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1 Executive Summary 

This document is deliverable D10.2, describing extensions of the MBSE specification approach to 

needs of future Functional Railway System Architectures within Task 10.3 of work package WP10 

Formal Methods for Functional Railway System Architecture, within the X2Rail-5 project.   

This deliverable is concerned with a specification approach meeting the needs in ongoing and 

future developments of ERTMS, and the European initiatives RCA and EULYNX. This is a rather 

large scope, whose general high-level goal may be formulated as: 

Determine a suitable approach to specify, verify, and validate system requirements, that 

can meet the needs of initiatives and projects RCA and EULYNX that define a future system 

architecture. 

Different specification approaches are currently applied in RCA and EULYNX. RCA (as well as 

LinX4Rail 5.2) use the ARCADIA method. EULYNX uses an MBSE approach, based on the 

systems modelling language (SysML) as defined in the EULYNX Modelling Standard. These two 

approaches complement each other but are not yet “connected” in a stable way. As the function 

range of system elements in RCA is larger than the one in EULYNX, and there are additional 

characteristics or kinds of behaviours of functions to be considered, RCA has requested to extend 

or modify the current EULYNX approach correspondingly. Furthermore, LinX4Rail 5.2 seeks to 

represent an ARCADIA-based architectural model in SysML, as it is used in EULYNX. The future 

intention is to merge the two complementary approaches into one closely intertwined approach: 

The analysis and definition of a modular, standard system architecture shall be carried out 

following the ARCADIA method, and the corresponding system elements are further specified 

according to an adjusted EULYNX specification approach.  

This deliverable describes proposed extensions of the semi-formal EULYNX MBSE approach to 

specify different types of behaviour to meet the needs of the RCA initiative, to be used as input 

for the current EULYNX/RCA modelling standard and other tasks of X2Rail-5 WP10. This 

deliverable also describes different types of behaviours that must be supported in the specification 

of system elements and requirements in the RCA approach and their interpretation as mandatory 

requirements considering the need for executable (testable) specifications that enable formal 

verification of safety requirements. 
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3 Abbreviations and acronyms 

 

Abbreviation / Acronyms Description 
AL Abstraction Levels 
AM MBSE Architecture Model Model-Based Systems Engineering  
ARCADIA ARChitecture Analysis and Design Integrated Approach 
ASAL Atego Structured Action Language 
ATO Automatic Train Operation 
BDD Block Definition Diagram 
CBTC Communications-Based Train Control 
CCS Command Control and Signalling 
CENELEC European Committee for Electrotechnical Standardization 
CSP Crosscutting System Properties 
DEDS Discrete Event Dynamic Systems 
EN European Norm 
EPBS End Product Breakdown Structure 
ERTMS European Rail Traffic Management System 
ETCS European Train Control System 
FA Functional Architecture 
FE Functional Entity 
FMs Formal Methods 
GUI Graphical User Interface 
IBD Internal Block Diagram 
IM Infrastructure Manager 
ISA Independent Safety Assessment 
LX  Level Crossing 
MBSE Model-Based Systems Engineering 
MBSE SF Model-Based Systems Engineering Specification 

Framework 
OCR Object Control Requests 
PDI Process Data Interface 
PDU  Process Data Unit 
RCA Reference CCS Architecture 
ReqIF Requirements Interchange Format 
ROI Return On Investment 
SUC Sub Use Case 
SUS System Under Specification 
SysML Systems Modelling Language 
TCG Test Case Generation 
TD Technical Demonstrators 
TDS  Train Detection System 
TFE Technical Functional Entity 
V&V Validation and Verification 
WP10 Work Package Formal Methods and Standardisation for 

Smart Signalling Systems, X2Rail-5 
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4 Introduction 

This document is deliverable D10.2, describing extensions of the EULYNX-RCA MBSE 

specification approach to needs of future Functional Railway System Architectures within Task 

10.3 of work package WP10 Formal Methods for Functional Railway System Architecture, within 

the X2Rail-5 project [1].   

4.1 About this Deliverable  

In general, this deliverable is concerned with a specification approach meeting the needs in 

ongoing and future developments of ERTMS, and the European initiatives RCA and EULYNX.  

This is a rather large scope, whose general goal may be formulated as: 

 Evaluate the existing specification approaches in EULYNX and RCA. 

 Bridge the gap between the specification approaches in EULYNX and RCA. 

 Determine a suitable approach to specify, verify, and validate system requirements in a railway 

system architecture. 

This deliverable describes proposed extensions of the semi-formal EULYNX MBSE approach to 

specifying different types of behaviour to meet the needs of the RCA initiative (see Section 5.1.2), 

to be used as input for the current EULYNX/RCA modelling standard and other tasks of X2Rail-5 

WP10. A future specification approach must consider the impact of RCA in terms of increased 

range of specification scope, increased function range and additional characteristics of functions 

that are needed.  

This deliverable was created by X2Rail-5 WP10 Task 10.3 (Extending the MBSE specification 

approach to needs of future Functional Railway System Architectures), based on an analysis of 

different kinds of behaviours that must be supported in the specification of system elements and 

requirements, how they shall be interpreted as mandatory requirements, and considering the need 

for executable (testable) specifications that support formal verification of safety requirements.  

4.2 Motivation and Purpose 

Different specification approaches are currently applied in RCA and EULYNX. Both RCA and 

LinX4Rail 5.2 [25] use the ARCADIA method as a specification approach. EULYNX uses the 

EULYNX MBSE approach, as defined in the EULYNX Modelling Standard [6]. Both approaches 

complement each other but are not yet “connected” in a stable way. For the future, it is intended 

to merge them into one closely intertwined specification approach:  

 The analysis and definition of a modular, standard system architecture shall be carried out 

following the ARCADIA method, and 

 The corresponding system elements are further specified according to an adjusted EULYNX 

specification approach.  
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As the function range of the RCA system elements is larger than the one in EULYNX and there 

are additional characteristics or kinds of behaviours of functions to be considered, it has been 

requested by the RCA group to supplement or modify the current EULYNX approach 

correspondingly. Furthermore, in LinX4Rail 5.2 it is increasingly demanded to be able to represent 

the nascent ARCADIA-based architecture model or artefacts of it based on the systems modelling 

language (SysML) as used in the EULYNX specification approach.   

4.3 Brief Work Plan Overview  

This deliverable was created based on the results achieved in X2Rail-5 WP10 Task 10.3. The aim 

of Task 10.3 was to check whether the currently used EULYNX specification approach meets the 

requirements for the specification of system elements of a future railway system architecture, such 

as RCA. In the negative case, necessary additions to the EULYNX modelling approach should be 

defined. The current specification approaches of the initiatives EULYNX and RCA were used as 

input for the work. Due to the currently still low progress in RCA, work has had to proceed based 

on assumptions. It is therefore necessary that results in this deliverable are reviewed again after 

further progress in RCA and adjusted if needed.  

The work was carried out in the following steps:  

 Identify kinds of behaviours that must be supported in functional specifications of system 

elements and interfaces (considering needs in RCA and EULYNX and requirements of Task 10.2).  

 Evaluate whether the current EULYNX model-based systems engineering (MBSE) approach fully 

enables the description of the identified kinds of behaviour. 

 Recommend suitable supplements or proposals of modifications to describe kinds of behaviour 

not yet considered in the current EULYNX MBSE approach. Care should be taken to ensure that 

the recommendations are adaptable for the automated transformation of specification models 

into formal models and formal verification of these models 

 Define how the described kinds of behaviour shall be expressed as mandatory requirements. 

 Evaluate if test case generation (TCG) can be applied to other kinds of CCS system behaviours than 

those considered in X2Rail-2, how such behaviours can be modelled for the purpose of TCG, and 

how an MBSE approach can support TCG best.  

4.4 Document Overview 

The remainder of this document is organized as follows 

 Chapter 5 describes the background to this deliverable.  

 Chapter 6 describes concepts and principles for the RCA and EULYNX MBSE specification 

approaches.  

 Chapter 7 describes necessary extensions of the EULYNX MBSE approach.  

 Chapter 8 describes conclusions.  

 Chapter 9 gives the references. 
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5 Background 

This chapter describes the background to this deliverable, its scope and context in relation to 

ongoing initiatives that define Future Functional Railway System Architectures such as EULYNX 

and RCA and the purpose and goals of specification approaches in general. 

5.1 Scope and Context 

The general scope and context for this deliverable D10.2 relate to a specification methodology to 

define Future Functional Railway System Architectures, which in turn relates to ongoing and future 

developments of ERTMS, and the European initiatives RCA and EULYNX.  

The use of formal methods (FMs) in relation to a specification approach for future systems 

architectures (see Section 5.1.4), and the determination of how the specified requirements of 

system elements shall be interpreted as mandatory requirements play an important role. 

A brief background to this scope and context is described in the remainder of this section 5.1.  

5.1.1 ERTMS 

The ERTMS ‘game changers’ that have been identified to have a significant impact on the ERTMS 

business case are an important part of future architectures. The ERTMS ‘game changers’ involve 

both trackside and on-board CCS systems.  

Although ERTMS is mature and ready for large scale deployment, some argue [8] it is not possible 

to reap its full benefits (e.g., lower costs and improved capacity) before legacy systems for 

Command and Control have been phased out, and before potential ‘game changers’ identified to 

have a significant impact on the ERTMS business case [9] have been completed. The game 

changers include ATO, ERTMS Level 3 with moving block, and future systems for communication 

and positioning; these technologies are being specified, developed, and demonstrated within 

Shift2Rail, in different Technical Demonstrators (TDs) work streams.  

5.1.2 RCA 

There is growing demand from IMs that future architectures shall be standardized and modularized, 

to ensure interoperability, to increase competition and to enable more reuse. The recent initiative 

RCA is an example of this demand; RCA aims to create a modular, standard system architecture 

for the core functionality and interfaces of the trackside safety part of the CCS system, considering 

the CCS system elements outside the trackside safety part (including onboard systems) as far as 

relevant, to define interfaces with these system elements.  

These quotes from the RCA white paper [8] summarize high-level goals of RCA:  

 Now that ERTMS is mature enough and ready for large scale deployment … it is the right moment 

to try to define a common, simple reference CCS architecture to support the step from installed 

base to ERTMS and to increase the capacity of the existing network, improve the deployment speed 

and reduce life cycle costs for CCS. The Reference CCS Architecture (RCA), developed using 
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formalised methods, is the enabler for clear and unambiguous interface definitions. It is aimed to 

provide generic safety approvals (plug & play), a modular split of work, independent development 

of components (allowing for technical evolution), an important quality step in the specification of 

operators’ needs towards the supply industry and the strengthening of this supply industry. 

 Cost drivers for CCS are data collection and validation, procurement, design, installation and 

commissioning, operation, maintenance, and change management. RCA is expected to reduce 

costs within all these areas. 

The modular, standard system architecture aimed in RCA is currently created using a specification 

approach based on the ARCADIA method [7]. 

5.1.3 EULYNX 

EULYNX is a European digitalization initiative that aims to define and standardise interlocking 

interfaces of the future command control and signalling (CCS) system and specify the 

corresponding system elements. The goal of this is to achieve significantly reduced lifecycle costs 

for future digital CCS systems by standardising interfaces in the future. According to EULYNX, the 

definition of standardised interfaces is carried out at the infrastructure manager (IM) side, creating 

interface specifications that are used in tenders. These include a detailed description of system 

behaviour visible at interfaces. This entails challenges to ensure correctness and security levels, 

and to perform safety evaluation of specified behaviour. To meet these challenges, EULYNX uses 

new approaches with model-based systems engineering (MBSE), to ensure that the created 

specifications are correct, complete, and consistent. The objective of the EULYNX MBSE 

approach, defined in the EULYNX Modelling Standard [6], is also to establish a seamless 

development approach that facilitates reuse, automation, and innovation. To this end, the 

exchange of specified system elements and interface behaviour as executable models are 

foreseen, rather than (only) using natural language requirements. 

EULYNX was started in 2014, and after seven years, the project has evolved into an organisation 

for the standardisation of interfaces that have published updated documentation known as the 

baselines that are regularly published on the EULYNX website [6]. 

5.1.4 Importance of Formal Methods  

TD2.7 recommends [2] using Formal Methods (FMs) for railway control to achieve a sufficient 

level of trust that critical system properties are satisfied, to raise the quality and verifiability of 

implementations, and to achieve interoperability goals, because:   

 Compared to traditional V&V methods, FMs enable a significantly higher level of trust, and 

furthermore, FMs can automate tedious V&V tasks.  

 Applying FMs provides valuable feedback, insight and helps to detect and correct mistakes.  

The railway control domain is very well suited for FMs:  

 There are high RAMS demands to be met.  

 It is based on well-understood concepts and principles that lend themselves well for FMs.  
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 Many FMs success stories exist, for instance for interlocking and CBTC.  

While railway control has always been complex, future railway architectures are expected to 

increase software complexity. For this reason, FMs should be considered a must-have technology. 

Also, the demand to establish a new, modular architecture provides a good (rare?) opportunity to 

introduce FMs on a larger scale, since the ROI is estimated to be larger:  

 FMs for a new, modular architecture can enable cost-efficient reuse of requirements and tools, 

to off-set initial investments required to introduce FMs into standard processes.  

 FMs can help to demonstrate that a novel architecture is as safe as old systems.  

 FMs can set the benchmark for future system quality and development cycles.      

5.2 Goals for a Future Specification Approach 

5.2.1 Purpose and Intended Use  

The purpose and intended use of a specification can vary, and any one specification approach 

may not be able to provide optimal support for all purposes. The following are examples of different 

purposes/uses of a specification, which may impact what the optimal approach is:  

 Define the architecture of a system of interest based on description concepts for abstraction and 

structure at different levels of granularity facilitating reuse and automation. 

 Identify the functions of a system of interest and decompose and allocate them to corresponding 

system elements.  

 Create specifications formalised by a comprehensive modelling theory that provides appropriate 

models and description techniques in the form of a modelling framework. It is used for modelling 

the different aspects and artefacts of a system element.  

 Create executable specifications and apply V&V to ensure they are coherent, consistent, 

applicable to existing standards, contain all the features and desired functions and satisfy the 

intended requirements, for instance verified by:  

o Functional testing based on test suites (manually created or generated). 

o Formal verification of consistency properties. 

o Formal verification of safety properties. 

 Provide (release) the specifications as “official (mandatory) system specifications”.  

 Use specifications as a basis for tenders.  

 Use specifications as a basis for implementation (of software, systems).  

 Use specifications as a basis for change request management (change, V&V impact, etc.).  

 Use specifications to capture and conserve system knowledge. 

5.2.2 Use Case related to Creation of Specification for Tender 

In general, this deliverable is concerned with a specification approach to producing good quality 

specifications for railway CCS system tenders. Figure 1 illustrates the use case for a specification 

approach that covers the purposes and uses (see Section 5.2.1) related to the creation of system 
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requirements in tender specifications. This use case is here refined into seven sub use cases 

(SUCs), as listed below. The numbers depicted in the figure are referenced in the descriptions of 

the SUCs.  

 SUC1: Create system definition: the specification process starts with the system definition based 

on requirements derived from stakeholder needs (1) and regulation-based safety properties (2). 

 SUC2: Derive hazard-based safety properties and adjust system definition: with the system 

definition as basis the risk analysis is carried out (3). An analysis of the different types of possible 

hazards is made and hazard-based safety properties are derived (4). They supplement the pre-

existing regulation-based safety properties and are used to adjust the system definition if 

necessary (3). 

 SUC3: Create tender system requirements specifications: tender requirements of system 

elements of modular architectures like RCA and standard interfaces between system elements 

considering all kinds of behaviours that matter in those architectures are specified. A tender 

system requirements specification is represented by an executable specification model. Based on 

results of the system definition phase, including relevant results of the risk analysis, an executable 

model of the externally observable behaviour is created (5) representing the system requirements.  

 SUC4: Validate system requirements: the executable specification model is used for validation (6) 

of system requirements by simulation (virtual prototype).  

 SUC5: Verify safety properties applying formal methods: safety properties are verified using 

formal verification and formal proof (7). 

 SUC6: Generate test cases from system requirements: automated test case generation from the 

specification model as input for test specifications (8).  

 SUC7: Prove behavioural refinement: the system requirements specification is given as part of 

the tenders to the suppliers (9) which respond with the proof that the behaviour of their 

implemented system is a refinement of the specified one (10). 

This deliverable focuses on the sub use cases SUC3, SUC4, SUC5, and SUC6. Though the sub 

use cases SUC1, SUC2 and SUC7 are also important for a future specification approach, they 

are not in the scope of this deliverable.  
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5.2.3 Goals related to the Creation of Specifications Used in Tenders  

A general goal of a future specification approach is to ensure a good quality of tender requirements.  

TD2.7 has earlier identified general “requirements on requirements” for tender specifications [3], 

which are cited below. 

R1. Tender requirements should uniquely define, with clear syntax and semantics, all interfaces. 

R2. Tender requirements should identify the safety requirements.  

R3. Tender requirements should have the following characteristics: 

 Correct. 

 Necessary.  

 Understandable. 

 Unambiguous. 

 Verifiable (to distinguish a system meeting the requirement from one that does not). 

 Clear (concise, terse, simple, precise). 

Figure 1 Use case for Development of Systems with Standardised interfaces 
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 Feasible (realistic, possible). 

 Independent (self-contained).  

 Atomic (not expressing several different requirements as one requirement).  

Even with tender requirements of good quality, one can expect suppliers to have questions on the 

tender requirements (related to the interpretation, etc.). For that reason, the owner of tender 

requirements should provide guidelines on how to interpret their requirements.  

Furthermore, the future specification approach may consist of different paradigms, languages or 

processes that need to be integrated. For example, the RCA specification approach aims for the 

analysis and definition of modular, standard system architecture and the EULYNX approach 

focuses on the creation of tender system requirements specifications of the corresponding system 

elements. Thus, the approach should be supported by a seamless process and toolchain, 

minimizing the number of different paradigms used to the extent reasonable.  It should provide 

clear decision criteria for which paradigm to use for which portion of the behaviour, avoid confusion 

of terms across the different kinds of models, and be clear on the integration of different models.  

Goals specifically focused on in this deliverable are based on the above-mentioned sub use cases 

SUC3, SUC4, SUC5, and SUC6. They are defined in the context of those sub use cases below. 

5.2.3.1 SUC3: Create system requirements specifications   

 Goal 1: Enable the creation of system requirements specifications of configurable system 

elements and standard interfaces between them in the context of a modular standard system 

architecture. 

 Goal 2: Enable the definition of all kinds of external observable behaviours of system elements 

and the relevant layers of interface protocols that matter in modular standard system 

architectures.  

 Goal 3: Support the creation of tender system requirements specifications that are 

understandable to several stakeholders (IMs, suppliers, ISAs, …) on one side and suitable to enable 

simulation, the application of formal verification and automatic test case generation on the other 

side.  

 Goal 4: Enable to express mandatory tender requirements. There is sometimes a need to separate 

requirements that are mandatory from requirements that are not mandatory. A goal is to ensure 

that it is clear what is mandatory and what is not. 

 Goal 5: Enable the definition and use of static configuration data, i.e., define the terminology for 

writing configuration data for specific system elements (as most system elements are 

configurable).  

 Goal 6: Enable the definition of (correctness) requirements for configuration data (data ranges, 

data consistency, interdependencies). 

 Goal 7: Enable the definition of safety requirements for specific system elements, i.e. define a 

process or terminology for writing safety requirements. 
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 Goal 8: Support the definition of concepts and domain knowledge (e.g., based on the model 

developed in EULYNX Data preparation cluster or Linx4Rail WP3 Conceptual Data Model or RCA 

domain knowledge) and associate it to tender system requirements.   

5.2.3.2 SUC4: Validate system requirements 

 Goal 9: Enable simulation-based validation (testability) of tender system requirements 

specifications. 

 Goal 10: Enable semiautomated/automated static review. 

5.2.3.3 SUC5: Verify safety properties applying formal methods 

 Goal 11: Enable formal verification (formal proof) of properties of the behaviours defined in 

system requirements specifications. 

5.2.3.4 SUC6: Generate test cases from system requirements 

 Goal 12: Enable semiautomatic/automatic test case generation from the behaviours defined in 

system requirements specifications. 

5.2.3.5 Tradeoffs 

Tradeoffs must be considered, as different goals can be conflicting.  For instance:  

 An executable specification may require a higher degree of detail, whereas a formally verifiable 

specification could be specified with less detail; on the other hand, the former may be considered 

less complex to create compared to the latter. 

 Style, such as imperative versus declarative specification (see Section 6.2.4).  

 Different behaviours may be optimally described using different specification approaches, while 

a general objective is to use only one (or as few as possible) approaches.  

One must consider these tradeoffs, for instance by rating the relative importance placed on various 

objectives and purposes, to conclude on the modelling paradigms and specification approaches.  

5.3 RCA and EULYNX  

RCA and EULYNX currently applying different specification approaches: RCA uses the ARCADIA 

method (Section 6.3.1) and EULYNX uses the EULYNX MBSE approach defined in the EULYNX 

Modelling Standard. These two approaches may complement each other. However, they have 

different goals:  

 The RCA specification approach aims to define a modular, standard system architecture. 

 The EULYNX approach aims to create tender specifications of system elements.  

In the future, it is intended to merge these into one closely intertwined specification approach: 

 Analysis and definition of a modular, standard system architecture shall be carried out following 

the ARCADIA method.  
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 The corresponding system elements shall be further specified according to an adjusted EULYNX 

specification approach. 

The intent is that certain system elements in RCA shall be further specified using the specification 

approach in EULYNX. As the functional range of RCA system elements is larger than the 

corresponding range in EULYNX, additional characteristics and kinds of behaviours must be 

considered. RCA has requested to supplement or modify the current EULYNX approach 

correspondingly and furthermore, LinX4Rail 5.2 [25] seeks to represent the nascent ARCADIA-

based architecture model (or artefacts of it) based on the systems modelling language (SysML) 

as used in the EULYNX specification approach. Thus, an extended or modified specification 

approach is needed.  

This deliverable is therefore focused on the creation of an extended or modified EULYNX 

specification approach based on the use case Semi-formal development of systems with 

standardised interfaces, described further in Chapter 6 and Chapter 7. 
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6 Specification Approaches 

This chapter describes how a specification approach can be characterized in terms of relevant 

properties, methods, paradigms, and principles (see Sections 6.1 and 6.2). For the existing 

specification approaches considered relevant for this deliverable, RCA and EULYNX, their 

specification technologies are described, including their intended interaction (see Section 6.3). 

6.1 The Concept of Specification Technique 

A specification approach for system development can be classified according to three aspects 

(see the boxes at the bottom of Figure 2): 

 Description means: for formulating facts, independent of the problem and its solution. 

 Method: to be understood independently of the other two aspects in a process model sense. 

 Tool  

A description means has concrete characteristics, such as language, notation, and syntax and 

semantics. The syntax comprises structural properties, which can be determined without 

reference to the interpretation of the notation. The semantics describes the interpretation 

independent of application. The tool is (generally) a software program that enables computer-

aided use of a description means and analyses of specification models (such as execution-based 

testing, or analysis of properties of a specification model). 

Concrete restrictions to a field of application (for example, command control and signalling 

systems) and the associated definition of specific tasks can use a description means and a method 

in a mutually supportive way. A resulting combination of method and description means is referred 

to as specification technique. The use of a specific tool together with a (specific) specification 

technique is referred to as specification technology (see Figure 2).  

 

Figure 2 Taxonomy of specification techniques 
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6.1.1 Informal specification technique 

Informal specification techniques use natural language and/or diagrams. The advantages of an 

informal description are its comprehensibility by a wide range of stakeholders and the 

comparatively low effort required to create it. However, they leave a lot of room for interpretation 

due to ambiguity and cannot be processed automatically. 

6.1.2 Semi-formal Specification Technique 

A semi-formal specification technique uses a semiformal description means. A semi-formal 

language has formally specified syntax but the task of completing the semantics has been deferred 

to a later stage, which is then done either by human interpretation or by interpretation through 

software like code or test case generators. The Systems Modelling Language (SysML) [10] is an 

example of a semi-formal language. The advantages of using SysML may include that the 

language is an international standard, that many tool options exist, with many intuitive graphical 

modelling styles (e.g., use case diagrams, and state machine-based definition of requirements).  

6.1.3 Formal Specification Technique 

A formal specification technique uses a formal description means, based on a formal language 

with a formally specified syntax and semantics. The B-method and Event-B languages are 

examples of formal languages: the semantics of these languages is defined in [23][24]. The 

advantages of using the B method may include that it provides a refinement-based approach to 

formal development with high precision and integrated capabilities for formal verification; however, 

expertise is required for understanding and use of a formal language. 

6.1.4 Combination of Semiformal and Formal Specification Techniques 

To use an understandable and widely used description means such as the standardised 

semiformal language SysML on the one hand and to apply formal methods, on the other hand, 

semiformal and formal specification techniques can be combined. A corresponding approach was 

evaluated in TD2.7 [5], which aimed to enable formal verification of requirements against semi-

formal SysML specification models. This is visualized in principle in the process depicted in Figure 

3.  
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Figure 3 Specification verification approach using formal verification 

The semi-formal SysML model (functional system requirements specification) derived from 

functional user requirements was transformed manually into a formal model in the B language (A). 

Then safety requirements were proved by applying formal verification (B). If necessary, the SysML 

model is corrected (C) and the process starts again with (A).  

If all applicable safety requirements have been formulated and made subject to formal verification 

using this process, then it has been verified that the model meets the necessary safety 

requirements. 

6.2 Different Specification Principles 

Different specification principles exist, and one can compare them using several properties.  

6.2.1 Operational Property Specification 

An operational specification describes the behaviour of a system using an abstract machine. This 

can be realized using data-flow diagrams that assemble functions connected by data flows. Since 

data flows may not always be natural for expressing control aspects, finite state machines can be 

preferred to describe the temporal and behavioural views of a system. Control is specified using 

states, events, and transitions in response to stimuli. There are many variants of state machine 

specification languages. A state machine can be executed, to validate the behaviour, and static 

analyses of the state machine can be performed (including consistency properties, and formal 

verification of properties). 

In general, using an operational specification of behaviour and requirements offers an advantage 

in that it enables to determine if a specific property holds or not. This can prevent communication 

issues between different actors (designers, builders, customers, and users) since the operational 

specification provides a reference model to check the property against.  
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Whether an operational specification exhibits a specific property may often-case be easy to 

determine but it may also offer a challenge, for various reasons. To determine if a property holds 

or not can be non-trivial due to e.g., specification complexity that may prevent inspection alone, 

state-space explosion impacting the results attainable in automated analysis, and semantics for 

interpretation that can complicate analyses.   

In general, it is desirable to have an implementation-independent operational specification, so that 

all actors can agree on and use the same specification. The reason for this is to avoid, when the 

system under specification is delivered, that supplier and customer dispute about whether systems 

meet the desired properties or not. In general, it is recommended that system specifications are 

operationalised as much as possible [12].  

6.2.2 Stimulus-response Specifications 

Stimulus-response specifications are an important class of operational specifications. A stimulus-

response specification has the form S and C  R, where S is a stimulus, C is a condition on the 

system state, and R is a response. The design process consists of decisions about R. In a nutshell, 

whenever a stimulus occurs there will be a corresponding response. The kind of response 

depends on the condition on the state of the system. ”Do nothing” is also considered a valid 

response which is usually implicit if no explicit response is specified.   

Figure 4 shows stimulus-response specification of system properties using state machines. 

Condition C is represented by states OFF and ON. "button_pressed" represents stimulus S and 

"light_on" the response R. If stimulus "button_pressed" occurs when the system is in the state 

"OFF" (Precondition), the stimulus changes the value from "false" to "true" and this change is 

triggered by the change event "when(button_pressed)". Therefore, the system changes its state 

to "ON" (Postcondition) and the response "light_on" is set to "true" (light_on := true) i.e. the system 

responds with "light_on”. By changing its internal state from OFF to ON, the system updates its 

value. If the stimulus "button_pressed" occurs when the system is in the state "ON", then the 

response of the system will be different. It simply will "do nothing". 
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Figure 4 Stimulus-response specification of a functional system property 

6.2.3 Interface-centric specification 

By an interface centric approach, it is understood that the externally visible stimulus-response 

behaviour (usage behaviour) of a system is largely described by the behaviours related to its 

interfaces. These behaviours are linked together and supplemented by behaviour relevant for 

more than one interface by means of linking behaviour. As depicted in Figure 5, the models of the 

protocol stacks assigned to the communication interfaces are downscaled to the Process Data 

Interface protocols (PDI) defining the global PDI behaviours of the application layers. Global 

behaviour specifies the dependencies between the local PDI behaviours of the communication 

partners, that is the exchange of Process Data Units (PDU) between them in chronological order. 

The local PDI behaviours represent the behaviours of the communicating systems related to a 

certain interface. The relation between local PDI behaviour and global PDI behaviour can be 

illustrated by a telephone call. The dialing is a local PDI behaviour at the initiator side, the ringing 

is the associated local PDI behaviour at the partner side. Only the global PDI behaviour defines 

that the dialing must precede the ringing (i.e., the chronological order). 
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Figure 5 Global and local PDI behaviour 

As the local PDI behaviours represent the interface behaviours of the communicating systems 

they may be specified in the model of the PDI. As depicted in Figure 6, in the model of a system 

element such as System A, these local PDI behaviours are referenced and linked together (Linking 

Logic).  

 

Figure 6 Principle of interface-centric specification 

6.2.4 Imperative and declarative specifications 

Imperative specification implies to “say how to do something”, whereas declarative specification 

implies to “say what is required and let the system determine how to achieve what is required”. 

Imperative process modelling is often referred to as an “inside-to-outside” approach. It mainly 

specifies the procedure of how work must be done. In general, imperative modelling requires all 

execution alternatives to be explicitly specified in the model before the execution of the process. 

Declarative process modelling, by contrast, is referred to as an “outside-to-inside” approach. 

Compared to imperative specification, declarative specifications do not specify the 
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procedure/events. Instead of determining how the processes must work exactly, only their 

necessary characteristics are described in a declarative specification. 

 

Figure 7 Imperative and declarative specification 

As shown in Figure 7, sequence diagrams and state machine diagrams are imperative 

representations of a system. It specifies the necessary behaviour and interactions to switch ON 

the light when the system is in the OFF state. It is explicitly specified in the model. The instructions 

in a pseudo language are a declarative representation of the system. Only the necessary 

characteristics such as pre and postconditions, functions etc. are specified in a declarative 

specification. 

6.3 Existing specification approaches of interest 

As described in the introduction (see Section 4.4), this deliverable aims to define necessary 

additions to the specification technology currently used in EULYNX in the context of the 

requirements of future railway system architectures, such as RCA. The remainder of this section 

describes specification technologies used in RCA and EULYNX followed by the intended 

interaction of both specification technologies.  

6.3.1 RCA specification approach 

Figure 8 depicts the specification scope of RCA in the context of ETCS and EULYNX [6]. RCA’s 

architectural principle is based on a layered architecture, where each layer deals with a specific 

problem. RCA’s architecture layers are listed below. Each layer has special types of blocks and 

may have specific design rules for interfaces (generic for all blocks in the layer) and abstractions 

used. For example, in the Device Control Layer, a function will know which type of hardware (point, 
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level crossing, TDS) it controls. In the Safety Control Layer, objects are only known by their 

abstract, hardware-independent capabilities (e.g., “trafficability on a node-edge-model”).  

 Plan Implementation Layer: functions of this layer implement the operation plan by issuing single 
object-control requests (OCR) when conditions for the current operational status are met. These 
OCRs can, for example, change a switch position or update movement permission. 

 Safety Control Layer: functions of this layer process requests from upper layers or users. If they 

lead to a safe state of production, then they are executed. They also check events and the overall 

status of all objects and invoke emergency reactions for unsafe situations. 

 Object Aggregation Layer: functions of this layer combine devices for an abstracted object 

representation. They co-ordinate devices (actors) for the execution of object-control commands. 

 Device Abstraction Layer: functions of this layer offer abstracted device capabilities (functions and 

information) and abstracted device access (e.g., topology related). 

 Device Control Layer: device-control functions of this layer steer and administrate devices. They 

assure the quality of the device control. They offer easy access to devices via data network for the 

layer above. 

 Generic Function Layer: generic functions of this layer interact with every other layer (e.g., 

diagnostics) or are not part of the main control loops (e.g., data prep). 

To each layer, corresponding functions are allocated aggregated in blocks. The colours of the 

blocks in Figure 8 indicate the relation to the specification scope of RCA. Functions aggregated in 

orange blocks like “ATO Execution” and “Safety Logic” are fully specified in RCA. Light green 

blocks like “ATO Transactor” and “ATO Vehicle” contain functions that are specified in RCA with 

due regard to existing specifications. The same applies to blocks coloured in light blue like “Point” 

and “Level Crossing”, containing functions specified in EULYNX. The functions of the mobile 

objects (dark blue blocks) are still to be determined. Violet blocks like “Device and Config. 

Management” and “Diagnostic and Monitoring” contain functions that are only partially specified 

in RCA. Devices (device functions) as actors or sensors are not in the scope of RCA and are not 

depicted in Figure 8. For example, switches, level crossings etc are not in the scope of RCA. 
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Figure 8 RCA Logical Architecture Overview 

  

Figure 9 RCA Object aggregation 
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An important principle of RCA is the aggregation of objects. Object aggregation provides an 

abstract view of controlled objects to an upper layer. How objects relate to devices is hidden from 

the upper layers. As depicted in Figure 9, an abstract object monitors and manages one or more 

devices, and “Object Aggregation” can combine multiple devices into a single object 

representation of the real-world object. 

The specification of RCA has a great impact on current/today’s specifications in terms of 

architecture and scope, with increased function range and additional characteristics of functions. 

These aspects must be considered in a future specification approach.   

The modular, standard system architecture aimed for in RCA is currently created in the form of an 

analysis model using the ARCADIA method [7] and the supporting tool Capella. A SysML-like tool-

specific semi-formal language is used as description means. ARCADIA stands for ARChitecture 

Analysis and Design Integrated Approach. It is a structured engineering method aimed at defining 

and validating the architecture of complex systems. The working levels of ARCADIA are depicted 

in Figure 10: 

 Operational analysis 

 System analysis (Functional and Non-Functional Need)  

 Logical architecture 

 Physical architecture 

 EPBS (final product breakdown structure) and integration contracts 

  

Figure 10 Working levels of ARCADIA method  
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6.3.1.1 Operational analysis 

Operational analysis is the highest level of the Arcadia method with the goal to focus on the 

identification of the needs and objectives of future users of the system to guarantee the adequacy 

of the system faced with these operational needs. At this level, the system is not (yet) recognized 

as a modelling element. It will only be recognized as such from the System Analysis level onward.  

6.3.1.2 System analysis 

System Analysis involves the identification of the Capabilities and Functions of the system that 

will satisfy the operational needs (“what the system must accomplish for the users”). The System 

is identified as a modelling element at this level. It is a “black box” containing no other structural 

elements, only allocated Functions. 

6.3.1.3 Logical architecture 

Logical architecture aims to identify logical components inside the System (“how the system will 

work to fulfil expectations”), their relations and their content, independently of any considerations 

of technology or implementation. An internal functional analysis of the system must be carried out: 

 The subfunctions required to carry out the system functions chosen during the previous phase 

must be identified, 

 Next, a split into logical components to which these internal subfunctions will be allocated must 

be determined, all the while integrating the non-functional constraints that have been chosen for 

processing at this level. 

6.3.1.4 Physical architecture 

The objective of this level is the same as for logical architecture, except that it defines the final 

architecture of the system, and how it must be carried out (“how the system will be built”). It adds 

the Functions required for implementation, as well as the technical choices, and highlights two 

types of physical components: 

 Behaviour physical component and 

 Node (or Implementation) physical component. 

6.3.1.5 EPBS (End Product Breakdown Structure) and integration contracts 

This level aims to deduce, from the physical architecture, the conditions that each component 

must satisfy to comply with the constraints and choice of design of the architecture identified in 

the previous phases (“what is expected from the provider of each component”). The physical 

components are often grouped into larger configuration items that are easier to manage in terms 

of industrial organization and responsibilities. 

Further information regarding the ARCADIA method and the supporting tool Capella can be found 

in [7]. 
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6.3.2 EULYNX specification approach  

While the RCA specification approach aims to define a modular, standard system architecture 

(analysis model) the EULYNX approach focuses on the creation of tender system requirements 

specifications of system elements (specification model). The behaviour of a system may be 

described as technology and implementation-independent by system services in the form of use 

cases. Services are provided by a system to the actors in its environment describing its 

functionality in terms of how it is used to achieve the goals of the actors. Actors may represent 

external systems or humans who interact with the system. The execution of a service results in a 

stimulus-response behaviour visible at the interfaces of the corresponding system. This implies 

that the service-specific behaviour of a system considering the execution of all its services 

completely corresponds to the stimulus-response behaviour visible at its interfaces. To guarantee 

a standardised communication, this behaviour must be completely, consistently, and correctly 

specified for each interface and linked together to the required overall behaviour of the 

corresponding system. Due to the necessary high level of detail of the behaviour to be specified 

this approach requires the creation of understandable high-quality specifications and sophisticated 

methods to verify and validate them. 

6.3.2.1 EULYNX MBSE Specification Framework 

To meet the above-mentioned challenges, a model-based systems engineering (MBSE) 

methodology defined in the EULYNX Modelling Standard [6] has been developed by the initiative 

EULYNX proposing an MBSE Specification Framework (MBSE SF) as illustrated in Figure 11. 

MBSE SF facilitates a holistic model-based seamless description of complex CCS systems. To 

apply MBSE using a formal language that enables formal verification and formal proof may seem 

to be highly recommendable. However, following the goal to create specifications understandable 

also for people not familiar with formal languages, the Systems Modelling Language (SysML) [10] 

has been regarded as a reasonable compromise to be used as the main description means.  

 

Figure 11 EULYNX MBSE Specification Framework 
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Guided by an MBSE Process () and using the defined Domain Knowledge () the MBSE SF 

strictly distinguishes between problem domain (User Requirements) and solution domain (System 

Requirements). User Requirements represent the model of the problem domain (problem 

definition). They allow different stakeholders such as infrastructure managers (IM) of different 

countries to explicitly state what is expected from the future system. User Requirements may also 

result from system analyses and comprise, as an important part, the safety requirements. Safety 

requirements, also referred to as safety goals, state safety invariants, i.e. conditions that could 

lead to hazardous situations if they are not met. They can be split into two categories: safety 

invariants (what must not happen under any circumstances) and safety overrides (who may do 

what under which circumstances). User Requirements are the main source for the derivation of 

design decisions () as the basis for the creation of an abstract system solution (System 

Requirements). The System Requirements are represented by a specification model. The 

specification model shall be validated that IM intentions are reflected completely and correctly () 

and verified () that all defined safety requirements are consistently fulfilled without contradiction.  

6.3.2.2 EULYNX Architecture Model MBSE 

The creation of the specification model is guided by the structural rules of the Architecture Model 

MBSE (AM MBSE). The AM MBSE facilitates the specification of a system from different 

viewpoints and with varying degrees of granularity, that is at different abstraction levels (AL), by 

means of system views. A system view represents the description of a system from a viewpoint at 

a specific AL. The basic notion of this approach is to start with rather high-level descriptions of 

system views. Once these high-level descriptions have been created, they are refined and detailed 

step by step (). Any AL represents design decisions about the refined or decomposed 

description of its predecessor and the specification of the outcome of these decisions by using 

appropriate system views. To ensure that the more granular system views resulting from the 

refinement comply with its predecessors and are traceable to them, the refinement is verified () 

and correlating links are established according to the EULYNX verification and validation plan. As 

shown in Figure 12, the abstraction levels AL1, AL2 and AL3 of the AM MBSE strongly reflect the 

recommendations of CENELEC (EN 50126) [11]. In contrast to the abstraction levels AL1, AL2 

and AL3 which provide system-dependent views necessary to specify a concrete system, 

abstraction level AL0 enables the system-independent definition of the operational specification 

base (e.g. goals, operational entities, operational process, etc.). Each AL is subdivided into three 

cross-cutting viewpoints capturing concerns regarding the services a system is expected to 

provide to its environment and their refinement (Functional Viewpoint), the description of the 

system from a structural point of view independently of any considerations of technology or 

implementation (Logical Viewpoint) and the physical architecture of the system (Technical 

Viewpoint). The corresponding system views are linked together via allocation relations. The 

system services defined in the Functional Viewpoint are for example allocated to structural 

elements specified in the Logical Viewpoint.  
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Figure 12 EULYNX Architecture Model MBSE 

An important principle of the AM MBSE is the continuous engineering of crosscutting system 

properties (CSP). Typical crosscutting properties are RAMS [11], security, data used to define 

information objects to be exchanged and non-functional constraints: they must be considered in 

any engineering activity and the corresponding system views. Safety, for example, typically 

defined as freedom from unacceptable risk (of harm), affects almost all process steps in a 

development lifecycle. For this reason, safety is not represented in a single viewpoint but as a 

quality aspect of the AM MBSE that has a crosscutting influence and is integrated into several 

viewpoints. The growing complexity of safety-critical railway systems is leading to increased 

complexity in safety analysis models. It is therefore not appropriate to develop functionality and 

consider safety in separate tasks. Safety aspects should be integrated as tightly as possible into 

the MBSE process and its models. 

The AM MBSE is used in two versions: 

 to create specification models of system elements and 

 to create specification models of interfaces. 

In the next two chapters, the corresponding engineering paths to create specification models of 

system elements (Section 6.3.2.3) and specification models of interfaces (Section 6.3.2.4) are 

briefly described. An engineering path (shown as a dotted arrow) summarises the development of 

views for a system element or interface with a specific degree of granularity. 
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6.3.2.3 Engineering path to create specification models of system elements 

Figure 13 shows the engineering path of the model views used to specify a system element. It 

describes the context of the model views, with the arrows indicating which model views are 

developed from which. The specification model of a system element consists of the following 

model views:  

 Model view "Logical Context": the model view "Logical Context" describes the system element 

under specification (SUS), the actors in the environment interacting with the SUS and their 

quantity structure (multiplicities) at the upper level of abstraction.  

 Model view "Functional Context": the model view "Functional Context" defines the services to 

be provided by the SUS in the form of use cases. Relationships are used to represent which actors 

interact with which SUS use case.  

 Model view "Use case scenario": the model view "Use case scenario" describes the behaviour 

of the use cases defined in the model view "Functional Context" by means of use case scenarios.  

 Model view "Functional Architecture": the model view "Functional Architecture" refines or 

completes the behaviour of a SUS defined in the model view "Use case scenarios". The behaviour 

of the SUS is divided into Functional Entities" (FE), which communicate with each other via internal 

interfaces and with the environment via external interfaces.  

 Model view "Functional Entity": the model view "Functional Entity" encapsulates a subset of 

the functional requirements of a SUS in the form of a function module. It delimits the function 

module from its environment and defines the inputs and outputs. In the discrete case, the 

behaviour of the function block is described by means of state machines. In this, the binding 

functional requirements are specified in the form of states and corresponding state transitions. 

The model view "Functional Entity" is used for the specification of EULYNX system elements as 

well as for the specification of EULYNX interfaces. 

 

Figure 13 Model views to specify a system element 
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During the development of the model, the Logical Context (BDD) and the Functional Context (the 

Use Cases) of the system elements are created. Based on these two model views, the use case 

scenarios (sequence diagrams) are derived. These sequence diagrams form the basis for the 

description of the Functional Architecture (IBD) and the behaviour of the Functional Entities (IBD, 

state machines). 

6.3.2.4 Engineering path to create specification models of interfaces 

Figure 14 shows the engineering path of the model views used to specify an interface. It describes 

the context of the model views, with the arrows indicating which model views are developed from 

which. The specification model of an interface consists of the following model views:  

 Model view "Logical Context": the model view "Logical Context" describes the logical view of 

an interface at the upper level of abstraction. An interface is generally defined as a unique 

connection between two communication participants. From the logical viewpoint at the upper 

level of abstraction, an interface is represented by a SysML association between them.  

 Model view "Functional Partitioning": the model view "Functional Partitioning" describes the 

refinement of the interface defined in model view "Logical Context" using Functional Entities.  

 Model view "Functional Architecture": the model view "Functional Architecture" defines the 

global behaviour of the application protocol.  

 Model view "Functional Entity": the model view “Functional Entity” is described in chapter 

6.3.2.4.  

 Model view "Information Flow": the model view „Information Flow" describes the information 

objects to be exchanged via an interface which is further refined to telegrams at abstraction level 

AL3. 

 

Figure 14 Model views to specify an interface 
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During the development of the model, the Logical Context (BDD) of the interface is created. In the 

next steps, the interface represented by an association in the model view "Logical Context" is 

refined in the model view "Functional Partitioning" by means of Functional Entities and the global 

behaviour of the application protocol layer is defined in the model view "Functional Architecture". 

Finally, the behaviour of the functional entities is defined in the model view "Functional Entity" and 

the information objects to be exchanged in the model view "Information Flow". The information 

flows are refined by telegrams. This step is currently still carried out using an informal specification 

technique, i.e. the telegrams are presented in the form of tables.  

6.3.2.5 Tool 

The EULYNX MBSE Process described in Section 6.3.2.6 is supported by a toolchain as illustrated 

in Figure 15. It enables the creation of SysML specification models (Windchill Modeler), static 

checks for completeness, correctness, and consistency (Windchill Reviewer) and simulation-

based validation of the models (Windchill Modeler SySim and MS Visual Studio). A connection to 

IBM Rational DOORS (Windchill Integration for IBM Rational DOORS) enables the representation 

of specification model elements in the form of atomic requirements in the requirements 

management tool. They can be transformed into the standardised Requirements Interchange 

Format (ReqIF) and exchanged with suppliers using Windchill Requirements Connector. 

 

Figure 15 EULYNX tool chain 
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6.3.2.6 EULYNX MBSE Process 

The EULYNX MBSE process is part of the EULYNX systems engineering process with the main 

process tasks documented in the EULYNX verification and validation plan.  The EULYNX systems 

engineering process is closely oriented on the CENELEC system life cycle defined in EN 50126 

and covers the phases listed below: 

Phase 1: Concept 

Phase 2: System definition 

Phase 4: System requirements 

Phase 5: Apportionment of system requirements 

Phase 10: System acceptance 

Phase 11: Operation and maintenance  

The CENELEC system life cycle follows the V-model, which highlights verification and validation, 

especially regarding the fulfilment of safety requirements, as important tasks. Already during the 

specification phases of the V-model, verification and validation are important activities, applied to 

assure the quality of the specification itself. This is especially necessary for the context of the 

EULYNX MBSE approach, where models of the required system behaviour represent abstract 

reference implementations of the future system (virtual prototypes) and are regarded as 

mandatory requirements in tender specifications. 

 

Figure 16 The "small V"-the process of the "big V" - CENELEC process 
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Following this notion, it is necessary to provide a “small V”-process, guiding the top-down 

development of those virtual prototypes using executable SysML state machines and their 

validation and verification within the specification phases of the underlying “big V”-CENELEC 

process. In Figure 16, the "small V" is highlighted in the "big V" and pictures the relationships of 

verification and validation as part of the virtual prototype development. 

User Requirements derived from IM expert knowledge are represented in IBM Rational DOORS 

in the form of a "Function List". It lists the required functions used as input information for the 

creation of the specification model at abstraction level “AL 1 System Definition” of the AM MBSE 

using the Windchill Modeler. At this point, the system use cases (services) are defined with their 

stimulus-response behaviour selectively specified by means of use case scenarios using SDs 

(Formalised Requirements). Subsequently, the conformity of the model to the SysML specification 

and the modelling rules defined in the EULYNX Modelling Standard is statically checked using the 

Windchill Modeler Reviewer by a modeler in the role of a model verifier. Additionally, the use case 

scenarios are validated by means of inspection by the corresponding IMs in the roles of model 

validators. 

In the next step, the system views created at abstraction level “AL 1 System Definition” are refined 

at abstraction level “AL 2 System Requirements” by means of executable SysML state machines 

(State Machine Implementation). The conformity of the model to the SysML specification and the 

EULYNX Modelling Standard is verified using the Windchill Modeler Reviewer and by means of 

inspection by the model verifier. 

 

Figure 17 Principle of a virtual prototype 
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To implement the state machines as a virtual prototype, Visual Basic simulation code is generated 

using Windchill Modeler SySim. Subsequently, the GUI of the virtual prototype is designed, and 

an executable is created in MS Visual Studio. The executable representing the virtual prototype 

enables both the tool-independent standalone simulation of the specified behaviour and when 

connected to the Windchill Modeler the simulation together with the animation of the 

corresponding state machines. The virtual prototype enables simulation-based testing of the 

specified behaviour by injecting stimuli on the GUI and observing the responses optically 

indicated. The principle of a virtual prototype is depicted in Figure 17.   

In the following step (State Machine Testing), the conformity of the behaviour defined by the state 

machines to the use case scenarios in the overlying abstraction level “AL1 System Definition” is 

dynamically verified by simulation-based testing of the virtual prototype carried out interactively by 

the model verifier. For this purpose, the scenarios are used as test cases and in parallel, the 

animated state machines observed (white box testing of the behaviour). Additionally, the correct 

creation of the state machines such as freedom of deadlocks is verified by the model verifier using 

interactive state machine animation based on a dedicated test specification.  

The standalone virtual prototype is then handed over to the IMs to validate the behaviour specified 

by the state machine by means of simulation-based testing (black-box testing of the behaviour). 

The test approach used (script-based or interactive testing) is left to the IMs. The validation 

process is finished successfully when all participating IMs provide evidence that their user 

requirements (including safety requirements) are satisfied by the specified behaviour. The 

successful validation process leads to the production of a new baseline.  

Model tests are carried out according to corresponding model test specifications. These comprise 

the information suitable to sufficiently test the behaviour of the models and consist of one or more 

test cases. A test case comprises meta-information (creator, date, subsystem covered, IM 

applicability) and a test script. The test script contains a list of steps to instruct the model verifier 

or model validator on how to execute the test case indicating the stimuli to be performed during 

the test as well as the expected results to be observed. Any test run is documented in a test report 

that documents the results. The test report comprises status information on every test case 

included in the model test specification. A more detailed description of the EULYNX model 

verification and validation approach is given in the EULYNX verification and validation plan 

available via the EULYNX website [6]. 

6.3.3  Merging the RCA and EULYNX specification approaches  

EULYNX and RCA use different specification approaches. This is because an analysis model of 

a modular, standard system architecture is to be created according to the RCA specification 

approach and specification models of the system elements defined in this architecture are to be 

created according to the EULINX specification approach. As shown in Figure 18, the future joint 

RCA/EULYNX specification approach will thus involve the creation of an analysis model and a 

specification model. Both models will be connected via a traceability model. 
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Figure 18 Joint RCA/EULYNX specification approach 
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7 Necessary extensions of the EULYNX MBSE approach 

This chapter describes necessary extensions of the EULYNX MBSE approach. 

7.1 Characteristics of a Relevant Railway System  

A railway system of interest in the context of a future functional railway system architecture is a 

non-linear, time-varying, distributed, massively multivariate position control system. Its overall 

function can be described as monitoring and controlling the positions of trains and moveable 

infrastructure elements on the network in accordance with multiple types of constraints including 

scheduled traffic (the timetable). The system has a huge number of diverse sensors and actuators, 

some of which are inside and some which are outside the system border. Since a railway system 

of interest has the characteristic of a control system, this term shall be explained first.  

7.1.1 Control systems 

A system is an arrangement of physical components which act together as a unit to achieve a 

certain objective. To control means to regulate or direct. Hence a control system is an arrangement 

of physical components connected in such a manner to direct or regulate itself or another system. 

If a lamp is switched ON or OFF using a switch, according to the example shown in chapter 6.2.2, 

the entire system can be called a control system. In short, a control system is in the broadest 

sense, an interconnection of physical components to provide the desired function, involving 

controlling action in it. For each control system, there is an input and an output. The input is the 

stimulus, excitation, or reference value applied to a control system to produce, depending on its 

internal state, a specific response and the output is the actual response obtained from the control 

system. The specification of a control system can thus basically be done in stimulus-response 

form. 

7.1.2 Classification of Control systems 

7.1.2.1 Time-invariant and time-varying systems 

Time-invariant control systems are those in which the system parameters are independent of time 

(the system behaviour does not change over time). Systems whose parameters are functions of 

time are called time-varying systems. The behaviour of such systems not only depends on input 

stimuli but also the time at which the input is applied. 

7.1.2.2 Linear and non-linear systems 

A linear system obeys the superposition property, which states that the net response caused by 

two or more stimuli is the sum of the responses that would have been caused by each stimulus 

individually.  
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7.1.2.3 Continuous time and discrete time system 

Mathematical functions are of two basic types, continuous functions, and discrete functions. 

Continuous-time functions are those functions that are defined for every instant of time. Discrete-

time functions, on the other hand, are those functions, whose values are defined only for certain 

instants of time. In a continuous-time control system, all the system variables are continuous-time 

functions. In a discrete-time control system at least one of the system variables is a discrete 

function. Microprocessor and computer-based systems are discrete-time systems. A discrete 

representation of a continuous-time control system is obtained by sampling continuous variables 

at discrete time points. Discrete systems can be time-driven or event-driven. Event-driven systems 

are called discrete event dynamic systems or DEDS for short [13]. DEDS are characterized by a 

set of states in which the system can be in, and by the set of events that cause the state changes 

at discrete time points. The events may take place asynchronously as opposed to the synchronous 

nature in a discrete-time system. The change of states and occurrence of events are the essence 

of the DEDS dynamic behaviour. 

7.1.2.4 Open loop system 

In an open loop system (see Figure 19), the control action is independent of the process output. 

An open loop system cannot correct any errors it makes or correct for outside disturbances. 

 

Figure 19 Open loop system 

7.1.2.5 Closed loop system 

In a closed loop system (see Figure 20), the control action depends on not only the input, but also 

the output (which is fed back as an input). A closed loop system can issue control actions to handle 

errors and outside disturbances to give a process output the same as the “reference input” and is 

amenable to machine learning.  

 

Figure 20 Closed loop system 

7.1.2.6 The typical control loop of a railway system of interest   

Figure 21 shows a typical control loop of a railway system of interest. The "Plant" is the system 

being controlled including a collection of moveable assets, train units, people, and everything else 
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that is controlled by it. However, this does not mean that the whole railway system can be reduced 

to one item of “Plant”. Rather, there are multiple “Plants” to control with multiple loops (open or 

closed loops). Hypothetically, the core functions of a railway system in the context of a future 

functional railway system architecture can be modelled as a combination of many of these control 

loops, which are interconnected and nested inside each other. Most core railway system of interest 

functions can be assigned to one of the four categories listed below: 

 Control: the purpose of a control function is to transform information about a needed change of 

the plant’s state into instructions or commands for the state of the actuators. Control functions 

are where all the decisions are made. 

 Actuate: the purpose of an actuate function is to transform instructions or commands into a 

physical state that has some effect on the plant’s internal state.  

 Sense: the purpose of a sense function is to transform a physical external state of the plant into 

information about the plant’s external state. 

 Observe: the purpose of an observe function is to transform information about the plant’s external 

state into an observation about the plant’s internal state. Observe functions are where inferences 

are made about the state of the plant given incoming data. 

Basically, only what can be observed can be controlled. This is not the same as saying that only 

what can be sensed can be controlled. Sensed data can be used to estimate an internal state that 

shall be controlled, but an internal state cannot be directly sensed. Only the external states of the 

plant can be sensed. The speed of a train unit, for example, is an internal state. It can be inferred 

by sensing certain specific quantities like the doppler shift of passing objects (doppler speed 

sensors), the rotational speed of individual axles on the train (pulse tachometers or tacho 

generators), or the change in relative position to a constellation of satellites (GNSS speed sensor). 

From one or more of these sensed quantities, we can infer the internal state that is the speed of 

the train unit.  

Where a human actor is in a control loop, an additional type of function “Indicate” is used so that 

information from observed or other controlled states can be used by the human actor to make 

their control decisions. This is a specialization of “Observe”. Since observed states cannot be 

actuated, this function category to display an observed state to a human actor is necessary. It is 

not explicitly shown in Figure 21. 

Furthermore, functions associated with non-operational states of a railway system of interest, such 

as data updates or switching between operating and maintenance states, might not fit these 

categories because they are not part of the chain of functions directly controlling the railway state. 

Figure 21 shows the information flows between the functions [(2), (5), (6)] within the control system 

and between them and an external reference (1) and the “Plant” [(3), (4)]. The information flows 

(4), (5) and (6) correspond to the “feedback” of a closed loop control system as described in 

chapter 7.1.2.5. The information flows are described below:    

(1) Required internal state of “Plant”: e.g. the target speed of a train unit, 

(2) Required external state of “Plant”: e.g. the required setting of the speed control,  
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(3) Actual external input state of plant: e.g. the current setting of the speed control, 

(4) Actual external output state of plant: e.g. rotational speed of individual axles, 

(5) Sensed external output state of plant: e.g. sensed rotational speed of individual axles, 

(6) Estimated internal state of plant: e.g. the estimated current speed of a train unit. 

 

Figure 21 Typical control loop of a railway system of interest 

 

Figure 22 Control loop ontology (source: DB Netz AG, I.NAT 1) 

Figure 22 shows the ontology of the control loop typical for a railway system.  This ontology allows 

for estimated states to be exchanged between observation functions so that observations can be 

made at different levels of abstraction. In other words, an observer does not always have to 

transform a sensed external state directly into a fully abstract estimated state. Similarly, this 

ontology allows for control functions to produce a required state that is not the required state of 

an actuator, but rather the required state of some other abstract concept, that feeds to a further 

control function. In other words, a control function does not always have to transform a required 

plant internal state directly into a required actuator state.  
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7.1.2.7 Example: Control of a railroad turnout 

A railroad turnout, switch, or [set of] points is a mechanical installation enabling railway trains to 

be guided from one track to another, such as at a railway junction or where a spur or siding 

branches off. A switch (points) consists of a pair of linked tapering rails, known as points (switch 

rails or point blades), lying between the diverging outer rails (the stock rails). These points can be 

moved laterally into one of two positions to direct a train coming from the point blades toward the 

straight path or the diverging path. A mechanism is provided to move the points from one position 

to the other (change the points). This is done by a remotely controlled electric motor called a point 

machine. 

If we take a simple turnout like the one in Figure 23, and draw out the mechanical parts, we can 

immediately draw a couple of very important conclusions: 

 We do not directly control the position of the point blades; we control the state of the actuator 

(usually, this means voltages on the terminals of the point machine motor). 

 We assume, based on a model of the mechanics of the switch, that the state of the actuator 

influences the position of the point blades. 

 We do not directly observe the position of the point blades. 

 We infer the position of the point blades from the state of position sensors (point machine 

switching contacts). 

 

Figure 23 Simple railway turnout 
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The bottom line is that in the control loop of a railroad turnout all four of the basic control system 

functions “control”, “actuate”, “sense” and “observe” are present. The corresponding control loop 

is depicted in Figure 24. The information flows are described below: 

(1) Required internal state of “Plant”:  required point state “LEFT”, 

(2) Required external state of “Plant”: required PM state “DRIVE LEFT”, 

(3) Actual external input state of plant: Connecting voltage for moving the PM to the left, 

(4) Actual external output state of plant: current flow via the PM position sensor contacts, 

(5) Sensed external output state of plant: sensed state “UNLOCKED”, 

(6) Estimated internal state of plant:  estimated point state “RIGHT” or “TRANSITION”. 

 

Figure 24 Control loop of a point 

7.1.3 Interpretation of the concept of “function” 

As explained in chapter 6.3.1, the Arcadia method [7] forms the basis for the creation of the RCA 

analysis model. The elements of ARCADIA’s “modelling language” (known as ArcML, which is not 

a modelling language, but rather an ontology) are defined in an experimental French standard XP 

Z 67-140 [14]. This standard defines a function as action, operation or service fulfilled by the 

system, or by an actor interacting with the system. When modelled in ontological terms, as 

depicted in Figure 25, this results in the following visualisation, immediately highlighting the broad 

nature of the definition. 

The key difference between actions/operations and services (in common interpretation) is that 

operations have a finite execution cycle (they are called, executed, and return a value) whereas 

services are persistent (they are available over a longer-term timescale and can be seen as being 

continuously available). According to the RCA specification approach (see chapter 6.3.1) a 

function is interpreted in a persistent sense. It is available in a range of system states and is a 

container for a mathematical behavioural specification. The behavioural specification describes a 

mathematical transformation of inputs into outputs and holds for all possible values of input and 

output parameters defined in the information objects. 
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Figure 25 Ontology model of a function according to ACARDIA (source: DB Netz AG, I.NAT 1) 

According to the EULYNX specification approach (see chapter 6.3.2), a function is represented 

by a Functional Entity (FE). A FE encapsulates a subset of the functional requirements of a 

EULYNX system element in the form of a function module. It delimits the function module from its 

environment and defines the inputs and outputs. FEs are used for the specification of EULYNX 

system elements as well as for the specification of EULYNX interfaces. The behaviour of FEs is 

currently defined in EULYNX by SysML state machines. 

The principal structure of a FE is shown in Figure 26. Apart from state machines, FEs may have: 

 SysML block properties (3). 

 SysML block operations (2). 

 SysML proxy ports used as atomic "in ports" and "out ports" (5) or typed with an interface block 

in which the information objects to be exchanged via the port are defined (4). 

 SysML flow ports used as atomic "in ports" and "out ports". 

The description of a FE (1) contains the stereotypes <<block>> and <<functional entity>> as well 

as the FE name (e.g., S_W). 
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Figure 26 Principal structure of a Functional Entity 

Block properties (3) are to be interpreted in the sense of variables or constants that store values. 

They are prefixed with "Mem". Block operations (2) are used to specify internal broadcast events 

or algorithms of data transformations (call behaviour). Call behaviour is invoked on demand, 

executed and terminated after execution. It is supposed to define event-driven data 

transformations. The algorithm of the data transformations is described in the body of the 

corresponding block operation using the Atego Structured Action Language [15]. 

A FE has interfaces that define continuous in-flow of information consumed by the assigned state 

machine, represented by data in ports, and continuous out-flow of information generated by the 

assigned state machine, represented by data out ports. Data in ports and data out ports (5, 6) are 

specified as SysML proxy ports or SysML flow ports of the SysML block representing the FE 

depicted in an internal block diagram (ibd). Data ports start with a capital letter if they are part of 

an external connection between a FE and the system environment (system interface) or if it is an 

open port (such as D4in_Normal_Mode). In this case, they have the colour blue (6). Data ports 

are especially suited to indicate permanently available information. The value of a D-port only 

changes if it is explicitly changed. Data in ports are used as arguments of Boolean expressions in 

change events or transition guards. They may represent arguments in data transformations or 

other data, that need to be permanently reachable by the behaviour of a FE. Their values can be 

permanently regarded as valid. Data out ports are used to provide continuous data created within 

a FE for its environment (e.g. to be available for adjacent FEs, reachable via their data in ports).  
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In addition to the continuous interfaces defined by data ports, a FE features interfaces that define 

event-driven in-flow of information consumed by the assigned state machine and event-driven out-

flow of information generated by the assigned state machine. The information flows are 

represented by SysML proxy ports typed with SysML interface blocks (4, 7). The information 

objects to be exchanged are represented by signals. The interface blocks define the receptions 

for these signals. When a signal is received, a signal event is triggered by the corresponding 

reception, which is then used as a trigger for a state transition, for example. Ports and their 

interface blocks are written in small letters (such as cc_w:~cc_w) if they are part of an internal 

connection between two Functional Entities. In this case, they have the colour green like the 

corresponding Functional Entity (4). Ports and their interface blocks are written in capital letters if 

they are part of an external connection (system interface) between a functional entity and the 

system environment (such as W_P:W_P). In this case, they have the colour blue (7). An 

information object defined as outgoing in the interface block (port type) becomes an incoming 

information object through conjugation. This conjugation is indicated by the character "~" 

preceding the corresponding interface block (example: cc_w : ~cc_w). 

To describe the externally visible behaviour of a system element, the FEs are interconnected in 

the form of a Functional Architecture (FA). The principal structure of a FA is shown in Figure 27.  

 

Figure 27 Principal structure of a Functional Architecture 

There are two different representations of the FEs used: FEs with a solid border (5) and FEs with 

a dashed border (4). Following the interface centric specification paradigm (see Section 6.2.3), a 

solid-bordered FE represents the directly specified behaviour of the system element that is the 

"linking behaviour" (e.g., S_W). It is an inseparable part of the behavioural model of the system 

element. FEs with dashed borders, on the other hand, are references (reference properties) to the 

interface protocols specified in the models of the application levels. These local behaviours are 

linked to the overall behaviour of the system element by the directly specified linking behaviour. 

In Figure 27, for example, the functional entity "S_SCI_P" (4) is shown as a dashed block. This 

means that it is the local behaviour of the SCI-P protocol at the application level, which is defined 

in the SCI-P specification. 
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FEs can be connected in three different ways: by internal FE coupling, by external FE coupling or 

via open ports to behavioural parts that are not explicitly specified. The information flows defined 

in the internal FE-couplings or the couplings themselves are to be interpreted as descriptive 

elements of the behaviour and are only binding in the context of the overall behaviour. That means 

that an information flow defined in an internal FE coupling only becomes a mandatory requirement 

in the context of its active use, e.g., in a transition. Internal FE-couplings are implemented in two 

types. In the first type (6), communication between two FEs takes place by means of signals and 

in the second type (7), permanent information is transmitted. An internal FE coupling according to 

variant 1 defines an event-driven flow. It consists of two SysML proxy ports with the same name 

that are connected via a connector (SysML Connector). The connector represents the 

communication channel over which the information objects defined in the port type (SysML 

interface block) can be exchanged. The information objects are represented by SysML signals. 

The port type is used conjugated on one side (e.g., ~w_p). This means that an information object 

defined as outgoing in the interface block (port type) becomes an incoming information object 

through conjugation. An internal FE-coupling according to variant 2 defines a continuous flow. It 

consists of two SysML proxy ports or alternatively SysML flow ports with the same name that are 

connected via a connector (SysML Connector). The continuity of the information transmission is 

indicated by the abbreviation "D = Data" at the beginning of the names of the ports involved. The 

overall behaviour to be implemented by the manufacturers is connected to the interfaces of the 

system element via external FE-couplings. In contrast to the internal FE-couplings, the information 

objects defined in the information flows or the couplings themselves represent binding 

requirements (mandatory requirements). An external FE coupling consists of a proxy port 

representing an interface (2), located at the outer boundary of the system element, and labelled 

with the name of the interface concerned (e.g., EIL_SubS-Point). The port delegated from the FE 

relevant to the interface (e.g., SCI_P: ~SCIP) is embedded in it. The delegated port and the 

original port are linked (3) via a delegation relationship (stereotype <<equal>>). In other words, 

the port at the FE is moved to the outer boundary of the system element. The information flows 

and their direction remain unchanged. The name of the delimited port designates the kind of 

interface (e.g., SCI_P). The port type (e.g., SCIP) defines the information objects that must be 

exchanged via the respective interface. Open ports represent requirements and define the 

interface to specification parts not contained in the model, i.e., expected behaviour in the 

environment of the FEs. This behaviour can be implemented proprietarily by each manufacturer if 

the information expected at the ports is provided or the information delivered via the ports is 

processed accordingly. Open ports are also used to configure the specified behaviour.  

7.1.4 Classification of systems according to their behaviour 

The control system functions "control", "actuate", "sense" and "observe" introduced in Section 

7.1.2.6 as well as the plant in the control loop have a behaviour that can vary depending on the 

type of system. These possible system types are listed below and briefly described according to 

the properties "dynamics", "driving type", "randomness", "type of variables and linearity" and "time" 

[16]. 
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Dynamics: 

 Static system: A static system is a system in which the output depends only on the present value 

of the input1. 

 Dynamic system: A dynamic system is a system in which the output depends on the past or future 

values of the input2. It has an internal state that evolves over time and that determines the output. 

Driving type: 

 Time-varying system: A time-varying system is a system in which the output is dependent on time 

(see also Section 7.1.2.1).  

 Time-invariant system: A time-invariant system is a system in which the output is independent of 

time (see also Section 7.1.2.1). It is common to assume that a dynamic system is time-invariant 

[16].  

 Time-driven system: A time-driven system is a system in which the state changes depending on a 

uniformly progressing physical time variable (see also Section 7.1.2.3).  

 Event-driven system: (Discrete Event Dynamic Systems or DEDS) An event-driven system is a 

system in which the state changes depending on asynchronous discrete events. The state cannot 

change between two events (see also Section 7.1.2.3). 

 Fully driven system: A fully driven system might contain elements of time-invariant, time-variant, 

time-driven and event-driven systems.  

Randomness: 

 Deterministic system: A system is deterministic if its output variables are all completely 

determined by the input and system state. It is a system in which no randomness is involved in the 

development of future system states3.  

 Stochastic system: A stochastic system is a system in which randomness (probability distributions) 

is involved in the development of future system states4. 

Type of variables and linearity: 

 Finite: The variables of a finite system are bound by a lower and upper limit. 

 Discrete: In a discrete system, values of variables or the time might be discrete.  

 Continuous linear: A continuous linear system is a system in which the state variables are real or 

complex and the transition function is linear (see also Section 7.1.2.2). 

                                                

1 https://electricalworkbook.com/static-and-dynamic-systems-theory-solved-examples/ 

2 https://electricalworkbook.com/static-and-dynamic-systems-theory-solved-examples/ 

3 https://en.wikipedia.org/wiki/Deterministic_system 

4 https://de.wikipedia.org/wiki/Stochastisches_System 
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 Continuous nonlinear: A continuous nonlinear system is a system in which the state variables are 

real or complex and the transition function is nonlinear (see also Section 7.1.2.2).  

 Hybrid: A hybrid system might contain elements of discrete, continuous linear and continuous 

nonlinear systems. 

Time: 

 Continuous-time system: In a continuous-time system the domain time is considered continuous 

(see also Section 7.1.2.3).  

 Discrete-time system:  In a discrete-time system the domain time is only present at discrete times 

(see also Section 7.1.2.3). 

In Table 1 System types and their probability of occurrence in control system functions, the system 

types, i.e., the corresponding typical behaviour, are assigned to the control system functions 

considering the probability of their occurrence. The probability is expressed by the white to 

completely black filled circles. The more a circle is filled with black, the higher the probability. For 

example, a circle half-filled with black symbolises a probability of 50 per cent and a filled circle of 

100 per cent. The allocation of probabilities is based on the following assumptions: 

(1) Railway systems of interest can function as transformation systems. Transformation systems, such 

as decision-making systems (artificial intelligence), have the characteristics of static systems. 

Furthermore, in many cases the function "indicate", a specialisation of the function "actuate" (see 

Section 7.1.2.6), is a transformation function with the character of a static function.  

(2) Railway systems of interest have in most cases the characteristics of dynamic systems. However, 

the functions "sense" and "observe" often have a transformational character. They represent a 

transfer function from the outer state to the inner state of the plant without having a history.  

(3) The function “control” might be time-varying, e.g., day and night switching of the luminosity of a 

light signal.  The functions “actuate”, “sense” and “observe” are not assumed to have a high 

probability of being time-varying (see also (4)). 

(4) According to [16] it is common to assume that a dynamic system is time invariant. 

(5) Current railway systems of interest (e.g., EULYNX systems) are considered event-driven, not time 

driven. Nevertheless, future systems may also exhibit time-driven behaviour. Since no concrete 

examples are available yet, this is only assumed for the time being. 

(6) Current railway systems of interest (e.g., EULYNX systems) are considered event-driven. It is 

assumed that this will also apply to most future systems. Since no concrete examples are available 

yet, this is only assumed for the time being.  

(7) It is assumed that future railway systems of interest will predominantly show event-driven 

behaviour but may also partly (especially in the "control" function) show time-driven behaviour 

concurrently, i.e., they will be fully driven. Since no concrete examples are available yet, this is 

only assumed for the time being. 

(8) Railway systems of interest are safety-relevant systems and therefore behave deterministically. 

(9) Sensors might include jitter or drift, random errors, but the rest of the system behaviour should 

be deterministic (see 8). 
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(10) Current railway systems of interest (e.g., EULYNX systems) are considered finite. It is assumed that 

this will also apply to future systems. 

(11) Current railway systems of interest (e.g., EULYNX systems) are considered discrete. It is assumed 

that this will also apply to a large extent to future systems. 

(12) It is assumed that future railway systems of interest will also partly exhibit continuous linear 

behaviour. Concrete examples are currently not available. 

(13) It is assumed that future railway systems of interest will also partly exhibit continuous nonlinear 

behaviour. Concrete examples are currently not available. 

(14) It is assumed that future railway systems of interest will also have partially simultaneous 

continuous linear, continuous nonlinear as well as discrete behaviour. Concrete examples are 

currently not available. 

(15) Future railway systems of interest are predominantly computer-based. Computer-based systems 

have discrete-time behaviour. Theoretically, however, they can also consist partly or entirely of 

electrical components. It is therefore assumed that to a certain extent the behaviour of 

continuous-time systems must also be considered. 

(16) Future railway systems of interest are predominantly computer-based. Computer-based systems 

have discrete-time behaviour.  

 

Table 1 System types and their probability of occurrence in control system functions  
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To get a complete description of the system, not only the system element of interest needs to be 

modeled, but also the environment it interacts with. In control theory, this is referred to as the plant 

model. It is assumed that the plant can exhibit all the types of behaviour listed [17]. 

7.2 Evaluation of the current EULYNX specification approach 

In the following sub-chapters, requirements for an extended EULYNX specification approach are 

derived from the analysis results achieved in Section 7.1. Furthermore, it is evaluated to what 

extent and how these requirements are already fulfilled by the existing EULYNX specification 

approach. 

7.2.1 Analysis results and resulting requirements for a specification approach 

According to the results of the analysis carried out in Section 7.1 regarding the characteristics of 

railway systems in the context of a future railway system architecture, such as RCA, their system 

elements have the characteristics of control systems. Since the analysis model of RCA is currently 

being developed and there is not yet any in-depth knowledge regarding the behaviour of the 

corresponding system elements, the classification of the control systems is largely based on 

assumptions. As can be seen in Table 1 System types and their probability of occurrence in control 

system functions, the system elements predominantly have the characteristics of discrete, event-

driven, deterministic finite dynamic systems. Besides event-driven characteristics, discrete-time 

behaviour and continuous time behaviour will also occur to a certain extent and must therefore be 

considered in an enhanced EULYNX specification approach. Likewise, the different behaviours 

can occur in mixed form in one system element (fully driven, hybrid). To what extent these 

behaviours really play a role can only be determined when the RCA analysis model is closer to 

completion. The situation is similar regarding time-varying and time invariant behaviour. Here, a 

dominance of the time invariant behaviour is assumed. According to [16] it is common to assume 

that a dynamic system is time invariant. However, it must be possible to represent time-variant 

behaviour in the specification model. Besides the characteristics of dynamic systems, those of 

static systems play an important role. Static system elements or functions are needed for 

transformations. In contrast, stochastic and infinite aspects play a subordinate role. A further 

developed EULYNX specification approach shall therefore support the semiformal/formal 

description of the following behaviour: 

 Finite discrete event dynamic behaviour. 

 Discrete time behaviour. 

 Continuous time behaviour (linear, nonlinear and hybrid). 

 Combination of continuous time behaviour, discrete time behaviour and finite discrete event 

dynamic behaviour. 

 Static behaviour (logic and algebraic data transformation). 

It must be possible to describe all behaviours in an executable way and the corresponding 

behaviour model must allow a transformation into a formal model according to the approach 

introduced in [5] and as further developed in WP10’s ongoing Task 10.8. The knowledge gained 
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and documented in [5] regarding the improvements of the models created in the EULYNX initiative 

shall be considered. Furthermore, the specification approach must make it possible to describe 

the functionality of system elements in the form of control loops as shown in chapter 7.1.1. It must 

also be possible to describe the control system functions in different configurations, as is inevitable, 

for example, in the specification of a system element representing an electronic interlocking.  

7.2.2 Assessment of the existing EULYNX specification approach 

7.2.2.1 Functional control system architecture 

The existing EULYNX specification approach already allows the description of functional control 

system architectures and their governing control loops, as introduced in Section 7.1, through the 

"Functional Architecture" model view of AM MBSE (see Section 6.3.2.2). The control system 

functions are represented by interconnected functional entities. The interconnection of the 

functional entities is done considering the interface-centric specification approach presented in 

Section 6.2.3. The model view “Functional Architecture” also makes it possible to link 

infrastructure-related data with the control system functions. For this purpose, the infrastructure 

elements are abstracted as functional entities, mapped in a functional architecture, and 

interconnected in a topology-compliant manner. The principle is shown in Figure 28. However, it 

is difficult to describe different configurations of functional architectures. This is possible with a 

small defined number of configurations by corresponding functional architectures. Problems arise 

with an arbitrary number of configurations. For example, routes consist of a varying number of 

different route elements. It is a challenge to describe all possible configurations generically using 

functional architectures.  

 

Figure 28 Topological abstraction of infrastructure in the form of a functional architecture 
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The control system functions "actuate/indicate" and "sense" are in some cases technology related. 

The project is required to include these technical aspects in the specification. The functional 

entities are therefore to be supplemented by technical functional entities (TFE). A technical 

functional entity (yellow-coloured SysML block stereotyped with <<technical functional entity>>) 

represents a certain piece of technology-dependent behaviour based on technical requirements. 

It is part of a technical functional architecture supplementing the technology-independent 

behaviour defined by functional entities. The definition of technical functional architectures is 

provided in the EULYNX specification approach in the technical viewpoint of the AM MBSE. 

However, the model views of the technical viewpoint are not yet fully defined in the current version 

of the AM MBSE. For this reason, the description of technical functional architectures and thus 

the integration of technical functional entities are not yet possible. Another important point to note 

is that the description of the environment of a system element of interest, i.e., the plant is not 

considered in EULYNX according to the current specification approach. However, to perform a 

complete description of a system, it is also necessary to consider the environment of a system 

element of interest with which it interacts in the specification [17]. 

7.2.2.2 Behaviour 

According to the EULYNX specification approach, a control system function may be represented 

by a Functional Entity. Functional entities have SysML state machines and SysML block 

operations to describe behaviour (see Section 7.1.3). SysML state machines enable the 

specification of finite discrete event dynamic behaviour. SysML block operations are used to 

perform logical or algebraic transformations. The corresponding algorithms are defined in the 

operation bodies using the action language ASAL [15]. Block operations are currently used as call 

operations. This means that they have a finite execution cycle (they are called, for example during 

state transitions, executed, and return a value). The description of further types of behaviour is 

currently not possible. The EULYNX specification approach shall be extended to include the types 

of behaviour defined in Section 7.2.1. 

7.2.2.3 Data types 

The current EULYNX specification approach uses the following data types: Boolean, DateTime, 

Decimal, Double, Integer, Long, Single, String and Enumeration. The data types are to be 

supplemented according to the requirements of the behavioural extensions.    

7.2.2.4 Validation of system requirements 

As shown in Section 6.3.2.6, the EULYNX specifications are created executable, i.e. in the form 

of a virtual prototype that can be validated by simulation (simulation-based testing). 

7.2.2.5 Verification of safety properties applying formal methods 

The EULYNX initiative specifies system elements with standardised interfaces. The functional 

requirements, i.e., the behaviour of the respective system element is described by the stimuli-

response behaviour visible at the interfaces. Since this behaviour is standardised and must be 

implemented by the manufacturers exactly as defined, it must be ensured that all safety 
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requirements are considered in the specification model. This is done according to the current 

EULYNX MBSE process by simulation-based testing of the specification model. Since freedom 

from errors cannot be established with 100% certainty through testing, it is advisable to formally 

prove this freedom from errors using formal methods. The applicability of formal methods for 

EULYNX specifications was evaluated in [5]. The principle is briefly explained in chapter 6.1.4. 

The approach developed in [5], in which the SysML specification model is manually converted into 

a formal model, will become automated in WP10’s Task 10.8.      

7.2.2.6 Automated test case generation from system requirements  

In the current EULYNX specification approach, test cases are derived manually from the system 

requirements. The aim is to generate test cases automatically from the specification model. 

Approaches to this have been evaluated in TD2.7. They are documented in [3] and [5] and are 

currently under development (see Section 7.5). 

7.3 Proposed additions to the EULYNX specification approach 

In X2Rail-2 Deliverable D5.5 [5] several suggestions for improvements to the existing EULYNX 

specification approach have already been made (which are not repeated in this deliverable). 

These improvements have been forwarded to the EULYNX initiative where they will be 

incorporated into the EULYNX modelling standard (Eu.Doc.30) [6]. The enhancements proposed 

in this document relate mainly to the extension of the finite discrete event dynamic behaviour of 

functional entities by the types of behaviour listed in Section 7.1.1. The necessary improvements 

mentioned in the previous chapters, such as the configuration of functional architectures or the 

addition of model views of the technical viewpoint, were communicated to the EULYNX initiative 

and worked on further there. 

7.3.1 Modelling of continuous-time and discrete-time dynamic behaviour 

When modelling a dynamic function, it is possible at any time to create a representation in the 

generalised state space form. This form of representation is based on three basic equations: 

1. Continuous dynamic states: The first derivative of the state vector is a function of state, inputs, 

and time. 

2. Discrete dynamic states: The next value of the state is based on the current values for state, inputs, 

and time. 

3. Outputs: The output value is a function of states, inputs, and time. No dynamic developments 

should be included in this equation. 

 

Figure 29 shows a general representation of a dynamic function (or system). In the EULYNX 

specification approach, this construct is represented by a functional entity.  
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Figure 29 General dynamic function 

A system, system function or plant model can be described at different levels of abstraction, see 

Figure 30. These abstraction levels are adapted from [18]:  

 Acausal models. At the highest level of abstraction, there are acausal models, where models are 

described by one or several differential or algebraic equations, possibly combined with state 

machines to model hybrid systems. This approach is referred to as first principles modelling. 

 Causal models. At the causal level of abstraction, it is defined what is input, and what is output 

inside the system or function, and between components in a composed system. Typical causal 

models include block diagrams, like continuous Simulink models [20]. The model view “Functional 

Architecture” of the EULYNX AM MBSE can also be arranged on the abstraction level "causal 

models". 

 Time-discretised models. To solve a differential equation numerically it is typically discretised in 

time. A discretised model is an algorithmic representation in the sense that it generates a defined 

output for a certain input and internal state. A model can be discretised in different ways, e.g., 

using forward/backward Euler. 

 Simulation behaviour. To perform the calculations of the discretised models, a solver and a 

scheduler are needed as part of the simulation engine. The simulation engine can decide the time-

step, execution order, triggering, communication, etc. of the model. A typical numerical tool to 

solve differential equations is Simulink.  

 

Figure 30 Different levels of abstractions of system or plant models 

Acausal models are generally more flexible and reusable than models at a lower abstraction level 

[19]. For this reason, acausal models are well suited for the representation of binding requirements. 

Acausal models can be expressed in SysML by parametric diagrams. Parametric diagrams 
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describe constraints between variables, like equations, and how they are related to each other. 

The constraints are acausal, and by combining many functional entities within a functional 

architecture, acausal relationships for a large system element can be achieved. In addition, finite 

discrete event dynamic behaviour represented by state machines of connected functional entities 

can tell which equations to be used in the parametric diagrams, to be able to describe hybrid 

system elements. Figure 31 shows an example of the application of the SysML parametric diagram 

that defines the addition of two real numbers.  This is a very simple example, but this works also 

for more complex ones, of course. A detailed description of the use of SysML Parametrics and 

more complex examples can be found in the SysML specification [10]. 

 

Figure 31 Simple example of the application of SysML Parametrics 

Proceeding to lower abstraction levels means that the model gets more sophisticated, in the sense 

that the model can produce simulation results. The integration for MATLAB Simulink of the 

modelling and simulation tool "Windchill Modeler" used in EULYNX (see Section 6.3.2.5) enables 

the creation of a causal model in the form of a Simulink block diagram from an acausal Windchill 

Modeler parametric diagram. Through Simulink, the mathematical model can be developed further 

to model the constraints so that the performance, reliability, and correctness of the algorithm can 

be tested by simulation. After making changes to the Simulink model, its associated parametric 

diagram can be updated with those changes. Integration for MATLAB Simulink also enables the 

creation of a Windchill Modeler parametric diagram from a Simulink block diagram. It can export 

the following items from a parametric diagram - constraint properties, constraint parameters, value 

properties and connectors. In this way, the functional architecture of a system element can be 

extended to include continuous-time and discrete-time dynamic behaviour. It is proposed to 

extend the current EULYNX specification approach accordingly. 

7.3.2 Modelling of static behaviour  

Static behaviour is characterised by the fact that the output only depends on the value of the 

current input and does not require any history. In many cases, decision processes are described, 

and data transformations are performed based on a corresponding algorithm. Both tasks can be 

fulfilled by the means available in the existing EULYNX specification approach. Decision 
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processes can, for example, be modelled by flowcharts or defined in persistent operations (time 

advance operations). Time advance operations are assigned to a functional entity and 

permanently generate an output depending on the current input. They can also be used for data 

transformations. A flowchart is a chain of logical patterns used to implement a sequence of 

decision-making processes. It is used to implement sequential, nested, and iterative processes. 

In the current EULYNX specification approach, flowcharts are modelled by pseudo-states and 

transitions on SysML state charts. In future, it should also be possible to define complex algorithms 

using parametric diagrams and then transfer them to Simulink block diagrams as described in 

Section 7.3.1. It is also proposed to extend the EULYNX specification approach to include truth 

tables. Truth tables map actions to the possible Boolean combinations that can be derived from a 

set of conditions. In this way, the description of complex logical processes is facilitated, and 

readability is increased. 

7.4 Expression of behaviour as mandatory requirements 

7.4.1 Current approach 

According to the EULYNY specification approach the SysML specification model is stored in the 

repository of the modelling tool windchill modeler. Specification-relevant model elements are 

mapped in the requirements management tool IBM DOORS as DOORS objects, which represent 

atomically referenceable system element requirements or interface requirements. The following 

types of requirements are defined: 

 "Req": denotes a mandatory requirement. 

 "Info": denotes additional information to help understand the specification and does not specify 

any additional requirements. 

 "Head": denotes chapter headings. 

A requirement consists of the respective SysML model element, e.g., a SysML diagram, and, if 

applicable, an additional extension of the same. For this reason, requirements have two attributes 

"Requirement Part 1" and "Requirement Part 2", which are shown in adjacent columns (see Figure 

32). In "Requirement Part 1" the respective SysML model element is listed and in "Requirement 

Part 2" the corresponding extension is shown. Column 'Type' defines the type of the requirement 

and applies normally both to "Requirement Part 1" and "Requirement Part 2". In the case of 

requirements with a type "Req", in which the "Requirement Part 2" is provided with the heading 

"Info", the defined type "Req" only applies to "Requirement Part 1".  

 

Figure 32 Structure of a requirement 



X2Rail-5 Proposed extension of specification approach to 

meet needs of RCA 

GA 101014520  Page 58 of 68
 

Functional requirements are represented in the EULYNX specification approach by finite discrete 

event dynamic behaviour defined in the form of SysML state machines. The behaviour of a system 

element or the process data interface protocol (PDI) of a communication interface specified in the 

functional entities and interconnected in a functional architecture must be implemented in its 

entirety by the manufacturers. Of course, the specification model can be transformed into a 

manufacturer-specific model (model-to-model transformation). However, the respective 

manufacturer must prove the semantic equivalence of its model to the specification model. Since 

such a procedure is currently only rarely used, documentation of the behaviour in the form of 

referenceable atomic requirements is expected.  

 

Figure 33 Representation of atomic functional requirements 

According to the EULYNX specification approach, functional requirements with the degree of 

bindingness "Req" are represented by the state transitions of the behaviour model. As shown in 

Figure 33, they are listed in the specification document in addition to the state machine mapping 

in atomic referenceable form. For example, the state transition "when 

(D17in_Sensed_Signal_Aspect = "Signal Aspect 1")/" is formulated as an atomic functional 

requirement in the form "when (D17in_Sensed_Signal_Aspect = "Signal Aspect 1")/ 

{MOST_RESTRICT_ASPECT-SIGNAL_ASPECT_1}". 

7.4.2 Advanced approach 

Algorithms are defined in call operations, which are then used in state transitions. The same 

applies to attributes represented by SysML block properties. These are first assigned a default 

value before they are further processed in state transitions or call operations. At present, these, 
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and other model elements (such as ports) are marked with the requirement type "Req". As a result, 

manufacturers must separately prove that these model elements are fulfilled by their 

implementation, although proof is only necessary when they are used, for example in a state 

transition. Since these model elements are basically definitions, it is recommended to introduce 

the requirement type "Def" and to carry out the labelling accordingly in the future. In contrast, 

persistent operations (time advance operations), which are assigned to a functional entity and 

describe, for example, decision-making processes or data transformations (static behaviour), are 

to be marked with the requirement type "Req". In the case of behaviour described in the form of 

differential equations or algebraic equations using parametric diagrams (continuous-time and 

discrete-time dynamic behaviour), these equations represent the binding functional requirements, 

which are therefore to be marked with the requirement type ”Req".   

7.5 Supporting automated test case generation 

7.5.1 Motivation 

Model-based testing in relation to other verification means 

Ideally, all intended properties of a signalling system would be verified exhaustively using formal 

methods. However, there exist several reasons why this is usually not possible in reality: 

properties may not be defined explicitly, not lend themselves well to formalization, be hard to prove 

or very different in nature (requiring different formalism). Testing is not exhaustive, but very flexibly 

applicable; moreover, it involves an actual environment in which the system is executed, which 

adds some implicit system validation to the original verification task. But testing can consume 

many resources, even if test execution is largely automated, and classical testing requires the 

product to exist and thus find errors at a late development stage. 

Model-based testing can be considered “in between” formal methods and traditional testing: it is 

still non-exhaustive but helps towards more efficient test design and early testing, and formal 

methods are used by advanced test case generation (TCG) tools, guaranteeing that test cases 

cover the behaviour of the model they were generated from. In particular, model-based testing 

has proven useful for functional testing at higher test levels (integration, system, acceptance), but 

is not limited to that. Still, there will be tests (e.g. usability, smoke) and reviews that need to be 

designed and/or executed manually. But to reduce them to a minimum and be as efficient as 

possible, the general ideas behind this Section (7.5) are: 

 To summarize why automatic test case generation should be used for signalling systems 

(remainder of Section 7.5.1); 

 To explore the scope of test case generation in terms of different kinds of behaviour present in 

signalling systems (Section 7.5.2), in order to test “as much model-based as possible” using “as 

few different models as reasonable”; 

 To provide recommendations for system specifications (in Section 7.5.3) on how to support TCG 

best. 
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General advantages of model-based testing 

Automation and reuse/maintainability. Manual design of high-quality test suites takes time – on 

average it is responsible for more than half of all testing costs. In model-based testing, only the 

model needs to be created manually, afterwards test cases are generated automatically from the 

model. While coming up with a good model initially may require some time as well, the approach 

becomes much more efficient than manual test design when changes need to be made for 

maintenance or reuse of the test suite: usually changing the model and regenerating the test cases 

is easy to do. 

High test suite quality and structured test design process. The process of model creation and test 

case generation can be structured very well into smaller steps (e.g., structural, and behavioural 

modelling, system and environment modelling). Also, many – partly automated – V&V steps can 

be used during the process (e.g., automated checks of the model, interactive model simulation, 

coverage analysis of generated test cases). This usually leads to a high-quality model, from which 

a high-quality consistent test suite is created by using fully automated, mature, and often formal 

methods-based generation. 

Comprehensible and flexible test selection. TCG tool usually offers several settings that allow 

realizing different test selection criteria (e.g. coverage goals, search strategies, input interface 

constraints). This way, the generation can be flexibly influenced to balance the number and size 

of generated test cases as well as the generation time. Furthermore, the tools usually measure 

how much of the coverage goals are reached and allow tracing between model (including attached 

requirements) and test cases, making transparent and comprehensible what has been achieved 

by the TCG. 

Support of early testing. Model-based test design can begin early during system development and 

it is possible to start with partial models and generate test suites from them. This in turn allows 

early V&V of the test suite. Reuse of models or model parts can accelerate test design very much. 

Another aspect is that the modelling and TCG process often leads to the early detection of 

specification issues. All in all, this leads to less cost and risks in projects. 

Advantages of using models. It is commonly known that the use of models usually fosters precision 

and completeness, can serve to capture knowledge compactly, and can support communication 

(especially for visual models). Generating many different test cases from a model, the model also 

acts as a “single source of truth” in test design. 

Fit with new signalling system specification approach 

The EULYNX MBSE approach provides state machines that capture the possible behaviour of a 

signalling interface and/or subsystem (see Section 6.3.2.3). Their semantics is defined by the 

SysML standard which is textual and not complete as it intentionally leaves open how e.g., 

scheduling of event dispatching or choice among several enabled transitions will be implemented. 

Apart from that, SysML provides a quite precise semantics which allows tools – dealing with the 

open issues – to execute state machines. In this sense, the state machines can form the basis of 

a test model, from which test cases can be generated. As many TCG tools are based on state 
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machines, for them – besides automated generation of test cases from the model – also the model 

creation becomes very efficient. 

Moreover, requirements coverage becomes particularly easy, as in the EULYNX specifications 

the statechart transitions are considered requirements. The TCG can produce test cases 

according to the goal of transition coverage, and tracing requirements forth and back between 

specification and test cases becomes very easy because of (a) the similarity between the state 

machine-based specification and test models and (b) the coverage and traceability relation 

between test model and test cases established by the TCG. 

Finally, the EULYNX specifications do not include the desired system properties explicitly as 

required for formal verification. Testing does not require that; it can be based on an operational 

(“imperative”, see Section 6.2.4) description of system behaviour. This can be an advantage 

because IMs traditionally think in operational procedures, which are often historically grown and 

not all their rationales may be known any longer. And even if the desired system properties are 

explicitly available and complete, IMs may decide not to make them publicly available. 

7.5.2 TCG for different kinds of behaviour 

Basic stimulus-response behaviour 

Rail control systems usually are reactive software systems, sometimes as embedded systems 

such as field element controllers, sometimes running on computers such as in an electronic 

interlocking. As such, they are constantly running, waiting for discrete events to occur at their 

external interface, and processing them, which can lead to output at their external interface and/or 

to change of their internal state. Such basic stimulus-response behaviour can be modelled as 

state machines (see Section 6.2.2); and the state machines together with test selection criteria, 

e.g. transition coverage, can be used by a TCG tool to automatically produce test cases which e.g. 

cover all the transitions. This way, one can obtain effective tests for stimulus-response behaviour 

of rail control systems; this has been demonstrated in WP5 of the preceding X2Rail-2 project for 

a level crossing (LX) controller specified by the Swedish IM Trafikverket (see Chapters 7 and 10 

of [3]). 

Timed systems 

In the simplest case, the stimuli for the behaviour just come from the system’s environment such 

as adjacent systems, sensors, or human operators. But it is also common that signalling systems 

have timers, whose expiry serves as a stimulus. The above-mentioned LX controller is such a 

system, as the closing and opening procedures of the LX are very much time-dependent. The 

same holds for its environment, as e.g., raising and lowering of the controlled barriers takes time. 

This can be dealt with by state machine transitions in the system and environment model, 

respectively, that are triggered by timeout-events according to a global clock (i.e., timed automata), 

and by adding the possibility to advance that global clock for the TCG tool. It leads to test cases 

that respect the modelled time dependencies at least in the existence and order of test steps. This 

has been demonstrated in the LX controller example as well; however, no actual time intervals 

were generated into the test cases, although possible in principle as demonstrated as part of TCG 
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for the EULYNX point subsystem (see Chapter 7.5 of [5], although the time aspect of the TCG is 

not much discussed there). 

Regarding time, in addition, one may wish to generate system performance test cases, to verify 

that the system will show the desired reaction within a limited time. More generally, it can make 

sense to define time limits as part of tests such as load or stress tests. The best way to generate 

such information into test cases depends on the TCG tool (test case elements that can be 

generated) as well as on the test environment (capabilities to interpret that information for test 

execution), but basically, the use of TCG does not limit testing of time-related properties. A 

corresponding case study is currently underway in WP10. 

Non-determinism 

Another kind of behaviour that may require additional care is non-determinism. Non-determinism 

in the system environment is quite common and is dealt with by the TCG tools that decide which 

inputs to choose to generate – usually deterministic – test cases. If the generation itself needs to 

be reproducible, techniques like pseudo-random numbers are used in generation tools and 

environment models to mimic non-determinism. Non-determinism of the system under test is often 

restricted to uncertainties of the output values or their timing; this can be accounted for with the 

definition of appropriate ranges to be used during the building of the test verdict. More seldom 

does one encounter genuine non-determinism of the system, which then needs to be considered 

by the test model and the test cases (which in general become trees instead of sequences as 

mentioned in [21]). 

Complex algorithms 

More centralized signalling systems tend to include also complex calculations or algorithms (that 

run without consumption of further stimuli). The application of model-based testing is clearly 

possible for such behaviour, but often is not in the focus: doing a model of the behaviour using 

classical model-based testing formalisms like state machines may only be worthwhile if a certain 

level of abstraction is reached, otherwise one may end up with an (expensive) second 

implementation. Instead, a detailed analysis of the behaviour may be done using specialized 

mathematical models or classical testing techniques for lower levels. Nevertheless, it should be 

considered that test models for a generation of higher-level tests may require some abstract model 

of algorithmic behaviour. 

Communication 

Advanced signalling systems with centralized control have always been distributed, rising the 

need for communication between an interlocking and its controlled field elements. For new digital 

signalling systems, this communication is based on computer network technology and is an 

essential part of standardized interface specifications, but also more complex than traditional 

communication means. To generate tests for the specified interaction on the application level, it is 

often necessary to model communication-related behaviour such as establishing and releasing a 

connection, sending, and receiving messages, and important properties of the communication 

protocols and channel. Classical modelling approaches used for TCG such as multi-statechart or 

communicating processes support asynchronous communication appropriate for use between 
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distributed systems, but also synchronous communication appropriate between logical 

components of the same system. This makes it possible for the TCG tools to generate test cases 

that are correct w.r.t. communication behaviour. In practice, it is advisable to establish a good 

understanding of the semantics of communication-related model constructs (e.g., circular 

synchronous calls between components) and how the test generator deals with asynchronous 

communication. 

Data processing 

Subsystems in modern signalling architectures like ETCS or EULYNX communicate by exchange 

of messages which contain data of interest; they also usually require configuration data and may 

need to store processed data. Such data needs to be decoded and encoded, aggregated and 

disaggregated according to the system’s needs and standardized formats, i.e. read from memory, 

validated, possibly converted and saved to memory. That kind of behaviour can constitute a 

considerable percentage of the overall system behaviour but is rather simple in nature. Tests 

would need to check detailed rules describing relations between original and transformed data. 

This low degree of abstraction and often declarative specification seems less suited for extensive 

modelling in an – often executable – test generation model. Instead, it is usually a good idea to 

abstract from original data formats and simplify data exchanged at external and internal interfaces. 

Due to usually quite precise and standardized specifications, the use of formal means to check 

more detailed data processing rules appears well-suited. Nevertheless, TCG for data conversion 

behaviour is clearly possible and can make sense to some extent, e.g., if dedicated components 

for the aggregation/disaggregation of data (like in the RCA Object Aggregation layer, cf. Section 

6.3.1) need to be modelled anyway. Finally, TCG models can contain some internal data 

processing for which no direct test cases are generated but which is part of some other kind of 

behaviour; this is normal and should not be confused with explicit testing of data processing. 

Continuous systems 

Embedded systems often exhibit real-time continuous behaviour due to physical processes 

(mechanical, electrical/electronic). Clearly, such systems are part of railway signalling but 

discretizing their state space for use in central control has a long tradition and is applied even 

earlier in the processing chains in modern systems as the software parts increase. If needed, 

continuous system dynamics can be modelled instead of discrete behaviour or in addition to it 

(hybrid systems), e.g., using hybrid automata. However, test generation involving continuous 

behaviour is hard and approaches are rare (see e.g., [22]). 

7.5.3 Model-based system specification facilitating TCG 

In general, TCG does not require a certain style of system specification; it is the task of the tester 

to analyse the specification, determine what tests need to be conducted and come up with a 

suitable test model. However, the specification style and quality may greatly influence how difficult 

and thus how costly and time-consuming that task will be. For this reason, in the sequel, several 

aspects that facilitate efficient TCG are discussed, and recommendations are provided. It is 

assumed that a system model based TCG approach is followed, which not only seems to be most 
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beneficial for testing CCS systems, but also is affected most by how the system is specified. This 

approach requires a behavioural system specification as input. 

Conciseness 

It is in general beneficial for verification to have a high degree of precision and completeness in 

the specification because what is not specified will not be verified. This does not mean that every 

system detail needs to be specified – there are good reasons for specifications to leave details 

open for choice during design and implementation – but rather that all relevant information should 

be available and should be unambiguous. Being precise and complete can also mean to include 

“non-behaviour” which can be turned into negative tests. Model-based testing increases the need 

for precision and completeness because modelling tends to enforce these properties. If the 

specification does not meet them, this will not only lead to questions to the specifier, but a missing 

understanding of the system can also lead to bad design decisions for the test model. 

It is good practice for specifications to limit their variety: the number of terms, language constructs 

and diagram types used in the specification should not be unnecessarily big and similar facts 

should be expressed using similar ways. This serves in general the understandability of the 

specification; it is even more important for model-based testing, as it simplifies the mapping of the 

specification facts to appropriate model elements in the test model. 

Closeness to test model paradigm 

Often test models need to be executable for test case generation, so an imperative specification 

style is closer to what is needed than a declarative style. Most system model-based test generation 

tools use state-based models, especially UML/SysML state machines, to specify behaviour. 

Preferably, the specification already includes such models; this can simplify the translation to the 

test model behaviour considerably. Moreover, if the specification already links requirements to 

(specification) model elements (such as states or transitions of a statechart), it will be particularly 

easy to make sure that test cases for those requirements are generated and to trace them back 

to the specification. 

Explicitness 

Often, there exist implicit assumptions and implicit knowledge behind specifications. For different 

types of those, it is considered beneficial for model-based testing to make them explicit: 

1. Environment assumptions. Knowledge about the system environment can be used to complement 

the system model by an environment model. The TCG can exploit this model to generate less and 

more realistic test cases and to become more efficient (i.e. require less generation time). In 

addition, the system model may become simpler if environment behaviour is restricted. 

2. Intended basic system properties. The creation of a specification is often guided by general 

principles. It is helpful to include them in the specification although they may not constitute 

mandatory requirements: besides better understanding of the specification, they may include 

basic system properties, which can be used for testing in general (e.g. for test case validation, or 

by implementing observers for those properties for use during test execution), but they also can 

guide test model design and may be turned into static checks of the model. 
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3. Configuration data. Defining possible configurations or even suggesting configurations (standard 

configurations, configurations that include special behavioural features) is very helpful to provide 

an idea to the tester of how the generic system is going to be used, which will guide the test 

selection. In the best case, defined configuration data can be directly used to configure a generic 

test model so that test cases can be generated for that system configuration. 

4. Allowed execution modes. To define system behaviour, it is usually not sufficient to specify a 

number of interconnected functions; it also depends on how communication between system 

components and with the environment works (synchronous vs. asynchronous, channel 

properties), whether system parts can be parallelized (e.g., multi-threading), and which rules are 

applied for event/task scheduling in the system. Knowing about the allowed execution modes is 

important to model the behaviour correctly, but also to judge to which extent the TCG tool can 

generate the behaviours that may occur for a real system. 

Classification of behaviour 

It is good practice to distinguish between functional and non-functional requirements in 

specifications. This – and further subdivision of non-functional requirements – can support model-

based testing, because (a) functional testing is the main use of TCG, (b) also non-functional tests 

like performance or load tests may be generated, and (c) TCG is less suited for other non-

functional test like stress or usability tests. Further classifications of requirements according to 

their importance (mandatory vs. optional, core vs. peripheral functions, safety relevance, normal 

vs. degraded mode, etc.) may be relevant as well. Such information can be used in the test model 

to support flexible test selection (before test generation) and filtering (after test generation, based 

on importance of information generated into the test cases). 

It can also be useful to mark nondeterministic system behaviour if that is part of the specification. 

Being explicit about any kind of nondeterminism is helpful for testing, but it should be noted that 

genuine nondeterminism of the system (not just decisions left for the implementer, or limited 

deviations of output timing or values) is not supported by many TCG tools. For this reason, 

requirements that explicitly introduce nondeterministic behaviour should be avoided or be clearly 

recognizable, ideally also stating which parts of the system are influenced by that nondeterminism. 

The model-based tester then knows in advance that he needs to choose an appropriate tool, 

exclude the requirement from test case generation, or needs to cope with specific nondeterministic 

behaviour in the test environment. 
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8 Conclusion 

This deliverable has evaluated the existing specification approaches used by the EULYNX and 

RCA initiatives, considering the intent to merge them into one closely intertwined approach in the 

future. Both complement each other, as RCA with its broader scope focuses on architectural 

design and EULYNX with its narrower scope focuses on behavioural specification. However, the 

approaches are not well connected yet and only partly cover specification needs, since further 

types of behaviour are part of the RCA scope. This deliverable has described proposed extensions 

of the semi-formal EULYNX MBSE approach to specify different types of behaviour that are 

needed to meet the needs of RCA. The proposed extensions of the EULYNX MBSE approach will 

bridge the gap between EULYNX and RCA. 

More generally, the extensions described in this deliverable are: 

 Specifying the characteristics of a functional railway system (system of systems). 

 Specifying behaviour as mandatory requirements. 

 Improving the existing EULYNX specification approach (according to evaluation results from 

previous work in X2Rail-2 WP5[5]). 

 Additions to the existing EULYNX specification approach regarding further types of system 

behaviour. 

 Enhancing support for automated test case generation. 

Importantly, the extensions described in this deliverable aim to specify, verify, and validate system 

requirements efficiently within the scope of RCA, while being compatible with the automated 

transformation of specification models into formal models, for formal verification of these models 

(X2Rail-5 Task 10.8). This builds upon previous work in X2Rail-2 for the application of formal 

methods for verification of EULYNX specifications as described in [5]. 

Due to the currently still low progress in RCA, work has had to proceed based on assumptions. It 

is therefore necessary that results in this deliverable are reviewed again after further progress in 

RCA and adjusted if needed. This includes the use of appropriate specification approaches that 

also provide adequate support for rigorous verification of signalling systems and of the 

specification itself.  
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Appendix A: Ownership of results 

The following Table 2 lists the ownership of results for this deliverable. 

Table 2: Ownership of results 

This deliverable is jointly owned by the organisations listed above. The last three columns in the 
table are intentionally left empty. 

Ownership of results 

Company Percentage Short Description of 
share/  

of delivered input 

Concrete Result  
(where applicable) 

Deutsche Bahn 

(DB) 

   

Trafikverket (TRV)    

Deutsches Zentrum 

für Luft- und 

Raumfahrt e.V. 

(DLR) 

   


