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MOTIVATION

Data centers emit about 1% of global CO2 emissions.1
(for comparison: aviation emits about 2%)
Need to process larger and larger data. . .

Goal: Investigate new algorithms based on compressed data.

METHODS

Performance modelling: combine hardware abstractions with
characteristics of an algorithm ⇒ Identify bottlenecks/optimizations.2

Co-design of low-level building blocks and numerical algorithms:
(Often) Faster through more work and less data transfers.
Improve data science algorithms (clustering, medical image analysis).

HPC SYSTEMS
Increasing overall performance BUT

more levels of parallelism
‘slow’ data transfers

(Source: https://top500.org/)
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MULTI-DIMENSIONAL DATA
Scientific data often well structured
Example: real-time MRT images
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TENSOR-NETWORKS
Inspired by physics: ‘few’ parameters for
expontial large quantum state
Extend singular value decompositions
(SVD) to higher dimensions
Tensor-Train3 format:
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COMPRESSED DATA
Whole data set: 124 MB vs. 16.3 GB
Main features still visible

(original) (compressed)
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NUMERICAL ALGORITHMS

Linear algebra with compressed data
additions, scalar products, linear operators
linear solvers, eigensolvers

Black box approximation

FASTER DATA ANALYSIS
Preprocessing of real-time MRT data
(select matching frames in all slices)
Approximate spectral clustering
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RESULTS
Faster Tensor-Train compression4

Ideal runtime estimated with performance model
Optimized algorithm & implementation

Faster Tensor-Train arithmetic & solvers
Exploit structure to avoid operations
work-in-progress (estimated ∼2x speedup) 0.01
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FUTURE WORK
Complete ‘compressed’ workflow
Interaction of neural networks and
tensor networks (training/inference
with compressed data)
Further algorithms for data science
with different tensor network formats
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