Performance of numerical algorithms for low-rank tensor operations in tensor-train / matrix-product-states format

Knowledge for Tomorrow

Melven Röhrig-Zöllner German Aerospace Center (DLR), Institute for Software Technology

Content

- Introduction
- Tensor-train / matrix-product states for data compression

- Solving linear systems in tensor-train / matrix-product-states format
- Underlying linear algebra operations
- Conclusion

Introduction: performance engineering

• Levels of parallelism:

- single-core: ~100 flop per cycle "on the fly"
- multi-core: e.g. 128 cores (shared memory)
- multi-node: cluster of nodes (fast network)
- Data transfers vs. arithmetic operations: Computer model:
 - 1. load *n* bytes from memory
 - 2. perform k arithmetic operations (Flop)
 - 3. store *m* bytes in memory
 - \rightarrow Compute intensity: $I_c = \frac{k}{n+m}$

• Expected (ideal) runtime:

• memory-bound ($I_c < 16$): t = (n + m)/bandwidth

• compute-bound ($I_c > 16$):

compute intensity [Flop/Byte]

Introduction: linear algebra

Matrix-matrix product (GEMM):

 $\begin{array}{ccc} C &\leftarrow A & B \\ (n \times k) & (n \times m) \ (m \times k) \end{array}$

- 2nmk flops, 8(nk + nm + mk) data transfers
 - compute bound for $n \approx m \approx k \gg 100$
 - memory bound for $\min(n, m, k) \leq 100$

QR decomposition:

QR = A, with $Q^TQ = I$, and R upper triangular.

- $O(nm^2)$ flops, O(nm) data transfers
 - memory bound for $m \lesssim 100$
 - → tall-skinny QR (TSQR)

Singular Value Decomposition (SVD):

 $A = USV^{T},$ with $U^{T}U = I, V^{T}V = I$, and $S = \text{diag}(\sigma_{1}, ..., \sigma_{m}),$ $\sigma_{1} \ge \sigma_{2} \ge \cdots \ge \sigma_{m} \ge 0.$

• $O(nm^2)$ flops (usually: runtime $t_{SVD} \gg t_{QR} > t_{GEMM}$)

• Truncated SVD
$$\rightarrow$$
 best rank-r approximation:
 $\|A - \hat{B}\|_F = \min_{\operatorname{rank}(B) \leq r} \|A - B\|_F$
with $\hat{B} = U \operatorname{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) V^T$

Tensor network notation

- Tensor = multi-dimensional array: $X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$
- Contraction: sum over product of entries

 → generalization of matrix-matrix product
 example (contraction of 3rd dim. of X and 2nd of Y)

$$Z_{i_1,i_2,i_4,j_1,j_3} = \sum_{i_3} X_{i_1,i_2,\mathbf{i_3},i_4} Y_{j_1,\mathbf{i_3},j_3}$$

- In 2d: all contractions with transpose+GEMM: $AB, A^{T}B, AB^{T}, A^{T}B^{T}$
- > 2d: too many combinations!
 → tensor network notation

Tensor network notation (from physics!):

Matrix with orthogonal columns:

Tensor network notation (cont.)

Contractions:

Decompositions:

ranks /

bond-dimensions

 n_5

n₄

Content

- Introduction
- Tensor-train / matrix-product states for data compression
- Solving linear systems in tensor-train / matrix-product-states format
- Underlying linear algebra operations
- Conclusion

Data compression with TT-SVD: motivation

- Input: large, dense, high-dimensional data
- Example: Cardio MRT videos:
 - Multiple patients
 - Multiple views/cuts
 - Slices in z direction
 - Finer resolution in x/y direction
 - Videos over time
- Data looks very "similar" in all directions
- Goals:
 - 1. Compress data in tensor-train format
 - 2. Data analysis with compressed data

Truncated SVD in 2d

- Interpret picture as matrix
- Approximate matrix by lower rank:

((
	Data size	
	uncompressed:	160 kB
	compressed:	1.6 <i>r</i> kB

rank 1 approximation

Truncated SVD over time

- We can do the same for a movie over time...
- Interpret movie as matrix (time x pixels)
- Approximate matrix by lower rank:

Truncate in 2d and over time \rightarrow tensor-train / MPS

- We can combine both ideas...
- First truncate over time, then in x/y direction:

$\begin{array}{c|c} r & r \\ t & y \\ t & y \\ \end{array}$

Tensor-train decomposition / MPS for data compression

Performance of the tensor-train SVD

Setup: given dense $X \in \mathbb{R}^{n^d}$, desired rank r_{max}

Core idea:

 neat combination of (tall-skinny) matrix operations (TSQR, SVD, fused GEMM+reshape)

Results:

- Memory bound for small r_{max} (transfer volume ~2.2n^d values)
- Compute bound for $r_{\text{max}} \gtrsim 100$ (operations $\leq 12n^d r_{\text{max}}$ Flops)
- Common implementations are too slow (factor ≥ 50)

Röhrig-Zöllner et.al.: Performance of the low-rank TT-SVD for large dense tensors on modern multi-core CPUs, SISC, 2022 (doi: 10.1137/21m1395545)

TT-SVD of a 2²⁷ tensor on a 14-core Intel Skylake Gold 6132

TT-SVD for a real-world data set

Cardio-MRT data (subset): $19 \times 19 \times 300 \times 200 \times 200$ patients slices frames x-dir. y-dir. (complete data set: more patients × different views)

Data size	
Uncompressed:	8.7 GB (uint16)
	17.3 GB (float)
Compressed:	124 MB
$\epsilon = 0.002$	

TensorTrain_float
with dimensions = [19, 19, 5, 5, 3, 2, 2, 2, 2, 2, 5,
5, 2, 2, 2, 5, 5]
ranks = [19, 361, 711, 1336, 1565, 1267,
861, 943, 1177, 1382, 693, 187, 100, 50, 25, 5]

Example for data analysis step in TT format: extract distances

- Given: vectors $(w_1, ..., w_n) =: W, w_i \in \mathbb{R}^m$
- Calculate the pair-wise distances of all vectors: $d_{ij}^{2} = \left\|w_{i} - w_{j}\right\|_{2}^{2} = \left\|w_{i}\right\|_{2}^{2} - 2\langle w_{i}, w_{j} \rangle + \left\|w_{j}\right\|_{2}^{2}$
- Or their cosine similarities: $s_{ij} = \frac{\langle w_i, w_j \rangle}{\|w_i\|_2 \|w_j\|_2}$
- Both require $O(mn^2)$ operations
- Alternative approach:
 - Compress in TT format: O(mnr) operations
 - Rearrange sub-tensors
 - → approximation for cosine similarities

Content

- Introduction
- Tensor-train / matrix-product states for data compression
- Solving linear systems in tensor-train / matrix-product-states format
- Underlying linear algebra operations
- Conclusion

Linear algebra in tensor-train / matrix-product-states format

Linear solvers in TT format: motivation

Solve large-scale linear systems infeasible to store solution as a "dense" vector (e.g., operator dimension: $\mathbb{R}^{100^{10} \times 100^{10}}$)

Possible applications:

- High-dim. / parameterized / stochastic PDEs
- Large-scale optimal control problems
- Problems from quantum physics: often Hermitian eigenvalue problems (closely related to linear systems but not discussed here!)
- Data science: e.g., compressed sensing

Problem definition

Given:

- Low-rank linear operator: $\mathcal{A}_{TT} \in \mathbb{R}^{n^d} \to \mathbb{R}^{n^d}$
- Low-rank right-hand side: $B_{TT} \in \mathbb{R}^{n^d}$
- Desired tolerance: ϵ_{tol}

Calculate:

- Iterative solution X_{TT}^* with $\|\mathcal{A}_{TT}X_{TT}^* - B_{TT}\|_* \le \epsilon_{tol}$
- (choice of norm $\|\cdot\|_*$ depends on solution method)

Focus here on $n \gg 2$, e.g. dimensions 50^{10} (performance characteristics differ for 2^{N} !)

Common algorithms: TT-GMRES, TT-MALS, TT-AMEn

Methods:

- "Global": TT-GMRES GMRES applied in TT format with additional truncations
- "Local" projection onto 2 sub-tensors: TT-MALS (like DMRG but formulated for generic linear systems)
- "Local" projection onto 1 sub-tensor: TT-AMEn (subspace "enriched" with projected residuals)

(simple PDE, $20^6 \le n^d \le 100^{14}$, r < 100, $\epsilon_{tol} = 10^{-8}$):

- TT-GMRES about 100x slower than TT-MALS
- TT-MALS about 100x slower than TT-AMen

Preconditioning

Common practice for **sparse solvers**...

Required properties:

- 1. $\operatorname{cond}(PA) \ll \operatorname{cond}(A)$
- 2. cheap $y \leftarrow Px$ (apply precond. to vector)

Different variants:

- left preconditioning: PAx = Pb
- right preconditioning: APy = b, x = Py
- two-sided precond.: $P_LAP_Ry = P_Lb$, $x = P_Ly$

Need a few more constraints for **TT solvers**!

Desired properties ("global" preconditioner):

- 1. $\operatorname{cond}(\mathcal{PA}_{TT}) \ll \operatorname{cond}(\mathcal{A}_{TT})$ (fewer total (inner) iterations)
- 2. rank(\mathcal{PA}_{TT}) \approx rank(\mathcal{A}_{TT}) (complexity is cubic in the rank)
- 3. "make the operator more symmetric" (better convergence / possibly smaller r_{max})
- 4. "preserve problem structure"

Suggestion: simple rank-1 preconditioner

Idea:

- approximate TT-operator with rank 1: $\tilde{\mathcal{A}}_{TT} \approx \mathcal{A}_{TT}$ with rank $(\tilde{\mathcal{A}}_{TT}) = 1$
- Rank-1 inverse: $(\tilde{A}_1 \otimes \tilde{A}_2 \otimes \cdots \otimes \tilde{A}_d)^{-1} = \tilde{A}_1^{-1} \otimes \tilde{A}_2^{-1} \otimes \cdots \otimes \tilde{A}_d^{-1}$

Two-sided preconditioned operator (for symm. problems $\mathcal{L}_{TT}^T = \mathcal{R}_{TT}$):

 $\mathcal{L}_{TT}\mathcal{A}_{TT}\mathcal{R}_{TT}$

using SVDs $\tilde{A}_k = U_k S_k V_k^T$:

$$L_k = S_k^{-1/2} U_k^T$$
, $R_k = V_k S_k^{-1/2}$

Generic, fast and works well in my test cases.

Replace by problem-specific preconditioner if possible!

 \rightarrow Combines properties 1, 2, 3 but not 4.

TT-MALS projection

Idea:

- Vary only (X_k, X_{k+1}) (keeping $X_1, \dots, X_{k-1}, X_{k+2}, \dots, X_d$ fixed)
- Minimize energy:
 - $J(X_{TT}) \coloneqq 0.5 \langle X_{TT}, \mathcal{A}_{TT} X_{TT} \rangle \langle X_{TT}, B_{TT} \rangle$
- Sweep over dimensions $(k \leftarrow k \pm 1)$

Properties:

• $\mathcal{V}^T \mathcal{V} = I$ with $\mathcal{V} y_{TT} = X_{TT}$

For sym. pos. def. operator A_{TT} :

- Minimizes $||X_{TT} X_{TT}^*||_{\mathcal{A}_{TT}}$
- $\operatorname{cond}(\mathcal{V}^T \mathcal{A}_{TT} \mathcal{V}) \leq \operatorname{cond}(\mathcal{A}_{TT})$

Resulting "local" problem

Idea for non-symmetric projection

Sym. projection sub-optimal for non-sym. operator! \rightarrow use $\mathcal{W}^T \mathcal{A}_{TT} \mathcal{V}$ with $\mathcal{W} \neq \mathcal{V}$

Idea:

• Try to build \mathcal{W} to span directions of $\mathcal{A}_{TT}\mathcal{V}$

Properties:

- $\mathcal{W}^T \mathcal{W} = I$ with $\mathcal{A}_{TT} \mathcal{V} \approx \mathcal{W} M$
- Solution $\mathcal{W}^T \mathcal{A}_{TT} \mathcal{V}_{TT} = \mathcal{W}^T B_{TT}$ approximates: $\min_{\mathcal{Y}_{TT}} \|\mathcal{A}_{TT} \mathcal{V}_{TT} - B_{TT}\|_F$
- W_l, W_r chosen to make $\mathcal{W}^T \mathcal{A}_{TT} \mathcal{V}$ more normal

Derivation of the "local" operator

Results with non-symmetric projection

Setup:

- Simple PDE (dimensions 20¹⁰)
- TT-MALS with inner TT-GMRES
- Varying asymmetry (conv. to diff. ratio)

Observation:

 Alternative projection beneficial for strongly non-symmetric problems

TT-AMEn performance

Setup: simple PDE (conv.-diff. ratio = 10, $\epsilon_{tol} = 10^{-8}$)

Core ideas:

- Simple preconditioner
- Improved orthogonalization and SVD steps (with TSQR)
- Faster contractions (dim. reordering + padding)

Results:

- Not 1 dominating part in the algorithm
 → needs combination of improvements!
- Significant speedup (factor \sim 5)

Remark:

• Tweaked ttpy version with fast underlying BLAS (MKL)

TT-AMEn for a 50¹⁰ problem on a 64-core AMD EPYC 7773X

Content

- Introduction
- Tensor-train / matrix-product states for data compression
- Solving linear systems in tensor-train / matrix-product-states format
- Underlying linear algebra operations

Conclusion

Underlying linear algebra operations: motivation

High speedups: 50x (TT-SVD), 5x (TT-AMEn) (on the same hardware!)

Fair comparisons:

- No comparison vs. "unoptimized" code! \rightarrow all implementations call BLAS/LAPACK
- Use the same (multi-threaded) BLAS/LAPACK library (MKL with workaround for AMD)
- Except for some specialized operations...
 - Q-less tall-skinny QR ("TSQR" that only returns R)
 - Fused tall-skinny GEMM+reshape
 - Fused axpy+dot

So what did I change?

- Improve mapping of high-level operations to "building blocks"
- Exploit specialized operations (less generic/accurate than BLAS/LAPACK for all inputs)
- Improve data layout (BLAS/LAPACK must work with what it gets...)

Building blocks of one TT-SVD "step"

Standard implementation (large SVD for each step): Given tall-skinny $X \in \mathbb{R}^{n \times k}$, calculate:

$$\begin{split} X &= USV^{T}, \\ Q &\leftarrow V_{:,1:r}, \\ B &\leftarrow U_{:,1:r}S_{1:r,1:r}, \\ X' &\leftarrow \text{reshape}(B, \dots) \end{split}$$

Actual problem: calculate *Y*, *Q* with $Q^T Q = I$: $||X - BQ^T||_F \le \tau$, $X' \leftarrow \operatorname{reshape}(B, ...)$

Optimized implementation:

X = QR, $R = USV^{T},$ $Q \leftarrow V_{:,1:r},$ $X' \leftarrow \text{reshape}(XQ, ...)$

Underlying operations:

• SVD $(n \times k)$

• copy $(k \times r)$

• *r* axpy (*n*)

• reshape $(n \times r)$

Underlying operations:

- Q-less TSQR $(n \times k)$
- SVD $(k \times k)$
- copy $(k \times r)$
- tall-skinny GEMM+reshape $(n \times k \cdot k \times r)$

Linear solver building blocks: QRs and SVDs

Optimizations assume tallskinny / very rectangular matrices!

Orthogonalization

Given $X = X_1 X_2$, calculate: $X_1 = QB$, $X'_1 \leftarrow Q$, $X'_2 \leftarrow BX_2$

Standard: pivoted Householder QR

Optimized with Q-less TSQR:

$$\begin{array}{l} X_1 = QR, \\ X_1' \leftarrow X_1 R^{-1}, \\ X_2' \leftarrow RX_2 \end{array}$$

but X'_1 inaccurate for $cond(R) \gg 1$

Truncation

Given
$$X = X_1 X_2$$
 with $X_2^T X_2 = I$, calculate:
 $\|X_1 - QB\|_F < \tau$,
 $X'_1 = Q$,
 $X'_2 = BX_2$

Standard: truncated SVD

Optimized with Q-less TSQR: $X_1 = QR,$ $R \approx USV^T,$ $X'_1 = X_1VS^{-1},$ $X'_2 = SV^TX_2$ Again less orthogonal X'_1 but product X_1X_2 ok!

QRs+SVDs in **TT/MPS** addition+truncation

High-level operation: $Z_{TT} \approx X_{TT} + Y_{TT}$ Setup: dim. 50¹⁰, $r_X = 50$, $r_Y = 1, ..., 700$

Background:

- Combines QR- / SVD-steps
- Additional optimization for previously orthog. X_{TT} or Y_{TT} \rightarrow reuse orthogonal columns

TT-AXPY+TRUNC for 50¹⁰ TTs on a 64-core AMD EPYC 7773X

Linear solver building blocks: contractions

Multiply TT operator (MPO) with dense array

- Easily leads to complicated array accesses
- Freedom in memory-layout and padding! (operator prepared once and applied often)

Optimizations:

- Reorder and combine dimensions
 (big 1st dim./ e.g. ∑_{i,j} A_{:,i,j} B_{:,:,i,j} instead of ∑_{i,j} A_{:,i,j} B_{i,:,i,j})
- Pad 1st dim. (introduces zeros the dense array!) (to avoid cache thrashing)

Conclusion

TT-SVD compression of large dense data:

- Common implementations are about >50x too slow
- → Allows extracting interesting quantities for data analysis

Linear solvers in TT / MPS format:

- Obtained ~5x speedup over the standard implementation
- Presented some ideas on numerical aspects
 - Generic rank-1 preconditioner
 - Non-symmetric projection
- → Allow solving really high-dimensional linear systems!

Generic optimizations* for building blocks of tensor-network algorithms.

*mostly for very non-square matrix operations

Ideas for future work?