Performance of low-rank Tensor Algorithms

Melven Röhrig-Zöllner¹, Jonas Thies² and Achim Basermann¹

¹ Institute for Software Technology, German Aerospace Center (DLR)

² Delft Institute of Applied Mathematics, TU Delft

Problem 1

Low-rank approximation in tensor-train format (TT-SVD)

Given:

- ▶ large dense tensor $X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$
- max. tensor-train rank r_{max}
- ightharpoonup desired tolerance ϵ_{tol}

Calculate:

► tensor-train X_{TT} with:

$$ranks(X_{TT}) \le r_{max}$$
 and $||X - X_{TT}||_F \lesssim \epsilon_{tol}$

Remarks:

- ► Focus on the tensor-train format; very similar approaches for some other formats
- ▶ Consider high-dimensional case ($d \gg 3$) and sufficiently small TT-ranks $r_1, \dots r_{d-1}$

Problem 2 (work-in-progress)

Linear solver in tensor-train format

Given:

- ▶ low-rank linear operator $A_{TT} \in \mathbf{R}^{(n_1 \times n_1) \times (n_2 \times n_2) \times \cdots \times (n_d \times n_d)}$
- ▶ low-rank right-hand side $B_{TT} \in \mathbf{R}^{n_1 \times n_2 \times \cdots \times n_d}$
- ightharpoonup desired tolerance ϵ_{tol}

Calculate:

 \triangleright iterative solution X_{TT} with

$$\|\mathcal{A}_{\mathsf{TT}} X_{\mathsf{TT}} - B_{\mathsf{TT}}\|_* \lesssim \epsilon_{\mathsf{tol}}$$

Remarks:

▶ Residual/error norm $\|\cdot\|_*$ depends on the solution method.

Tensor-Train Format [Oseledets]

(tensor-network notation)

- Known as MPS (matrix-product states) in physics.
- Defined by series of 3d tensors

$$T_1, \cdots, T_d$$
, with $T_k \in \mathbf{R}^{r_{k-1}, n_k, r_k}, r_0 = r_d = 1$

with ranks r_1, \ldots, r_{d-1} and dimensions n_1, \ldots, n_d .

▶ Approximates high-dim. tensor $X \in \mathbf{R}^{n_1 \times n_2 \times \cdots \times n_d}$ with

$$X_{\mathsf{TT}} := T_1 \times T_2 \times \cdots \times T_d$$

where $\cdot \times \cdot$ is the contraction: $T_i \times T_{i+1} := \sum_{\nu} (T_i)_{\dots, \nu} (T_{i+1})_{k \dots} \in \mathbf{R}^{r_{i-1} \times n_i \times n_{i+1} \times r_{i+1}}$

Generalizes a truncated SVD to higher dimensions.

"Refined" Roofline performance model

Consider 2 bottlenecks:

- 1. Max. performance: $P_{\text{max,op}}$ [GFlop/s] (for e.g., op = double-precision FMA)
- 2. Saturated memory bandwidth : $b_{s,pattern}$ [GByte/s] (for e.g., pattern = load / axpy)
- \Rightarrow Machine intensity: $I_m := \frac{P_{\text{max,op}}}{b_{s,pattern}}$

Analyze the algorithm:

- 1. Computations: n_{flops} [flop]
- 2. Data transfers: $V_{load+store+update}$ [byte]
- \Rightarrow Compute intensity: $I_c := \frac{n_{\mathrm{flops}}}{V_{\mathrm{load+store+update}}}$

Expected ideal runtime:

$$t = \max\left(rac{n_{ extsf{flops}}}{P_{ extsf{max,op}}}, rac{V_{ extsf{load+store+update}}}{b_{s,pattern}}
ight)[extsf{s}]$$

Standard algorithm

```
Input: Tensor X

for i=1,\ldots,d-1 do

Reshape X to \left(\prod_{k=i+1,d}n_k\right)\times (n_ir_{i-1})

Calculate SVD: USV^T=X

Choose truncation rank r_i

T_i\leftarrow V_{1:r_i}^T, reshape to r_{i-1}\times n_i\times r_i

X\leftarrow U_{1:r_i}S_{1:r_i}

end for

T_d\leftarrow X, reshape to (r_{d-1}\times n_d\times 1)

Output: Tensor-train (T_1,\ldots,T_d)
```


Standard algorithm

```
Input: Tensor X

for i=1,\ldots,d-1 do

Reshape X to \left(\prod_{k=i+1,d}n_k\right)\times (n_ir_{i-1})

Calculate SVD: USV^T=X

Choose truncation rank r_i

T_i\leftarrow V_{1:r_i}^T, reshape to r_{i-1}\times n_i\times r_i

X\leftarrow U_{1:r_i}S_{1:r_i}

end for

T_d\leftarrow X, reshape to (r_{d-1}\times n_d\times 1)

Output: Tensor-train (T_1,\ldots,T_d)
```

Observations

- Based on SVDs, GEMMs, and reshaping.
- (Reshaping should copy to padded mem.-layout to avoid 2^k strides.)
- ► Cheap operations are grayed out.
- Large matrices are tall and skinny.
- ► Size of *X* ideally decreases in each step.

Improved algorithm

```
Input: Tensor X
   Skip first i-1 iterations
  Reshape X to \prod_{k=i+1,d} n_k \times (n_1 \cdots n_j)
  for i = j, \ldots, d-1 do
      Tall-skinny QR decomposition: QR = X
     Small SVD: \bar{U}SV^T = R
     Choose rank r:
      T_i \leftarrow V_{1:r}^T, reshape to r_{i-1} \times n_i \times r_i
     X \leftarrow XV_{1:r_i}, reshape to \bar{n}_{i+1} \times (n_{i+1}r_i)
  end for
  Recover T_1, \ldots, T_i from T_i
Output: Tensor-train (T_1, \ldots, T_{d-1}, X)
```



```
Improved algorithm
Input: Tensor X
   Skip first i-1 iterations
  Reshape X to \prod_{k=i+1,d} n_k \times (n_1 \cdots n_j)
  for i = j, \ldots, d-1 do
      Tall-skinny QR decomposition: QR = X
      Small SVD: \bar{U}SV^T = R
      Choose rank r:
      T_i \leftarrow V_{1:r_i}^T, reshape to r_{i-1} \times n_i \times r_i
     X \leftarrow XV_{1:r_i}, reshape to \bar{n}_{i+1} \times (n_{i+1}r_i)
   end for
   Recover T_1, \ldots, T_i from T_i
Output: Tensor-train (T_1, \ldots, T_{d-1}, X)
```

Remarks

- Replaced costly SVD by tall-skinny QR
- ▶ Never use $Q \rightarrow Q$ -less TSQR
- Fused reshape and tall-skinny GEMM
- \rightarrow Reads the input data twice (1st iteration): (once for QR = X, once for $X \leftarrow XV_{1:r_1}$)

Optimized TT-SVD: performance analysis (1)

Building blocks

Q-less TSQR for $(X \in \mathbb{R}^{n \times m})$:

- $ightharpoonup V_{load} = nm$
- $ightharpoonup n_{\text{flops}} \approx 2nm^2$

TSMM+reshape for (X ← XM, M ∈ $\mathbb{R}^{m \times k}$):

- $ightharpoonup V_{load+store} = n(m+k)$
- $ightharpoonup n_{\mathsf{flops}} = 2nmk$

Optimized TT-SVD: performance analysis (1)

Building blocks

Q-less TSQR for $(X \in \mathbb{R}^{n \times m})$:

- $ightharpoonup V_{load} = nm$
- $ightharpoonup n_{\text{flops}} \approx 2nm^2$

TSMM+reshape for $(X \leftarrow XM, M \in \mathbb{R}^{m \times k})$:

- $V_{\text{load+store}} = n(m+k)$
- $ightharpoonup n_{\mathsf{flops}} = 2nmk$

Complete algorithm

Assume size of X reduces by f < 1 in each iteration (so $k/m \le f$).

⇒ Upper bound from the geometric series:

$$ightharpoonup V_{\mathsf{load}+\mathsf{store}} \leq rac{2N}{1-f} + rac{fN}{1-f}$$

$$ho$$
 $n_{\mathsf{flops}} \lesssim 2Nr_{\mathsf{max}}\left(\frac{1}{f} + \frac{2}{1-f}\right) + O(r_{\mathsf{max}}^3)$

with
$$N := \prod_{i=1}^d n_i$$
.

Optimized TT-SVD: performance analysis (2)

Interpretation

Influence compute intensity I_c through combining (or splitting) dimensions in the calculation:

- ▶ f = 1/16 (low rank): $V_{\text{load+store}} \lesssim 2.2 N$ and $n_{\text{flops}} \lesssim 36 N r_{\text{max}}$
- f=1/2 (medium rank): $V_{\text{load+store}} \lesssim 5N$ and $n_{\text{flops}} \lesssim 12Nr_{\text{max}}$

Optimized TT-SVD: performance analysis (2)

Interpretation

Influence compute intensity I_c through combining (or splitting) dimensions in the calculation:

- f=1/16 (low rank): $V_{\text{load+store}} \lesssim 2.2 N$ and $n_{\text{flops}} \lesssim 36 N r_{\text{max}}$
- ▶ f = 1/2 (medium rank): $V_{\text{load+store}} \lesssim 5N$ and $n_{\text{flops}} \lesssim 12Nr_{\text{max}}$

Comparison with measurements (using likwid-perfctr)

Decompose a double-precision 2³⁰ tensor (8GB):

	r_{max}	operations (est.)	data transfers (est.)
		[GFlop]	[GByte]
f = 1/2	1	14 (13)	43 (43)
f = 1/16	1	41 (39)	21 (19)
f = 1/2	31	417 (399)	43 (43)

(n_i and r_i are integers, so only some values for f are possible. Measured on an Intel Skylake Gold 6132.)

TT-SVD: Building blocks (TSQR and TSMM+reshape)

TT-SVD: performance results

- ▶ Decompose random 2²⁷ tensor
- ▶ Data size: 1GB
- ► 14-core Intel Skylake Gold 6132
- \rightarrow Existing software: >50x slower
- ► tntorch first constructs a full-rank TT, then truncates it.
- remark: my random number generator is slower than the TT-SVD for $r_{\text{max}} \lesssim 20$.

Problem 2: Linear solvers in TT format

Numerical methods

- ► TT-MALS (alternating least-squares): Optimize sub-tensors (T_i, T_{i+1}) for i = 1, ..., d-1, ..., 1 ("Sweeps") \rightarrow sub-problem again in tensor-train format
- ► TT-GMRES (or other Krylov methods):

 Iterative algorithms based on arithmetic operations in TT format.

 → need TT-truncation to reduce ranks

All based on similar building blocks.

TT-truncation algorithm

- ▶ Given tensor-train X_{TT} , approximate by \tilde{X}_{TT} with lower rank.
- ► Sweep left-to-right using QR decompositions, then sweep right-to-left using SVD decompositions (or vice versa).

Problem 2: Linear solvers in TT format (2)

Required decompositions for the TT-truncation

Given tall-skinny $X \in \mathbb{R}^{n \times m}$ (possibly rank-deficient!):

- ▶ QR-Sweep: actually need X = QB with $Q^TQ = I$ Possible implementations:
 - Pivoted QR: $X = Q(RP^T)$
 - ► SVQB: $M \leftarrow X^T X$, $B^T B = M \Rightarrow X = (XB^+)B$

(too inaccurate in my tests)

- Q-less TSQR: $X = QRP^T$, recover $Q = XPR^{-1}$
- ▶ SVD-Sweep: actually need $X \approx QB$ with $Q^T Q = I$ and tolerance $\epsilon > \epsilon_{FP}$ Possible implementations:
 - ► Truncated SVD: $X \approx U(SV^T)$
 - ► Gram-SVD: $M \leftarrow X^T X$, $M = VS^2 V^T \Rightarrow X = (XVS^{-1})(SV^T)$ (too inaccurate in my tests)
 - ▶ Q-less TSQR "trick": X = QR, $R \approx USV^T$, recover $QU = XVS^{-1}$

Conclusion

- ► Goals:
 - low-rank approximation of large dense high-dimensional tensors
 - iterative algorithms in low-rank (tensor-train) format
- ▶ Roofline model for the TT-SVD algorithm:
 - ▶ low rank: ~ access data twice
 - ightharpoonup medium rank: $O(r_{\text{max}} \cdot N)$
- ightharpoonup Almost optimal TT-SVD implementation: $\sim 50 imes$ faster than others
- ▶ Difficult mapping of tensor algorithms to efficient building blocks (algorithms based on lots of (small) SVDs)
- ▶ Work-in-progress: operations for linear solvers in tensor-train format

Literature

- ▶ Röhrig-Zöllner; Thies & Basermann: "Performance of the Low-Rank TT-SVD for Large Dense Tensors on Modern MultiCore CPUs", SISC, 2022
- Oseledets: "Tensor-Train Decomposition", SISC, 2011
- Demmel et.al.: "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC 2012
- ▶ Williams et.al.: "Roofline: An Insightful Visual Performance Model for Multicore Architectures", Comm. of the ACM, 2009

TT-SVD runtime: different tensor dimensions

- Decompose large random tensor, $r_{\text{max}} = 1, \dots, 50$ (double precision)
- ▶ Data size: ~ 8GB
- Combine first dimensions only if beneficial
- ▶ 14-core Intel Skylake Gold 6132
- → Calculation more costly with fewer small dimensions!
- ► Jumps in runtime: switch from e.g. $8^8 \times 8^2$ to $8^7 \times 8^3$ in the first tsqr step

TT-SVD runtime: distributed memory (MPI)

- Decompose random 2^d tensor, d = 29, ..., 36, $r_{\text{max}} = 1, ..., 50$ (double precision)
- ▶ Data size: 4GB, ..., 550GB
- Distributed parallel (user-defined MPI reduction for TSQR)
- ► Up to 4 nodes with 4x14-core Intel Skylake Gold 6132
- → Scales well onto multiple nodes

