs provides valuable feedback, insight and helps to detect and correct mistakes.

The railway control domain is very well suited for FMs:

 There are high RAMS demands to be met.

 It is based on well-understood concepts and principles that lend themselves well for FMs.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 11 of 68

 Many FMs success stories exist, for instance for interlocking and CBTC.

While railway control has always been complex, future railway architectures are expected to

increase software complexity. For this reason, FMs should be considered a must-have technology.

Also, the demand to establish a new, modular architecture provides a good (rare?) opportunity to

introduce FMs on a larger scale, since the ROI is estimated to be larger:

 FMs for a new, modular architecture can enable cost-efficient reuse of requirements and tools,

to off-set initial investments required to introduce FMs into standard processes.

 FMs can help to demonstrate that a novel architecture is as safe as old systems.

 FMs can set the benchmark for future system quality and development cycles.

5.2 Goals for a Future Specification Approach

5.2.1 Purpose and Intended Use

The purpose and intended use of a specification can vary, and any one specification approach

may not be able to provide optimal support for all purposes. The following are examples of different

purposes/uses of a specification, which may impact what the optimal approach is:

 Define the architecture of a system of interest based on description concepts for abstraction and

structure at different levels of granularity facilitating reuse and automation.

 Identify the functions of a system of interest and decompose and allocate them to corresponding

system elements.

 Create specifications formalised by a comprehensive modelling theory that provides appropriate

models and description techniques in the form of a modelling framework. It is used for modelling

the different aspects and artefacts of a system element.

 Create executable specifications and apply V&V to ensure they are coherent, consistent,

applicable to existing standards, contain all the features and desired functions and satisfy the

intended requirements, for instance verified by:

o Functional testing based on test suites (manually created or generated).

o Formal verification of consistency properties.

o Formal verification of safety properties.

 Provide (release) the specifications as “official (mandatory) system specifications”.

 Use specifications as a basis for tenders.

 Use specifications as a basis for implementation (of software, systems).

 Use specifications as a basis for change request management (change, V&V impact, etc.).

 Use specifications to capture and conserve system knowledge.

5.2.2 Use Case related to Creation of Specification for Tender

In general, this deliverable is concerned with a specification approach to producing good quality

specifications for railway CCS system tenders. Figure 1 illustrates the use case for a specification

approach that covers the purposes and uses (see Section 5.2.1) related to the creation of system

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 12 of 68

requirements in tender specifications. This use case is here refined into seven sub use cases

(SUCs), as listed below. The numbers depicted in the figure are referenced in the descriptions of

the SUCs.

 SUC1: Create system definition: the specification process starts with the system definition based

on requirements derived from stakeholder needs (1) and regulation-based safety properties (2).

 SUC2: Derive hazard-based safety properties and adjust system definition: with the system

definition as basis the risk analysis is carried out (3). An analysis of the different types of possible

hazards is made and hazard-based safety properties are derived (4). They supplement the pre-

existing regulation-based safety properties and are used to adjust the system definition if

necessary (3).

 SUC3: Create tender system requirements specifications: tender requirements of system

elements of modular architectures like RCA and standard interfaces between system elements

considering all kinds of behaviours that matter in those architectures are specified. A tender

system requirements specification is represented by an executable specification model. Based on

results of the system definition phase, including relevant results of the risk analysis, an executable

model of the externally observable behaviour is created (5) representing the system requirements.

 SUC4: Validate system requirements: the executable specification model is used for validation (6)

of system requirements by simulation (virtual prototype).

 SUC5: Verify safety properties applying formal methods: safety properties are verified using

formal verification and formal proof (7).

 SUC6: Generate test cases from system requirements: automated test case generation from the

specification model as input for test specifications (8).

 SUC7: Prove behavioural refinement: the system requirements specification is given as part of

the tenders to the suppliers (9) which respond with the proof that the behaviour of their

implemented system is a refinement of the specified one (10).

This deliverable focuses on the sub use cases SUC3, SUC4, SUC5, and SUC6. Though the sub

use cases SUC1, SUC2 and SUC7 are also important for a future specification approach, they

are not in the scope of this deliverable.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 13 of 68

5.2.3 Goals related to the Creation of Specifications Used in Tenders

A general goal of a future specification approach is to ensure a good quality of tender requirements.

TD2.7 has earlier identified general “requirements on requirements” for tender specifications [3],

which are cited below.

R1. Tender requirements should uniquely define, with clear syntax and semantics, all interfaces.

R2. Tender requirements should identify the safety requirements.

R3. Tender requirements should have the following characteristics:

 Correct.

 Necessary.

 Understandable.

 Unambiguous.

 Verifiable (to distinguish a system meeting the requirement from one that does not).

 Clear (concise, terse, simple, precise).

Figure 1 Use case for Development of Systems with Standardised interfaces

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 14 of 68

 Feasible (realistic, possible).

 Independent (self-contained).

 Atomic (not expressing several different requirements as one requirement).

Even with tender requirements of good quality, one can expect suppliers to have questions on the

tender requirements (related to the interpretation, etc.). For that reason, the owner of tender

requirements should provide guidelines on how to interpret their requirements.

Furthermore, the future specification approach may consist of different paradigms, languages or

processes that need to be integrated. For example, the RCA specification approach aims for the

analysis and definition of modular, standard system architecture and the EULYNX approach

focuses on the creation of tender system requirements specifications of the corresponding system

elements. Thus, the approach should be supported by a seamless process and toolchain,

minimizing the number of different paradigms used to the extent reasonable. It should provide

clear decision criteria for which paradigm to use for which portion of the behaviour, avoid confusion

of terms across the different kinds of models, and be clear on the integration of different models.

Goals specifically focused on in this deliverable are based on the above-mentioned sub use cases

SUC3, SUC4, SUC5, and SUC6. They are defined in the context of those sub use cases below.

5.2.3.1 SUC3: Create system requirements specifications

 Goal 1: Enable the creation of system requirements specifications of configurable system

elements and standard interfaces between them in the context of a modular standard system

architecture.

 Goal 2: Enable the definition of all kinds of external observable behaviours of system elements

and the relevant layers of interface protocols that matter in modular standard system

architectures.

 Goal 3: Support the creation of tender system requirements specifications that are

understandable to several stakeholders (IMs, suppliers, ISAs, …) on one side and suitable to enable

simulation, the application of formal verification and automatic test case generation on the other

side.

 Goal 4: Enable to express mandatory tender requirements. There is sometimes a need to separate

requirements that are mandatory from requirements that are not mandatory. A goal is to ensure

that it is clear what is mandatory and what is not.

 Goal 5: Enable the definition and use of static configuration data, i.e., define the terminology for

writing configuration data for specific system elements (as most system elements are

configurable).

 Goal 6: Enable the definition of (correctness) requirements for configuration data (data ranges,

data consistency, interdependencies).

 Goal 7: Enable the definition of safety requirements for specific system elements, i.e. define a

process or terminology for writing safety requirements.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 15 of 68

 Goal 8: Support the definition of concepts and domain knowledge (e.g., based on the model

developed in EULYNX Data preparation cluster or Linx4Rail WP3 Conceptual Data Model or RCA

domain knowledge) and associate it to tender system requirements.

5.2.3.2 SUC4: Validate system requirements

 Goal 9: Enable simulation-based validation (testability) of tender system requirements

specifications.

 Goal 10: Enable semiautomated/automated static review.

5.2.3.3 SUC5: Verify safety properties applying formal methods

 Goal 11: Enable formal verification (formal proof) of properties of the behaviours defined in

system requirements specifications.

5.2.3.4 SUC6: Generate test cases from system requirements

 Goal 12: Enable semiautomatic/automatic test case generation from the behaviours defined in

system requirements specifications.

5.2.3.5 Tradeoffs

Tradeoffs must be considered, as different goals can be conflicting. For instance:

 An executable specification may require a higher degree of detail, whereas a formally verifiable

specification could be specified with less detail; on the other hand, the former may be considered

less complex to create compared to the latter.

 Style, such as imperative versus declarative specification (see Section 6.2.4).

 Different behaviours may be optimally described using different specification approaches, while

a general objective is to use only one (or as few as possible) approaches.

One must consider these tradeoffs, for instance by rating the relative importance placed on various

objectives and purposes, to conclude on the modelling paradigms and specification approaches.

5.3 RCA and EULYNX

RCA and EULYNX currently applying different specification approaches: RCA uses the ARCADIA

method (Section 6.3.1) and EULYNX uses the EULYNX MBSE approach defined in the EULYNX

Modelling Standard. These two approaches may complement each other. However, they have

different goals:

 The RCA specification approach aims to define a modular, standard system architecture.

 The EULYNX approach aims to create tender specifications of system elements.

In the future, it is intended to merge these into one closely intertwined specification approach:

 Analysis and definition of a modular, standard system architecture shall be carried out following

the ARCADIA method.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 16 of 68

 The corresponding system elements shall be further specified according to an adjusted EULYNX

specification approach.

The intent is that certain system elements in RCA shall be further specified using the specification

approach in EULYNX. As the functional range of RCA system elements is larger than the

corresponding range in EULYNX, additional characteristics and kinds of behaviours must be

considered. RCA has requested to supplement or modify the current EULYNX approach

correspondingly and furthermore, LinX4Rail 5.2 [25] seeks to represent the nascent ARCADIA-

based architecture model (or artefacts of it) based on the systems modelling language (SysML)

as used in the EULYNX specification approach. Thus, an extended or modified specification

approach is needed.

This deliverable is therefore focused on the creation of an extended or modified EULYNX

specification approach based on the use case Semi-formal development of systems with

standardised interfaces, described further in Chapter 6 and Chapter 7.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 17 of 68

6 Specification Approaches

This chapter describes how a specification approach can be characterized in terms of relevant

properties, methods, paradigms, and principles (see Sections 6.1 and 6.2). For the existing

specification approaches considered relevant for this deliverable, RCA and EULYNX, their

specification technologies are described, including their intended interaction (see Section 6.3).

6.1 The Concept of Specification Technique

A specification approach for system development can be classified according to three aspects

(see the boxes at the bottom of Figure 2):

 Description means: for formulating facts, independent of the problem and its solution.

 Method: to be understood independently of the other two aspects in a process model sense.

 Tool

A description means has concrete characteristics, such as language, notation, and syntax and

semantics. The syntax comprises structural properties, which can be determined without

reference to the interpretation of the notation. The semantics describes the interpretation

independent of application. The tool is (generally) a software program that enables computer-

aided use of a description means and analyses of specification models (such as execution-based

testing, or analysis of properties of a specification model).

Concrete restrictions to a field of application (for example, command control and signalling

systems) and the associated definition of specific tasks can use a description means and a method

in a mutually supportive way. A resulting combination of method and description means is referred

to as specification technique. The use of a specific tool together with a (specific) specification

technique is referred to as specification technology (see Figure 2).

Figure 2 Taxonomy of specification techniques

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 18 of 68

6.1.1 Informal specification technique

Informal specification techniques use natural language and/or diagrams. The advantages of an

informal description are its comprehensibility by a wide range of stakeholders and the

comparatively low effort required to create it. However, they leave a lot of room for interpretation

due to ambiguity and cannot be processed automatically.

6.1.2 Semi-formal Specification Technique

A semi-formal specification technique uses a semiformal description means. A semi-formal

language has formally specified syntax but the task of completing the semantics has been deferred

to a later stage, which is then done either by human interpretation or by interpretation through

software like code or test case generators. The Systems Modelling Language (SysML) [10] is an

example of a semi-formal language. The advantages of using SysML may include that the

language is an international standard, that many tool options exist, with many intuitive graphical

modelling styles (e.g., use case diagrams, and state machine-based definition of requirements).

6.1.3 Formal Specification Technique

A formal specification technique uses a formal description means, based on a formal language

with a formally specified syntax and semantics. The B-method and Event-B languages are

examples of formal languages: the semantics of these languages is defined in [23][24]. The

advantages of using the B method may include that it provides a refinement-based approach to

formal development with high precision and integrated capabilities for formal verification; however,

expertise is required for understanding and use of a formal language.

6.1.4 Combination of Semiformal and Formal Specification Techniques

To use an understandable and widely used description means such as the standardised

semiformal language SysML on the one hand and to apply formal methods, on the other hand,

semiformal and formal specification techniques can be combined. A corresponding approach was

evaluated in TD2.7 [5], which aimed to enable formal verification of requirements against semi-

formal SysML specification models. This is visualized in principle in the process depicted in Figure

3.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 19 of 68

Figure 3 Specification verification approach using formal verification

The semi-formal SysML model (functional system requirements specification) derived from

functional user requirements was transformed manually into a formal model in the B language (A).

Then safety requirements were proved by applying formal verification (B). If necessary, the SysML

model is corrected (C) and the process starts again with (A).

If all applicable safety requirements have been formulated and made subject to formal verification

using this process, then it has been verified that the model meets the necessary safety

requirements.

6.2 Different Specification Principles

Different specification principles exist, and one can compare them using several properties.

6.2.1 Operational Property Specification

An operational specification describes the behaviour of a system using an abstract machine. This

can be realized using data-flow diagrams that assemble functions connected by data flows. Since

data flows may not always be natural for expressing control aspects, finite state machines can be

preferred to describe the temporal and behavioural views of a system. Control is specified using

states, events, and transitions in response to stimuli. There are many variants of state machine

specification languages. A state machine can be executed, to validate the behaviour, and static

analyses of the state machine can be performed (including consistency properties, and formal

verification of properties).

In general, using an operational specification of behaviour and requirements offers an advantage

in that it enables to determine if a specific property holds or not. This can prevent communication

issues between different actors (designers, builders, customers, and users) since the operational

specification provides a reference model to check the property against.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 20 of 68

Whether an operational specification exhibits a specific property may often-case be easy to

determine but it may also offer a challenge, for various reasons. To determine if a property holds

or not can be non-trivial due to e.g., specification complexity that may prevent inspection alone,

state-space explosion impacting the results attainable in automated analysis, and semantics for

interpretation that can complicate analyses.

In general, it is desirable to have an implementation-independent operational specification, so that

all actors can agree on and use the same specification. The reason for this is to avoid, when the

system under specification is delivered, that supplier and customer dispute about whether systems

meet the desired properties or not. In general, it is recommended that system specifications are

operationalised as much as possible [12].

6.2.2 Stimulus-response Specifications

Stimulus-response specifications are an important class of operational specifications. A stimulus-

response specification has the form S and C R, where S is a stimulus, C is a condition on the

system state, and R is a response. The design process consists of decisions about R. In a nutshell,

whenever a stimulus occurs there will be a corresponding response. The kind of response

depends on the condition on the state of the system. ”Do nothing” is also considered a valid

response which is usually implicit if no explicit response is specified.

Figure 4 shows stimulus-response specification of system properties using state machines.

Condition C is represented by states OFF and ON. "button_pressed" represents stimulus S and

"light_on" the response R. If stimulus "button_pressed" occurs when the system is in the state

"OFF" (Precondition), the stimulus changes the value from "false" to "true" and this change is

triggered by the change event "when(button_pressed)". Therefore, the system changes its state

to "ON" (Postcondition) and the response "light_on" is set to "true" (light_on := true) i.e. the system

responds with "light_on”. By changing its internal state from OFF to ON, the system updates its

value. If the stimulus "button_pressed" occurs when the system is in the state "ON", then the

response of the system will be different. It simply will "do nothing".

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 21 of 68

Figure 4 Stimulus-response specification of a functional system property

6.2.3 Interface-centric specification

By an interface centric approach, it is understood that the externally visible stimulus-response

behaviour (usage behaviour) of a system is largely described by the behaviours related to its

interfaces. These behaviours are linked together and supplemented by behaviour relevant for

more than one interface by means of linking behaviour. As depicted in Figure 5, the models of the

protocol stacks assigned to the communication interfaces are downscaled to the Process Data

Interface protocols (PDI) defining the global PDI behaviours of the application layers. Global

behaviour specifies the dependencies between the local PDI behaviours of the communication

partners, that is the exchange of Process Data Units (PDU) between them in chronological order.

The local PDI behaviours represent the behaviours of the communicating systems related to a

certain interface. The relation between local PDI behaviour and global PDI behaviour can be

illustrated by a telephone call. The dialing is a local PDI behaviour at the initiator side, the ringing

is the associated local PDI behaviour at the partner side. Only the global PDI behaviour defines

that the dialing must precede the ringing (i.e., the chronological order).

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 22 of 68

Figure 5 Global and local PDI behaviour

As the local PDI behaviours represent the interface behaviours of the communicating systems

they may be specified in the model of the PDI. As depicted in Figure 6, in the model of a system

element such as System A, these local PDI behaviours are referenced and linked together (Linking

Logic).

Figure 6 Principle of interface-centric specification

6.2.4 Imperative and declarative specifications

Imperative specification implies to “say how to do something”, whereas declarative specification

implies to “say what is required and let the system determine how to achieve what is required”.

Imperative process modelling is often referred to as an “inside-to-outside” approach. It mainly

specifies the procedure of how work must be done. In general, imperative modelling requires all

execution alternatives to be explicitly specified in the model before the execution of the process.

Declarative process modelling, by contrast, is referred to as an “outside-to-inside” approach.

Compared to imperative specification, declarative specifications do not specify the

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 23 of 68

procedure/events. Instead of determining how the processes must work exactly, only their

necessary characteristics are described in a declarative specification.

Figure 7 Imperative and declarative specification

As shown in Figure 7, sequence diagrams and state machine diagrams are imperative

representations of a system. It specifies the necessary behaviour and interactions to switch ON

the light when the system is in the OFF state. It is explicitly specified in the model. The instructions

in a pseudo language are a declarative representation of the system. Only the necessary

characteristics such as pre and postconditions, functions etc. are specified in a declarative

specification.

6.3 Existing specification approaches of interest

As described in the introduction (see Section 4.4), this deliverable aims to define necessary

additions to the specification technology currently used in EULYNX in the context of the

requirements of future railway system architectures, such as RCA. The remainder of this section

describes specification technologies used in RCA and EULYNX followed by the intended

interaction of both specification technologies.

6.3.1 RCA specification approach

Figure 8 depicts the specification scope of RCA in the context of ETCS and EULYNX [6]. RCA’s

architectural principle is based on a layered architecture, where each layer deals with a specific

problem. RCA’s architecture layers are listed below. Each layer has special types of blocks and

may have specific design rules for interfaces (generic for all blocks in the layer) and abstractions

used. For example, in the Device Control Layer, a function will know which type of hardware (point,

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 24 of 68

level crossing, TDS) it controls. In the Safety Control Layer, objects are only known by their

abstract, hardware-independent capabilities (e.g., “trafficability on a node-edge-model”).

 Plan Implementation Layer: functions of this layer implement the operation plan by issuing single
object-control requests (OCR) when conditions for the current operational status are met. These
OCRs can, for example, change a switch position or update movement permission.

 Safety Control Layer: functions of this layer process requests from upper layers or users. If they

lead to a safe state of production, then they are executed. They also check events and the overall

status of all objects and invoke emergency reactions for unsafe situations.

 Object Aggregation Layer: functions of this layer combine devices for an abstracted object

representation. They co-ordinate devices (actors) for the execution of object-control commands.

 Device Abstraction Layer: functions of this layer offer abstracted device capabilities (functions and

information) and abstracted device access (e.g., topology related).

 Device Control Layer: device-control functions of this layer steer and administrate devices. They

assure the quality of the device control. They offer easy access to devices via data network for the

layer above.

 Generic Function Layer: generic functions of this layer interact with every other layer (e.g.,

diagnostics) or are not part of the main control loops (e.g., data prep).

To each layer, corresponding functions are allocated aggregated in blocks. The colours of the

blocks in Figure 8 indicate the relation to the specification scope of RCA. Functions aggregated in

orange blocks like “ATO Execution” and “Safety Logic” are fully specified in RCA. Light green

blocks like “ATO Transactor” and “ATO Vehicle” contain functions that are specified in RCA with

due regard to existing specifications. The same applies to blocks coloured in light blue like “Point”

and “Level Crossing”, containing functions specified in EULYNX. The functions of the mobile

objects (dark blue blocks) are still to be determined. Violet blocks like “Device and Config.

Management” and “Diagnostic and Monitoring” contain functions that are only partially specified

in RCA. Devices (device functions) as actors or sensors are not in the scope of RCA and are not

depicted in Figure 8. For example, switches, level crossings etc are not in the scope of RCA.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 25 of 68

Figure 8 RCA Logical Architecture Overview

Figure 9 RCA Object aggregation

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 26 of 68

An important principle of RCA is the aggregation of objects. Object aggregation provides an

abstract view of controlled objects to an upper layer. How objects relate to devices is hidden from

the upper layers. As depicted in Figure 9, an abstract object monitors and manages one or more

devices, and “Object Aggregation” can combine multiple devices into a single object

representation of the real-world object.

The specification of RCA has a great impact on current/today’s specifications in terms of

architecture and scope, with increased function range and additional characteristics of functions.

These aspects must be considered in a future specification approach.

The modular, standard system architecture aimed for in RCA is currently created in the form of an

analysis model using the ARCADIA method [7] and the supporting tool Capella. A SysML-like tool-

specific semi-formal language is used as description means. ARCADIA stands for ARChitecture

Analysis and Design Integrated Approach. It is a structured engineering method aimed at defining

and validating the architecture of complex systems. The working levels of ARCADIA are depicted

in Figure 10:

 Operational analysis

 System analysis (Functional and Non-Functional Need)

 Logical architecture

 Physical architecture

 EPBS (final product breakdown structure) and integration contracts

Figure 10 Working levels of ARCADIA method

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 27 of 68

6.3.1.1 Operational analysis

Operational analysis is the highest level of the Arcadia method with the goal to focus on the

identification of the needs and objectives of future users of the system to guarantee the adequacy

of the system faced with these operational needs. At this level, the system is not (yet) recognized

as a modelling element. It will only be recognized as such from the System Analysis level onward.

6.3.1.2 System analysis

System Analysis involves the identification of the Capabilities and Functions of the system that

will satisfy the operational needs (“what the system must accomplish for the users”). The System

is identified as a modelling element at this level. It is a “black box” containing no other structural

elements, only allocated Functions.

6.3.1.3 Logical architecture

Logical architecture aims to identify logical components inside the System (“how the system will

work to fulfil expectations”), their relations and their content, independently of any considerations

of technology or implementation. An internal functional analysis of the system must be carried out:

 The subfunctions required to carry out the system functions chosen during the previous phase

must be identified,

 Next, a split into logical components to which these internal subfunctions will be allocated must

be determined, all the while integrating the non-functional constraints that have been chosen for

processing at this level.

6.3.1.4 Physical architecture

The objective of this level is the same as for logical architecture, except that it defines the final

architecture of the system, and how it must be carried out (“how the system will be built”). It adds

the Functions required for implementation, as well as the technical choices, and highlights two

types of physical components:

 Behaviour physical component and

 Node (or Implementation) physical component.

6.3.1.5 EPBS (End Product Breakdown Structure) and integration contracts

This level aims to deduce, from the physical architecture, the conditions that each component

must satisfy to comply with the constraints and choice of design of the architecture identified in

the previous phases (“what is expected from the provider of each component”). The physical

components are often grouped into larger configuration items that are easier to manage in terms

of industrial organization and responsibilities.

Further information regarding the ARCADIA method and the supporting tool Capella can be found

in [7].

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 28 of 68

6.3.2 EULYNX specification approach

While the RCA specification approach aims to define a modular, standard system architecture

(analysis model) the EULYNX approach focuses on the creation of tender system requirements

specifications of system elements (specification model). The behaviour of a system may be

described as technology and implementation-independent by system services in the form of use

cases. Services are provided by a system to the actors in its environment describing its

functionality in terms of how it is used to achieve the goals of the actors. Actors may represent

external systems or humans who interact with the system. The execution of a service results in a

stimulus-response behaviour visible at the interfaces of the corresponding system. This implies

that the service-specific behaviour of a system considering the execution of all its services

completely corresponds to the stimulus-response behaviour visible at its interfaces. To guarantee

a standardised communication, this behaviour must be completely, consistently, and correctly

specified for each interface and linked together to the required overall behaviour of the

corresponding system. Due to the necessary high level of detail of the behaviour to be specified

this approach requires the creation of understandable high-quality specifications and sophisticated

methods to verify and validate them.

6.3.2.1 EULYNX MBSE Specification Framework

To meet the above-mentioned challenges, a model-based systems engineering (MBSE)

methodology defined in the EULYNX Modelling Standard [6] has been developed by the initiative

EULYNX proposing an MBSE Specification Framework (MBSE SF) as illustrated in Figure 11.

MBSE SF facilitates a holistic model-based seamless description of complex CCS systems. To

apply MBSE using a formal language that enables formal verification and formal proof may seem

to be highly recommendable. However, following the goal to create specifications understandable

also for people not familiar with formal languages, the Systems Modelling Language (SysML) [10]

has been regarded as a reasonable compromise to be used as the main description means.

Figure 11 EULYNX MBSE Specification Framework

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 29 of 68

Guided by an MBSE Process () and using the defined Domain Knowledge () the MBSE SF

strictly distinguishes between problem domain (User Requirements) and solution domain (System

Requirements). User Requirements represent the model of the problem domain (problem

definition). They allow different stakeholders such as infrastructure managers (IM) of different

countries to explicitly state what is expected from the future system. User Requirements may also

result from system analyses and comprise, as an important part, the safety requirements. Safety

requirements, also referred to as safety goals, state safety invariants, i.e. conditions that could

lead to hazardous situations if they are not met. They can be split into two categories: safety

invariants (what must not happen under any circumstances) and safety overrides (who may do

what under which circumstances). User Requirements are the main source for the derivation of

design decisions () as the basis for the creation of an abstract system solution (System

Requirements). The System Requirements are represented by a specification model. The

specification model shall be validated that IM intentions are reflected completely and correctly ()

and verified () that all defined safety requirements are consistently fulfilled without contradiction.

6.3.2.2 EULYNX Architecture Model MBSE

The creation of the specification model is guided by the structural rules of the Architecture Model

MBSE (AM MBSE). The AM MBSE facilitates the specification of a system from different

viewpoints and with varying degrees of granularity, that is at different abstraction levels (AL), by

means of system views. A system view represents the description of a system from a viewpoint at

a specific AL. The basic notion of this approach is to start with rather high-level descriptions of

system views. Once these high-level descriptions have been created, they are refined and detailed

step by step (). Any AL represents design decisions about the refined or decomposed

description of its predecessor and the specification of the outcome of these decisions by using

appropriate system views. To ensure that the more granular system views resulting from the

refinement comply with its predecessors and are traceable to them, the refinement is verified ()

and correlating links are established according to the EULYNX verification and validation plan. As

shown in Figure 12, the abstraction levels AL1, AL2 and AL3 of the AM MBSE strongly reflect the

recommendations of CENELEC (EN 50126) [11]. In contrast to the abstraction levels AL1, AL2

and AL3 which provide system-dependent views necessary to specify a concrete system,

abstraction level AL0 enables the system-independent definition of the operational specification

base (e.g. goals, operational entities, operational process, etc.). Each AL is subdivided into three

cross-cutting viewpoints capturing concerns regarding the services a system is expected to

provide to its environment and their refinement (Functional Viewpoint), the description of the

system from a structural point of view independently of any considerations of technology or

implementation (Logical Viewpoint) and the physical architecture of the system (Technical

Viewpoint). The corresponding system views are linked together via allocation relations. The

system services defined in the Functional Viewpoint are for example allocated to structural

elements specified in the Logical Viewpoint.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 30 of 68

Figure 12 EULYNX Architecture Model MBSE

An important principle of the AM MBSE is the continuous engineering of crosscutting system

properties (CSP). Typical crosscutting properties are RAMS [11], security, data used to define

information objects to be exchanged and non-functional constraints: they must be considered in

any engineering activity and the corresponding system views. Safety, for example, typically

defined as freedom from unacceptable risk (of harm), affects almost all process steps in a

development lifecycle. For this reason, safety is not represented in a single viewpoint but as a

quality aspect of the AM MBSE that has a crosscutting influence and is integrated into several

viewpoints. The growing complexity of safety-critical railway systems is leading to increased

complexity in safety analysis models. It is therefore not appropriate to develop functionality and

consider safety in separate tasks. Safety aspects should be integrated as tightly as possible into

the MBSE process and its models.

The AM MBSE is used in two versions:

 to create specification models of system elements and

 to create specification models of interfaces.

In the next two chapters, the corresponding engineering paths to create specification models of

system elements (Section 6.3.2.3) and specification models of interfaces (Section 6.3.2.4) are

briefly described. An engineering path (shown as a dotted arrow) summarises the development of

views for a system element or interface with a specific degree of granularity.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 31 of 68

6.3.2.3 Engineering path to create specification models of system elements

Figure 13 shows the engineering path of the model views used to specify a system element. It

describes the context of the model views, with the arrows indicating which model views are

developed from which. The specification model of a system element consists of the following

model views:

 Model view "Logical Context": the model view "Logical Context" describes the system element

under specification (SUS), the actors in the environment interacting with the SUS and their

quantity structure (multiplicities) at the upper level of abstraction.

 Model view "Functional Context": the model view "Functional Context" defines the services to

be provided by the SUS in the form of use cases. Relationships are used to represent which actors

interact with which SUS use case.

 Model view "Use case scenario": the model view "Use case scenario" describes the behaviour

of the use cases defined in the model view "Functional Context" by means of use case scenarios.

 Model view "Functional Architecture": the model view "Functional Architecture" refines or

completes the behaviour of a SUS defined in the model view "Use case scenarios". The behaviour

of the SUS is divided into Functional Entities" (FE), which communicate with each other via internal

interfaces and with the environment via external interfaces.

 Model view "Functional Entity": the model view "Functional Entity" encapsulates a subset of

the functional requirements of a SUS in the form of a function module. It delimits the function

module from its environment and defines the inputs and outputs. In the discrete case, the

behaviour of the function block is described by means of state machines. In this, the binding

functional requirements are specified in the form of states and corresponding state transitions.

The model view "Functional Entity" is used for the specification of EULYNX system elements as

well as for the specification of EULYNX interfaces.

Figure 13 Model views to specify a system element

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 32 of 68

During the development of the model, the Logical Context (BDD) and the Functional Context (the

Use Cases) of the system elements are created. Based on these two model views, the use case

scenarios (sequence diagrams) are derived. These sequence diagrams form the basis for the

description of the Functional Architecture (IBD) and the behaviour of the Functional Entities (IBD,

state machines).

6.3.2.4 Engineering path to create specification models of interfaces

Figure 14 shows the engineering path of the model views used to specify an interface. It describes

the context of the model views, with the arrows indicating which model views are developed from

which. The specification model of an interface consists of the following model views:

 Model view "Logical Context": the model view "Logical Context" describes the logical view of

an interface at the upper level of abstraction. An interface is generally defined as a unique

connection between two communication participants. From the logical viewpoint at the upper

level of abstraction, an interface is represented by a SysML association between them.

 Model view "Functional Partitioning": the model view "Functional Partitioning" describes the

refinement of the interface defined in model view "Logical Context" using Functional Entities.

 Model view "Functional Architecture": the model view "Functional Architecture" defines the

global behaviour of the application protocol.

 Model view "Functional Entity": the model view “Functional Entity” is described in chapter

6.3.2.4.

 Model view "Information Flow": the model view „Information Flow" describes the information

objects to be exchanged via an interface which is further refined to telegrams at abstraction level

AL3.

Figure 14 Model views to specify an interface

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 33 of 68

During the development of the model, the Logical Context (BDD) of the interface is created. In the

next steps, the interface represented by an association in the model view "Logical Context" is

refined in the model view "Functional Partitioning" by means of Functional Entities and the global

behaviour of the application protocol layer is defined in the model view "Functional Architecture".

Finally, the behaviour of the functional entities is defined in the model view "Functional Entity" and

the information objects to be exchanged in the model view "Information Flow". The information

flows are refined by telegrams. This step is currently still carried out using an informal specification

technique, i.e. the telegrams are presented in the form of tables.

6.3.2.5 Tool

The EULYNX MBSE Process described in Section 6.3.2.6 is supported by a toolchain as illustrated

in Figure 15. It enables the creation of SysML specification models (Windchill Modeler), static

checks for completeness, correctness, and consistency (Windchill Reviewer) and simulation-

based validation of the models (Windchill Modeler SySim and MS Visual Studio). A connection to

IBM Rational DOORS (Windchill Integration for IBM Rational DOORS) enables the representation

of specification model elements in the form of atomic requirements in the requirements

management tool. They can be transformed into the standardised Requirements Interchange

Format (ReqIF) and exchanged with suppliers using Windchill Requirements Connector.

Figure 15 EULYNX tool chain

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 34 of 68

6.3.2.6 EULYNX MBSE Process

The EULYNX MBSE process is part of the EULYNX systems engineering process with the main

process tasks documented in the EULYNX verification and validation plan. The EULYNX systems

engineering process is closely oriented on the CENELEC system life cycle defined in EN 50126

and covers the phases listed below:

Phase 1: Concept

Phase 2: System definition

Phase 4: System requirements

Phase 5: Apportionment of system requirements

Phase 10: System acceptance

Phase 11: Operation and maintenance

The CENELEC system life cycle follows the V-model, which highlights verification and validation,

especially regarding the fulfilment of safety requirements, as important tasks. Already during the

specification phases of the V-model, verification and validation are important activities, applied to

assure the quality of the specification itself. This is especially necessary for the context of the

EULYNX MBSE approach, where models of the required system behaviour represent abstract

reference implementations of the future system (virtual prototypes) and are regarded as

mandatory requirements in tender specifications.

Figure 16 The "small V"-the process of the "big V" - CENELEC process

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 35 of 68

Following this notion, it is necessary to provide a “small V”-process, guiding the top-down

development of those virtual prototypes using executable SysML state machines and their

validation and verification within the specification phases of the underlying “big V”-CENELEC

process. In Figure 16, the "small V" is highlighted in the "big V" and pictures the relationships of

verification and validation as part of the virtual prototype development.

User Requirements derived from IM expert knowledge are represented in IBM Rational DOORS

in the form of a "Function List". It lists the required functions used as input information for the

creation of the specification model at abstraction level “AL 1 System Definition” of the AM MBSE

using the Windchill Modeler. At this point, the system use cases (services) are defined with their

stimulus-response behaviour selectively specified by means of use case scenarios using SDs

(Formalised Requirements). Subsequently, the conformity of the model to the SysML specification

and the modelling rules defined in the EULYNX Modelling Standard is statically checked using the

Windchill Modeler Reviewer by a modeler in the role of a model verifier. Additionally, the use case

scenarios are validated by means of inspection by the corresponding IMs in the roles of model

validators.

In the next step, the system views created at abstraction level “AL 1 System Definition” are refined

at abstraction level “AL 2 System Requirements” by means of executable SysML state machines

(State Machine Implementation). The conformity of the model to the SysML specification and the

EULYNX Modelling Standard is verified using the Windchill Modeler Reviewer and by means of

inspection by the model verifier.

Figure 17 Principle of a virtual prototype

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 36 of 68

To implement the state machines as a virtual prototype, Visual Basic simulation code is generated

using Windchill Modeler SySim. Subsequently, the GUI of the virtual prototype is designed, and

an executable is created in MS Visual Studio. The executable representing the virtual prototype

enables both the tool-independent standalone simulation of the specified behaviour and when

connected to the Windchill Modeler the simulation together with the animation of the

corresponding state machines. The virtual prototype enables simulation-based testing of the

specified behaviour by injecting stimuli on the GUI and observing the responses optically

indicated. The principle of a virtual prototype is depicted in Figure 17.

In the following step (State Machine Testing), the conformity of the behaviour defined by the state

machines to the use case scenarios in the overlying abstraction level “AL1 System Definition” is

dynamically verified by simulation-based testing of the virtual prototype carried out interactively by

the model verifier. For this purpose, the scenarios are used as test cases and in parallel, the

animated state machines observed (white box testing of the behaviour). Additionally, the correct

creation of the state machines such as freedom of deadlocks is verified by the model verifier using

interactive state machine animation based on a dedicated test specification.

The standalone virtual prototype is then handed over to the IMs to validate the behaviour specified

by the state machine by means of simulation-based testing (black-box testing of the behaviour).

The test approach used (script-based or interactive testing) is left to the IMs. The validation

process is finished successfully when all participating IMs provide evidence that their user

requirements (including safety requirements) are satisfied by the specified behaviour. The

successful validation process leads to the production of a new baseline.

Model tests are carried out according to corresponding model test specifications. These comprise

the information suitable to sufficiently test the behaviour of the models and consist of one or more

test cases. A test case comprises meta-information (creator, date, subsystem covered, IM

applicability) and a test script. The test script contains a list of steps to instruct the model verifier

or model validator on how to execute the test case indicating the stimuli to be performed during

the test as well as the expected results to be observed. Any test run is documented in a test report

that documents the results. The test report comprises status information on every test case

included in the model test specification. A more detailed description of the EULYNX model

verification and validation approach is given in the EULYNX verification and validation plan

available via the EULYNX website [6].

6.3.3 Merging the RCA and EULYNX specification approaches

EULYNX and RCA use different specification approaches. This is because an analysis model of

a modular, standard system architecture is to be created according to the RCA specification

approach and specification models of the system elements defined in this architecture are to be

created according to the EULINX specification approach. As shown in Figure 18, the future joint

RCA/EULYNX specification approach will thus involve the creation of an analysis model and a

specification model. Both models will be connected via a traceability model.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 37 of 68

Figure 18 Joint RCA/EULYNX specification approach

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 38 of 68

7 Necessary extensions of the EULYNX MBSE approach

This chapter describes necessary extensions of the EULYNX MBSE approach.

7.1 Characteristics of a Relevant Railway System

A railway system of interest in the context of a future functional railway system architecture is a

non-linear, time-varying, distributed, massively multivariate position control system. Its overall

function can be described as monitoring and controlling the positions of trains and moveable

infrastructure elements on the network in accordance with multiple types of constraints including

scheduled traffic (the timetable). The system has a huge number of diverse sensors and actuators,

some of which are inside and some which are outside the system border. Since a railway system

of interest has the characteristic of a control system, this term shall be explained first.

7.1.1 Control systems

A system is an arrangement of physical components which act together as a unit to achieve a

certain objective. To control means to regulate or direct. Hence a control system is an arrangement

of physical components connected in such a manner to direct or regulate itself or another system.

If a lamp is switched ON or OFF using a switch, according to the example shown in chapter 6.2.2,

the entire system can be called a control system. In short, a control system is in the broadest

sense, an interconnection of physical components to provide the desired function, involving

controlling action in it. For each control system, there is an input and an output. The input is the

stimulus, excitation, or reference value applied to a control system to produce, depending on its

internal state, a specific response and the output is the actual response obtained from the control

system. The specification of a control system can thus basically be done in stimulus-response

form.

7.1.2 Classification of Control systems

7.1.2.1 Time-invariant and time-varying systems

Time-invariant control systems are those in which the system parameters are independent of time

(the system behaviour does not change over time). Systems whose parameters are functions of

time are called time-varying systems. The behaviour of such systems not only depends on input

stimuli but also the time at which the input is applied.

7.1.2.2 Linear and non-linear systems

A linear system obeys the superposition property, which states that the net response caused by

two or more stimuli is the sum of the responses that would have been caused by each stimulus

individually.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 39 of 68

7.1.2.3 Continuous time and discrete time system

Mathematical functions are of two basic types, continuous functions, and discrete functions.

Continuous-time functions are those functions that are defined for every instant of time. Discrete-

time functions, on the other hand, are those functions, whose values are defined only for certain

instants of time. In a continuous-time control system, all the system variables are continuous-time

functions. In a discrete-time control system at least one of the system variables is a discrete

function. Microprocessor and computer-based systems are discrete-time systems. A discrete

representation of a continuous-time control system is obtained by sampling continuous variables

at discrete time points. Discrete systems can be time-driven or event-driven. Event-driven systems

are called discrete event dynamic systems or DEDS for short [13]. DEDS are characterized by a

set of states in which the system can be in, and by the set of events that cause the state changes

at discrete time points. The events may take place asynchronously as opposed to the synchronous

nature in a discrete-time system. The change of states and occurrence of events are the essence

of the DEDS dynamic behaviour.

7.1.2.4 Open loop system

In an open loop system (see Figure 19), the control action is independent of the process output.

An open loop system cannot correct any errors it makes or correct for outside disturbances.

Figure 19 Open loop system

7.1.2.5 Closed loop system

In a closed loop system (see Figure 20), the control action depends on not only the input, but also

the output (which is fed back as an input). A closed loop system can issue control actions to handle

errors and outside disturbances to give a process output the same as the “reference input” and is

amenable to machine learning.

Figure 20 Closed loop system

7.1.2.6 The typical control loop of a railway system of interest

Figure 21 shows a typical control loop of a railway system of interest. The "Plant" is the system

being controlled including a collection of moveable assets, train units, people, and everything else

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 40 of 68

that is controlled by it. However, this does not mean that the whole railway system can be reduced

to one item of “Plant”. Rather, there are multiple “Plants” to control with multiple loops (open or

closed loops). Hypothetically, the core functions of a railway system in the context of a future

functional railway system architecture can be modelled as a combination of many of these control

loops, which are interconnected and nested inside each other. Most core railway system of interest

functions can be assigned to one of the four categories listed below:

 Control: the purpose of a control function is to transform information about a needed change of

the plant’s state into instructions or commands for the state of the actuators. Control functions

are where all the decisions are made.

 Actuate: the purpose of an actuate function is to transform instructions or commands into a

physical state that has some effect on the plant’s internal state.

 Sense: the purpose of a sense function is to transform a physical external state of the plant into

information about the plant’s external state.

 Observe: the purpose of an observe function is to transform information about the plant’s external

state into an observation about the plant’s internal state. Observe functions are where inferences

are made about the state of the plant given incoming data.

Basically, only what can be observed can be controlled. This is not the same as saying that only

what can be sensed can be controlled. Sensed data can be used to estimate an internal state that

shall be controlled, but an internal state cannot be directly sensed. Only the external states of the

plant can be sensed. The speed of a train unit, for example, is an internal state. It can be inferred

by sensing certain specific quantities like the doppler shift of passing objects (doppler speed

sensors), the rotational speed of individual axles on the train (pulse tachometers or tacho

generators), or the change in relative position to a constellation of satellites (GNSS speed sensor).

From one or more of these sensed quantities, we can infer the internal state that is the speed of

the train unit.

Where a human actor is in a control loop, an additional type of function “Indicate” is used so that

information from observed or other controlled states can be used by the human actor to make

their control decisions. This is a specialization of “Observe”. Since observed states cannot be

actuated, this function category to display an observed state to a human actor is necessary. It is

not explicitly shown in Figure 21.

Furthermore, functions associated with non-operational states of a railway system of interest, such

as data updates or switching between operating and maintenance states, might not fit these

categories because they are not part of the chain of functions directly controlling the railway state.

Figure 21 shows the information flows between the functions [(2), (5), (6)] within the control system

and between them and an external reference (1) and the “Plant” [(3), (4)]. The information flows

(4), (5) and (6) correspond to the “feedback” of a closed loop control system as described in

chapter 7.1.2.5. The information flows are described below:

(1) Required internal state of “Plant”: e.g. the target speed of a train unit,

(2) Required external state of “Plant”: e.g. the required setting of the speed control,

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 41 of 68

(3) Actual external input state of plant: e.g. the current setting of the speed control,

(4) Actual external output state of plant: e.g. rotational speed of individual axles,

(5) Sensed external output state of plant: e.g. sensed rotational speed of individual axles,

(6) Estimated internal state of plant: e.g. the estimated current speed of a train unit.

Figure 21 Typical control loop of a railway system of interest

Figure 22 Control loop ontology (source: DB Netz AG, I.NAT 1)

Figure 22 shows the ontology of the control loop typical for a railway system. This ontology allows

for estimated states to be exchanged between observation functions so that observations can be

made at different levels of abstraction. In other words, an observer does not always have to

transform a sensed external state directly into a fully abstract estimated state. Similarly, this

ontology allows for control functions to produce a required state that is not the required state of

an actuator, but rather the required state of some other abstract concept, that feeds to a further

control function. In other words, a control function does not always have to transform a required

plant internal state directly into a required actuator state.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 42 of 68

7.1.2.7 Example: Control of a railroad turnout

A railroad turnout, switch, or [set of] points is a mechanical installation enabling railway trains to

be guided from one track to another, such as at a railway junction or where a spur or siding

branches off. A switch (points) consists of a pair of linked tapering rails, known as points (switch

rails or point blades), lying between the diverging outer rails (the stock rails). These points can be

moved laterally into one of two positions to direct a train coming from the point blades toward the

straight path or the diverging path. A mechanism is provided to move the points from one position

to the other (change the points). This is done by a remotely controlled electric motor called a point

machine.

If we take a simple turnout like the one in Figure 23, and draw out the mechanical parts, we can

immediately draw a couple of very important conclusions:

 We do not directly control the position of the point blades; we control the state of the actuator

(usually, this means voltages on the terminals of the point machine motor).

 We assume, based on a model of the mechanics of the switch, that the state of the actuator

influences the position of the point blades.

 We do not directly observe the position of the point blades.

 We infer the position of the point blades from the state of position sensors (point machine

switching contacts).

Figure 23 Simple railway turnout

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 43 of 68

The bottom line is that in the control loop of a railroad turnout all four of the basic control system

functions “control”, “actuate”, “sense” and “observe” are present. The corresponding control loop

is depicted in Figure 24. The information flows are described below:

(1) Required internal state of “Plant”: required point state “LEFT”,

(2) Required external state of “Plant”: required PM state “DRIVE LEFT”,

(3) Actual external input state of plant: Connecting voltage for moving the PM to the left,

(4) Actual external output state of plant: current flow via the PM position sensor contacts,

(5) Sensed external output state of plant: sensed state “UNLOCKED”,

(6) Estimated internal state of plant: estimated point state “RIGHT” or “TRANSITION”.

Figure 24 Control loop of a point

7.1.3 Interpretation of the concept of “function”

As explained in chapter 6.3.1, the Arcadia method [7] forms the basis for the creation of the RCA

analysis model. The elements of ARCADIA’s “modelling language” (known as ArcML, which is not

a modelling language, but rather an ontology) are defined in an experimental French standard XP

Z 67-140 [14]. This standard defines a function as action, operation or service fulfilled by the

system, or by an actor interacting with the system. When modelled in ontological terms, as

depicted in Figure 25, this results in the following visualisation, immediately highlighting the broad

nature of the definition.

The key difference between actions/operations and services (in common interpretation) is that

operations have a finite execution cycle (they are called, executed, and return a value) whereas

services are persistent (they are available over a longer-term timescale and can be seen as being

continuously available). According to the RCA specification approach (see chapter 6.3.1) a

function is interpreted in a persistent sense. It is available in a range of system states and is a

container for a mathematical behavioural specification. The behavioural specification describes a

mathematical transformation of inputs into outputs and holds for all possible values of input and

output parameters defined in the information objects.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 44 of 68

Figure 25 Ontology model of a function according to ACARDIA (source: DB Netz AG, I.NAT 1)

According to the EULYNX specification approach (see chapter 6.3.2), a function is represented

by a Functional Entity (FE). A FE encapsulates a subset of the functional requirements of a

EULYNX system element in the form of a function module. It delimits the function module from its

environment and defines the inputs and outputs. FEs are used for the specification of EULYNX

system elements as well as for the specification of EULYNX interfaces. The behaviour of FEs is

currently defined in EULYNX by SysML state machines.

The principal structure of a FE is shown in Figure 26. Apart from state machines, FEs may have:

 SysML block properties (3).

 SysML block operations (2).

 SysML proxy ports used as atomic "in ports" and "out ports" (5) or typed with an interface block

in which the information objects to be exchanged via the port are defined (4).

 SysML flow ports used as atomic "in ports" and "out ports".

The description of a FE (1) contains the stereotypes <<block>> and <<functional entity>> as well

as the FE name (e.g., S_W).

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 45 of 68

Figure 26 Principal structure of a Functional Entity

Block properties (3) are to be interpreted in the sense of variables or constants that store values.

They are prefixed with "Mem". Block operations (2) are used to specify internal broadcast events

or algorithms of data transformations (call behaviour). Call behaviour is invoked on demand,

executed and terminated after execution. It is supposed to define event-driven data

transformations. The algorithm of the data transformations is described in the body of the

corresponding block operation using the Atego Structured Action Language [15].

A FE has interfaces that define continuous in-flow of information consumed by the assigned state

machine, represented by data in ports, and continuous out-flow of information generated by the

assigned state machine, represented by data out ports. Data in ports and data out ports (5, 6) are

specified as SysML proxy ports or SysML flow ports of the SysML block representing the FE

depicted in an internal block diagram (ibd). Data ports start with a capital letter if they are part of

an external connection between a FE and the system environment (system interface) or if it is an

open port (such as D4in_Normal_Mode). In this case, they have the colour blue (6). Data ports

are especially suited to indicate permanently available information. The value of a D-port only

changes if it is explicitly changed. Data in ports are used as arguments of Boolean expressions in

change events or transition guards. They may represent arguments in data transformations or

other data, that need to be permanently reachable by the behaviour of a FE. Their values can be

permanently regarded as valid. Data out ports are used to provide continuous data created within

a FE for its environment (e.g. to be available for adjacent FEs, reachable via their data in ports).

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 46 of 68

In addition to the continuous interfaces defined by data ports, a FE features interfaces that define

event-driven in-flow of information consumed by the assigned state machine and event-driven out-

flow of information generated by the assigned state machine. The information flows are

represented by SysML proxy ports typed with SysML interface blocks (4, 7). The information

objects to be exchanged are represented by signals. The interface blocks define the receptions

for these signals. When a signal is received, a signal event is triggered by the corresponding

reception, which is then used as a trigger for a state transition, for example. Ports and their

interface blocks are written in small letters (such as cc_w:~cc_w) if they are part of an internal

connection between two Functional Entities. In this case, they have the colour green like the

corresponding Functional Entity (4). Ports and their interface blocks are written in capital letters if

they are part of an external connection (system interface) between a functional entity and the

system environment (such as W_P:W_P). In this case, they have the colour blue (7). An

information object defined as outgoing in the interface block (port type) becomes an incoming

information object through conjugation. This conjugation is indicated by the character "~"

preceding the corresponding interface block (example: cc_w : ~cc_w).

To describe the externally visible behaviour of a system element, the FEs are interconnected in

the form of a Functional Architecture (FA). The principal structure of a FA is shown in Figure 27.

Figure 27 Principal structure of a Functional Architecture

There are two different representations of the FEs used: FEs with a solid border (5) and FEs with

a dashed border (4). Following the interface centric specification paradigm (see Section 6.2.3), a

solid-bordered FE represents the directly specified behaviour of the system element that is the

"linking behaviour" (e.g., S_W). It is an inseparable part of the behavioural model of the system

element. FEs with dashed borders, on the other hand, are references (reference properties) to the

interface protocols specified in the models of the application levels. These local behaviours are

linked to the overall behaviour of the system element by the directly specified linking behaviour.

In Figure 27, for example, the functional entity "S_SCI_P" (4) is shown as a dashed block. This

means that it is the local behaviour of the SCI-P protocol at the application level, which is defined

in the SCI-P specification.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 47 of 68

FEs can be connected in three different ways: by internal FE coupling, by external FE coupling or

via open ports to behavioural parts that are not explicitly specified. The information flows defined

in the internal FE-couplings or the couplings themselves are to be interpreted as descriptive

elements of the behaviour and are only binding in the context of the overall behaviour. That means

that an information flow defined in an internal FE coupling only becomes a mandatory requirement

in the context of its active use, e.g., in a transition. Internal FE-couplings are implemented in two

types. In the first type (6), communication between two FEs takes place by means of signals and

in the second type (7), permanent information is transmitted. An internal FE coupling according to

variant 1 defines an event-driven flow. It consists of two SysML proxy ports with the same name

that are connected via a connector (SysML Connector). The connector represents the

communication channel over which the information objects defined in the port type (SysML

interface block) can be exchanged. The information objects are represented by SysML signals.

The port type is used conjugated on one side (e.g., ~w_p). This means that an information object

defined as outgoing in the interface block (port type) becomes an incoming information object

through conjugation. An internal FE-coupling according to variant 2 defines a continuous flow. It

consists of two SysML proxy ports or alternatively SysML flow ports with the same name that are

connected via a connector (SysML Connector). The continuity of the information transmission is

indicated by the abbreviation "D = Data" at the beginning of the names of the ports involved. The

overall behaviour to be implemented by the manufacturers is connected to the interfaces of the

system element via external FE-couplings. In contrast to the internal FE-couplings, the information

objects defined in the information flows or the couplings themselves represent binding

requirements (mandatory requirements). An external FE coupling consists of a proxy port

representing an interface (2), located at the outer boundary of the system element, and labelled

with the name of the interface concerned (e.g., EIL_SubS-Point). The port delegated from the FE

relevant to the interface (e.g., SCI_P: ~SCIP) is embedded in it. The delegated port and the

original port are linked (3) via a delegation relationship (stereotype <<equal>>). In other words,

the port at the FE is moved to the outer boundary of the system element. The information flows

and their direction remain unchanged. The name of the delimited port designates the kind of

interface (e.g., SCI_P). The port type (e.g., SCIP) defines the information objects that must be

exchanged via the respective interface. Open ports represent requirements and define the

interface to specification parts not contained in the model, i.e., expected behaviour in the

environment of the FEs. This behaviour can be implemented proprietarily by each manufacturer if

the information expected at the ports is provided or the information delivered via the ports is

processed accordingly. Open ports are also used to configure the specified behaviour.

7.1.4 Classification of systems according to their behaviour

The control system functions "control", "actuate", "sense" and "observe" introduced in Section

7.1.2.6 as well as the plant in the control loop have a behaviour that can vary depending on the

type of system. These possible system types are listed below and briefly described according to

the properties "dynamics", "driving type", "randomness", "type of variables and linearity" and "time"

[16].

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 48 of 68

Dynamics:

 Static system: A static system is a system in which the output depends only on the present value

of the input1.

 Dynamic system: A dynamic system is a system in which the output depends on the past or future

values of the input2. It has an internal state that evolves over time and that determines the output.

Driving type:

 Time-varying system: A time-varying system is a system in which the output is dependent on time

(see also Section 7.1.2.1).

 Time-invariant system: A time-invariant system is a system in which the output is independent of

time (see also Section 7.1.2.1). It is common to assume that a dynamic system is time-invariant

[16].

 Time-driven system: A time-driven system is a system in which the state changes depending on a

uniformly progressing physical time variable (see also Section 7.1.2.3).

 Event-driven system: (Discrete Event Dynamic Systems or DEDS) An event-driven system is a

system in which the state changes depending on asynchronous discrete events. The state cannot

change between two events (see also Section 7.1.2.3).

 Fully driven system: A fully driven system might contain elements of time-invariant, time-variant,

time-driven and event-driven systems.

Randomness:

 Deterministic system: A system is deterministic if its output variables are all completely

determined by the input and system state. It is a system in which no randomness is involved in the

development of future system states3.

 Stochastic system: A stochastic system is a system in which randomness (probability distributions)

is involved in the development of future system states4.

Type of variables and linearity:

 Finite: The variables of a finite system are bound by a lower and upper limit.

 Discrete: In a discrete system, values of variables or the time might be discrete.

 Continuous linear: A continuous linear system is a system in which the state variables are real or

complex and the transition function is linear (see also Section 7.1.2.2).

1 https://electricalworkbook.com/static-and-dynamic-systems-theory-solved-examples/

2 https://electricalworkbook.com/static-and-dynamic-systems-theory-solved-examples/

3 https://en.wikipedia.org/wiki/Deterministic_system

4 https://de.wikipedia.org/wiki/Stochastisches_System

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 49 of 68

 Continuous nonlinear: A continuous nonlinear system is a system in which the state variables are

real or complex and the transition function is nonlinear (see also Section 7.1.2.2).

 Hybrid: A hybrid system might contain elements of discrete, continuous linear and continuous

nonlinear systems.

Time:

 Continuous-time system: In a continuous-time system the domain time is considered continuous

(see also Section 7.1.2.3).

 Discrete-time system: In a discrete-time system the domain time is only present at discrete times

(see also Section 7.1.2.3).

In Table 1 System types and their probability of occurrence in control system functions, the system

types, i.e., the corresponding typical behaviour, are assigned to the control system functions

considering the probability of their occurrence. The probability is expressed by the white to

completely black filled circles. The more a circle is filled with black, the higher the probability. For

example, a circle half-filled with black symbolises a probability of 50 per cent and a filled circle of

100 per cent. The allocation of probabilities is based on the following assumptions:

(1) Railway systems of interest can function as transformation systems. Transformation systems, such

as decision-making systems (artificial intelligence), have the characteristics of static systems.

Furthermore, in many cases the function "indicate", a specialisation of the function "actuate" (see

Section 7.1.2.6), is a transformation function with the character of a static function.

(2) Railway systems of interest have in most cases the characteristics of dynamic systems. However,

the functions "sense" and "observe" often have a transformational character. They represent a

transfer function from the outer state to the inner state of the plant without having a history.

(3) The function “control” might be time-varying, e.g., day and night switching of the luminosity of a

light signal. The functions “actuate”, “sense” and “observe” are not assumed to have a high

probability of being time-varying (see also (4)).

(4) According to [16] it is common to assume that a dynamic system is time invariant.

(5) Current railway systems of interest (e.g., EULYNX systems) are considered event-driven, not time

driven. Nevertheless, future systems may also exhibit time-driven behaviour. Since no concrete

examples are available yet, this is only assumed for the time being.

(6) Current railway systems of interest (e.g., EULYNX systems) are considered event-driven. It is

assumed that this will also apply to most future systems. Since no concrete examples are available

yet, this is only assumed for the time being.

(7) It is assumed that future railway systems of interest will predominantly show event-driven

behaviour but may also partly (especially in the "control" function) show time-driven behaviour

concurrently, i.e., they will be fully driven. Since no concrete examples are available yet, this is

only assumed for the time being.

(8) Railway systems of interest are safety-relevant systems and therefore behave deterministically.

(9) Sensors might include jitter or drift, random errors, but the rest of the system behaviour should

be deterministic (see 8).

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 50 of 68

(10) Current railway systems of interest (e.g., EULYNX systems) are considered finite. It is assumed that

this will also apply to future systems.

(11) Current railway systems of interest (e.g., EULYNX systems) are considered discrete. It is assumed

that this will also apply to a large extent to future systems.

(12) It is assumed that future railway systems of interest will also partly exhibit continuous linear

behaviour. Concrete examples are currently not available.

(13) It is assumed that future railway systems of interest will also partly exhibit continuous nonlinear

behaviour. Concrete examples are currently not available.

(14) It is assumed that future railway systems of interest will also have partially simultaneous

continuous linear, continuous nonlinear as well as discrete behaviour. Concrete examples are

currently not available.

(15) Future railway systems of interest are predominantly computer-based. Computer-based systems

have discrete-time behaviour. Theoretically, however, they can also consist partly or entirely of

electrical components. It is therefore assumed that to a certain extent the behaviour of

continuous-time systems must also be considered.

(16) Future railway systems of interest are predominantly computer-based. Computer-based systems

have discrete-time behaviour.

Table 1 System types and their probability of occurrence in control system functions

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 51 of 68

To get a complete description of the system, not only the system element of interest needs to be

modeled, but also the environment it interacts with. In control theory, this is referred to as the plant

model. It is assumed that the plant can exhibit all the types of behaviour listed [17].

7.2 Evaluation of the current EULYNX specification approach

In the following sub-chapters, requirements for an extended EULYNX specification approach are

derived from the analysis results achieved in Section 7.1. Furthermore, it is evaluated to what

extent and how these requirements are already fulfilled by the existing EULYNX specification

approach.

7.2.1 Analysis results and resulting requirements for a specification approach

According to the results of the analysis carried out in Section 7.1 regarding the characteristics of

railway systems in the context of a future railway system architecture, such as RCA, their system

elements have the characteristics of control systems. Since the analysis model of RCA is currently

being developed and there is not yet any in-depth knowledge regarding the behaviour of the

corresponding system elements, the classification of the control systems is largely based on

assumptions. As can be seen in Table 1 System types and their probability of occurrence in control

system functions, the system elements predominantly have the characteristics of discrete, event-

driven, deterministic finite dynamic systems. Besides event-driven characteristics, discrete-time

behaviour and continuous time behaviour will also occur to a certain extent and must therefore be

considered in an enhanced EULYNX specification approach. Likewise, the different behaviours

can occur in mixed form in one system element (fully driven, hybrid). To what extent these

behaviours really play a role can only be determined when the RCA analysis model is closer to

completion. The situation is similar regarding time-varying and time invariant behaviour. Here, a

dominance of the time invariant behaviour is assumed. According to [16] it is common to assume

that a dynamic system is time invariant. However, it must be possible to represent time-variant

behaviour in the specification model. Besides the characteristics of dynamic systems, those of

static systems play an important role. Static system elements or functions are needed for

transformations. In contrast, stochastic and infinite aspects play a subordinate role. A further

developed EULYNX specification approach shall therefore support the semiformal/formal

description of the following behaviour:

 Finite discrete event dynamic behaviour.

 Discrete time behaviour.

 Continuous time behaviour (linear, nonlinear and hybrid).

 Combination of continuous time behaviour, discrete time behaviour and finite discrete event

dynamic behaviour.

 Static behaviour (logic and algebraic data transformation).

It must be possible to describe all behaviours in an executable way and the corresponding

behaviour model must allow a transformation into a formal model according to the approach

introduced in [5] and as further developed in WP10’s ongoing Task 10.8. The knowledge gained

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 52 of 68

and documented in [5] regarding the improvements of the models created in the EULYNX initiative

shall be considered. Furthermore, the specification approach must make it possible to describe

the functionality of system elements in the form of control loops as shown in chapter 7.1.1. It must

also be possible to describe the control system functions in different configurations, as is inevitable,

for example, in the specification of a system element representing an electronic interlocking.

7.2.2 Assessment of the existing EULYNX specification approach

7.2.2.1 Functional control system architecture

The existing EULYNX specification approach already allows the description of functional control

system architectures and their governing control loops, as introduced in Section 7.1, through the

"Functional Architecture" model view of AM MBSE (see Section 6.3.2.2). The control system

functions are represented by interconnected functional entities. The interconnection of the

functional entities is done considering the interface-centric specification approach presented in

Section 6.2.3. The model view “Functional Architecture” also makes it possible to link

infrastructure-related data with the control system functions. For this purpose, the infrastructure

elements are abstracted as functional entities, mapped in a functional architecture, and

interconnected in a topology-compliant manner. The principle is shown in Figure 28. However, it

is difficult to describe different configurations of functional architectures. This is possible with a

small defined number of configurations by corresponding functional architectures. Problems arise

with an arbitrary number of configurations. For example, routes consist of a varying number of

different route elements. It is a challenge to describe all possible configurations generically using

functional architectures.

Figure 28 Topological abstraction of infrastructure in the form of a functional architecture

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 53 of 68

The control system functions "actuate/indicate" and "sense" are in some cases technology related.

The project is required to include these technical aspects in the specification. The functional

entities are therefore to be supplemented by technical functional entities (TFE). A technical

functional entity (yellow-coloured SysML block stereotyped with <<technical functional entity>>)

represents a certain piece of technology-dependent behaviour based on technical requirements.

It is part of a technical functional architecture supplementing the technology-independent

behaviour defined by functional entities. The definition of technical functional architectures is

provided in the EULYNX specification approach in the technical viewpoint of the AM MBSE.

However, the model views of the technical viewpoint are not yet fully defined in the current version

of the AM MBSE. For this reason, the description of technical functional architectures and thus

the integration of technical functional entities are not yet possible. Another important point to note

is that the description of the environment of a system element of interest, i.e., the plant is not

considered in EULYNX according to the current specification approach. However, to perform a

complete description of a system, it is also necessary to consider the environment of a system

element of interest with which it interacts in the specification [17].

7.2.2.2 Behaviour

According to the EULYNX specification approach, a control system function may be represented

by a Functional Entity. Functional entities have SysML state machines and SysML block

operations to describe behaviour (see Section 7.1.3). SysML state machines enable the

specification of finite discrete event dynamic behaviour. SysML block operations are used to

perform logical or algebraic transformations. The corresponding algorithms are defined in the

operation bodies using the action language ASAL [15]. Block operations are currently used as call

operations. This means that they have a finite execution cycle (they are called, for example during

state transitions, executed, and return a value). The description of further types of behaviour is

currently not possible. The EULYNX specification approach shall be extended to include the types

of behaviour defined in Section 7.2.1.

7.2.2.3 Data types

The current EULYNX specification approach uses the following data types: Boolean, DateTime,

Decimal, Double, Integer, Long, Single, String and Enumeration. The data types are to be

supplemented according to the requirements of the behavioural extensions.

7.2.2.4 Validation of system requirements

As shown in Section 6.3.2.6, the EULYNX specifications are created executable, i.e. in the form

of a virtual prototype that can be validated by simulation (simulation-based testing).

7.2.2.5 Verification of safety properties applying formal methods

The EULYNX initiative specifies system elements with standardised interfaces. The functional

requirements, i.e., the behaviour of the respective system element is described by the stimuli-

response behaviour visible at the interfaces. Since this behaviour is standardised and must be

implemented by the manufacturers exactly as defined, it must be ensured that all safety

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 54 of 68

requirements are considered in the specification model. This is done according to the current

EULYNX MBSE process by simulation-based testing of the specification model. Since freedom

from errors cannot be established with 100% certainty through testing, it is advisable to formally

prove this freedom from errors using formal methods. The applicability of formal methods for

EULYNX specifications was evaluated in [5]. The principle is briefly explained in chapter 6.1.4.

The approach developed in [5], in which the SysML specification model is manually converted into

a formal model, will become automated in WP10’s Task 10.8.

7.2.2.6 Automated test case generation from system requirements

In the current EULYNX specification approach, test cases are derived manually from the system

requirements. The aim is to generate test cases automatically from the specification model.

Approaches to this have been evaluated in TD2.7. They are documented in [3] and [5] and are

currently under development (see Section 7.5).

7.3 Proposed additions to the EULYNX specification approach

In X2Rail-2 Deliverable D5.5 [5] several suggestions for improvements to the existing EULYNX

specification approach have already been made (which are not repeated in this deliverable).

These improvements have been forwarded to the EULYNX initiative where they will be

incorporated into the EULYNX modelling standard (Eu.Doc.30) [6]. The enhancements proposed

in this document relate mainly to the extension of the finite discrete event dynamic behaviour of

functional entities by the types of behaviour listed in Section 7.1.1. The necessary improvements

mentioned in the previous chapters, such as the configuration of functional architectures or the

addition of model views of the technical viewpoint, were communicated to the EULYNX initiative

and worked on further there.

7.3.1 Modelling of continuous-time and discrete-time dynamic behaviour

When modelling a dynamic function, it is possible at any time to create a representation in the

generalised state space form. This form of representation is based on three basic equations:

1. Continuous dynamic states: The first derivative of the state vector is a function of state, inputs,

and time.

2. Discrete dynamic states: The next value of the state is based on the current values for state, inputs,

and time.

3. Outputs: The output value is a function of states, inputs, and time. No dynamic developments

should be included in this equation.

Figure 29 shows a general representation of a dynamic function (or system). In the EULYNX

specification approach, this construct is represented by a functional entity.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 55 of 68

Figure 29 General dynamic function

A system, system function or plant model can be described at different levels of abstraction, see

Figure 30. These abstraction levels are adapted from [18]:

 Acausal models. At the highest level of abstraction, there are acausal models, where models are

described by one or several differential or algebraic equations, possibly combined with state

machines to model hybrid systems. This approach is referred to as first principles modelling.

 Causal models. At the causal level of abstraction, it is defined what is input, and what is output

inside the system or function, and between components in a composed system. Typical causal

models include block diagrams, like continuous Simulink models [20]. The model view “Functional

Architecture” of the EULYNX AM MBSE can also be arranged on the abstraction level "causal

models".

 Time-discretised models. To solve a differential equation numerically it is typically discretised in

time. A discretised model is an algorithmic representation in the sense that it generates a defined

output for a certain input and internal state. A model can be discretised in different ways, e.g.,

using forward/backward Euler.

 Simulation behaviour. To perform the calculations of the discretised models, a solver and a

scheduler are needed as part of the simulation engine. The simulation engine can decide the time-

step, execution order, triggering, communication, etc. of the model. A typical numerical tool to

solve differential equations is Simulink.

Figure 30 Different levels of abstractions of system or plant models

Acausal models are generally more flexible and reusable than models at a lower abstraction level

[19]. For this reason, acausal models are well suited for the representation of binding requirements.

Acausal models can be expressed in SysML by parametric diagrams. Parametric diagrams

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 56 of 68

describe constraints between variables, like equations, and how they are related to each other.

The constraints are acausal, and by combining many functional entities within a functional

architecture, acausal relationships for a large system element can be achieved. In addition, finite

discrete event dynamic behaviour represented by state machines of connected functional entities

can tell which equations to be used in the parametric diagrams, to be able to describe hybrid

system elements. Figure 31 shows an example of the application of the SysML parametric diagram

that defines the addition of two real numbers. This is a very simple example, but this works also

for more complex ones, of course. A detailed description of the use of SysML Parametrics and

more complex examples can be found in the SysML specification [10].

Figure 31 Simple example of the application of SysML Parametrics

Proceeding to lower abstraction levels means that the model gets more sophisticated, in the sense

that the model can produce simulation results. The integration for MATLAB Simulink of the

modelling and simulation tool "Windchill Modeler" used in EULYNX (see Section 6.3.2.5) enables

the creation of a causal model in the form of a Simulink block diagram from an acausal Windchill

Modeler parametric diagram. Through Simulink, the mathematical model can be developed further

to model the constraints so that the performance, reliability, and correctness of the algorithm can

be tested by simulation. After making changes to the Simulink model, its associated parametric

diagram can be updated with those changes. Integration for MATLAB Simulink also enables the

creation of a Windchill Modeler parametric diagram from a Simulink block diagram. It can export

the following items from a parametric diagram - constraint properties, constraint parameters, value

properties and connectors. In this way, the functional architecture of a system element can be

extended to include continuous-time and discrete-time dynamic behaviour. It is proposed to

extend the current EULYNX specification approach accordingly.

7.3.2 Modelling of static behaviour

Static behaviour is characterised by the fact that the output only depends on the value of the

current input and does not require any history. In many cases, decision processes are described,

and data transformations are performed based on a corresponding algorithm. Both tasks can be

fulfilled by the means available in the existing EULYNX specification approach. Decision

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 57 of 68

processes can, for example, be modelled by flowcharts or defined in persistent operations (time

advance operations). Time advance operations are assigned to a functional entity and

permanently generate an output depending on the current input. They can also be used for data

transformations. A flowchart is a chain of logical patterns used to implement a sequence of

decision-making processes. It is used to implement sequential, nested, and iterative processes.

In the current EULYNX specification approach, flowcharts are modelled by pseudo-states and

transitions on SysML state charts. In future, it should also be possible to define complex algorithms

using parametric diagrams and then transfer them to Simulink block diagrams as described in

Section 7.3.1. It is also proposed to extend the EULYNX specification approach to include truth

tables. Truth tables map actions to the possible Boolean combinations that can be derived from a

set of conditions. In this way, the description of complex logical processes is facilitated, and

readability is increased.

7.4 Expression of behaviour as mandatory requirements

7.4.1 Current approach

According to the EULYNY specification approach the SysML specification model is stored in the

repository of the modelling tool windchill modeler. Specification-relevant model elements are

mapped in the requirements management tool IBM DOORS as DOORS objects, which represent

atomically referenceable system element requirements or interface requirements. The following

types of requirements are defined:

 "Req": denotes a mandatory requirement.

 "Info": denotes additional information to help understand the specification and does not specify

any additional requirements.

 "Head": denotes chapter headings.

A requirement consists of the respective SysML model element, e.g., a SysML diagram, and, if

applicable, an additional extension of the same. For this reason, requirements have two attributes

"Requirement Part 1" and "Requirement Part 2", which are shown in adjacent columns (see Figure

32). In "Requirement Part 1" the respective SysML model element is listed and in "Requirement

Part 2" the corresponding extension is shown. Column 'Type' defines the type of the requirement

and applies normally both to "Requirement Part 1" and "Requirement Part 2". In the case of

requirements with a type "Req", in which the "Requirement Part 2" is provided with the heading

"Info", the defined type "Req" only applies to "Requirement Part 1".

Figure 32 Structure of a requirement

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 58 of 68

Functional requirements are represented in the EULYNX specification approach by finite discrete

event dynamic behaviour defined in the form of SysML state machines. The behaviour of a system

element or the process data interface protocol (PDI) of a communication interface specified in the

functional entities and interconnected in a functional architecture must be implemented in its

entirety by the manufacturers. Of course, the specification model can be transformed into a

manufacturer-specific model (model-to-model transformation). However, the respective

manufacturer must prove the semantic equivalence of its model to the specification model. Since

such a procedure is currently only rarely used, documentation of the behaviour in the form of

referenceable atomic requirements is expected.

Figure 33 Representation of atomic functional requirements

According to the EULYNX specification approach, functional requirements with the degree of

bindingness "Req" are represented by the state transitions of the behaviour model. As shown in

Figure 33, they are listed in the specification document in addition to the state machine mapping

in atomic referenceable form. For example, the state transition "when

(D17in_Sensed_Signal_Aspect = "Signal Aspect 1")/" is formulated as an atomic functional

requirement in the form "when (D17in_Sensed_Signal_Aspect = "Signal Aspect 1")/

{MOST_RESTRICT_ASPECT-SIGNAL_ASPECT_1}".

7.4.2 Advanced approach

Algorithms are defined in call operations, which are then used in state transitions. The same

applies to attributes represented by SysML block properties. These are first assigned a default

value before they are further processed in state transitions or call operations. At present, these,

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 59 of 68

and other model elements (such as ports) are marked with the requirement type "Req". As a result,

manufacturers must separately prove that these model elements are fulfilled by their

implementation, although proof is only necessary when they are used, for example in a state

transition. Since these model elements are basically definitions, it is recommended to introduce

the requirement type "Def" and to carry out the labelling accordingly in the future. In contrast,

persistent operations (time advance operations), which are assigned to a functional entity and

describe, for example, decision-making processes or data transformations (static behaviour), are

to be marked with the requirement type "Req". In the case of behaviour described in the form of

differential equations or algebraic equations using parametric diagrams (continuous-time and

discrete-time dynamic behaviour), these equations represent the binding functional requirements,

which are therefore to be marked with the requirement type ”Req".

7.5 Supporting automated test case generation

7.5.1 Motivation

Model-based testing in relation to other verification means

Ideally, all intended properties of a signalling system would be verified exhaustively using formal

methods. However, there exist several reasons why this is usually not possible in reality:

properties may not be defined explicitly, not lend themselves well to formalization, be hard to prove

or very different in nature (requiring different formalism). Testing is not exhaustive, but very flexibly

applicable; moreover, it involves an actual environment in which the system is executed, which

adds some implicit system validation to the original verification task. But testing can consume

many resources, even if test execution is largely automated, and classical testing requires the

product to exist and thus find errors at a late development stage.

Model-based testing can be considered “in between” formal methods and traditional testing: it is

still non-exhaustive but helps towards more efficient test design and early testing, and formal

methods are used by advanced test case generation (TCG) tools, guaranteeing that test cases

cover the behaviour of the model they were generated from. In particular, model-based testing

has proven useful for functional testing at higher test levels (integration, system, acceptance), but

is not limited to that. Still, there will be tests (e.g. usability, smoke) and reviews that need to be

designed and/or executed manually. But to reduce them to a minimum and be as efficient as

possible, the general ideas behind this Section (7.5) are:

 To summarize why automatic test case generation should be used for signalling systems

(remainder of Section 7.5.1);

 To explore the scope of test case generation in terms of different kinds of behaviour present in

signalling systems (Section 7.5.2), in order to test “as much model-based as possible” using “as

few different models as reasonable”;

 To provide recommendations for system specifications (in Section 7.5.3) on how to support TCG

best.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 60 of 68

General advantages of model-based testing

Automation and reuse/maintainability. Manual design of high-quality test suites takes time – on

average it is responsible for more than half of all testing costs. In model-based testing, only the

model needs to be created manually, afterwards test cases are generated automatically from the

model. While coming up with a good model initially may require some time as well, the approach

becomes much more efficient than manual test design when changes need to be made for

maintenance or reuse of the test suite: usually changing the model and regenerating the test cases

is easy to do.

High test suite quality and structured test design process. The process of model creation and test

case generation can be structured very well into smaller steps (e.g., structural, and behavioural

modelling, system and environment modelling). Also, many – partly automated – V&V steps can

be used during the process (e.g., automated checks of the model, interactive model simulation,

coverage analysis of generated test cases). This usually leads to a high-quality model, from which

a high-quality consistent test suite is created by using fully automated, mature, and often formal

methods-based generation.

Comprehensible and flexible test selection. TCG tool usually offers several settings that allow

realizing different test selection criteria (e.g. coverage goals, search strategies, input interface

constraints). This way, the generation can be flexibly influenced to balance the number and size

of generated test cases as well as the generation time. Furthermore, the tools usually measure

how much of the coverage goals are reached and allow tracing between model (including attached

requirements) and test cases, making transparent and comprehensible what has been achieved

by the TCG.

Support of early testing. Model-based test design can begin early during system development and

it is possible to start with partial models and generate test suites from them. This in turn allows

early V&V of the test suite. Reuse of models or model parts can accelerate test design very much.

Another aspect is that the modelling and TCG process often leads to the early detection of

specification issues. All in all, this leads to less cost and risks in projects.

Advantages of using models. It is commonly known that the use of models usually fosters precision

and completeness, can serve to capture knowledge compactly, and can support communication

(especially for visual models). Generating many different test cases from a model, the model also

acts as a “single source of truth” in test design.

Fit with new signalling system specification approach

The EULYNX MBSE approach provides state machines that capture the possible behaviour of a

signalling interface and/or subsystem (see Section 6.3.2.3). Their semantics is defined by the

SysML standard which is textual and not complete as it intentionally leaves open how e.g.,

scheduling of event dispatching or choice among several enabled transitions will be implemented.

Apart from that, SysML provides a quite precise semantics which allows tools – dealing with the

open issues – to execute state machines. In this sense, the state machines can form the basis of

a test model, from which test cases can be generated. As many TCG tools are based on state

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 61 of 68

machines, for them – besides automated generation of test cases from the model – also the model

creation becomes very efficient.

Moreover, requirements coverage becomes particularly easy, as in the EULYNX specifications

the statechart transitions are considered requirements. The TCG can produce test cases

according to the goal of transition coverage, and tracing requirements forth and back between

specification and test cases becomes very easy because of (a) the similarity between the state

machine-based specification and test models and (b) the coverage and traceability relation

between test model and test cases established by the TCG.

Finally, the EULYNX specifications do not include the desired system properties explicitly as

required for formal verification. Testing does not require that; it can be based on an operational

(“imperative”, see Section 6.2.4) description of system behaviour. This can be an advantage

because IMs traditionally think in operational procedures, which are often historically grown and

not all their rationales may be known any longer. And even if the desired system properties are

explicitly available and complete, IMs may decide not to make them publicly available.

7.5.2 TCG for different kinds of behaviour

Basic stimulus-response behaviour

Rail control systems usually are reactive software systems, sometimes as embedded systems

such as field element controllers, sometimes running on computers such as in an electronic

interlocking. As such, they are constantly running, waiting for discrete events to occur at their

external interface, and processing them, which can lead to output at their external interface and/or

to change of their internal state. Such basic stimulus-response behaviour can be modelled as

state machines (see Section 6.2.2); and the state machines together with test selection criteria,

e.g. transition coverage, can be used by a TCG tool to automatically produce test cases which e.g.

cover all the transitions. This way, one can obtain effective tests for stimulus-response behaviour

of rail control systems; this has been demonstrated in WP5 of the preceding X2Rail-2 project for

a level crossing (LX) controller specified by the Swedish IM Trafikverket (see Chapters 7 and 10

of [3]).

Timed systems

In the simplest case, the stimuli for the behaviour just come from the system’s environment such

as adjacent systems, sensors, or human operators. But it is also common that signalling systems

have timers, whose expiry serves as a stimulus. The above-mentioned LX controller is such a

system, as the closing and opening procedures of the LX are very much time-dependent. The

same holds for its environment, as e.g., raising and lowering of the controlled barriers takes time.

This can be dealt with by state machine transitions in the system and environment model,

respectively, that are triggered by timeout-events according to a global clock (i.e., timed automata),

and by adding the possibility to advance that global clock for the TCG tool. It leads to test cases

that respect the modelled time dependencies at least in the existence and order of test steps. This

has been demonstrated in the LX controller example as well; however, no actual time intervals

were generated into the test cases, although possible in principle as demonstrated as part of TCG

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 62 of 68

for the EULYNX point subsystem (see Chapter 7.5 of [5], although the time aspect of the TCG is

not much discussed there).

Regarding time, in addition, one may wish to generate system performance test cases, to verify

that the system will show the desired reaction within a limited time. More generally, it can make

sense to define time limits as part of tests such as load or stress tests. The best way to generate

such information into test cases depends on the TCG tool (test case elements that can be

generated) as well as on the test environment (capabilities to interpret that information for test

execution), but basically, the use of TCG does not limit testing of time-related properties. A

corresponding case study is currently underway in WP10.

Non-determinism

Another kind of behaviour that may require additional care is non-determinism. Non-determinism

in the system environment is quite common and is dealt with by the TCG tools that decide which

inputs to choose to generate – usually deterministic – test cases. If the generation itself needs to

be reproducible, techniques like pseudo-random numbers are used in generation tools and

environment models to mimic non-determinism. Non-determinism of the system under test is often

restricted to uncertainties of the output values or their timing; this can be accounted for with the

definition of appropriate ranges to be used during the building of the test verdict. More seldom

does one encounter genuine non-determinism of the system, which then needs to be considered

by the test model and the test cases (which in general become trees instead of sequences as

mentioned in [21]).

Complex algorithms

More centralized signalling systems tend to include also complex calculations or algorithms (that

run without consumption of further stimuli). The application of model-based testing is clearly

possible for such behaviour, but often is not in the focus: doing a model of the behaviour using

classical model-based testing formalisms like state machines may only be worthwhile if a certain

level of abstraction is reached, otherwise one may end up with an (expensive) second

implementation. Instead, a detailed analysis of the behaviour may be done using specialized

mathematical models or classical testing techniques for lower levels. Nevertheless, it should be

considered that test models for a generation of higher-level tests may require some abstract model

of algorithmic behaviour.

Communication

Advanced signalling systems with centralized control have always been distributed, rising the

need for communication between an interlocking and its controlled field elements. For new digital

signalling systems, this communication is based on computer network technology and is an

essential part of standardized interface specifications, but also more complex than traditional

communication means. To generate tests for the specified interaction on the application level, it is

often necessary to model communication-related behaviour such as establishing and releasing a

connection, sending, and receiving messages, and important properties of the communication

protocols and channel. Classical modelling approaches used for TCG such as multi-statechart or

communicating processes support asynchronous communication appropriate for use between

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 63 of 68

distributed systems, but also synchronous communication appropriate between logical

components of the same system. This makes it possible for the TCG tools to generate test cases

that are correct w.r.t. communication behaviour. In practice, it is advisable to establish a good

understanding of the semantics of communication-related model constructs (e.g., circular

synchronous calls between components) and how the test generator deals with asynchronous

communication.

Data processing

Subsystems in modern signalling architectures like ETCS or EULYNX communicate by exchange

of messages which contain data of interest; they also usually require configuration data and may

need to store processed data. Such data needs to be decoded and encoded, aggregated and

disaggregated according to the system’s needs and standardized formats, i.e. read from memory,

validated, possibly converted and saved to memory. That kind of behaviour can constitute a

considerable percentage of the overall system behaviour but is rather simple in nature. Tests

would need to check detailed rules describing relations between original and transformed data.

This low degree of abstraction and often declarative specification seems less suited for extensive

modelling in an – often executable – test generation model. Instead, it is usually a good idea to

abstract from original data formats and simplify data exchanged at external and internal interfaces.

Due to usually quite precise and standardized specifications, the use of formal means to check

more detailed data processing rules appears well-suited. Nevertheless, TCG for data conversion

behaviour is clearly possible and can make sense to some extent, e.g., if dedicated components

for the aggregation/disaggregation of data (like in the RCA Object Aggregation layer, cf. Section

6.3.1) need to be modelled anyway. Finally, TCG models can contain some internal data

processing for which no direct test cases are generated but which is part of some other kind of

behaviour; this is normal and should not be confused with explicit testing of data processing.

Continuous systems

Embedded systems often exhibit real-time continuous behaviour due to physical processes

(mechanical, electrical/electronic). Clearly, such systems are part of railway signalling but

discretizing their state space for use in central control has a long tradition and is applied even

earlier in the processing chains in modern systems as the software parts increase. If needed,

continuous system dynamics can be modelled instead of discrete behaviour or in addition to it

(hybrid systems), e.g., using hybrid automata. However, test generation involving continuous

behaviour is hard and approaches are rare (see e.g., [22]).

7.5.3 Model-based system specification facilitating TCG

In general, TCG does not require a certain style of system specification; it is the task of the tester

to analyse the specification, determine what tests need to be conducted and come up with a

suitable test model. However, the specification style and quality may greatly influence how difficult

and thus how costly and time-consuming that task will be. For this reason, in the sequel, several

aspects that facilitate efficient TCG are discussed, and recommendations are provided. It is

assumed that a system model based TCG approach is followed, which not only seems to be most

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 64 of 68

beneficial for testing CCS systems, but also is affected most by how the system is specified. This

approach requires a behavioural system specification as input.

Conciseness

It is in general beneficial for verification to have a high degree of precision and completeness in

the specification because what is not specified will not be verified. This does not mean that every

system detail needs to be specified – there are good reasons for specifications to leave details

open for choice during design and implementation – but rather that all relevant information should

be available and should be unambiguous. Being precise and complete can also mean to include

“non-behaviour” which can be turned into negative tests. Model-based testing increases the need

for precision and completeness because modelling tends to enforce these properties. If the

specification does not meet them, this will not only lead to questions to the specifier, but a missing

understanding of the system can also lead to bad design decisions for the test model.

It is good practice for specifications to limit their variety: the number of terms, language constructs

and diagram types used in the specification should not be unnecessarily big and similar facts

should be expressed using similar ways. This serves in general the understandability of the

specification; it is even more important for model-based testing, as it simplifies the mapping of the

specification facts to appropriate model elements in the test model.

Closeness to test model paradigm

Often test models need to be executable for test case generation, so an imperative specification

style is closer to what is needed than a declarative style. Most system model-based test generation

tools use state-based models, especially UML/SysML state machines, to specify behaviour.

Preferably, the specification already includes such models; this can simplify the translation to the

test model behaviour considerably. Moreover, if the specification already links requirements to

(specification) model elements (such as states or transitions of a statechart), it will be particularly

easy to make sure that test cases for those requirements are generated and to trace them back

to the specification.

Explicitness

Often, there exist implicit assumptions and implicit knowledge behind specifications. For different

types of those, it is considered beneficial for model-based testing to make them explicit:

1. Environment assumptions. Knowledge about the system environment can be used to complement

the system model by an environment model. The TCG can exploit this model to generate less and

more realistic test cases and to become more efficient (i.e. require less generation time). In

addition, the system model may become simpler if environment behaviour is restricted.

2. Intended basic system properties. The creation of a specification is often guided by general

principles. It is helpful to include them in the specification although they may not constitute

mandatory requirements: besides better understanding of the specification, they may include

basic system properties, which can be used for testing in general (e.g. for test case validation, or

by implementing observers for those properties for use during test execution), but they also can

guide test model design and may be turned into static checks of the model.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 65 of 68

3. Configuration data. Defining possible configurations or even suggesting configurations (standard

configurations, configurations that include special behavioural features) is very helpful to provide

an idea to the tester of how the generic system is going to be used, which will guide the test

selection. In the best case, defined configuration data can be directly used to configure a generic

test model so that test cases can be generated for that system configuration.

4. Allowed execution modes. To define system behaviour, it is usually not sufficient to specify a

number of interconnected functions; it also depends on how communication between system

components and with the environment works (synchronous vs. asynchronous, channel

properties), whether system parts can be parallelized (e.g., multi-threading), and which rules are

applied for event/task scheduling in the system. Knowing about the allowed execution modes is

important to model the behaviour correctly, but also to judge to which extent the TCG tool can

generate the behaviours that may occur for a real system.

Classification of behaviour

It is good practice to distinguish between functional and non-functional requirements in

specifications. This – and further subdivision of non-functional requirements – can support model-

based testing, because (a) functional testing is the main use of TCG, (b) also non-functional tests

like performance or load tests may be generated, and (c) TCG is less suited for other non-

functional test like stress or usability tests. Further classifications of requirements according to

their importance (mandatory vs. optional, core vs. peripheral functions, safety relevance, normal

vs. degraded mode, etc.) may be relevant as well. Such information can be used in the test model

to support flexible test selection (before test generation) and filtering (after test generation, based

on importance of information generated into the test cases).

It can also be useful to mark nondeterministic system behaviour if that is part of the specification.

Being explicit about any kind of nondeterminism is helpful for testing, but it should be noted that

genuine nondeterminism of the system (not just decisions left for the implementer, or limited

deviations of output timing or values) is not supported by many TCG tools. For this reason,

requirements that explicitly introduce nondeterministic behaviour should be avoided or be clearly

recognizable, ideally also stating which parts of the system are influenced by that nondeterminism.

The model-based tester then knows in advance that he needs to choose an appropriate tool,

exclude the requirement from test case generation, or needs to cope with specific nondeterministic

behaviour in the test environment.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 66 of 68

8 Conclusion

This deliverable has evaluated the existing specification approaches used by the EULYNX and

RCA initiatives, considering the intent to merge them into one closely intertwined approach in the

future. Both complement each other, as RCA with its broader scope focuses on architectural

design and EULYNX with its narrower scope focuses on behavioural specification. However, the

approaches are not well connected yet and only partly cover specification needs, since further

types of behaviour are part of the RCA scope. This deliverable has described proposed extensions

of the semi-formal EULYNX MBSE approach to specify different types of behaviour that are

needed to meet the needs of RCA. The proposed extensions of the EULYNX MBSE approach will

bridge the gap between EULYNX and RCA.

More generally, the extensions described in this deliverable are:

 Specifying the characteristics of a functional railway system (system of systems).

 Specifying behaviour as mandatory requirements.

 Improving the existing EULYNX specification approach (according to evaluation results from

previous work in X2Rail-2 WP5[5]).

 Additions to the existing EULYNX specification approach regarding further types of system

behaviour.

 Enhancing support for automated test case generation.

Importantly, the extensions described in this deliverable aim to specify, verify, and validate system

requirements efficiently within the scope of RCA, while being compatible with the automated

transformation of specification models into formal models, for formal verification of these models

(X2Rail-5 Task 10.8). This builds upon previous work in X2Rail-2 for the application of formal

methods for verification of EULYNX specifications as described in [5].

Due to the currently still low progress in RCA, work has had to proceed based on assumptions. It

is therefore necessary that results in this deliverable are reviewed again after further progress in

RCA and adjusted if needed. This includes the use of appropriate specification approaches that

also provide adequate support for rigorous verification of signalling systems and of the

specification itself.

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 67 of 68

9 References

[1] X2Rail-5: Grant Agreement 101014520, call: H2020-S2RJU-2020, topic: S2R-CFM-IP2-01-2020

[2] X2Rail-2 Deliverable D5.1, Formal Methods (Taxonomy and Survey), Proposed Methods and

Applications, May 16, 2018.

[3] X2Rail-2 Deliverable D5.2, Formal Methods Application, Revision 1.6, November 3, 2020.

[4] X2Rail-2 Deliverable D5.3, Business case, Revision 1.4, November 20, 2020.

[5] X2Rail-2 Deliverable D5.5, Application on Standard Interface(s), Revision 2.25, November 17, 2020.

[6] https://www.eulynx.eu/.

[7] https://en.wikipedia.org/wiki/Arcadia_(engineering).

[8] Reference CCS Architecture Based on ERTMS. White paper, 12-07-2018. PDF.

[9] ERTMS Longer Term Perspective, Final Report. 18/12/2015. European Railway Agency. PDF.

[10] https://sysml.org/sysml-specs/

[11] CENELEC (EN 50126)

[12] R. J. Wieringa, Design methods for reactive systems, Elsevier Science (USA), 2003

[13] B. Hruz and M.C. Zhou, Modelling and Control of Discrete-event Dynamic Systems, Springer-Verlag

Limited, 2007

[14] https://www.boutique.afnor.org/fr-fr/norme/xp-z67140/technologies-de-linformation-arcadia-

methode-pour-lingenierie-des-systemes-/fa192970/1723#

[15] Atego Structurer Action Language (ASAL)

[16] Mieczyslaw M. Kokar, Kenneth Baclawski, Modeling Combined Time- and Event-Driven Dynamic

Systems, Northeastern University Boston, MA 02115, September 17, 2000

[17] Carl-Johan Sjöstedt, De-Jiu Chen, Phillipe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn, David

Servat, Martin Törngren, Developing Dependable Automotive Embedded Systems using the EAST-

ADL; representing continuous time systems in SysML

[18] Sen, S., Vangheluwe, H., Multi-Domain Physical System Modeling and Control Based on Meta-

Modeling and Graph Rewriting, proceedings of the 2006 IEEE Conference on Computer Aided

Control Systems Design, Munich, Germany (2006)

[19] Fritzson, P., Principles of Object-Oriented Modeling and Simulation with Modelica 2.1, IEEE Press,

Wiley-Interscience (2004)

[20] https://www.mathworks.com/products/simulink.html

[21] M. Utting, A. Pretschner, B. Legeard (2012): A taxonomy of model-based testing approaches. Softw.

Test. Verif. Reliab., vol. 22. https://doi.org/10.1002/stvr.456

[22] K. Berkenkötter, R. Kirner (2005): Real-time and hybrid systems testing. In M. Broy, B. Jonsson, J.-P.

Katoen, M. Leucker, A. Pretschner (eds.): Model-based Testing of Reactive Systems (Lecture Notes

in Computer Science, vol. 3472), Springer Berlin, 355–387

[23] Jean-Raymond Abrial. The B-book. Assigning programs to meanings. Forewords by Professor A.

Hoare and Pierre Chapron.

[24] Rodin User’s Handbook v.2.8. https://www3.hhu.de/stups/handbook

[25] LinX4Rail. https://projects.shift2rail.org/s2r_ipx_n.aspx?p=LINX4RAIL

X2Rail-5 Proposed extension of specification approach to

meet needs of RCA

GA 101014520 Page 68 of 68

Appendix A: Ownership of results

The following Table 2 lists the ownership of results for this deliverable.

Table 2: Ownership of results

This deliverable is jointly owned by the organisations listed above. The last three columns in the
table are intentionally left empty.

Ownership of results

Company Percentage Short Description of
share/

of delivered input

Concrete Result
(where applicable)

Deutsche Bahn

(DB)

Trafikverket (TRV)

Deutsches Zentrum

für Luft- und

Raumfahrt e.V.

(DLR)

