
Performance of low-rank Tensor Algorithms

Melven Röhrig-Zöllner1, Jonas Thies2 and Achim Basermann1
1 Institute for Software Technology, German Aerospace Center (DLR)
2 Delft Institute of Applied Mathematics, TU Delft



Problem 1

Low-rank approximation in tensor-train format (TT-SVD)
Given:
▶ large dense tensor X ∈ Rn1×n2×···×nd

▶ max. tensor-train rank rmax

▶ desired tolerance ϵtol

Calculate:
▶ tensor-train XTT with:

ranks(XTT) ≤ rmax and ∥X − XTT∥F ≲ ϵtol

Remarks:
▶ Focus on the tensor-train format; very similar approaches for some other formats
▶ Consider high-dimensional case (d ≫ 3) and sufficiently small TT-ranks r1, . . . rd−1



Problem 2 (work-in-progress)

Linear solver in tensor-train format
Given:
▶ low-rank linear operator ATT ∈ R(n1×n1)×(n2×n2)×···×(nd ×nd )

▶ low-rank right-hand side BTT ∈ Rn1×n2×···×nd

▶ desired tolerance ϵtol

Calculate:
▶ iterative solution XTT with

∥ATTXTT − BTT∥∗ ≲ ϵtol

Remarks:
▶ Residual/error norm ∥ · ∥∗ depends on the solution method.



Tensor-Train Format [Oseledets]

▶ Known as MPS (matrix-product states) in physics.
(tensor-network notation)

▶ Defined by series of 3d tensors

T1, · · · , Td , with Tk ∈ Rrk−1,nk ,rk , r0 = rd = 1

with ranks r1, . . . , rd−1 and dimensions n1, . . . nd .
▶ Approximates high-dim. tensor X ∈ Rn1×n2×···×nd with

XTT := T1 × T2 × · · · × Td

where · × · is the contraction: Ti × Ti+1 :=
∑

k(Ti):,:,k(Ti+1)k,:,: ∈ Rri−1×ni ×ni+1×ri+1

▶ Generalizes a truncated SVD to higher dimensions.



“Refined” Roofline performance model

Consider 2 bottlenecks:
1. Max. performance: Pmax,op [GFlop/s] (for e.g., op = double-precision FMA)
2. Saturated memory bandwidth : bs,pattern [GByte/s] (for e.g., pattern = load / axpy)
⇒ Machine intensity: Im := Pmax,op

bs,pattern

Analyze the algorithm:
1. Computations: nflops [flop]
2. Data transfers: Vload+store+update [byte]
⇒ Compute intensity: Ic := nflops

Vload+store+update

Expected ideal runtime:

t = max
(

nflops
Pmax,op

,
Vload+store+update

bs,pattern

)
[s]



Problem 1: TT-SVD

Standard algorithm
Input: Tensor X

for i = 1, . . . , d − 1 do
Reshape X to

(∏
k=i+1,d nk

)
× (ni ri−1)

Calculate SVD: USV T = X
Choose truncation rank ri
Ti ← V T

1:ri
, reshape to ri−1 × ni × ri

X ← U1:ri S1:ri

end for
Td ← X , reshape to (rd−1 × nd × 1)

Output: Tensor-train (T1, . . . , Td)

Observations
▶ Based on SVDs, GEMMs, and reshaping.
▶ (Reshaping should copy to padded

mem.-layout to avoid 2k strides.)
▶ Cheap operations are grayed out.
▶ Large matrices are tall and skinny.
▶ Size of X ideally decreases in each step.



Problem 1: TT-SVD

Standard algorithm
Input: Tensor X

for i = 1, . . . , d − 1 do
Reshape X to

(∏
k=i+1,d nk

)
× (ni ri−1)

Calculate SVD: USV T = X
Choose truncation rank ri
Ti ← V T

1:ri
, reshape to ri−1 × ni × ri

X ← U1:ri S1:ri

end for
Td ← X , reshape to (rd−1 × nd × 1)

Output: Tensor-train (T1, . . . , Td)

Observations
▶ Based on SVDs, GEMMs, and reshaping.
▶ (Reshaping should copy to padded

mem.-layout to avoid 2k strides.)
▶ Cheap operations are grayed out.
▶ Large matrices are tall and skinny.
▶ Size of X ideally decreases in each step.



Problem 1: TT-SVD

Improved algorithm
Input: Tensor X

Skip first j − 1 iterations
Reshape X to

∏
k=j+1,d nk × (n1 · · · nj)

for i = j , . . . , d − 1 do
Tall-skinny QR decomposition: QR = X
Small SVD: ŪSV T = R
Choose rank ri
Ti ← V T

1:ri
, reshape to ri−1 × ni × ri

X ← XV1:ri , reshape to n̄i+1 × (ni+1ri)
end for
Recover T1, . . . , Tj from Tj

Output: Tensor-train (T1, . . . , Td−1, X )

Remarks
▶ Replaced costly SVD by tall-skinny QR
▶ Never use Q → Q-less TSQR
▶ Fused reshape and tall-skinny GEMM
→ Reads the input data twice (1st iteration):

(once for QR = X , once for X ← XV1:r1)



Problem 1: TT-SVD

Improved algorithm
Input: Tensor X

Skip first j − 1 iterations
Reshape X to

∏
k=j+1,d nk × (n1 · · · nj)

for i = j , . . . , d − 1 do
Tall-skinny QR decomposition: QR = X
Small SVD: ŪSV T = R
Choose rank ri
Ti ← V T

1:ri
, reshape to ri−1 × ni × ri

X ← XV1:ri , reshape to n̄i+1 × (ni+1ri)
end for
Recover T1, . . . , Tj from Tj

Output: Tensor-train (T1, . . . , Td−1, X )

Remarks
▶ Replaced costly SVD by tall-skinny QR
▶ Never use Q → Q-less TSQR
▶ Fused reshape and tall-skinny GEMM
→ Reads the input data twice (1st iteration):

(once for QR = X , once for X ← XV1:r1)



Optimized TT-SVD: performance analysis (1)

Building blocks
Q-less TSQR for (X ∈ Rn×m):
▶ Vload = nm
▶ nflops ≈ 2nm2

TSMM+reshape for (X ← XM, M ∈ Rm×k):
▶ Vload+store = n(m + k)
▶ nflops = 2nmk

Complete algorithm
Assume size of X reduces by f < 1 in each
iteration (so k/m ≤ f ).
⇒ Upper bound from the geometric series:
▶ Vload+store ≤ 2N

1−f + fN
1−f

▶ nflops ≲ 2Nrmax

(
1
f + 2

1−f

)
+ O(r3

max)

with N :=
∏d

i=1 ni .



Optimized TT-SVD: performance analysis (1)

Building blocks
Q-less TSQR for (X ∈ Rn×m):
▶ Vload = nm
▶ nflops ≈ 2nm2

TSMM+reshape for (X ← XM, M ∈ Rm×k):
▶ Vload+store = n(m + k)
▶ nflops = 2nmk

Complete algorithm
Assume size of X reduces by f < 1 in each
iteration (so k/m ≤ f ).
⇒ Upper bound from the geometric series:
▶ Vload+store ≤ 2N

1−f + fN
1−f

▶ nflops ≲ 2Nrmax

(
1
f + 2

1−f

)
+ O(r3

max)

with N :=
∏d

i=1 ni .



Optimized TT-SVD: performance analysis (2)

Interpretation
Influence compute intensity Ic through combining (or splitting) dimensions in the calculation:
▶ f = 1/16 (low rank): Vload+store ≲ 2.2N and nflops ≲ 36Nrmax

▶ f = 1/2 (medium rank): Vload+store ≲ 5N and nflops ≲ 12Nrmax

Comparison with measurements (using likwid-perfctr)
Decompose a double-precision 230 tensor (8GB):

rmax operations (est.) data transfers (est.)
[GFlop] [GByte]

f = 1/2 1 14 (13) 43 (43)
f = 1/16 1 41 (39) 21 (19)
f = 1/2 31 417 (399) 43 (43)

(ni and ri are integers, so only some values for f are possible. Measured on an Intel Skylake Gold 6132.)



Optimized TT-SVD: performance analysis (2)

Interpretation
Influence compute intensity Ic through combining (or splitting) dimensions in the calculation:
▶ f = 1/16 (low rank): Vload+store ≲ 2.2N and nflops ≲ 36Nrmax

▶ f = 1/2 (medium rank): Vload+store ≲ 5N and nflops ≲ 12Nrmax

Comparison with measurements (using likwid-perfctr)
Decompose a double-precision 230 tensor (8GB):

rmax operations (est.) data transfers (est.)
[GFlop] [GByte]

f = 1/2 1 14 (13) 43 (43)
f = 1/16 1 41 (39) 21 (19)
f = 1/2 31 417 (399) 43 (43)

(ni and ri are integers, so only some values for f are possible. Measured on an Intel Skylake Gold 6132.)



TT-SVD: Building blocks (TSQR and TSMM+reshape)

0

20

40

60

80

100

120

1 10 100

bs,load

P
peak /Ic

Q-less TSQR

TSQR (MKL dtpqrt2)Trilinos TSQR

ba
nd

wi
dt

h
[G

By
te

/s
]

#columns

0

20

40

60

80

100

120

10 100 1000

bs,stream_mem

P
peak /Ic

ba
nd

wi
dt

h
[G

By
te

/s
]

#columns

TSMM+reshape
MKL dgemm

((∼ 25 · 106)×m matrix in double-precision (0.2m GB); 16-core Intel CascadeLake Gold 6242.)



TT-SVD: performance results

▶ Decompose random 227 tensor
▶ Data size: 1GB
▶ 14-core Intel Skylake Gold 6132
→ Existing software: >50x slower
▶ tntorch first constructs a

full-rank TT, then truncates it.
▶ remark: my random number

generator is slower than the
TT-SVD for rmax ≲ 20.

0.1

1

10

100

0 5 10 15 20 25 30 35 40 45 50

2.2N/bs,load

12Nrmax/Ppeak

tim
e

[s]

max. rank

t3f (Eigen::BDCSVD)
TensorToolbox (MKL dgesvd)

tntorch (MKL dgeqrf)
simple numpy (MKL dgesdd)

ttpy (MKL dgesvd)
TSQR TT-SVD



Problem 2: Linear solvers in TT format

Numerical methods
▶ TT-MALS (alternating least-squares):

Optimize sub-tensors (Ti , Ti+1) for i = 1, . . . , d − 1, . . . , 1 (“Sweeps”)
→ sub-problem again in tensor-train format

▶ TT-GMRES (or other Krylov methods):
Iterative algorithms based on arithmetic operations in TT format.
→ need TT-truncation to reduce ranks

All based on similar building blocks.

TT-truncation algorithm
▶ Given tensor-train XTT, approximate by X̃TT with lower rank.
▶ Sweep left-to-right using QR decompositions,

then sweep right-to-left using SVD decompositions (or vice versa).



Problem 2: Linear solvers in TT format (2)

Required decompositions for the TT-truncation
Given tall-skinny X ∈ Rn×m (possibly rank-deficient!):
▶ QR-Sweep: actually need X = QB with QT Q = I

Possible implementations:
▶ Pivoted QR: X = Q(RPT )
▶ SVQB: M ← X T X , BT B = M ⇒ X = (XB+)B (too inaccurate in my tests)
▶ Q-less TSQR: X = QRPT , recover Q = XPR−1

▶ SVD-Sweep: actually need X ≈ QB with QT Q = I and tolerance ϵ > ϵFP
Possible implementations:
▶ Truncated SVD: X ≈ U(SV T )
▶ Gram-SVD: M ← X T X , M = VS2V T ⇒ X = (XVS−1)(SV T ) (too inaccurate in my tests)
▶ Q-less TSQR “trick”: X = QR, R ≈ USV T , recover QU = XVS−1



Conclusion

▶ Goals:
▶ low-rank approximation of large dense high-dimensional tensors
▶ iterative algorithms in low-rank (tensor-train) format

▶ Roofline model for the TT-SVD algorithm:
▶ low rank: ∼ access data twice
▶ medium rank: O(rmax · N)

▶ Almost optimal TT-SVD implementation: ∼ 50× faster than others

▶ Difficult mapping of tensor algorithms to efficient building blocks
(algorithms based on lots of (small) SVDs)

▶ Work-in-progress: operations for linear solvers in tensor-train format



Literature

▶ Röhrig-Zöllner; Thies & Basermann: "Performance of the Low-Rank TT-SVD for Large
Dense Tensors on Modern MultiCore CPUs", SISC, 2022

▶ Oseledets: "Tensor-Train Decomposition", SISC, 2011

▶ Demmel et.al.: "Communication-optimal Parallel and Sequential QR and LU
Factorizations", SISC 2012

▶ Williams et.al.: "Roofline: An Insightful Visual Performance Model for Multicore
Architectures", Comm. of the ACM, 2009



TT-SVD runtime: different tensor dimensions

▶ Decompose large random tensor,
rmax = 1, . . . , 50
(double precision)

▶ Data size: ∼ 8GB
▶ Combine first dimensions only if

beneficial
▶ 14-core Intel Skylake Gold 6132
→ Calculation more costly with

fewer small dimensions!
▶ Jumps in runtime: switch from

e.g. 88 × 82 to 87 × 83 in the
first tsqr step

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50

read data twice
tim

e
[s]

max. rank

230 tensor
415 tensor
810 tensor
109 tensor
326 tensor



TT-SVD runtime: distributed memory (MPI)

▶ Decompose random 2d tensor,
d = 29, . . . , 36,
rmax = 1, . . . , 50
(double precision)

▶ Data size: 4GB, . . . , 550GB
▶ Distributed parallel (user-defined

MPI reduction for TSQR)
▶ Up to 4 nodes with 4x14-core

Intel Skylake Gold 6132
→ Scales well onto multiple nodes

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50
229 elements per socket

230 elements per socket

231 elements per socket

23
2 elem

ents per socket

tim
e

[s]

max. rank

1 socket(s)
2 socket(s)
4 socket(s)
8 socket(s)

16 socket(s)


