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A B S T R A C T

In recent years, many formal methods and tools for verifying Machine
Learning (ML) algorithms have been developed. However, they are
still in research stage and therefore it is difficult to determine how
and to which extent one can use formal verification on a specific
Artificial Intelligence (AI)-based system. Due to the lack of guidance
for applying formal verification approaches to ML-based systems, they
are rarely used in safety-critical applications like avionics which leads
to the development of new technologies being restricted in those
areas. In order to solve these problems, this work provides a first
step for closing this gap by presenting a framework that guides
through different verification objectives and supports choosing the
right tools for verifying an ML based component. As preparation for the
framework, the thesis also includes a systematic summary of state-of-
the-art literature on formal verification of ML algorithms. The workflow
of the framework will be demonstrated and validated with examples
from the avionics domain. The goal of the framework is to contribute to
making the integration of ML algorithms in safety-critical applications
possible.
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Z U S A M M E N FA S S U N G

Maschinelles Lernen bringt immer mehr Möglichkeiten mit sich und
wird somit auch für viele sicherheitskritischen Bereiche wie die Avionik
interessant. Damit keine Menschen oder die Umwelt zu Schaden kom-
men, müssen dort bestimmte Systemeigenschaften garantiert werden.
In traditionellen Systemen wird dies of durch formale Verifikation
sichergestellt. Diese auf maschinellem Lernen basierenden Systeme
gehen aber mit besonderen Herausforderung einher, wie zum Beispiel,
dass das System nicht aufgrund von Eigenschaften definiert wird, son-
dern anhand von großen Datenmengen erlernt wird. Außerdem wer-
den oft große, komplizierte Modelle genutzt.

Zurzeit wird deswegen viel in dem Bereich geforscht, sodass eine
Vielzahl an Methoden und Software entstanden ist, die versucht auf un-
terschiedlichen Modellen verschiedenste Eigenschaften zu verifizieren.
Außerdem müssen viele Elemente bei der Verifikation bedacht werden,
von den Daten über den Trainingsprozess über das fertig trainierte
Modell bis hin zu dessen Implementierung. Insbesondere wenn es
eine große Anzahl an Modellen gibt, für die unterschiedlichste Eigen-
schaften gezeigt werden müssen, wird dies schnell unübersichtlich.

In dieser Arbeit wird ein modellbasiertes Framework vorgeschlagen,
um diese komplexen Verifizierungsprozesse und die damit eingehen-
den Entscheidungen für Eigenschaften und Methoden übersichtlich-
er und einfach zu machen und damit insbesondere die Verwen-
dung von formaler Verifikation zu ermöglichen. Das Framework un-
terstützt bei der Definition von Anforderungen an das System, deren
Formalisierung in ein oder mehrere verifizierbare Eigenschaften, der
Auswahl von für den Anwendungsfall geeigneten Verifikationsmetho-
den basierend auf Merkmalen des betrachteten Objektes, der formalen
Art der zu verifizierenden Eigenschaft und weiteren technischen Merk-
malen wie der zur Verfügung stehenden Hardware.

Dafür wurde eine umfangreiche Literaturrecherche nach Definitio-
nen formaler Eigenschaften und Verifikationsmethoden für neuronale
Netze durchgeführt. Auf diese Art von Objekten beschränkt sich die
detaillierte Implementierung des Frameworks, um den Aufwand der
Arbeit im Rahmen zu halten. Die Ergebnisse der Literaturrecherche
wurden zu Leitlinien für die Definitionen der Anforderungen und
Eigenschaften zusammengefasst. Außerdem wurde eine erweiterbare
CSV-Tabelle erstellt, die verschiedene Verifikationmethoden und deren
Merkmale beinhaltet. Basierend auf dieser Tabelle und dem in der mod-
ellbasierten Softwareentwicklungssoftware Cameo definierten Mod-
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ell des Systems und der Eigenschaften können dann automatisiert
passende Methoden gefunden werden. Weitere Automatisierungen
wurden in der erstellten Vorlage implementiert, beispielsweise die au-
tomatisierte Ausführung aller zu überprüfenden Verifikationsprobleme
und das Zurückführen von deren Ergebnissen auf die ursprünglichen
Anforderungen.

Das Framework wurde außerdem auf zwei Anwendungsfälle mit
Avionik-Bezug angewendet, um den kompletten Verifikationsprozess
zu demonstrieren. Zunächst wird dafür ein in der formalen Veri-
fikation von neuronalen Netzen häufig verwendetes Beispiel namens
HCAS verwendet, das durch Aktionsempfehlungen das Zusammen-
stoßen von Flugzeugen verhindern soll. Es besteht aus 45 relativ ein-
fachen neuronalen Netzen und hier wurde nur das Bestimmen von
lokalen Eigenschaften getestet. Aufgrund von den angegebenen tech-
nischen Einschränkungen des benutzen Laptops, wurde hier allerdings
trotzdem nur ein Tool namens Marabou ausgewählt. Marabou wurde
dann auch automatisiert für alle Verifikationsprobleme mit definierten
Input-Dateien ausgeführt. Der zweite untersuchte Anwendungsfall ist
ein Bedrohungs-Lokalisierungssytem, dass die Koordinaten von an-
deren Flugzeugen oder Objekten bestimmen soll. Es basiert auf dem
YOLOv7-Modell zur Objekterkennung. In diesem Fall gab das Frame-
work keine passenden Verificationsmethoden zurück, weil im Bereich
der formalen Verifikation von Objekterkennungsproblem und auch all-
gemein so komplexen Modellen erst noch Methoden entwickelt wer-
den müssen.
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1
I N T R O D U C T I O N

Because of the great success of ML algorithms, their use is spreading
to more and more applications and areas. Beside the growing powers
of ML models and algorithms, the increase in available memory and
computational power plays a big role in this trend. However, several
examples exist [Yua+18] where ML algorithms showed unexpected
wrong behavior in certain situations. Due to the black-box behavior
of many ML models, it is hard to capture those cases. Especially
in safety-critical applications, this hinders the use of such powerful
algorithms. Aviation is one of those areas where there is much potential
for improvements through ML technologies in safety-critical systems.

Therefore, there has been a lot of research [Zha+; Fer+22; HL20;
CH23] going on in the last years that aims to verify properties
on such systems and to thereby give guarantees on its behavior.
However, the methods of formal verification on traditional hardware
and software can not be directly transferred to such systems. Many
challenges have to be mastered like the complexity of the models
and environments. This also increases the difficulty in defining
properties that should be satisfied for a specific application and
further general ML-specific properties are developed. However, there
exist many different definitions of those properties and the names of
them are often not consistent. Moreover, there is a huge amount of
verification approaches, methods, and tools with different restrictions,
goals, requirements, and subproblems that are addressed. Even though
several papers have been published with surveys [CH23; Bri+23] of
the tools published in a certain time period that address one kind of
property it is still hard to collect all necessary information together.
This makes it very hard to apply formal verification techniques to
use cases. Some currently emerging guidelines, like the European
Union Aviation Safety Agency (EASA) guideline [EASb], are trying to
address this problem by defining objectives that should be verified
on an AI-based system through its whole life cycle. Still, they lack
in giving details on the formal definitions of properties and concrete
verification methods. Furthermore, report-based guidelines come with
the disadvantage that it is hard to add new methods and tools later
and that they cannot be directly integrated into the system.

Therefore, this thesis proposes a model-based framework that guides
through the verification of ML-based systems and focuses on formal
verification. It thereby addresses the problem of verifying complex

1



introduction 2

systems with many properties. One of the core elements of this
framework is a Comma-seperated values (CSV) table that includes
state-of-the-art methods and tools for executing the verification with
their requirements and restrictions. This table is easily extendable by
new tools or characteristics of tools without always having to change
the rest of the framework. For concrete guidance on requirements,
properties to verify, verification approaches, and tools, the focus will lie
on verifying the trained model and in specific Neural Networks (NNs).
The verification flow of the framework is also demonstrated for two
use cases from avionics: An aircraft collision avoidance system and a
threat localization system.

The thesis is structured as follows: Firstly, some preliminaries are
introduced. Secondly, the challenges of the verification of ML-based
systems are introduced and related laws and guidelines are discussed.
Afterwards, the developed framework will be presented. Firstly, this
chapter includes a basic overview of the framework and then goes
through each step of the verification flow in detail. The next chapter
demonstrates how the framework can be applied based on two
example use cases. Next, related work is presented and is followed
by a discussion on the framework and further ideas that can improve
the possibilities of the framework. Finally, a conclusion is drawn.



2
P R E L I M I N A R I E S

This chapter includes some background information on verification,
machine learning, and model-based system engineering. Those prelim-
inaries are necessary to understand the advantages of formal verifica-
tion over simulation and are needed to understand the core of this
thesis: a model-based framework that supports the formal verification
of machine learning based algorithms.

2.1 introduction to verification

To find errors and other issues early in the software engineering process
the two concepts Validation and Verification (V and V) are used. They
support with avoiding unnecessary expenses because the later software
issues are found in the life cycle the more expensive it is to solve
them. However, in safety critical systems finding software problems too
late can even lead to endangering human lives or have a catastrophic
impact on the environment. [Spa]

While the goal of validation is to ensure that the specification made
about the targeted system really leads to the right product, the goal of
verification is to ensure that the built systems satisfies its specification.
[AMFM]

As this thesis will focus on the latter, an introduction to different
methods of verification will be given in the following sections.

2.1.1 Verification by Simulation-based Testing

An intuitive way to test if a system or subsystem fulfills its specification
is to define inputs, let the system produce the corresponding outputs,
and verify if the outputs comply with the specification. For that,
the first big step is to define all realistic inputs. Such an input can
be, for example, a list of the values of three different temperature
sensors. Since during the verification process no real measured sensor
values are taken, but instead possible values are simulated, it is called
simulation-based verification. Sometimes, it is more effective to define
whole scenarios instead of each single input. Then, it is referred to as
scenario-based verification.

3



2.1 introduction to verification 4

Simulate
Inputs

Model
Gen-

erates
Outputs

Verify
Outputs

Figure 2.1: Flow of Simulation Verification

2.1.2 Formal Verification

Defining all possible inputs and testing them on the model can become
a very time-consuming task with increasing input space. Moreover, it
often can not be guaranteed that all possible inputs were tested. Those
disadvantages of simulation-based testing can be resolved by using
formal verification. Formal verification does not look at all the single
points in the input space but instead looks at the formal description of
the input space and processing on the inputs. This way, the algorithm
is verified for all possible inputs which is the main advantage of formal
verification.

However, there is also the disadvantage of formal verification that
it requires a more mathematical way of thinking in comparison to
simulation-based verification which is more intuitive for programmers.
In addition, checking properties can sometimes also be really time-
consuming. [Gan]

Basically, it is differed between two types of methods for formal
verification: Model checking and formal proofs. Model checking consist
of formally defining the model and the constraints and then letting a
model checking algorithm solve the problem. In contrast, formal proofs
are done manually. [Amj]

Formally
Define
Model
Specifi-
cation

Formally
Define
Model

Choose
Model

Checking
Algo-
rithm

Get Veri-
fication
Result

Figure 2.2: Flow of Model Checking

2.1.2.1 Model Checking

With model checking reactive systems can be examined, i.e. systems
that take an input, process it, and return an output and do not initialize



2.1 introduction to verification 5

execution. The goal of model checking is to verify that a given model
ϕ models its specification ψ, also written as

ϕ |= ψ. (2.1)

The model ϕ can be defined as a Kripke structure which is a tuple

(S,S0, T ,AP,L) (2.2)

with S being a set of states, S0 the initial states, T ⊆ S × S being
the possible transitions between states, AP being a set of propositions
for the labeling and L : S → 2AP being the labeling function. In
comparison to a Moore or Mealy Automaton it is non-deterministic
and in comparison with normal transition systems it has labels. Those
two properties make it a good fitting model for model checking. [Sch02;
Var09]

The model specification ψ contains all the properties to verify. It can
be defined by using Linear Temporal Logic (LTL). The properties can
be defined using the standard logical symbols like ∧ (AND), ∨ (OR)
and ¬ (NOT) and additional temporal logic symbols like G (Globally),
F (Eventually), X (Next) and U (Until) to describe the behavior of the
system. Because LTL can only represent properties over all traces of the
system, there is the so-called Computational Three Logic (CTL) which
is a logic over a tree with branches of infinite length and thereby can
model additional properties. [Sch02; Var09]

LTL expressions can also be transformed to non-deterministic Büchi
Automatons. Just like finite state machines, Büchi Automatons are a
tool to define a language, as the automaton either accepts or rejects
a given input word. However, Büchi Automatons have the special
property that they can accept or reject words of infinite length. [Sch02;
Var09]

To test if the operator |= is satisfied, an automated model checking
algorithm is used. For example, a product of the inverse of the model
specification in form of a Büchi Automaton and a model in form of a
Kripke structure can be calculated. This product can then be examined
on emptiness to find out if the model models the specification. If it is
empty, there exist no counter example where the model specification is
violated and therefore ϕ |= ψ is satisfied. (Figure 2.2)

To determine emptiness, the state space is searched with concepts
like depth-first search and breadth-first search are applied. Searching
through the state space is also referred to as reachability analysis.
However, checking explicitly all states leads to the state-explosion
problem and therefore is very time-consuming. [Bie+03]

Therefore, besides explicit state model checking, a new type of model
checking called symbolic model checking was developed. The idea
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behind it is to represent sets of states and transitions symbolically.
Binary Decision Diagrams can be used to efficiently represent them.

Furthermore, there are SAT-based model checking algorithms.
Satisfiability (SAT) based means that they rely on solvers of the Boolean
satisfiability problem. Those solvers are able to determine if a satisfy-
ing assignment exists for a given Boolean formula. One kind of such
algorithms is Bounded Model Checking (BMC) that aims to rapidly find
counterexamples. The execution is bounded by some length k and the
result is either an counterexample or that there is no counterexample of
length k. There exist several other types of SAT-based model checking
algorithms like Induction-Based and Interpolation-Based model check-
ing of which details are omitted here. [MRP; Aml+05]

2.1.2.2 Formal Proof

The idea behind formal proof verification is that experts manually
look at the implementation of the system and create an individual
mathematical proof for satisfying certain properties. In contrast to
model checking, this process is not automated. Even though this means
that the model and the specification do not have to be transformed to
a special form, it requires a lot of time of experts to verify one system.
[Amj]

2.1.2.3 Properties to Verify

With LTL formulas, different properties can be described depending on
the verification goal. Often they are in the form that the value of a
specific variable has to stay in a certain range.

Another popular verification goal is Logic Equivalence Checking. An
example for the need of this is the simplification process of an electrical
circuit. It has to be proven that the simplified circuit implements
the same logical functions like the complex one, i.e. their logical
equivalence has to be checked. [MRP]

2.1.2.4 Soundness and Completeness

An important property for algorithms is that they are sound. This
means that it only returns that a property is satisfied if it really is. If a
verification algorithm is not sound, it cannot guarantee any properties
anymore and therefore looses its main advantage over simulation
testing.

Another property that verification algorithms strive for but which is
less important than soundness is completeness. Complete verification
algorithms return always that a property is satisfied or unsatisfied, i.e.
they never return that the result is unknown. However, sometimes
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it is necessary to go without completeness to achieve computational
efficiency. [Roc+22]

2.2 machine learning

The main idea behind ML is that a system can learn a behavior from
data instead of programming a system with clearly defined rules
of behavior. There are three basic paradigms of machine learning:
Supervised, unsupervised and reinforcement learning.

In supervised learning, a model is trained on labeled data to learn a
relationship between some input variables and one or multiple output
variables. Therefore, a dataset is needed for training the model that
includes the values of the input variables and the corresponding output
for several data points. For example, the input variables of each data
point can be the pixels of an image and the output variable can be a
class of object that is on the image like cat, dog or airplane. The model
is then trained to learn the relation between how an image looks like
and what label it has. The input variables are also often referred to
as feature variables and the output as target. The probably most well-
known type of supervised learning model is the NN which consists
of layers of neurons that are connected. The connections represent for
example linear relationships combined with non-linearity in form of
activation functions.

For unsupervised learning no labeled data is needed. Functionalities
like grouping data points into classes or learning representative
vectors for words can be learned by an algorithm without supervision.
However, it still has to be defined what are good or bad results in the
above example respectively by a distance metric or by a second part
that reproduces the words from the vectors.

The third type of machine learning is reinforcement learning. Here,
an agent is defined that executes an action and gets a reward in each
time step. If a neural network is used for determining the agents
action than it is also called Deep Reinforcement Learning (DRL). This
approach proved to be very useful in many areas as it does not need
labeled data but is rather based on exploration instead.

Because the approaches considered later are specialized on NNs, they
are introduced in the next section. Afterwards the development process
of ML-based systems is regarded. [Nil]

2.2.1 Neural Networks

This section will briefly describe different properties of NN like
architectures, kinds of layers and activation functions.
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2.2.1.1 Architectures

There are many different architectures a neural network can have.
The simplest one is the fully-connected fully-connect feed forward
neural network (FC-NN). Fully-connected means that for each layer all
of its neurons are connected to all the neurons of the next layer. The
connections between one layer i and the following layer (i+ 1) consist
of a linear operation defined by a weight matrix W and a non-linear
transformation defined by an activation function σ(·). The values of
the neurons of the following layer are represented as a vector zi+1 and
can be calculated by

zi+1 = σ(W · zi) (2.3)

based on the vector zi containing the values of the neurons of the
regarded layer. The whole model f̂ is defined by Equation 2.3 and

f̂(x) = ŷ, z0 = x, zn = ŷ (2.4)

for an input vector x, a network with n layers, and an output ŷ. The
type of layers which the FC-NN consists of are also sometimes called
fully-connected layers or linear layers.

However, depending on the kind of data that is taken as input,
other architectures might perform better. For example, Convolutional
Neural Networks (CNNs) often perform good on image data. For CNNs,
two additional kinds of layers are necessary, convolutional layers and
pooling layers. Convolutional layers look at small regions around each
pixel to find patterns that can be recognized. Since the same function
parameters are used for all regions, convolutional layers can handle
big inputs. In addition, the layer fulfills the often desired property for
image processing that, for example, an airplane is always recognized as
airplane independently of its position in the image. On the other hand,
pooling layers sum up a region of pixels to only one output for further
processing. For example, this can be done by taking the maximum
value of the region, so-called max pooling, or by taking the average
of all values in the region, so-called average pooling. This can reduce
the input dimension of the next layer and thereby reduce complexity.

For the processing of sequences like in Natural Language Processing
(NLP), Recurrent Neural Networks (RNNs) or Long Short-Term Memory
Neural Networks (LSTM-NNs) can be used. They have the advantage of
saving information about previous outputs in form of an internal state
and use it as input for determining the next output.

Furthermore,Residual neural networks (Res-NNs) should be men-
tioned. They have layers similar to the FC-NNs, however, in them the
neurons are not necessarily connected to all of the neurons of the next
layer but connections can also skip a few layers. This enables a very
efficient training of NNs with a big depth. [RYH22]
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2.2.1.2 Activation Functions

Activation functions should bring some non-linearities into the model.
The most popular ones are the Rectified Linear Unit (ReLU) function,
the sigmoid function, and the hyperbolic tangent.

The ReLU function describes the identity for all values greater or
equal than zero while it is zero for all negative inputs:

σ(z) =

z if z ⩾ 0

0 else .
(2.5)

Therefore, by splitting the function at input zero two linear equations
can be obtained. This property is used in some verification tools later.
[RYH22]

2.2.2 Machine Learning Process

The development process of systems with ML-based components differs
from the traditional software development process as there is no clear
specification of the component but instead data and a model that has
to be trained.

After defining the goal of the system, data has to be collected or
suitable existing datasets have to be found. At this point already, a lot
of aspects have to be considered, for example, data completeness and
correctness. Moreover, the data often has to be processed, for example,
to get special input features out of raw sensor data. Afterwards, the
data has to be split into three parts, one for training, one for validation
and one for testing.

Next, the ML model has to be trained. Different hyper-parameter like
the architecture, number of layers and neurons, the learning rate, the
optimizer and the loss function have to be defined. During training the
model learns the weights W. When the model is trained its loss on the
validation dataset can be determined and the hyper-parameters can be
adjusted, so the model can be trained again for increased performance.
Once one decided on the hyper-parameters, the testing dataset can be
used to get the performance of the model on unseen data.

There are several concepts for making this training and validation
process better like k-fold cross validation, where the model is trained
several times on different overlapping parts of the training and based
on the results on the fold specific validation data the best model is
selected. Such approaches can help, for example, to increase the risks
resulting from random sampling and random weight initialization.
[Tea]
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2.3 model-based system engineering

As there often have to be modeled complex systems in avionics
which are additionally safety-critical, Model-based System Engineering
(MBSE) is often used to keep the overview of all components and
functionalities. For this reason and because the verification of ML-
based systems can also get complex fast, the MBSE approach is also
used for the framework presented later.

The main idea behind MBSE is that all elements that are documented
or visualized are connected in one big model. This concept is in
contrast to the traditional software engineering where different kinds
of documents are in different places designed by different people
in different languages. In MBSE the same system elements can be
visualized in different diagrams, for example, to show relations to other
elements. System components can be shown on a high level view while
being linked to their inner specification. [She20] For illustrating the
components, connections, and flows the System Modeling Language
(SysML) is often used. Typical diagrams for visualization are block
definition diagramss (BDDs), package diagrams, and activity diagrams.

A popular tool for MBSE is the commercial tool Cameo from Dassault
Systems [Das]. Because it offers many modeling possibilities and
the implementation and execution of small supporting scripts called
Opaque Behaviors it was also used in this thesis. However, the concepts
proposed here can also be applied to other tools.



3
C H A L L E N G E S , G U I D E L I N E S , A N D L AW S

As AI systems have also application is safety-relevant areas, it would be
great to profit of the advantages of formal verification, too. However,
using the ideas of formal verification in AI-based systems comes along
with some challenges. To still ensure a safe and correctly working
system, guidelines and laws concerning AI were developed.

The focus will be on data-driven AI systems, or in other words ML

systems, which learn their model from data while model-driven AI is a
model developed by experts to behave in an intelligent way.

3.1 challenges

Several properties of AI systems complicate the formal verification
process. Those include problems in formally defining the model
specification, the model, its environment, and the properties that
should be verified.

3.1.1 Role of Data

Since data-driven AI models learn what to output based on huge
amounts of data, the specification of the AI is basically the training
data. For example, it is not specified that a white object with two
wing-formed extensions on a blue background should be detected
as airplane. Instead, many pictures that contain airplanes and many
pictures that contain something else are used to train the network.
Therefore, there is no traditional-like specification for the system what
should be detected as an airplane and what not and with that it can
not be decided if the model follows its traditional-like specification
or not. Thereby, properties that should be verified on the model have
to be defined. Further challenges in this area include an automated
specification generation from a definition of the desired behavior.
[SS16]

Moreover, good data quality has to be assured because the models
quality is highly dependent on the data that was used to train it.
However, the way in which data is synthetically generated or collected
has a big impact on its data quality. There is a need for verifying
the selection, design, and augmentation of data. This includes that
reasonable inputs were used and that the data is realistic, i.e. is similar
to real world behavior. Furthermore, it has to be assured that the data

11
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has no bias or variance. Otherwise, unfair behavior could occur, for
example, when a pedestrian detection is only trained on white-skinned
people and therefore has problems recognizing everyone else. [SS16]

3.1.2 Model the Learning System

Further challenges in AI verification are the often really complex
architectures of the model and complex learning algorithms. In contrast
to traditional hardware and software systems, there is often a high-
dimensional input space, for example many pixels as inputs for
processing pictures, and an even higher parameter space. In addition,
often non-linear activation functions are used that make the model even
harder to formally verify.

Moreover, the models parameters cannot be easily interpreted by
humans and therefore, a further challenge is to generate explanation
for the decisions of the model. To enable this, there is a need for special
architectures and the definition of semantic feature spaces instead of
low-level view like pixels.

Additionally, the choice of network architectures and learning
algorithm is still partly a object of change and try and error. This makes
it hard to verify decisions on that.

Furthermore, with AI there is the risk that the trained model contains
unknown and unwanted functionalities as it only learns with statistical
methods from data. An example of such an unwanted functionality
would be that changing only few pixels in a picture leads to completely
different categorization while a human cannot see any difference
between those pictures. The objective addressing this problem is also
called robustness.

Even if most AI systems are deterministic, i.e. the same input leads to
the same output, outputs of the model to new inputs are unpredictable
and often not intuitive for humans.

In traditional hardware and software systems a system can be
decomposed in subsystems which are then verified independently and
compositional reasoning can be applied to verify the whole system.
However, due to the problem of formally specifying ML models it is
even harder to specify them in a consistent way which is required for
compositional reasoning. [SS16]

While in hardware design a correct-by-construction approach is
used to ensure a systems correctness while constructing it, this is
much harder in AI application. Before this challenge can be efficiently
addressed approaches for the formal specification of models have to be
found. [SS16]

A new challenge that follows from the idea of data-driven learning
is the verification of adaptive or so-called online learning algorithms.
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They have the special characteristic of constantly learning from the
input while being used. This changes the model with every input and
therefore model verification would be necessary after each new input.

3.1.3 Model the Environment

Because AI enables the interaction with much more complex environ-
ments, it comes along with challenges in defining them. While tradi-
tional systems model the environment on clearly defined input vari-
ables like float values of given temperature sensors and their defined
interfaces to the model, in AI systems it often has to be dealed with low-
level data like camera or LIDAR data and unknown variables and in-
terfaces. This requires a new way of modeling the environment. [SS16]

Traditional systems could be modeled with automatons and the
environment was modeled by non-deterministic transitions. Modeling
camera data this way would lead to too many transitions which also
leads to the challenge of modeling more complex environments.

Furthermore, probabilistic inputs and outputs of the system and
the need of modeling human behavior lead to the challenge of doing
environment modeling in a probabilistic and data-driven way.

3.1.4 Define the verification property and verification outputs

Moreover, the tasks of ML-based systems are often hard to formalize.
Such tasks would, for example, include the detection and classification
of objects and natural language processing. Only the end-to-end
behavior, i.e. the input and the label can be modeled. [SS16]

While traditional system verification defines logical requirements
on safety and liveness and results in a boolean with the value
satisfied or unsatisfied, for ML-based systems also quantitative objective
like robustness and performance should be modeled. Verifying those
objectives leads to new challenges. Moreover, it lacks on standards
methods and metrics for the evaluation. [SS16]

3.2 laws

To protect from the risks connected with AI, at least 60 countries have
adopted laws and regulation concerning AI. They focus on regulating
data in terms of privacy and prohibiting the use of biased data for
the training, ensuring safe behavior to prevent harm and defining
accountability for decisions. [Gü]
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3.2.1 EU Laws

The European Commission proposed a set of regulations in 2021 in
terms of the Artificial Intelligence Act (AIA). [BUa] The act defines the
challenges of AI as its complexity, opacity, unpredictability, autonomy
and the role of data. Based on that, they infer the problems of safety
risks, fundamental right risks, enforcement, legal uncertainty, mistrust
and fragmentation. [Sio]

For addressing those problems they define four categories of applica-
tions. Firstly, applications with an unacceptable risk, for example social
scoring like it is done in China, secondly high risks applications, for
example medical devices or autonomous aviation, thirdly AI with spe-
cific transparency obligations, for example bots that do impersonation,
and lastly applications with a minimal or no risk. The first category is
completely prohibited, for the second and third different requirements
and obligations are defined and the last one is permitted with no re-
strictions. [Sio]

However, there are still some issues in the AIA. Several exceptions are
made for using AI for good purposes like finding missing children and
those exception rules can be misused. Moreover, the law is not flexible
as it focuses on certain applications and no one knows what new areas
of AI will emerge in the upcoming years. [BUb]

The AIA is not the only law that influences the use of AI in the EU.
Other regulations, like data privacy laws, also include clauses that are
at the moment not compatible with most AI systems. One challenge
is the demand for explainability which is contained in the European
Union’s General Data Protection Regulation that says “[automatic
processing of data] should be subject to suitable safeguards, which
should include [...] the right to [...] obtain an explanation of the decision
reached [...]”. [HK20]

Furthermore, depending on the application area certification stan-
dards are adjusted to also support AI-based systems. For example, in
aviation the EASA is already working on guidelines to enable this. They
will be further discussed in the next section.

3.2.2 Further Countries Laws

Not all countries are working on as strict regulations on AI-based
systems as the EU. Regulation can always slow down the process of
developing new technologies and applying them to new applications.
The UK, for example, published a so-called AI Rulebook which is
much less restrictive with the argument that they want to become a
Superpower in AI technologies. [Gü]
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The USA published its regulations on AI in the National AI Initiative
and the the Algorithmic accountability act. Their content is rather
similar to the content of the EU’s AIA. [Gü]

Further countries like China and India are also working on AI specific
laws or are including AI-specific clauses in their laws. [Gü]

3.3 guidelines

Several guidelines to address the challenges of AI were developed by
national and international organizations and companies. In addition,
specific guidelines were developed for different application areas like
health, military and aviation. Already for ethical AI guidelines at
least 84 documents exist in the world that aim to define them. A
selection of the guidelines that were found is presented in the following
subsections. [Job]

3.3.1 SAE International

SAE International is a global association of engineers and technical
experts that is working on mobility solutions. In June 2021 they
published a document with the title Statement of Concerns for Artificial
Intelligence in Aeronautical Systems. [SAE21] The report gives a short
overview on the different types of AI algorithms, defines the Machine
Learning Life Circle and provides a short analysis of general gaps in the
safety of AI. In addition, the gaps in applying the machine learning life-
cycle on the different traditional software and Hardware EUROCAE
standards were identified.

Moreover, they identify the objectives that should be fulfilled in
the different stages of the machine learning life-cycle. In the first
stage, they took a look at the System Definition where system and
safety requirements and objectives are defined and validated. Different
hints to consider are given here like the probabilistic nature and
unintended behavior of ML systems. The second stage is data selection
and validation. A list of data quality objectives are identified there,
e.g. correctness, completeness, representativeness, fairness, balance
and traceability The next stage consists of the model selection the
training and the testing. Different measures were proposed, for
example learning strategies that increase generalization like cross-fold-
validation, feature selection and random restarts. Further example
measures are to ensure performance and functional repeatability and
the use of pre-trained models. Additional issues and ideas were
proposed for the fourth stages inference implementation like the issue
of detecting unexpected features. They also defines some ideas about
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the verification of the ML sub-system and the system integration,
for example, using test data for verification and determining the
uselessness of traditional methods.

For the trustworthiness analysis they refer to the European Union
(EU)’s Ethics Guideline for trustworthy AI and the seven requirements
they define.

3.3.2 EU’s Ethics Guideline for trustworthy AI

The European Commission published an Ethic Guideline for trustwor-
thy AI in April 2019 [Ind]. According to them, trustworthy AI has to
meet three components during its entire life circle, namely being law-
ful, ethical and robust. The framework which they propose as guidance
concentrates on the last two components.

Their proposal of the framework is divided into three steps, starting
with the most abstract chapter, namely to discuss the foundations
of trustworthy AI. They define four ethical principles that should be
adhered to: Respect for human autonomy, prevention of harm, fairness
and explicability. Moreover, the second chapter is about requirements
and methods for realizing trustworthy AI. Seven different requirements
are defined that should be implemented by technical and non-technical
methods. The seven requirements include

▷ Human agency and oversights

▷ Technical robustness and safety

▷ Privacy and data governance

▷ Transparency

▷ Diversity, non-discrimination and fairness

▷ Societal and environmental well-being

▷ Accountability
The last chapter is about assessing trustworthy AI. There, the resulting
trustworthy AI assessment list is defined, which can be used for
assessing the trustworthiness of a specific AI-based application. The
list includes some assessment questions for each of the requirements
they defined in chapter two of their guideline. The list is referred to
as Assessment List for Trustworthy Artificial Intelligence (ALTAI) by
documents like the EASA AI guidelines.

3.3.3 EASA AI Guidelines

The EASA published three papers about AI in the last years. The first
document is called Roadmap 1.0 [EASa] in which challenges of safe
AI are defined, AI is classified and a plan for the development of
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guidelines is presented. The classification is done based on the level
of human-interaction of the system. Level 1 are systems where the AI

application assists the human. Level 2 are systems where human and
machine collaborate and Level 3 are more autonomous machines.

In April 2021 they published their first guideline on Level 1

application [EASc] and in February 2023 they published an extended
and edited version which handles Level 1 and Level 2 applications
safety [EASb]. The following paragraph will refer to the more recent
version. It should also be mentioned that the guideline is limited to
supervised offline AI-systems.

Their framework for creating a trustworthy AI system consists of four
building blocks. The first one is AI trustworthiness analysis which is
based on the seven requirements defined in the EU’s Ethics Guideline
and on the questions from the ALTAI adapted to aviation. Answering
those questions should help with characterizing the application and
doing a safety, security and ethics-based assessment.

The second block they define is called AI Assurance and consists
of two parts: Learning assurance and development explainability.
Learning assurance addresses new assurance challenges that come
with the integration of learning algorithms in software systems. The
part about development explainability suggests ideas to handle the
problem of understanding models that were learned by machines.

The third block is called Human Factors for AI. Different issues that
can appear in the human-machine interaction are considered in that
block. This includes operational explainability, i.e. that the machine can
explain its decisions when cooperating or collaborating with a human.
Another important point of this block are considerations about human-
AI teaming.

The last block is dealing with AI Safety Risk Mitigation. This includes
the implementation of additional safety measures, to avoid hazard in
case something is going unexpectedly wrong.

For each of the four building blocks a set of objectives was defined.
These objectives are already detailed and thereby give guidance of what
to consider to create a trustworthy AI-based system.

3.3.4 NIST

The National Institute of Standards and Technology (NIST) of the USA
published an Artificial Intelligence Risk Management Framework 1.0
(AI-RMF) in January 2023 [NIS01] which goals were directed by the
Nation AI Initiative Act. Adherence to the framework is voluntary
but provides some guidance for companies on how to develop safe
AI systems.
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In the first part of the document they discuss the risks that arise
with the integration of AI in systems and define characteristics for an
trustworthy AI, namely:

▷ Valid and reliable

▷ Safe

▷ Secure and resilient

▷ Accountable and transparent

▷ Explainable and interpretable

▷ Privacy enhanced

▷ Fair
The second part of their document describes the guidance on

developing trustworthy AI based on four functions: Govern, map,
measure, and manage. The idea behind the govern function is to
manage everything and hold the other components together on a
high level. Examples of subcategories of the govern function are the
management legal requirements, making sure that the characteristics
of a trustworthy AI are used, and taking care of the risk management
process. The map function is for defining and understanding the context
and impacts, categorization of the system, and mapping the risks
to the system components. The goal of the measure function is to
analyze, access, and monitor risks. This also includes to evaluate which
trustworthiness characteristics the system implements. The management
function aims to measure risks regularly, prioritize them, implement
strategies for maximizing benefits, and manage also the risks and
benefits of third-party entities.

The document also proposes to use the framework with so-called
profiles that are defined for different use-cases like hiring and fair
housing. With the report, a playbook was published to give some
intuition on how to navigate and use the framework.

3.3.5 NASA

The National Aeronautics and Space Administration (NASA) published
in April 2021 a document titled NASA Framework for the Ethical
Use of Artificial Intelligence [NAS04]. They consider to differ between
today’s simple Narrow Intelligence (ANI) and future human-level
Artificial General Intelligence (AGI) and Artificial Super Intelligence
(ASI). Additionally, like the EASA they differ between different human
interaction levels.

The core of their paper is the definition of six ethical AI principles:
▷ Fair

▷ Explainable and transparent
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▷ Accountable

▷ Secure and safe

▷ Human-centric and societally beneficial

▷ Scientifically and technically robust
Their principles are based on the ones developed by the Department

of Defense’s Defense Innovation Board, Gartner, and the American
Council for Technology Industry Advisory Council. They map these
principles to their applications and they add the lastly mentioned
principle to ensure that the AI-based system is consistent with their
specific scientific NASA methods.

3.3.6 Companies AI Guidelines

It should also be mentioned that big IT companies like Google and
Microsoft defined their own guidelines for AI. For example, Google
published its seven objectives for AI applications, including being
socially beneficial, avoiding unfair bias, and being accountable [Goo].
Microsoft also published a guideline [KFG] including 18 tasks that
should be done categorized by when they have to be done in the
development process. However, as their goal is not to restrict their
technologies, they rather focus on where they can add an additional
step on defining or correcting something.

3.4 verification through system development

Many of those guidelines address the problem of defining what
objectives have to be met during the different verification steps that
have to be taken during the development of an ML model are illustrated
in Figure 3.1.

The verification of the ML learning model starts when the data that
should be used for the training is collected or chosen from external
sources. The raw data is often preprocessed afterwards and new
features are calculated from the given ones. Several aspects have to
be taken into account that have to be checked on the preprocessed data
and can be optionally already checked on the raw data, for example, it
has to be ensured that the data is representative, complete, correct, and
fair.

Further, when deciding on the model’s architecture and the learning
process it should be checked that none of the requirements is violated
by the decisions. For example, for some kinds of explainability specially
designed models are necessary.
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After the model is trained, further requirements have to be checked
on the trained model. For example, it has to be ensured that it is robust
and satisfies certain safety properties.

Later in the development process, the ML model is implemented
on the hardware it should operate on and integrated into the whole
system. This is called the inference model and it has to be verified that
no new errors arise during this implementation process.

Get Raw
Data

Prepro-
cess Data

Define
Learning
Manage-

ment

Train
Model

Imple-
ment
and

Integrate
Model

Figure 3.1: Steps of ML Development

In this thesis, the focus will lie on the verification of the trained
model and the other elements are only included in the work in general.
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D E V E L O P M E N T O F A C O N C E P T I O N A L
F R A M E W O R K

The main contribution of this thesis is the development of a conceptual
framework that supports the formal verification of systems with ML-
based components. The framework will be presented in this chapter by
first introducing the general idea, structure, and verification process.
Afterwards, the elements of the framework and the verification steps
are regarded in detail. For the detailed requirement, property, and
verification method selection process only trained NNs are considered
as objects to limit the scope of this work.

4.1 goal and approach

Many different tools are developed for the formal verification of ML-
based components. However, they are often only applicable for specific
models, specific properties, or restricted by other constraints. Therefore,
if a user wants to verify his specific ML-based system, it is hard to
figure out what methods and tools would work for him. Moreover, the
verification of a complete ML-based system requires verifying many
different properties on different objects. This comes with the additional
challenge of defining useful properties and keeping the overview over
many verification tasks.

The goal of this framework is to support the user with these
challenges and those presented in section 3.1. A model-based approach
is chosen to handle complex systems with many components and
requirements that should be verified. The tool Cameo [Das] is used
in this implementation of the framework as a basis for modeling.
As the training data is what mainly defines an ML-based component
and no detailed system description is designed that can be checked,
additional ML-specific requirements like generalization and robustness
and their formal definitions are collected from the literature and
grouped. Moreover, a literature review of verification approaches and
tools for the different properties of NNs was done and the process of
finding fitting methods was automated. In addition, because still many
new methods and tools are proposed, a format for an easily expandable
table was proposed. Besides appending new lines for new tools or
methods, also new technical requirements or properties of objects can
be added as columns. Moreover, consideration were made on how to
represent ML models like NNs and other components needed in the

21
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model-based environment to still have all necessary information for
modeling the verification process.

4.2 structure and basic elements

The basic packages that have to be defined for completely verifying
a system are further grouped here into three packages: Requirements
and Properties to Verify, System Definition and Learning Management, and
Verification. Furthermore, the framework consists of a Language package
where the frameworks’ definitions of stereotypes and enums are
defined. The structure of the whole framework is shown in Figure 4.1
and the three main packages will be further described in the following
subsections.

Figure 4.1: Verification Structure

4.2.1 Requirements and Properties to Verify

Besides the basic category of requirements that can be used as abstract
requirements for hierarchical refinement later, there are three kinds
of requirements defined in the framework, namely system requirements,
learning requirements, and technical requirements as shown in Figure 4.2.

Figure 4.2: Language Specification of Requirements

The system requirements specify what the end system should fulfill.
A requirements table is provided in the SystemRequirements package in
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which all of them can be listed. The system requirements that should
be checked later are on the lowest level of nested structures while basic
category requirements can be used to group them.

Learning requirements define constraints on elements of the learning
process like on the data or on the algorithm that is used for the
training. The end-system is indirectly dependent on these elements and
therefore, they should be part of the verification process, too. However,
their detailed definition is out of the scope of this thesis. They can also
be listed in a table.

Technical requirements are constraints on the training and verifica-
tion process. This includes, for example, verification solver licenses
and hardware constraints like a Graphics Processor Unit (GPU) being
required. They are listed in a table of the package TechnicalRequirements.

After the training and system requirements are defined they have
to be formalized to one or more formal constraints which are called
properties to verify in the language specification as shown in Figure 4.3.
This stereotype inherits from the standard stereotype ConstraintBlock.

Figure 4.3: Language Specification of Properties to verify

They are connected to the system requirements by so-called refine
relations. When a property to verify is created then its attributes have
to be defined too. Besides a textual description and a formal definition
a domain, a subdomain, and a formal class have to be specified. These
values can be selected from enums defined in Figure 4.4.

Figure 4.4: Enums of the attributes of PropertyToVerify



4.2 structure and basic elements 24

A further attribute of the properties to verify is ObjAppliedOn which
defines for which objects the property should hold. For example, if
a system consists of several NNs for different use cases a property
might only be defined for a few NNs. Based on this, the script
generateRelationsPropsToObj() can be used later to generate ToProofOn
dependencies between properties and objects.

4.2.2 System Definition and Learning Management

This package includes diagrams defining the elements and activities of
the learning process and the structure and behavior of the developed
system. To define the structure of the learning process and the system
structure a Block Definition Diagram (BDD) is used for each of them.
Activity diagrams are used to define the learning activities and the
behavior of the system, however, they are until now not needed for the
verification. The BDDs contain all the elements on which verification can
be performed having the stereotype ObjToVerify or at child stereotype
of it and can furthermore include relations between them or further
elements. For example, if there are different datasets that are used
to train different NNs, a connection between each data object and
the corresponding NN can be created. This might be interesting for
special properties that have to be defined for a model and its training
data. An example are data- and model dependend generalization
properties. There are more specific kinds of the stereotype ObjToVerify
like the ML_Model for all kinds of ML models, the DataObj for data
object, and the Neural_Network being a specific stereotype for NNs.
The stereotypes needed in this work and some others to demonstrate
further possibilities are shown in Figure 4.5. However, this is only a
small amount of specific stereotypes that can be defined here in the
future. The corresponding enums can be found in Figure 4.6

4.2.3 Verification

After the objects of examination, the properties to verify, and the
technical requirements are defined, a fitting verification method has to
be determined and the verification has to be executed. The Verification
package includes all components for this verification process. This
includes the opaque behaviors that are small scripts to support with
the verification steps and the elements that contain the information on
the verification tasks and their results.

The opaque behavior DetermineMethods() supports this by checking
which methods are compatible and returns a list of them. Moreover,
it generates the VerificationTask objects for each single verification



4.2 structure and basic elements 25

Figure 4.5: Language Specification of Objects to verify

Figure 4.6: Language Specification of Objects to verify

problem. As shown in Figure 4.7 they save the object that is regarded,
the property that should be verified on the object, and the generated
list of matching verification methods.

The method selection process will be presented later in more detail.
It is based on a CSV table that includes the important state-of-the-art
verification methods with their properties. However, the table can be
easily extended by new methods or other properties.

An overview of all verification tasks created for an use case can
then be found in the VTasks table. The verification methods can be
executed by the opaque behavior ExecuteVerification(). In future work,
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Figure 4.7: Language Specification of Verification Tasks

the execution of all methods can be automated, however, until now
only one tool is in the list of installed methods. Thereby, the complete
flow can be seen on some example properties.

Since there can be a huge number of verification tasks, the result
if the verification was successful or not should also be mapped to
the requirement for seeing which of the requirements are already sat-
isfied. This is done with further opaque behavior called MapResult-
sOfVtasksOnReqs() that automatically checks if all verification tasks
connected to the requirement had positive results and then sets the
requirements attribute verified to true. Otherwise the attribute verified
is set to false.

4.3 verification flow

The verification flow is illustrated in Figure 4.8 and contains only the
steps of the system development that are necessary for verification.
First, the learning and system requirements, the learning management
and system structure including the objects that should be checked, and
the technical requirements are defined by the user with some basic
guidance. Then, the learning and system requirements are refined into
properties to verify and their attributes are defined. Both steps are
done by the user with the support of the guidelines. Moreover, Refine
dependencies are created between learning or system requirements
and properties to verify by the user. Afterwards, the user has to start
the opaque behavior generateRelationsPropsToObj() to connect properties
and objects based on the attribute ObjsAppliedOn of the property to
verify by ToProofOn dependencies.

Next, the user has to start the opaque behavior DetermineMethods()
that creates VerificationTask objects for each of those dependencies and
determines fitting methods. Out of the list of fitting verification, one
has to be chosen by the user. Then the verification tasks that have
an installed method selected and an object and property file defined
can be executed automatically. Afterwards, the opaque behavior
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MapResultsOfVtasksOnReqs() can be started to create the possibility of
later regarding the verification results of each requirement.

4.4 guidance on the definition of requirements

All the guidelines mentioned in section 3.3 described a similar set
of requirements for the development of trustworthy AI systems. The
EASA even gave a broad list of detailed objectives for the different
life cycle stages of such systems. Many of these objectives deal with
defining and documenting different parts and being aware of special
properties of the system. This thesis will focus on formal verification
and will only cover the details on requirements and properties on the
trained model. Therefore, in the next step, it will be analyzed which
of the objectives found in guidelines contain some form of system
requirements to verify. Afterwards, examples of technical requirements
on the verification process will be provided.

4.4.1 System Requirements

Based on existing guidelines and the definition of ML-specific proper-
ties in the literature on verification, six main objectives were defined.
The system requirements can be derived from these categories.

The first kind of verification objective is to verify the application-
specific requirements of the model that was trained. This is also
defined in the EASA guideline as LM-10. The satisfaction of the same
application-specific requirements must also be verified later on the
inference model, the model that is implemented on the end-product
hardware and software. This is called objective IMP-09 in the EASA

guideline. [EASb]
To distinguish clearly between safety-relevant requirements and

other use case specific requirements on the system, the application-
specific requirements are split into objectives here: Safety and correct-
ness.

Safety requirements define that specific ’bad’ states are never
reached. An example of a safety requirement in an air collision
avoidance system would be that if an intruder is close and on the
left side of the own-ship, the own-ship is not advised to drive in that
direction.

Correctness requirements can be functional requirements of the
system, or efficiency requirements, for example, that an aircraft should
not do unnecessary maneuvers if there is no danger, or requirements
that ensure consistency with the physical laws. For example, if aircraft
intruders are supposed to be localized based on camera data, it can be



4.4 guidance on the definition of requirements 28

Figure 4.8: Verification Process
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encoded that intruder 1 can not be closer than intruder 2 if intruder 2 is
closer than intruder 3 and intruder 3 is closer than intruder 1. [Alb21]

The third objective that should be considered is robustness. Verifying
that an AI-based system is robust is really important as it was shown
that changing only a few pixels of a picture can lead to completely
different classification results while humans can see no difference.
[Hua+20b]

Such examples, in which a little bit of noise in the input leads to
a completely different and wrong output, are also called adversarial
examples. Besides evoking safety issues, they can also be used target-
oriented by cyber-attackers to threaten the security of the system, for
example, by finding adversarial examples in malware detection or
by putting some small targeted stickers on a stop sign so that an
autonomous car cannot detect it anymore.

The EASA guideline also mentions that robustness should be verified
on the training model in objective LM-13 and later on the inference
model as mentioned in objective IMP-08. [EASb]

Another ML-specific objective is generalization. Having trained a
model on a big dataset and getting a good performance on that data
does not mean that the performance will also be good on unseen
data. As this is a common problem for Deep Neural Networks (DNNs),
there is a need for some generalization guarantees, generalization
verification, or other measures addressing the issue.

The EASA guidelines define two objectives for this, one to ensure that
a specified generalization bound is satisfied (EASA LM-14) and one to
provide some generalization guarantees (LM-04). [EASb]

Depending on the application, further objectives like fairness and
equivalence might also be important. As there is also research ongoing
on formally defining such properties and developing methods for
verifying them, they will also be considered here.

To sum up, the step of defining the system requirements consists
of taking a closer look at the six main objectives shown in Figure 4.9
- Functional Correctness, Safety, Robustness, Generalization, Fairness,
and Equivalence - and how they can be applied for the specific use
case. Based on that, the user can create the system requirements.

Figure 4.9: Main Objectives
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4.4.2 Technical Requirements

Several restrictions might be made for the execution of the verification
method depending on the technical conditions or requirements on the
verification algorithm. Based on the requirements needed by the tools
from literature presented in section 4.8 the following list of technical
verification requirements was created but can be extended further
depending on which tools will be developed in the future:

▷ Needed hardware (e.g. GPU, CPU)

▷ Needed licenses (e.g. Gurobi)

▷ Need for completeness

▷ Time constraints (e.g. verifies a specific benchmark in less than 60

seconds)

▷ Data formats one can provide the objects and properties in

▷ Operating system to run the tool on
Many tools use parallel computing in their algorithms to get faster

results. This is often done using CUDA [Nvi] from Nvidia wherefore
their algorithms only work on Nvidia GPUs. When it is mentioned that
a GPU is needed, it often particularly means a Nvidia GPU. Moreover,
some tools encode the handled problems as optimization problems and
use a solver like Gurobi [TBB] to solve the problem. Such solvers may
need licenses. Furthermore, not all verification algorithms considered
here are complete as completeness comes with compromises on
efficiency. In some cases, where a complete algorithm is needed this
property can be formulated in the technical verification requirements.
In addition, there are slower and faster tools, so measuring how fast a
tool is on some specific benchmarks can also be of interest. Constraints
on that could also be defined in the list of technical verification
requirements. Moreover, different input formats are used by the tools.
Depending on the formats the user can provide the inputs in, tools with
other input formats can be removed from the list of fitting methods.
Not all tools can be installed on all operating system. This should also
be captured in the definition of the technical requirements.

Not all of technical requirements mentioned above have to be
considered. If the user of the framework does not care about the
operating system because he can install any operating system then he
does not have to mention it in the list. In contrast, if it is required that
no further license is need, the user has to explicitly mention it in the
table by setting licenses=[].
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4.5 definitions of verification properties in the litera-
ture

While the last section regarded what main verification objectives there
are for which requirements can be defined, this section will take a look
at how the requirements can be formalized to verification properties.
This is based on literature research and the found definitions were
grouped according to the objectives. However, many words like
correctness and robustness are not used consistently in the literature
but have several meanings. Therefore, this section should provide
names for the definitions that are used in the rest of the framework.

4.5.1 Correctness

Correctness requirements might have any form of content as they are
completely application-specific. Therefore, it is really hard to define a
formalization mechanism. However, the requirements considered for
formal verification are often restricted to those that can be converted
to Input-Output properties, i.e. constraints on the input can be defined
that should lead to some constraints on the output.

Formally, a precondition ϕ on the inputs x ∈ X from the input space
X and a so-called post-condition ψ on the outputs ŷ = f(x) are defined.
The function f(x) is the function that is implemented by the regarded
neural network. For all inputs x that fulfill ϕ their corresponding neural
network output should fulfill ψ, i.e.

∀x ∈ X : x |= ϕ⇒ ŷ = f(x) |= ψ. (4.1)

[Bri+23]
To verify other correctness requirements simulation-based verifica-

tion can to be used. This is also what the EASA AI guideline proposes
to handle application specific requirements. They suggest setting up
test cases to see if the requirements are fulfilled on them. In addition,
it should be made sure that the test cases cover all relevant inputs.
However, as mentioned in subsection 2.1.2 an advantage of formal
verification is that it can prove that a property holds for all inputs
of the input space. Different formal methods for requirement-based
verification were gathered in section 4.8. [EASb]

4.5.2 Safety

As the safety requirements are also application-specific the same
possibilities for formalization exist that were already mentioned in the
subsection about correctness. Several methods to support determining
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risks and hazards for use cases in software engineering have been
proposed. However, they are their own research area and therefore, this
thesis assumes that risks and risky situations were already determined.

4.5.3 Robustness

Robustness is an important objective for ML-based systems. Many
different definitions and approaches exist for addressing its verification.
In the EASA guideline, they suggest adding some noise to the original
inputs and seeing how the model performs on them. However, that
is just one approach. Before formal verification approaches will be
considered in the next chapter, the objective of being robust should
be defined. [EASb]

In classification, the idea of robustness and stability is that for small
changes in the input, the predicted class does not change. In regression,
the predicted output should not deviate too much when there is a
small difference in the inputs. The verification objectives robustness
and stability are getting a lot of attention in the literature in formal
verification methods for ML algorithms. Nevertheless, their definitions
strongly vary between research papers and are sometimes mixed up
with each other definitions. Therefore, the different kinds of robustness
and stability will be explained and assigned names for later reference.

4.5.3.1 Local Stability

Most often by robustness local stability is meant. The word local
indicates that the stability property is regarded around one input x0
while the word stability indicates that only inputs x with noise are
considered that are still in the Operational Design Domain (ODD).

Local stability can be formalized as an input-output property which
was described in the previous section. For that, the precondition ϕ

is set to ||x − x0||p ⩽ δ with some norm p and maximum distance δ.
Therefore, only inputs are considered that have a distance of at least δ
to x0. In classification, the output class predicted for x should then still
be the same class as the one of x0. The true target value of x0 is known
because it was taken from the labeled dataset. The whole property of
local stability for classification problems can be formulated as

∀x ∈ XODD : x ∈ {x : ||x−x0||p ⩽ δ} ⇒ ŷ = f(x) ∈ {ŷ : ŷ == f(x0)}. (4.2)

However, as f(x) is often assumed to not hold the class itself but
the probabilities for the different classes, the local stability is also
sometimes formulated by

∀x ∈ XODD : x ∈ {x : ||x−x0||p ⩽ δ} ⇒ ŷ = f(x) ∈ {ŷ : ŷi∗ > ŷj,∀j ̸= i∗}
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(4.3)

with j being the index of the classes and i∗ being index of the class with
the highest probability in y = f(x0).

In case of regression, a maximum error ϵ between the outputs has to
be defined. The main idea is that if the input x is close to x0 then the
output f(x) should also be close to f(x0) or formally written

∀x ∈ XODD : x ∈ {x : ||x−x0||p ⩽ δ} ⇒ ŷ = f(x) ∈ {ŷ : ||ŷ− f(x0)||p < ϵ}.

(4.4)

In order to define norm p, different kinds of norms were used in the
literature including the Manhattan norm L1 , Euclidean norm L2 and
Maximum norm L∞ which are defined by

L1 : ||x||1 =

n∑
i=1

|xi| (4.5)

L2 : ||x||2 =

√√√√ n∑
i=1

x2i (4.6)

L∞ : ||x||∞ = max(x1, x2, ..., xn) (4.7)

for a vector x of length n. A further norm that is used to define the
distance between two vectors x and x ′ is the L0 norm which is defined
by

L0 : ||x− x ′||0 =

n∑
i=1

1{xi ̸=x ′
i} (4.8)

For example, for a picture as input x and a noised picture as input x ′ it
counts the number of pixels that are different in the pictures. [Hua+20b;
CW17; Men+22]

However, it should be remarked that these norms defining how
similar two inputs are do not always agree with what a human would
perceive as similar.

4.5.3.2 Distinct Local Stability

In Equation 4.3 the assumption was made that the network outputs
probabilities for the different classes of the classification problem.
Based on this a threshold θ can be defined that specifies how big the
probability of the highest class c(x) for an input x should be at least.
Similar to Equation 4.3 the distinct local stability is defined as

∀x ∈ XODD : x ∈ {x : ||x−x0||p ⩽ δ} ⇒ ŷ = f(x) ∈ {ŷ : (ŷi∗ > ŷj, ∀j ̸= i∗)∨ (c(x) < θ)}

(4.9)

[LK22]
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4.5.3.3 Global Stability and Lipschitz Constants

Sometimes when looking at regression problems, it is required that
the output does not change too suddenly between all similar inputs,
instead of only examining the local areas around some labeled data
points. The therefore specified global stability is defined for arbitrary
inputs x and x ′ by

∀x, x ′ ∈ XODD : x ∈ {x : ||x−x ′||p ⩽ δ} ⇒ ŷ = f(x) ∈ {ŷ : ||ŷ− f(x ′)||p < ϵ}.

(4.10)

This property can be transformed into the mathematical property of
being Lipschitz continuous with the Lipschitz constant l = δ

ϵ by the
following transformations on the constraints in Equation 4.10

||x− x ′||p ⩽ δ⇒ ||f(x) − f(x ′)||p < ϵ (4.11)

=⇒ ¬(||x− x ′||p ⩽ δ)∨ ||f(x) − f(x ′)||p < ϵ (4.12)

=⇒ ¬(||x− x ′||p ⩽ δ∧ ||f(x) − f(x ′)||p ⩾ ϵ) (4.13)

=⇒ ¬(ϵ · ||x− x ′||p ⩽ δ · ||f(x) − f(x ′)||p) (4.14)

=⇒ ||f(x) − f(x ′)||p ⩽
δ

ϵ
· ||x− x ′||p. (4.15)

Consequently, this constraint restricts how much the output can deviate
in relation to their inputs. The factor, that compensates that input and
output space may scale differently, is the Lipschitz constant l = δ

ϵ .
Consequently, a neural network is globally l-stable if and only if the
function f that it implements is Lipschitz continuous with the constant
l. [KS23; Zha+22a]

4.5.3.4 Local Robustness

The difference between stability and robustness is that a stable system
only has to be able to handle noisy inputs within the normal ODD
while a robust system should be able to react correctly to external
influences and outsider data. Because of this, it is not only defined
for all x ∈ XODD but for all inputs in the input space XAll. Similar to
the local stability the local robustness can be defined as an input-output-
property for classification as

∀x ∈ XAll : x ∈ {x : ||x−x0||p ⩽ δ} ⇒ ŷ = f(x) ∈ {ŷ : ŷ == f(x0)} (4.16)

and for regression as

∀x ∈ XAll : x ∈ {x : ||x−x0||p ⩽ δ} ⇒ ŷ = f(x) ∈ {ŷ : ||ŷ− f(x0)||p ⩽ ϵ}.

(4.17)

However, as local input points are regarded this focuses on looking at
edge cases. [EA23]



4.5 definitions of verification properties in the literature 35

4.5.3.5 Global Robustness

Similar to global stability, global robustness can be defined as

∀x, x ′ ∈ XAll : x ∈ {x : ||x−x ′||p ⩽ δ} ⇒ ŷ = f(x) ∈ {ŷ : ||ŷ− f(x ′)||p ⩽ ϵ}.

(4.18)

Checking the robustness and not only the stability of the system can be
very important especially if the used sensor data is sometimes faulty.

4.5.3.6 Probabilistic Stability and Robustness

Another emerging kind of robustness is probabilistic robustness. It
follows the approach of not requiring the robustness property to hold
for all inputs x but only for most inputs by working with probability
theory.

Different attempts were made to reach this goal. Webb, Rainforth,
Teh, and Kumar [Web+19] proposes to measure how robust a system
is based on the probability that the examined property is not fulfilled.
They express that the property is not satisfied for an input x as s(x) ⩾ 0
and define the distribution of the input space of interest by p(x). They
define the probability of failure as

PX∼p(·)(s(X) ⩾ 0) =
∫
X

1{s(x)⩾0}p(x)dx (4.19)

with 1Condition being the indicator function. They look at the
challenge of determining this probability and use it as a measure for
robustness. [Web+19]

Mangal, Nori, and Orso [MNO19] defines that a neural network
that satisfies probabilistic robustness is robust with (1− ϵ) probability.
While in the previous definition of probabilistic robustness an arbitrary
property s(x) ⩾ 0 was used, this definition uses a similar definition of
robustness to local and global stability and robustness. A network is
defined by them to be probabilistic robust for a given k, δ and ϵ if

Px,x ′∼p(x)(||f(x
′) − f(x)|| ⩽ k · ||x ′ − x|| | ||x ′ − x|| ⩽ δ) ⩾ 1− ϵ. (4.20)

The method RoMA [LK22] provides a definition that is a mixture
of the distinct local stability (Equation 4.9) and the probabilistic
robustness (Equation 4.20). They end up with the following expression
for the distinct probabilistic stability measure:

PX(argmax(f(x)) == argmax(f(x0)))∨ (c(x) < θ) | ||x− x0||∞ ⩽ δ).

(4.21)
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4.5.3.7 Lyapunov Stability

In the word Lyapunov stability the word stability has a rather different
meaning than in the previous definition. Lyapunov stability is defined
for dynamical systems with an equilibrium state is for example used in
physics for modeling the behavior of a pendulum and in engineering
for modeling the behavior of a quadrotor. However, nowadays these
dynamics are sometimes also approximated by neural networks. Then,
it can be examined if such a network satisfies the Lyapunov stability
which describes that the values get close to the equilibrium in each
time step. A neural network function f, that calculates the next state
xt+1 = f(xt,ut) based on the previous state xt and the controller ut
for a time step t, is stable if there exists a Lyapunov function V with
the following properties

V(xt) > 0 ∀xt ̸= x∗ (4.22)

V(xt+1) − V(xt) ⩽ −ϵV(xt) ∀xt ̸= x∗ (4.23)

V(x∗) = 0 (4.24)

for an equilibrium state x∗ and a scalar ϵ > 0. [Dai+21]

4.5.3.8 Further Definitions of Stability and Robustness for Neural Networks

Further kinds of stability and robustness are defined in the literature
like noise sensibility [Aro+18]. Additional robustness definitions are
based on how many of specially generated adversarial examples
failed [CW17]. The latter also leads to interesting results, however,
it only offers an upper bound for the robustness and does not give
any guarantees. Another definition is the one of targeted robustness
proposed by Gopinath, Katz, Pasäreänu, and Barrett [Gop+18b] which
only allows inputs to be labeled as long as they are not wrongly getting
one special class as the label.

4.5.4 Generalization

An ML model generalizes well if its performance on unseen data is
similar to the performance on the train data. This is an important ver-
ification objective as ML models sometimes tend to overfit. Overfitting
is when an algorithm rather learns the training data with its labels by
heart instead of learning the relationship between inputs and outputs.
This might be the result of too many parameters in the learning algo-
rithm, however, having too few parameters leads to underfitting, i.e. the
learned model is much too simple and does not capture the function.

The EASA also addressed this problem of assessing how well a model
is generalizing and how generalization abilities can be approved in its
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AI guidelines, the Concepts of Design Assurance for Neural Networks
(CoDANN), and the Machine Learning Application Approval (MLEAP)
project. They suggest to determine how well an algorithm generalizes
based on the so-called generalization gap. The gap should measure the
differences between the loss on the training dataset and the loss there
would be on the underlying distribution D, formally

G(f̂) = |ED∼D[l(f̂,D)] − L(f̂,Dtrain)| (4.25)

for a model f̂, l(f̂,D) being the loss function, and L(f̂,Dtrain) being the
averaged loss on the training data. Since the underlying distribution
is unknown in most cases, this definition is not practical, and upper
bounds of the generalization gap have to be assessed. There are
different approaches to assessing it.

The generalization gap can be estimated by taking into account
the test data. The expected loss on all data ED∼D[l(f̂,D)] can be
approximated by the loss of the evaluation of the model on the test
data Dtest, i.e. data that was not used during the training of the model.
Formally, one obtains

Gtest(f̂) = |L(f̂,Dtest) − L(f̂,Dtrain)|. (4.26)

[EASb] Other metricsD(.) than subtracting and taking the absolute can
also be used like the Euclidean distance. Furthermore, the loss function
can also be replaced, for example, by taking the performance function
instead or by replacing it with the expected value E of the loss L.

The generalization gap has to be small enough to say that a model
is generalizing well. Therefore, it has to be compared to some value
δ which can also be dependent on other parameters, for example, the
number of data points and model complexity measurements.

However, on the true gap only probabilistic statements can be made.
Therefore, it is common to model this by Probably Approximately
Correct (PAC) based methods. As the name describes they are of the
form

P[G(f̂) < δ(.)] > 1− ϵ (4.27)

with ϵ being the parameter for defining the Probably and δ(.) for
defining the Approximately.

One possibility is to choose δ(.) by considering the model’s complex-
ity without regarding the dataset. There exist several methods based on
the Vapnik–Chervonenkis (VC) dimension dVC for determining how
complex relations a model can express. This is only dependent on the
model, not on the data. An example of such a model complexity d
based bound is

∀ϵ : P[G(f̂) <
ln(d) + ln(1ϵ)

m
] > 1− ϵ (4.28)
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with m being the dimension of the dataset. [BM21; VPL20]
Neural networks have many parameters and thereby a high complex-

ity d. They are sometimes trained on a lower number of data points m
than their amount of parameters. This leads to a high value of δ(m,d, ϵ).
However, NNs have been shown to generalize well in practice. Hence,
using this definition for NNs often leads to really loose bounds. [Shi;
EAS]

Therefore, approaches that also depend on the training data were
developed. One example is the Rademacher Complexity Bound which
depends on the training error and the margin. It leads to tighter bounds
than the VC-based bound, however, the bounds are often still too loose.
[Shi; VPL20]

Different kinds of PAC-Bayes bounds are promising approaches
developed in the last years. As the term Bayes suggests, a prior and
posterior distribution are considered. The prior P describes the model’s
distribution before being trained and the posterior Q is the distribution
after being trained. The distance from Q to P is measured based on the
Kullback-Leibler divergence KL(.). The exact definitions of δ vary from
bound to bound. An example is the McAllester bound which is defined
as

∀ϵ : P

G(f̂) <
√
KL(Q||P) + 5

2 ln(m) + ln(1ϵ) + 8

2m− 1

 > 1− ϵ. (4.29)

[Alq23; VPL20; VPL20; EAS; Bel+23]
[Bel+23] provides a draft of a list with possibilities for how

to calculate generalization bounds. For neural networks PAC-based
bounds are also listed there.

Furthermore, in the field of generalization considerations on the
distributions of the training and test dataset are made. Here, it
can be distinguished between taking the test dataset from the same
distribution as the training dataset or from out-of-distribution. As an
example, an autonomous vehicle can be trained on scenarios in New
York and then be tested on different scenarios in New York. However,
it can also be trained on data from New York and be tested on data
from the small town of Clausthal. Hence, for the generalization gap,
one would probably get completely different results in the two cases.
[Kir+23]

In some papers like [FV19] the generalization ability is also defined
by uniform stability. Uniform stability describes how stable the
performance of a model is if the training data is changed. This can, for
example, be examined by removing one data point from the training
dataset.

There exist several further exciting ideas on how to define general-
ization like from [Zha+21] on how the trained network compares to a
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network trained with randomly labeled data. Amir, Maayan, Zelazny,
et al. [Ami+23] proposes an approach based on Karenina’s hypothesis.
In a nutshell, this hypothesis states that if many randomly initialized
models are trained those that are close to each other are probably also
close to the true functions. So the model where the most other mod-
els are closed generalizes the best. A further idea is based on model
compression [Che+20] where the model is compressed to a smaller
model to get the tighter bounds of the compressed model. In addition,
Ju, Li, and Zhang [JLZ23] proposes an approach based on the Hessian
matrix. However, as not all of them can be discussed here, it is referred
to the literature. A good survey on how good the different kinds of
generalization measure really work was published by [Jia+19].

4.5.5 Further Verification Objectives

While the three objectives, generalization, robustness, and application-
specific input-output properties are the most important things that one
wants to verify on the trained network, there are still some further
objectives that might be interesting in some cases. So they will be
quickly presented.

4.5.5.1 Equivalence

As neural networks can get huge, there is effort in compressing them.
However, afterward, it must be verified that they still implement the
same, or almost the same, function on our ODD as before. Given that
there are two NNs that implement the functions f and g respectively,
perfect equivalence between them can be expressed as

∀x ∈ XODD : f(x) = g(x). (4.30)

Nonetheless, perfect equivalence is often not needed and not realistic
in the case of compression. Therefore, [KBKS20] defined the notation
of ϵ-equivalence as

∀x ∈ XODD : ||f(x) − g(x)||p < ϵ (4.31)

for some norm p to express that each output of the first NN on an input
should be really close to the output of the other NN on the same input.
This definition is especially useful for regression tasks.

For classification, they propose the term top-1-equivalence which
defines that the NNs should output the same class as the class with the
highest probability for a given input. For that, ŷ = f(x) and ŷ ′ = g(x)

are set and

∀x ∈ XODD : argmaxi(ŷi) = argmaxj(ŷ
′
j). (4.32)

[KBKS20; Teu+21]
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4.5.5.2 Fairness

Another big topic in NN verification is fairness as in the past several
cases were found where algorithms learned racist or sexist behavior.
Given a dataset with a set of attributes A as inputs, it first has
to be defined which of them should not influence the decision of
the algorithm. These so-called protected attributes P can include, for
example, race and sex for an algorithm that predicts the salary.

Based on that three different definitions of fairness are given by
[BR22]. The first one is individual fairness which specifies that no
two data points should lead to different results if they just differ in
protected attributes. Formally, there exist no two data points x and x ′

with

(i)∀j ∈ A \ P xj = x
′
j and (4.33)

(ii)∃k ∈ P xk ̸= x ′k and (4.34)

(iii)f(x) ̸= f(x ′). (4.35)

However, sometimes the requirement (i) is too strong and therefore
is changed to only restricting that the values of all non-protected
attributes are close. This is also called ϵ-fairness in the literature and
defined as, there exist no two data points x and x ′ with

(i)∀j ∈ A P |xj − x
′
j| ⩽ ϵ and (4.36)

(ii)∃k ∈ P xk ̸= x ′k and (4.37)

(iii)f(x) ̸= f(x ′). (4.38)

The third definition of fairness they provide is targeted fairness which
adds additional application-specific constraints on the input features.
In general, the fairness verification splits into two parts, depending
on if the neural network is assumed to be a black-box or a white-
box. While black-box verification can only look at different inputs
and their corresponding outputs, white-box verification aims to look
at causes for unfair behavior within the decision structure of the NN.
A verification algorithm that outputs several adversarial examples can
already help with understanding the source of the unfair behavior.
[BR22]

A weaker variant of the individual fairness is group fairness which
is, for example, mentioned by [Fel+15] and [Urb+20]. It measures if
there is some discrimination between two different groups instead
of comparing individual data pairs on sensitive properties. One kind
of group fairness is the demographic parity property which is, for
example, defined by [BZSL19] for binary classification as

µRmin
µRmaj

⩾ 1− ϵ (4.39)
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for a given ϵ ∈ [0, 1]. In group fairness a minority and a majority group
are compared. The trained model f can get the values from the minority
group as input Xmin or can get inputs from the majority group Xmaj.
The variable µRmin = E[f(Vmin)] is the expected value of the output on
the data of the minority group and the value µRmaj = E[f(Vmaj)] of the
majority group. Therefore, the definition formalizes that the minority
group has not much smaller chances for a positive result f(x) = 1 than
the majority group.

However, there are a huge number of further fairness variants and
subvariants. A good summary of fairness properties was recently
given by [CH23]. They gather the different methods for estimating
and enhancing fairness on the data before training, during training,
and on the trained model. Moreover, they group them regarding their
approach and outline that most approaches to measuring fairness
are only defined for binary classification tasks. However, transferring
these definitions to regression tasks is becoming a topic in fairness
verification, too.

4.5.5.3 Security

The security aspects of the trained model are partly covered by the
previously defined objects like robustness against adversarial examples.
Further thoughts regarding security have to be made on the whole
system and its implementation, however, they are out of the scope of
this thesis. [EASb]

4.6 guidance on choosing verification properties

The following guidelines should help to orient oneself in the huge
number of definitions for verification properties that were presented
in section 4.5. If different definitions should be applied for different
models each property has to be defined on its own. For example, for a
system with two neural networks, NN1 and NN2, NN1 might only be
verified to be locally stable while NN2 has to be globally stable.

4.6.1 Robustness

Table 4.1 shows an overview of the decisions that have to be made
when selecting a type of robustness. All decisions can be combined
with each other in a reasonable way but not for all combinations there
already exist verification methods.

Firstly, it has to be decided if stability or general robustness is needed.
They differ in the size of the input space for which the robustness
property should hold. Often it is enough to take a look at all inputs
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from the ODD and therefore decide in favor of stability. Secondly,
robustness can hold locally or globally. If it is enough that the property
holds locally around a finite number of input points, local robustness
can be chosen as it is much simpler and faster. In addition, if it is only
important that the property is fulfilled most of the time and not always,
the adjective ’probabilistic’ can be added to the robustness definition
name. Moreover, for some classification problems, the class with the
highest probability is only further processed if its probability is higher
than a threshold. In this case, the distinction property can already be
added in the robustness verification property.

Weaker
Property

Stronger
Property

When to choose which

Stability General Ro-
bustness

Stability if it is sufficient to ensure ro-
bustness for inputs of the ODD. General
Robustness else.

Local Global If it is enough to proof robustness only
locally around specific data points or
around all points in the training data,
local Robustness. Else Global Robust-
ness.

Probabilistic Non-
Probabilistic

Probabilistic, if the application can toler-
ate a few counterexamples of the prop-
erty to verify. Else Non-Probabilistic.

Distinct Non-
Distinct

Use distinct robustness for classification
problems where the post processing is
depending on the probability of the
highest class being higher than a thresh-
old.

Table 4.1: Properties of the Robustness Definition

The type of the robustness property can be chosen from Figure 4.12.
Furthermore, for most robustness definitions a norm has to be

chosen. It depends on the data and the application which Lp - norm
is the best. In cases where the number of different inputs counts for
measuring the perturbation, the L0-norm can be used. For image data
as input, the L∞-norm turned out to be close to the similarity people
see in images. However, sometimes the L1- and L2-norm distance
measurement is useful, too. [Men+22; CW17]
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The values for the parameters ϵ and δ have to be chosen based on the
use case. For example, in an image classification case, where the pixels
have gray-scale values between zero and one, δ can be chosen as 0.01,
and as norm the L∞ norm can be selected. So the property that will be
verified is that the image is still classified to the same class if all pixels
are at most one percent brighter or darker.

4.6.2 Generalization

In subsection 4.5.4 it was discussed that the most popular way of
measuring the generalization ability of an ML model is by estimating
the generalization gap through an upper bound. Many formulas for
generalization bounds exist, however, the PAC-Bayes-based bounds
often lead to tighter bounds for NNs than those that only measure the
complexity of the model without considering the data. Table 4.2 shows
a short overview.

Property When to use

Model-based
Probabilistic
Generalization

▷ Rather simple bound only based on the
complexity of the model

▷ Can be very loose, especially for models
with many parameters like NNs

Model- and
Data-based
Probabilistic
Generalization

▷ Based on model complexity and indirectly
on the training data

▷ More complex calculation

▷ Often tighter bounds for NNs

Train- and
Test-data based
Loss

▷ Simple to calculate

▷ Does not tell anything on the true general-
ization gap

▷ Highly relies on the selection of the training
and testing data

Table 4.2: Generalization Properties
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4.6.3 Correctness

The correctness properties should formally represent the system
requirements and are thereby very use-case specific. If possible, they
should be formalized in the format of local input-output properties
as for this class the most general tools exist. Global Input-Output
properties are also possible as shown in Table 4.3.

Property When to use

Local Input-
Output Prop-
erty

▷ Use if possible

▷ Model can have black-box behavior

▷ Many tools for verifying it exist

Global Input-
Output Prop-
erty

▷ Stronger than Local Input-Output Proper-
ties

▷ Use for properties that contain constraints
on the relation between any two points in
the input space

▷ Harder to verify

Probabilistic
Property ▷ If only Probabilistic statements can be made

▷ Not many tools for general probabilistic
properties exist yet

Table 4.3: Correctness Properties

4.6.4 Safety

The safety properties depend on the individual risks of the use case.
These risks were analyzed when the system requirements were defined.
Like the correctness requirements, they should be formalized to local
input-output properties if possible.
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4.6.5 Fairness and Equivalence

Fairness and equivalence are objectives that do not necessarily play a
role in all use cases.

Fairness properties only have to be defined if the system or its
environment has sensitive features, for example, age, sex, and ethnicity.
Many definitions for fairness properties exist and for use cases with
fairness as a high priority, the definition that fits the best to the
use case has to be searched in the literature. The paper of Caton
and Haas [CH23] is a good starting point for that. As there are so
many definitions of fairness, this thesis will only focus on the two
most important classes, individual fairness, and group fairness. Some
characteristics are listed in Table 4.4 to get some guidance when
regarding a specific use case.

Fairness class When to use

Group Fairness
▷ If only two groups have to be distinguished

▷ Looks only at the probabilities for a positive
result in the groups

▷ If only between-group issues are relevant

▷ Weaker than individual fairness

Individual Fair-
ness ▷ If fairness definition can be based on se-

lected sensitive features

▷ Verify that there is no case where only sensi-
tive features are different and the output is
different

▷ Does not address that other non-sensitive
feature might correlate with sensitive fea-
tures

Table 4.4: Main Fairness Classes

Equivalence properties are only relevant if there is an ML model in
the system that has to be equivalent or almost equivalent to some
other ML model. Table 4.5 summarizes the characteristics of different
equivalence properties.
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Equivalence
class

When to use

Perfect Equiva-
lence ▷ Regression problems

▷ If it is important that for all inputs from the
ODD the output is exactly the same

▷ Seldom useful in practise

ϵ-Equivalence
▷ Regression problems

▷ If the outputs of te models only need to be
similar

▷ More practical as ϵ can be choosen depend-
ing on the use case

1-top-
Equivalence ▷ Classification problems

▷ If only the class with the best output is
relevant or if the models are then close
enough

Probabilistic
Equivalence
Properties

▷ Weaker than non-probabilistic

▷ If probabilistic guarantees on the equiva-
lence are enough

Table 4.5: Equivalence Properties

4.7 further steps for the verification properties

By deciding on the objective and the kind of property, one only defines
the domain and subdomain of the PropertyToVerify object. The other
attributes that were shown in Figure 4.3 still have to be defined. The
next two attributes that will be examined more closely are formal_class
and ObjAppliedOn. Further attributes would be the description which
is simply a string describing the property textually for an overview,
and the filename which should later include the formal definition of
the property in the right format for being used as input for a fitting
verification tool.
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4.7.1 Formal Classes for the Verification Properties

Before existing approaches are regarded, the objective should be
categorized in different categories depending on their formal definition.
Depending on this, different approaches can be used later.

Next, all objectives are considered in more detail with their types of
formal properties and the formal class they can belong to.

As correctness and safety properties are completely use-case specific,
the three types of properties defined for them were already distin-
guished by their formal class. As shown in Figure 4.10 and Figure 4.11

they can be sorted into the three formal classes local input-output prop-
erties, global input-output properties, and probabilistic properties. Further
kinds of properties might also be defined in the future that do not
belong to any of the three classes.

Figure 4.10: Considered Types of Correctness

Figure 4.11: Considered Types of Safety
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The robustness properties were defined more specifically in subsec-
tion 4.5.3 and subsection 4.6.1 and are sorted to the same four formal
classes according to their formal definitions like shown in Figure 4.12.

Figure 4.12: Considered Types of Robustness

As the generalization gap is unknown if the true data distribution is
unknown, only probabilistic guarantees can be given on it. Another
possibility is to use non-formal testing-based methods. Figure 4.13

shows the generalization property type grouping.

Figure 4.13: Considered Types of Generalization

Fairness properties can be formulated as global input-output proper-
ties or as probabilistic properties as shown in Figure 4.14. Generaliza-
tion properties compare the outputs of two models and thereby cannot
be handled by local input-output properties which act on one input
and one output or global input-output properties which work on two
inputs and one output. Therefore, they were sorted into the class further
properties which would need a closer look in future work. Figure 4.15

shows their formal classification.
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Figure 4.14: Considered Types of Fairness

Figure 4.15: Considered Types of Equivalence

4.7.2 Select Objects They Refer To

The properties might only belong to one object but might also have
to be verified on several objects. Therefore, a list of objects has to be
given in the ObjAppliedOn attribute of the property to verify. Moreover,
the opaque behavior CreateObjPropRelations() has to be executed. It uses
the defined list to create toProofOn relations between the properties and
each object of the ObjAppliedOn list.
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4.8 approaches and tools for formal verification

This section provides a literature review on what methods and tools
there are for verifying the properties defined in the last steps. The next
steps of the framework can be found in the section afterwards.

4.8.1 Approaches for the Verification of Local Input-Output Properties

Local input-output properties have great importance in the formal
verification of NNs as they include local stability, local robustness,
monotonicity, and application-specific local safety and correctness
properties. Many methods for verifying this type of properties have
been proposed in the last years. There are three basic approaches that
were used or combined with other techniques: Reachability analysis,
optimization, and search. [Liu+20]

Those approaches will be discussed in this section to gain a basic
understanding of the theory behind the specific tools that will be
discussed in the next subsection.

4.8.1.1 Reachability

The idea behind reachability analysis is to look at the outputs that
can be produced by the model with some specified input space. Those
outputs are also referred to as the reachability set which is formally
defined as

R(Xϕ, f) := {y : y = f(x),∀x ∈ X≺} (4.40)

with Xϕ = {x ∈ X : ϕ} including all points of the input space that fulfill
the input constraint ϕ. The reachability set R can be calculated layer
by layer and the way in which they are calculated differs between the
tools.

The original input-output property verification problem was de-
scribed in Equation 4.1. Using the sets Xϕ and Yψ = {y ∈ Y : ψ} that
are restricted by constraints and additionally the reachability set, it can
also be defined as

R ⊆ Yψ. (4.41)

If Equation 4.41 holds then the input-output properties are satisfied.
[Liu+20]

Calculating the reachability set exactly is not scaling well, therefore
besides exact reachability there is also a lot of research on approximat-
ing the reachability set. This enables the use of reachability methods on
bigger and more diverse NNs but often leads to incomplete methods.
An example of an exact reachability tool is ExactReach [XTJ17] and
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examples for approximating reachability tools are Ai2 [Geh+18] and
MaxSens [XTJ18]. If over-approximation methods are used the result
might not only be that the property is satisfied or not satisfied but can
also be unknown. Nevertheless, over-approximation methods are still
often used as they are much more efficient and the completeness of the
algorithm is therefore compromised. Furthermore, they can be imple-
mented in an iterative way that takes a closer look at those unknown
cases by refining bounds or using an additional complete verifier and
can thereby be made complete algorithms.

There are two different approaches to over-approximate: Either
the sets can be over-approximated, for example by split-and-join
algorithms or interval arithmetic, or the function is over-approximated,
e.g. by symbolic propagation. Approximating the sets on reachable
outputs of the different layers is done in many tools like NNV [Tra+20]
and AVeriNN [BP]. It can, for example, be differed between using naive
interval propagation that would for an input x and an output y

x ∈ [0, 1],y = 2x− x (4.42)

produce the following bounds

y ∈ [2 ∗ 0− 1 ∗ 1, 2 ∗ 1− 1 ∗ 0] = [−1, 2] (4.43)

while symbolic interval propagation would recognize that the input x
is used twice and that y = 2x− x = x, and therefore return

y ∈ [0, 1] (4.44)

as bound. Furthermore, it can simplify the verification process a lot
if the non-linear activation functions are over-approximated by linear
functions. This is also used a lot in optimization-based verifiers and
will be described in more detail in subsubsection 4.8.1.3.

Firstly, another look should be taken at the approximation and
representation of the reachability sets of each layer which is one of
the key challenges in reachability analysis. Often it is assumed that
the input space X is a polytope, zonotope, or some similar structure
that is transformed by each of the layers to some new object of the
same structure. Research has been done on good-fitting data structures
that can be simply transformed by the neuron’s operations. The DeepZ
[Ryo+21] verification tool uses zonotopes, the NNV [Tra+20] tool
uses star sets, and a modified kind of star sets is defined for the
AVeriNN tool [BP], the so-called Interval Star set. In addition, tools like
NNV [Tra+20] combine reachability tools with different approaches
depending on the use case.

The reachability approach can also be included in specialized
algorithms like geometric path enumeration as it is done in the
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verification tool nnenum [Bak21]. Moreover, it can be combined with
branch-and-bound methods and optimization techniques that help
with finding tighter bounds for the approximation.

4.8.1.2 SMT-based Solving

The verification of input-output properties can also be written as a
Satisfiability Modulo Theory (SMT) problem. Therefore, it is checked
if a formula is satisfiable. In the formula, the function of the neural
network and the negation of the property have to be encoded, so the
solver checks if there exists an input x with the following properties

∃x ∈ X : (x |= ϕ)∧ (ŷ |= ¬ψ)∧ (ŷ = f(x)) (4.45)

based on Equation 4.1. If the solver finds a result, then this result
can be taken as a counterexample and proof that the property is
not satisfied for all inputs. Early methods for the verification of
neural networks with piece-wise linear activation functions used that
approach for example Reluplex [Kat+17] and Planet [Ehl17]. Reluplex
uses a specialized version of the simplex algorithm to find such an
example by adapting the simplex algorithm to special ReLU function
constraints between the outputs of the neurons after applying the
weights and the outputs of the neurons after applying the activation
function. Planet uses a SAT solver and cannot only handle the ReLU

function but all piece-wise linear functions as activation functions.
Moreover, the methods differ in the way they encode the problem.

4.8.1.3 Optimization

The problem defined in Equation 4.1 can also be defined as an
optimization problem in a similar way to the SMT-based problem as

minx,ŷ o(x, ŷ,X,Y) s.t. x ∈ X, ŷ /∈ Y, ŷ = f(x). (4.46)

Some objective function o(x,y,X,Y) is minimized which is defined
differently depending on the used methods. In the constraints of the
optimization problem, it was stated that the output ŷ does not fulfill
the properties that restricted Y. So the goal is to find the case where the
property is just not satisfied anymore.

The constraints also have to include the indirect description of the
model f to define that the value of ŷ is the result of applying f

on the input x. The model can be encoded to linear constraints or
variations of it like relaxed linear constraints, slack linear constraints, or
mixed integer linear constraints. Using methods to convert the model
in such constraints and optimizing this complex set of constraints
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afterward is also referred to as primal optimization. Dual optimization,
on the other hand, aims to simplify the constraints beforehand. This
transformation to a dual problem is done using relaxation and results
in simpler constraints but a more complex objective function. Example
tools that are based on primal optimization are NSVerify [HL20]
and MIPVerify [TXT19]. For transforming the problem into a dual
optimization problem different relaxation methods are used like the
Lagrangian Relaxation for the tool Duality [Kri+18] and Semi-definite
Relaxation for the tool Certify [RSL20].

The NN function cannot be described by only linear constraints
as there is non-linearity in the activation function and therefore,
it cannot be written as a Linear Programming (LP). However, by
adding integer constraints that can take zero or one as a value, piece-
wise linear functions can be represented by Mixed-Integer Linear
Programming (MILP). For arbitrary activation functions linear lower
and upper bounds can be calculated as done in the tool CROWN
[Zha+18]. Besides different mathematical formulas to calculate as tight
as possible polytopes around different action functions, the tool α-
CROWN [Xu+21] proposed to use a parameter α and a LP to use
optimization for getting even tighter bounds. In a later version, the
GCP-CROWN [Zha+22b], they also use General Cutting Planes (GCP)
for the relaxation of the problem to a dual problem.

Further successful tools that are based on optimization problems are
MN-BaB [Fer+22] which implements an efficient dual solver, VeriNet
[HL20] which also implements symbolic interval propagation to get
a linear approximation, CGDTest [Nag+23], Marabou [Kat+19] - the
successor of Reluplex -, and PeregriNN [KFS21].

4.8.1.4 Search and Branch-and-Bound

Search algorithms are combined with reachability or optimization in
many AI verification tools like ReluVal [Wan+18b], Neurify [Wan+18a],
and FastLin [Wen+18]. If used in combination with reachability, they
support getting a fast result by searching for counterexamples in the
input space or hidden space or by narrowing down the input space
that has to be considered. [Liu+20]

Most of the nowadays successful tools use Branch-and-Bound (BaB)
approaches to get more efficient like MN-BaB [Fer+22], CROWN
[Zha+18] and VeriNet [HL20]. The BaB algorithm consists of two parts,
the branching and the bounding. During branching the search space is
split into two sub-spaces that are considered separately. For example,
branching on ReLU neurons leads to two linear sub-spaces that can be
solved more easily. However, as the number of spaces that are obtained
by splitting grows exponentially to the number of neurons that one
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splits on, splitting on all ReLU neurons would lead to scalability issues.
Therefore special techniques to decide on which neuron to branch on
are developed in tools like VeriNet [HL20]. The branching can also
be accelerated using Linear Relaxation-based Perturbation Analysis
(LePRA) as done in α-CROWN [Xu+21]. The second part of the BaB

algorithm is the bounding which was already discussed in the previous
sections.

Research is also done on how the BaB algorithm can be specially
adapted to the other approaches and how it can be parallelized on
hardware like in the β-CROWN tool.

There are different approaches where optimization problems are
combined with search algorithms. Besides searching the input space,
the function space can also be searched through by assigning values
to the activation function and thereby trying out different activation
patterns. One approach would be to do a local and global search to
find local and global optima, while another approach would be to do a
tree search in the function space.

Moreover, it can also be searched for counterexamples directly like
done in the verification tools VerAPAK [DS] and BaB-Attack [Zha+22c].
These tools concentrate on making the search for adversarial examples
more effective. One concept here is to search the activation space like
done with a top-down beam-search in BaB-Attack [Zha+22c].

4.8.2 Competition for the Verification of Local Input-Output Properties

Since 2020 there is a competition called Verification of Neural Networks
Competition (VNN-COMP) [LJ; BLJ; Bak+] where verification solutions
for Neural Networks are compared. The reports of these yearly
competitions [BLJ21; Mü+23; Bri+23] already provide a good overview
of the state of the tools for local input-output properties. The most
successful tools will be briefly described here.

4.8.2.1 α-β-CROWN

The verification tool α-β-CROWN [Zha+] was the winner of the
competitions VNN2021 and VNN2022. It is based on optimization and
a specialized BaB approach. The tool was composed of many different
tools that are described in different research papers.

The first one is the tool CROWN [Zha+18] which implements the
idea of bound propagation by providing formulas to calculate piece-
wise linear upper and lower bounds for arbitrary activation functions.
They extend this to also create piece-wise quadratic bounds. The
second one is α-CROWN [Xu+21] which implements a method to get
tighter bounds by using a parameter α which represents the slope of
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the lower bound and is optimized using gradient descent. Furthermore,
it introduces the use of Linear Relaxation-based Perturbation Analysis
(LiRPA) to accelerate the branching of the BaB algorithm by formulating
it as an LP. The third one is β-CROWN [Wan+21] which adds a
specialized version of BaB to the CROWN tool. This also enables
parallelization and fast execution on GPUs. As a further tool, they
developed GCP-CROWN [Zha+22b], a tool that makes use of General
Cutting Planes for the relaxation of the LP. Furthermore, it implements
the conversion of the problem to a dual problem.
α-β-CROWN is a very powerful tool as it supports FC-NNs, CNNs,

RNNs and Transformers, residual connections, average and max pool-
ing, and arbitrary activation functions, for example, ReLU, sigmoid, and
hyperbolic tangent (Tanh). The tool successfully took part in all bench-
marks of the competition and therefore checked properties on NNs

with up to 13.6 Million neurons for different applications like image
classification and Reinforcement Learning. However, for all activation
functions but ReLU the tool is incomplete.

As verification properties, the tool accepts all linear specifications on
the output of the NN. Depending on the benchmark the tool can be
used without any additional license, with the Gurobi License [TBB] or
the IBM CPLEX license [IBM].

4.8.2.2 MN-BaB

Like α-β-CROWN the tool MN-BaB [Fer+22] is also based on optimiza-
tion and the BaB algorithm. It converts the problem into a dual problem
and efficiently solves it with a dual solver that runs on a GPU. Its main
contribution is a Multi-Neuron Guided Branch-and-Bound method that
enables the calculation of tighter multi-neuron constraints for guidance
on branching.

The tool got the second prize in last year’s competition VNN-COMP

2022. It supports fully connected NNs, CNNs, and residual networks
and different activation functions like ReLU, Sigmoid, Tanh, and Max
pooling. However, it also needs a Gurobi license [TBB].

4.8.2.3 VeriNet

VeriNet [HL20] is another successful verification tool that is based on
Symbolic Interval Propagation (SIP). Like the previous tools, it also
implements a special kind of BaB with efficient branching.

VeriNet can also handle FC-NNs, CNNs, and residual Networks. It
works with different activation functions including ReLU, Sigmoid, and
Tanh. The tool needs an Xpress Solver [Fai] license when used on large
NNs.
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4.8.2.4 Marabou

The tool Marabou also took part in the VNN-COMP. In only got the 7th
place in the competition in 2022, however, it still should be introduced
as it runs without an Nvidia GPU and therefore will play a role in the
use case demonstration of the framework in chapter 5. Marabou is the
successor of the early tool Reluplex which extended the simplex linear
optimization algorithm by ReLU constraints. Like that, Marabou is also
SMT-based but it additionally uses a divide-and-conquer algorithm
for more efficiency and supports other piece-wise linear activation
functions besides ReLU and more input formats for neural networks
and properties as well.

4.8.3 Approaches for the Verification of Global Input-Output Properties

By global input-output properties, global robustness, invariance prop-
erties, individual fairness, global safety, and correctness properties are
included. There is much less research on them than on local input-
output properties and most research focuses directly on global stability
or robustness. The global input-output properties differ from the local
ones by setting constraints on more than one input and the correspond-
ing output. For the properties regarded here, the constraints are about
the relations of two inputs x and x ′ and their outputs f(x) and f(x ′).
However, for this general definition of global properties there do not
exist general approaches. Therefore, approaches for the specific sub-
properties are discussed in this section.

4.8.3.1 SAT-based Fairness

The tool Fairify [BR22] enables the verification of individual fairness
of NNs with structured input, i.e. inputs with clearly identifiable
discriminating input neurons. The approach they use is to encode the
preconditions and the inverse of the post-condition as SAT formulas
and solving it with the SMT solver Z3 [BNW]. This is similar to
the SMT-based approaches for verifying local input-output properties.
However, two different inputs x and x ′ have to be considered here
and both of them and their NN processing steps have to be modeled.
As this makes the problem much more complex, the tool reduces the
complexity of the NNs and the input space beforehand. In order to
do that, it makes use of the concepts of partitioning the input space
and pruning the NNs for the different partitions independently. To
reduce the network complexity by leaving out neurons that are zero
for all or most inputs they combine two approaches: Sound pruning
and heuristic-based pruning. They define a timeout of 100 seconds for
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the sound pruning and SAT solving of each partition and if the result is
unknown afterwards, the heuristic approach is executed.

4.8.3.2 MILP-based Global Stability

When the tool Reluplex [Kat+17] was proposed, they also mentioned
that it is extensible to global stability by encoding two copies on the NN,
N1 and N2 which operate on the two inputs, x1 and its perpetuated
version x2, respectively. The thereby produced problem of the form
of Equation 4.10 is then put in the Simplex-based solver that was
extended by ReLU nodes. However, as twice as many neurons with
ReLU activation have to be considered compared to local stability, this
approach does not scale.

Cheng, Nührenberg, and Ruess [CNR17] propose to define global
robustness for classification problems by involving the probabilities for
the classes in the output. For all points in the input space x that strongly
classify to a class m according to a parameter, the outputs for similar
inputs x ′ with a perturbation smaller than δm should include the at
least k highest probability for the class m. They model the problem of
determining the perturbation bounds δm as a MILP problem.

By Wang, Huang, and Zhu [WHZ22] a special encoding for the two
copies of a NN fed with different inputs is proposed called interleaving
twin-network encoding. Therefore, there is not one encoding of the
NN for each of the two inputs, but the NN is encoded only one time.
However, this encoding is extended for each connection between two
neurons by a connection of their different values for the inputs x and
x ′, done with simple addition and subtraction operators. Furthermore,
they adapt the over-approximation techniques that were proposed
by Huang, Fan, Chen, et al. [Hua+20a] for local stability verification
to be also used for global verification. This technique is based on
network decomposition which splits the NN into smaller parts to
handle those less complex parts more easily and LP relaxation which
aims to approximate the nonlinear ReLU function by a linear function.
Their special network encoding and approximation techniques lead to
much better efficiency and scalability than previous approaches.

4.8.3.3 Search-based Fairness

Urban, Christakis, Wüstholz, and Zhang [Urb+20] propose a tool called
Libra for fairness verification of classification NNs with ReLU as an
activation function, composed of two parts: a forward and a backward
pass. Their approach relies on the idea that the verification process
can be parallelized by splitting the input space based on activation
patterns and solving the fairness problem on each of them individually.
The forward pass groups the activation pattern into so-called abstract
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activation patterns and then identifies the input region belonging to it.
Based on that the input space is split into regions. Afterwards, the
backward pass tries to solve the fairness problem for each abstract
activation pattern in parallel. This is done by looking at the output
of a specific class and leading it back to its corresponding inputs, one
time with respect to a sensitive attribute and one time without. The
distinction of the sub-input spaces are then taken, to determine if the
NN is fair.

4.8.3.4 Lipschitz Constant Estimation

Some research in the area of formal verification of global properties on
ML focuses specifically on global stability and robustness. As described
in subsubsection 4.5.3.3, this can also be defined by Lipschitz constants.

Many different formulas for calculating an as tight as possible
Lipschitz constant θ have been proposed in the literature. A simple
way to determine a Lipschitz constant for a feed-forward network with
m layers with weights Wi and a non-expansive activation function is
by multiplying the spectral norms of the weight matrices:

θsimple = Π
m
j=1||Wj||. (4.47)

However, the thereby obtained bound is often loose and useless.
Khromov and Singh [KS23] propose to calculate the Lipschitz

constant by

θCombettes = supΛ1∈DN1
,...,Λm−1∈DNm−1

||Wm ·Λm−1 · ... ·Λ1 ·W1||.
(4.48)

where DNj is the set of diagonal matrices of size Nj with zeros or ones
as values. They show that θCombettes ⩽ θsimple and therefore that
their formula often leads to smaller and better Lipschitz constants.

Another approach was proposed by Zhang, Jiang, He, and Wang
[Zha+22a] and is based on solving a semidefinite program. Further-
more, in the constraints of the optimization problem, they encode an
over-approximation of the non-linear activation function in the form of
so-called incremental quadratic constraints.

The scalability of the previous approach was increased by Xue,
Lindemann, Robey, et al. [Xue+22] by splitting the Linear Matrix
Inequality (LMI) into smaller pieces because these pieces can be solved
much faster.

Pauli, Gramlich, and Allgöwer [PGA23] propose an approach to
adapt this method to one-dimensional CNNs while making use of its
structure. In addition, they split the LMI into smaller LMIs for each layer.



4.8 approaches and tools for formal verification 59

4.8.3.5 Further Approaches

The tool DeepSafe [Gop+18a] is based on an approach that first uses
the clustering algorithm k-means to divide the input space into regions
based on the labels the different inputs in the training data had. Each
region has a center and a radius and they can be fed into a local
verification algorithm to check if the region is robust. This advantage
of being able to use a more efficient local verification tool comes with
the disadvantage that only within one region global robustness can be
proven and for classification problems with many classes, it is also not
scaling well.

The tool DeepTRE [Rua+19] determines lower and upper bounds
on the safe radius which define the maximum perturbation that can
be added to still get the right label and how much perturbation will
already lead to an adversarial example. These bounds are iteratively
improved. They measure the difference through the perturbation by
the Hamming distance, also called the L0 norm, which is especially
suitable for perturbations in the form of a few changed pixels.

There also exist methods for directly improving and not certifying
properties like fairness. An extensive summary of such improvement
methods for fairness and insights on when to apply which method is
given in [ZS22] and [Che+23].

Pauli, Koch, Berberich, et al. [Pau+22a] propose a method, that
integrates the aim of getting small Lipschitz bound directly into the
training. They specify an optimization scheme that does not only take
the loss function into account but also the robustness of the NN defined
by a Lipschitz constant that is as small as possible.

4.8.4 Approaches for the Verification of Probabilistic Properties

Even if probabilistic properties are often not directly counted to the
formal properties, they can give formal guarantees on probabilities.
However, the approaches are often still requirement specific nowadays.

4.8.4.1 Probabilistic Robustness

Probabilistic robustness was defined by Mangal, Nori, and Orso
[MNO19] as requiring the probability for f being globally robust to
be higher than some threshold. In the same paper, they also provide
a solution on how probabilistic robustness can be determined by
using abstract interpretation and importance sampling. By abstract
interpretation, it is meant that the behavior of the neural network is
approximated. Importance sampling is a special statistical sampling
technique that enables the handling of unlikely events based on fewer
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samples than needed in naive sampling by focusing on the space of
unlikely events.

A further tool for the verification of probabilistic robustness is CC-
Cert [Pau+22b] which is based on the Chernoff-Cramer bounds. They
concentrate on perturbations resulting from practical transformations
like rotation and translation of images.

Weng, Chen, Nguyen, et al. [Wen+19] propose a tool called PROVEN
which works on top of a local input-output property verification tool
and additionally provides probabilistic robustness certification with
relatively small overhead. This is of interest for those cases where not
only the worst-case bounds are relevant but also how likely robustness
is for a given distance. They provide formulas for the calculation of
lower and upper bounds of this probability.

4.8.4.2 Generalization

The generalization bound can directly be calculated by one of its math-
ematical definitions. To test the generalization property a maximum
generalization gap δmax and ϵ have to be set. Then δ can be calculated
and if it is smaller than δmax the generalization property is verified.

4.8.4.3 Probabilistic Fairness

Albarghouthi, D’Antoni, Drews, and Nori [Alb+17] propose a tool
called FairSquare which can handle the verification of probabilistic
properties, and specializes in probabilistic fairness properties on
different kinds of decision-making programs. Their verification method
is based on so-called weighted volumes which is a way of computing
an integral over boolean formulas.

However, as this approach is really slow, Bastani, Zhang, and
Solar-Lezama [BZSL19] proposes a more efficient tool for verifying
group fairness properties like demographic parity, equal opportunity,
and path-specific causal fairness. The tool VeriFair approximates the
expected output value of the minority and the majority group and
provides probabilistic guarantees by using adaptive concentration
inequalities.

Several further platforms that implement different fairness metrics,
benchmark datasets, and algorithms for fairness measurement have
been developed in the last years. They often do not only address
post-processing verification but also pre- and in-processing verification.
However, for the verification of the trained model they often only pro-
vide verification measurement algorithms for group fairness properties,
like the frameworks Fairlean [Aga+18], AIF360 [Bel+18], and Aequitas
[Sal+19], or are only statistical testing based like FairTest [Tra+16] and
AuditAI [Dia+].
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4.8.5 Approaches for the Verification of Relations between different Models

When considering equivalence properties, the outputs of the two
different models have to be compared in the constraint. Different
approaches have been developed to handle the thereby much more
complex problem.

Paulsen, Wang, and Wang [PWW20] propose a tool called ReluDiff
for finding differences between two NNs of a similar structure. It
consists of a forward pass that makes use of the structural similarity
of the NNs and determines bounds on the difference and a backward
pass that refines the difference.

Another approach is to encode the problem as a MILP problem. This
is done in the tool MILPEQUIV [KBKS20]. However, encoding two
networks often leads to scalability errors.

Teuber, Büning, Kern, and Sinz [Teu+21] extend the idea of using
Geometric Path Enumeration to take two NNs as input. This reachability
approach was originally proposed for local input-output property
verification and was already mentioned in subsubsection 4.8.1.1. In
their extension, they propagate the star sets through the first NN and
then they restrict the input set based on the obtained output star set
before using it as the input for the other NN.

4.9 the method selection process

As there are many methods to choose from, support is needed
especially in this step. All fitting methods regarding the attributes of
the object and the property to verify are returned by the function. An
opaque behavior in Jython is defined for that purpose in the verification
package in Cameo. It creates VTask objects for all toProofOn connections,
extracts the necessary information on the object and property, and uses
them as input for the execution of an external Python script.

This script can also be executed independently of the whole Cameo-
based framework to find fitting methods. Moreover, having an external
Python script allows the use of Python libraries like Pandas [The20]
in contrast to the Jython language that is included in Cameo’s opaque
behaviors. The Python script basically reads the CSV file tools.csv, which
includes the information on the tools, into a Pandas dataframe and
then filters this dataframe by certain criteria. The whole CSV file can be
found in Appendix A.

Every row includes information on one tool. The columns describe
different characteristics of the tool like which types of objects and
which properties to verify it supports. The names of the columns
consist of three parts. The first part defines if the characteristic
restricts the object of verification (obj), the property of verification
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(prop), or is a constraint on the verification (treq) process. The
second part is one of the three operators need (n), support (s), and
compare (c) and the third part describes the characteristic. Examples
would be obj:s:activations, obj:c:no_of_neurons, and treq:n:licenses. In the
determineMethod() Python script the corresponding information on
the object, the property, and the verification constraints of the modeled
system is compared to these characteristics of each tool. For example,
if the model has ReLU and Tanh as activation functions, for each
tool the script checks if both are in the list of supported activation
functions. So the activations of the system should be a subset of
those supported by the tool. The need-operator works the other way
around. If the verification hardware has only a Central Processing
Unit (CPU) but the tool also needs a Nvidia GPU it cannot be used.
Therefore, those characteristics are checked for if the tool’s properties
are a subset of what the system provides. The third operator is the
compare operator. If a tool is known to support FC-NNs with at least up
to 13 million neurons then the number of neurons in the system has to
be less or equal to use the tool. These operators allow to add further
characteristics and automatically evaluate them in the script.

It should be mentioned that the table only captures what was already
tested with this tool yet. Therefore, the number of neurons that is listed
as maximum is not a hard limit but instead just the largest number for
which a test was executed in the literature. In addition, in section 6.2
further aspects will be discussed on how meaningful measures like
the number of neurons are without looking at the detailed structure.
Moreover, the handling of umbrella terms will be discussed in that
section, too. For example, tools might be able to handle all piece-wise
linear activation functions. If the defined NN uses only ReLU activation
functions, the information that ReLU is piece-wise linear has to be
mapped on the problem.

Expressing more complex things about the abilities of tools, like that
a tool needs only a CPU for ReLU-based NNs and for other activation
functions also needs a NvidiaGPU, can at the moment only be done by
writing two rows for the tool, one with only ReLU as activation and CPU

only as hardware and the other row concluding all activation functions
and CPU and GPU.

All methods that were determined as fitting to the problem are saved
in the attribute matchingMethods of the VerificationTask object. The first
method is proposed in the choosenMethod attribute but this can be
changed by the user to one of the other methods.
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4.10 verification tool execution

The automatic execution of all the verification tools that were selected
is out of the scope of this thesis. However, one tool, Marabou, was
installed to show the workflow. However, the Laptop on which the
tool was executed only has Window installed. Therefore, the version of
Marabou from 2019 was used because it is the latest one that support
installation on Windows. This version will be called Marabou-Win in
the rest of the thesis.

When the RunVerificationTools() method is executed, those verifica-
tion tasks, that have Marabou-Win as the chosen method and filenames
defined containing the NNs definition and the formal definition of the
property, will be verified by the tool.

The script iterates through all verification tasks and executes the
verification tool if possible. Then, it reads the output of the execution
after the tool has finished or after a timeout of 150 seconds. The
whole console output is saved in the result_comment attribute of the
verification task and if the result is sat or unsat, the result attribute is
set to true or false respectively. In case of a timeout, the result is set to
None.

4.11 tracing back the results on requirements

As for systems with many objects to check and many properties to
verify the list of verification tasks can become really long and confusing,
their results should be mapped back to the requirements to which their
property to verify belongs to. If all VerificationTasks that are thereby
connected to a requirement have true as a result, the requirement is
verified, if at least one is false, the requirement cannot be verified.
Unknown results can appear if there is no false result for Vtasks but
some unknowns. The opaque behavior MapResultsVtasksToReqs() can be
started for automatically getting this mapping.



5
A P P LY I N G T H E F R A M E W O R K O N U S E C A S E S I N
AV I O N I C S

This chapter will show how the framework can be applied based on two
example use cases from avionics: The famous benchmark of the HCAS

of ACAS Xu [Jul+16] and a threat localization systems for airplanes
[Spr+23].

The framework is applied to the use cases according to the flow
presented in Figure 4.8. The template includes the package structure
presented in Figure 4.1 with the initialized diagrams.

5.1 horizontal collision avoidance system

Aircraft collision avoidance systems were developed in the ACAS X
family based on a Markov Decision Process (MDP) and a given decision
logic. However, these systems need a lot of storage space for the
MDP table. Therefore, Julian, Lopez, Brush, et al. [Jul+16] proposed to
compress the table of the horizontal version ACAS Xu by NNs. These
NNs were often used as benchmarks for simple safety-critical systems
like in [Kat+17], [Kat+19], and as unscored benchmark in the VNN-
COMP [Mü+23].

5.1.1 Introduction to HCAS

For understanding the inputs and outputs of the NN, one has to take a
look at the original ACAS Xu logic table. The following parameters are
considered:

▷ ρ: distance between ownship and intruder (m)

▷ vown: speed of ownship (m/s)

▷ vint: speed of intruder (m/s)

▷ θ: bearing angle to intruder (rad)

▷ ψ: heading angle of intruder relative to ownship (rad)

▷ aprev ∈ [COC,WL,WR,SL,SR]: previous advisory (Clear Of
Conflict (COC), Weak Left (WL), Weak Right (WR), Strong Left (SL),
Strong Right (SR))

▷ τ: time until the airplanes are on the same vertical level (s)
For each of the parameter a set of possible values is defined, for
example τ can be in [0, 1, 5, 10, 20, 40, 60, 80, 100]. However, since there

64
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are many parameters that can take many different values and all
combinations of those values are listed, the table is very big. Based
on the values of these parameters of every entry, the best next advisory
is given in the table.

The logic table is split by the values of τ and aprev and for each of
their values a NN is trained that learns to output the right advisory
action dependent on the values of the other parameters. The structure
of the NNs and the whole system will be regarded closer in the next
section.

5.1.2 Modeling the System Structure

The HCAS system can be modeled by a learning component and an
end-system component. The learning includes the pre-processing of the
data, for example, by splitting the table based on τ and aprev, and one
for the initialization and training of the NNs. The table containing all
NNs is shown in Figure 5.1. They are named by the previous advisory
and the time until the vertical distance is zero. They are trained models,
more specific FC-NNs and only have linear layers with ReLU as activation
function. Each NN has 300 neurons, arranged on 6 layers. [Jul+16]

The NNs can be defined as blocks of type Neural_Network in the
system structure BDD. However, since there were so many NNs in
the system, the NNs and their relations were created by an opaque
behavior for this use case and the relations were then pulled into the
system structure diagram. The nnet files that contain the NNs where
downloaded from the work of Katz, Huang, Ibeling, et al. [Kat+]. For
every NN the filename attribute has to be defined in the NN objects for
the automatic execution of the verification later.

5.1.3 Defining the System Requirements

The basic kinds of requirements were already defined in the framework
and concerning the trained model nested system requirements were
defined.

As correctness requirement, it was specified that the system should
not do extensive unnecessary maneuvers. For example, there should
not be a SL, advice then SR, and then SL again. Furthermore, the
robustness property should hold for all NNs. The same goes for
generalization. Moreover, different safety requirements have to be
defined like avoiding frontal collisions, avoiding to tailgate, and
moving in the wrong direction when trying to get out of the way of
the intruder.
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Figure 5.1: List of all Neural Networks of HCAS

Figure 5.2: System Requirements Table of HCAS

5.1.4 Defining the Technical Requirements

The laptop in use only has a CPU and an integrated GPU. Because
GPUs were only listed if they are Nvidia GPUs, just the CPU is listed
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here. In addition, there is no access to solver licenses. Furthermore,
only Windows ins installed on the laptop. The table of the technical
requirements is shown in Figure 5.3.

Figure 5.3: Verification Requirements Table of HCAS

5.1.5 Deriving the Properties to Verify

Katz, Barrett, Dill, et al. [Kat+17] already defined ten properties, ϕ1
to ϕ10, that should hold on the HCAS system. These properties are
local input-output properties. The output of the NNs consists of five
values, one for each possible action, and the lower the value the better
the action. Because they fit to the correctness and safety requirements
defined above, they are also used here.

Several properties can be marked as refinements of the correctness
requirement NoUnnecessaryManeuvers. To this, the first property ϕ1
fits because it states that the output value of COC should be below a
threshold if the intruder is far away and the speed of the ownship is
much lower than the one of the intruder. The property ϕ2 deals with
the same situation requiring the output value for COC to be not the
maximal of all output values. The properties ϕ6 and ϕ10 add that for
very big distances between ownship and intruder and specific previous
advisories and values of τ, the best action should be COC. In addition,
no strong or rapidly direction changing advisories should be given if
the intruder has a big enough vertical distance, as stated by ϕ7 for the
NN with τ = 100 and aprev = COC and by ϕ8 for the NN with τ = 100
and aprev =WL.

The safety requirement AvoidFrontalCollision can be refined by
properties ϕ3 and ϕ9. Property ϕ3 states that if the intruder is directly
ahead and moving towards the ownship, then COC should not be the
best action. Property ϕ9, on the other hand, deals with the situation
where the intruder is slightly right in front of the ownship a moves
in the opposite direction than the ownship. The property states, that
even if the last advisory was weak right, the next best action should be
strong left.

Another safety requirement is, that one should not bump into an
intruder that is flying in front of the ownship. This is formulated in ϕ4
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for all NNs except those that had COC as last advisory and have at least
60 seconds left until loss of vertical separation.

An example property for the safety requirement of swerving to the
right direction is ϕ5. It deals with the situation that the intruder is
coming from the left and is already quite close. Then SR should be
given as advisory.

Further requirements that have not been refined yet, are the
robustness and the generalization requirements. For the kind of
robustness, Table 4.1 is used as guideline. Since the goal of the NN

is to represent the logic table, it is enough to take a look at inputs
from the ODD. This leads to the choice of stability instead of general
robustness. Around the points which are given in the ACAS Xu table,
the NN should be robust. So local robustness is regarded. Checking if
the network is always robust is necessary here because probabilistic
guarantees on that it is robust for most inputs are not enough for
such a safety-critical system. This is especially the case for safety
properties. For correctness properties on the other hand one can argue
that probabilistic guarantees might be enough. Depending on what
post-processing steps for deciding on what action to do will follow,
distinct robustness might also be a good choice. However, it is assumed
for now that simply the best action based on the network’s output
is executed. Therefore, local non-probabilistic non-distinct stability is
chosen as property to verify. This leads to the possibility of expressing
the robustness property by a local input-output property. It will be
checked for L∞-perturbations here, and therefore that norm will be
used. The property should be checked on all NNs.

For checking the generalization abilities the estimation of general-
ization bounds should be used. A probability of (1 − α) is defined
for which the calculated bound should hold and compare this bound
to a maximum generalization gap gmax. The generalization property
should also be checked on all NNs.

Since the HCAS system does not deal with sensitive attributes and
no two ML models have to be compared, no fairness and equivalence
properties have to be defined.

Figure 5.4 shows how the properties refine the requirements in the
RequirementPropertyRelation diagram. In this diagram the properties
and the refine relations were created. Once the properties are defined
in this diagram, they can also be seen in the PropertiesToVerify table.
Either in this table or by opening their specification in the previous
diagram, their attributes can be defined. Depending on what attributes
are visualized in it, this table can get very big, still, an example entry
is shown in Figure B.1. The editing of a properties specification can be
seen in Figure 5.5.
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Figure 5.4: Requirements Refinement of HCAS

After the properties with their formal classes, domains, subdomain,
and list of objects they are applied on are defined. They have to be
connected to these objects by a toProofOn dependency which is done
by executing the GenerateRelationsPropsToObjs opaque behavior.

5.1.6 Determining the Methods and Verification Tasks

Next, the opaque behavior DetermineMethods is executed and the
verification tasks that it creates were listed in the VerificationTask
table. The complete table can be found in section B.1. In the column
matchingMethods all the tools are listed that the script determined as
matching to the verification problem. In the column chosenMethod the
first element of the list is suggested. However, this can be changed in
the next step to some other method if another method should be used.
Marabou is left here as choice for the local input-output verification.
For more information on why other methods were not selected as
fitting to the problem, the column DetermineMethodsConsoleOutput can
be shown in the table. Examples of these outputs for a local input
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Figure 5.5: Example Property Specification of HCAS

output property and a generalization bound are given in section B.1.
The DetermineMethod() function outputs the reasons why each of the
tools dropped off from the list of matching tools.

Next, one can check in the tools table what file formats Marabou-
Win supports as input. Marabou-Win takes NNs in the nnet file
format and properties in a specially structured txt-file. To demonstrate
the verification flow, for properties ϕ1 to ϕ4 the files containing
the mathematical formulation were downloaded from Katz, Huang,
Ibeling, et al. [Kat+] and the filenames were added to the model as
attribute of the properties. For all verification tasks where a tool was
chosen, a filename for the property, and a filename for the object were
defined, the verification is executed when running the opaque behavior
RunVerificationTasks. Property ϕ1 was applied to all NNs, property ϕ2 to
all besides those that had COC as last previous advisory, and property
ϕ3 and ϕ4 to all besides those that had COC as last advisory and have
more than 60 seconds left until loss of vertical separation. So overall
the Marabou-Win tool had to be executed 165 times.

The result of the verification is shown in the result column of the
VerificationTasks table. Moreover, the column result_comment gives more
information on the last console output of executing the verification tool.
If the tool prints unsat in a line the property is verified while a line
saying sat means that a counter example was found. If none of both
was printed the tool did not finish. Exemplary last parts of outputs
are shown in section B.1. Here, the timeout for solving each tasks was
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set to 150 seconds. Having this timeout for 165 execution, having an
additional overhead through Cameo, and using an rather slow tool
because of hardware restrictions, let to an overall execution time of the
script for more than a day. Still, for many verification tasks the tool did
not finish in that time and therefore the result is set to unknown. The
rest of the verification task were not executed and therefore also got
none as result.

5.1.7 Mapping Results to Requirements

Afterwards, the opaque behavior MapResultsOfVTasksOnReqs is started.
The result can be seen in the column verified of the SystemRequirements
table like shown in Figure 5.6. Because the execution of many
verification task was interrupted after a timeout of 150 seconds and
many properties were not tested, no requirement could be verified yet.
However, it was shown that the requirement NoUnnecessaryManeuvers
is not satisfied. For the other requirements no counter example was
found and for some networks the properties hold but there are no
guarantees that they hold for all tasks.

Figure 5.6: Table of System Requirements with Verification Results

5.2 threat localization

The aim of the threat localization system proposed by Sprockhoff,
Lukic, Janson, et al. [Spr+23] is to detect intruder aircrafts or other
threats in the field of view of the camera data of an airplane and to
locate those threats. They implemented the simulation of the camera
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view with the tool Flightgear [OMT], running on a Windows computer
while the object detection itself runs on a Jetson Xavier.

5.2.1 Introduction to the threat Localization System

The views of camera on the right and left side of the ownship is
simulated with Flightgear. On both views object detection is executed
to find intruding aircrafts. For detecting, Sprockhoff, Lukic, Janson, et
al. [Spr+23] use the popular object detection model YOLOv7 [WBL22].
YOLO is a family of object detection models that have a rather small
amount of parameters compared to their performance. They can detect
an arbitrary number of objects in an image, return the class of the
object, the probability for that it is really that object, and a bounding
box around the object. Their architecture is based on a backbone and
a head part. However, the number and kinds of layers and activation
functions differ between the models. YOLOv7 was published in 2022

and also consist of different models. In the threat localization system
the standard YOLOv7 model was used but there exist also a tiny one
and extended YOLO models. [WBL22; Sol; Boe]

Based on the bounding boxes that are returned for both camera
views and the distance between the left and right camera, the position
of the other aircraft or object is calculated.

5.2.2 Modeling the System Structure

Firstly, the system structure is specified in a diagram as shown in
Figure 5.7 and specify the neural network YOLO which can be seen
in Figure 5.8. This is our single object that should be checked here
because only requirements on trained models are considered here. The
standard YOLO model - which was used by Sprockhoff, Lukic, Janson,
et al. [Spr+23] - has 36.9M parameters. It uses the SiLU activation
function and mainly consists of re-parameterized convolutional layers
with identity connection (RepConvN) and MaxPool layers. [WBL22;
Sol]

5.2.3 Defining the System Requirements

The formal definition of requirements on image-based ML systems
is a challenge, as it is hard to describe properties on the input
space. Still, a number of image-specific robustness requirements can
be defined to ensure that simple transformations of images do not lead
to another prediction. Such transformations can, for example, include
translations, rotations, and subsampling. Moreover, robustness against
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Figure 5.7: System Structure of the threat localization system

Figure 5.8: The YOLO object

perturbations can be defined for images as input as well. Images that
only differ in a small amount of pixels can thereby also be checked to
always get the same output.

An overview of the requirements that were defined here for the
threat localization is provided in Figure 5.9.
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Figure 5.9: Requirements on the threat localization system

5.2.4 Defining the Technical Requirements

Here, this use case has the same technical restriction like in HCAS in
subsection 5.1.4. There is no Nvidia-GPU on the laptop and no solver
licenses are available.

5.2.5 Deriving the Properties to Verify

For each system requirement one or more properties were derived as
shown in Figure 5.10.

Figure 5.10: Refinement of the requirements on the threat localization system

The robustness against perturbations of the pixels is defined through
local stability which can be encoded as local input-output property.
In addition, the generalization abilities are again measured by PAC-
Bayes bound. Therefore, it is a probabilistic property. Furthermore, the



5.3 conclusions on applying the framework to the use cases 75

requirement on robustness against image-specific transformations is
refined by three properties: translation stability, photometric transfor-
mation stability, and subsampling stability. Local linear encoding for
such properties were proposed by Kouvaros and Lomuscio [KL18]. The
definitions still have to be edited for the bounding box output but al-
ready show that encoding the hard part, the constraint on the input, is
possible.

The table that contains all properties that should be verified
including their domains and formal classes is pictured in Figure B.12.
All properties should be verified on the YOLO model.

5.2.6 Determining the Methods and Verification Tasks

When the script for determining fitting methods is executed no such
methods are found. The output of the function determineMethod() for
one example verification task is shown in section B.2. YOLOv7 uses
special kinds of layers and activation functions that are at least not
explicitly mentioned to be support by the tools in the table. However,
while there is a lot of research on formal verification for classification
problems, object detection problems are not handled yet.

5.2.7 Mapping Results to Requirements

Therefore, mapping back the verification tasks result to the require-
ments would only lead to the result none and this step can be skipped.
The problem that the YOLO model addresses and its architecture are
too complicated and the model has too many special components that
- to the best of my knowledge - no formal method is available to verify
it. Simulation and scenario-based testing has to be used at the moment
instead.

5.3 conclusions on applying the framework to the use

cases

Applying the framework to the use cases showed that the proposed
framework is very useful, as the verification tools dropped out of the
list for many different reasons. Without the framework, a user would
have to gather the different definitions and approaches and check all
those tool characteristics manually. Because HCAS consists of rather
small NNs, the framework showed that tools were sorted out because
of the technical restrictions on the verification process and because of
the property that should be verified. The threat localization system has
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the complex YOLO model as NN and therefore tools were mainly sorted
out because of the characteristics of the YOLO object.

In addition, the model-based approach turned out to be useful
because the correctness properties defined for HCAS had all different
sets of NNs as targets. In the Cameo model, the properties could be
connected to the objects they should be verified on and the verification
tasks could be automatically created based on these links and also be
connected to the properties and regarded objects.

Moreover, it turned out that still a lot of research is needed on
developing more powerful tools and that the tool table could be
enhanced by extensively testing all tools on different kinds of models
and thereby filling up unknown cells or getting tighter bounds on the
tool’s capabilities.
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R E L AT E D W O R K , D I S C U S S I O N A N D F U RT H E R
I D E A S

This chapter describes how the framework is connected to related work,
what the limits of the proposed version of the framework are, and what
further steps have to be done to complete the framework for more
general scenarios. Moreover, some ideas are discussed that go beyond
the basic functionalities.

6.1 related work

Related work in terms of the definitions and approaches for the
verification of formal properties on neural networks was already given
in section 4.5 and section 4.8 because this was the foundation for
deriving the framework.

There are also some approaches that build frameworks for the
execution of verification tools for local input-output properties. These
approaches aim at standardizing input and output formats and
making tools comparable. For example, the paper [Liu+20] proposes a
standardized implementation of a number of the earlier tools. Further
efforts were made by the framework DNNV [SED21] on standardizing
the input and output formats of such tools. They suggest using
the standard ONNX-format [ONN] for models and specify a format
called DNNP for encoding the properties. Then, they converted several
benchmarks and tools to support these formats. The competition
VNN-COMP [Bak+] also contributes much to the standardization of file
input and output formats. The benchmarks used in the competition
consist of a model in ONNX-format [ONN] and property in the
VNN-LIB [Tac+] format. Furthermore, through the competition report,
they provide each year a summary and comparison of state-of-the-art
methods in the field. Still, these related works are restricted to local
input-output properties and only provide solutions for the verification
of a given model and property, without guiding through the selection
of properties.

Moreover, the toolkit VerifAI [Dre+19] should be mentioned. It
structures the components of the design and verification through
simulation of AI components. It defines the necessary inputs for
the verification and possible outputs like counter-examples and fuzz
testing traces.

77



6.2 discussion and further ideas 78

Furthermore, the EASA is working on some closely related projects
in the area of defining general objectives, regarding ML-specific veri-
fication properties, and assembling existing approaches. Their guide-
line on trustworthy AI was already summarized in subsection 3.3.3.
In addition, they published the report of the CoDANN [EAS] project
in 2020. This included a W-shaped learning assurance life cycle, gen-
eral ideas on the safety assessment process, and a practical use case.
Moreover, the EASA also proposed a document on the formal verifica-
tion of learning-based systems this year. The deliverable of the project
Formal Methods use for Learning Assurance (ForMuLA) [EA23] gives
some general guidance on formal methods and where they can be
used in a learning setting. Further guidance is given by the MLEAP

interim technical report [Bel+23] of EASA. It splits the problem into
three tasks: Data completeness and representativity, model develop-
ment, and model evaluation. For each of these tasks they define the
background concepts, how it is handled for ML and Deep Learning (DL)
in specific, and take a look at some methods and tools.

The idea of using MBSE also for AI-based systems was proposed by
[Spr+23]. However, they concentrate on using Model-based System-
Theoretic Process Analyses and scenario-based safety assessment to
address the challenge of assessing safety while this work focuses on
integrating formal verification to give safety guarantees.

6.2 discussion and further ideas

Since it turned out that it is very hard to see through all the different
definitions and approaches, such a framework is needed for integrating
verification into ML-based systems. The model-based approach can
help users to be practically guided through the process and keep an
overview. It brings us a step closer to applying formal verification
on complex ML systems to enable the use of AI in safety-critical
applications. However, there are still some steps to do to promote this
development.

This thesis mainly proposed the framework in general and only
a part of the framework was developed in detail. This allows the
demonstration of the flow of the framework and its advantages. But
still, details on defining requirements were only provided for trained
models, verification properties were only formulated for NNs, and
the execution of methods was only tested on one tool with four
properties on up to 45 NNs. Additional research has to be made for
the other components, their requirements, properties to verify, and
verification methods. Once the other components with many different
characteristics are integrated, decisions have to be made on storing all
tools in one table with many empty cells or splitting the table. Based
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on the type of the object another table could then be read which would
reduce the filtering overhead.

A further aspect that can be discussed is the choice of columns
of the tool table. They have to capture characteristics of tools that
limit their practicality on different kinds of models and properties.
ML models can become very complex nowadays and it is hard to
capture their complexity just by a number of nodes or parameters. To
capture new arising characteristics, the tool table is easily extendable.
Moreover, some results on benchmark problems like the execution time
and performance could be integrated into the table to make elements
within the matching methods comparable. In addition, the information
in the tool table just bounds on what is at least possible. Many more
architectures and layers might be possible, and for some tools, only a
few things are known. Extensively testing all tools to get tighter bounds
and filling up the unknown cells in the tool table could help further.
In addition, umbrella terms could be handled more intelligently by
some kind of inheritance. For example, a tool that supports all piece-
wise linear activation functions has to list all common piece-wise linear
functions like ReLU and LeakyReLU at the moment. Information that a
ReLU function is also a piece-wise linear function can be encoded in the
language specification of Cameo in the future.

Moreover, the state-of-the-art tools for formal verification turned
out to be still limited by their scalability, the kinds of architectures
and layers, and the problems they can address. A lot of research on
verifying local input-output properties for classification problems is
done while other properties and problems remain open. Other models
than NNs also get much less attention. This framework will gain
importance with the development of stronger and more diverse tools.

In safety-critical areas, certification is always playing a big role.
Formal verification methods can only ensure that a property holds if
the verification algorithm is working correctly. While at the moment
anyone can add something to the tool table, it could also be possible
that a certification agency provides a tool table that only holds certified
tools.

The details in this work only focused on the verification of an already
trained model. However, there are also many approaches that ensure
that certain properties are never violated during the whole training
process. Furthermore, there are upcoming algorithms that repair ML
models for which a property is violated [Lan]. Integrating these aspects
into the framework would be an interesting further step.

The tool table can also be used independently from the rest of the
framework and Cameo. This even opens up the opportunity to use the
table the other way around for determining how a model can look if it
still should be formally verifiable for a certain kind of property.
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C O N C L U S I O N

This thesis presents a model-based framework that supports the use
of formal verification of ML-based systems and demonstrates its use
on a collision avoidance system and a threat localization system. The
framework provides a way of modeling the verification process and
four basic elements: Guidance on choosing requirements, guidance
on defining properties to verify, automated support in determining
fitting tools, and automatic execution of the verification tasks. These
basic elements were implemented for NNs to show all steps of the
verification flow. For the guidance on requirement and property
selection, extensive literature research was done on guidelines and
formal property definitions of NNs. The results were grouped into
objectives and formal classes. Based on these formal classes, formal and
stochastic verification approaches, methods, and tools were gathered
and a CSV table was generated. This table was designed to support
the determination of fitting tools for a given problem and to be easily
extendable with new tools or new problem characteristics.

For the implementation, the MBSE tool Cameo was used and a
package structure, the stereotypes for the required elements, and
supporting opaque behaviors were defined. Such opaque behaviors
contain Jython scripts that automatically create dependencies and
verification task objects including the attribute that contains all fitting
methods based on the object and property definitions, run all possible
verification tasks with their selected tools, and map back the results of
the verification tasks to the system requirements.

The CSV tool table and the Python script for finding fitting tools
can also be used independently of any modeling tool. Using the
framework on aviation use cases showed that existing verification tools
are still very restricted in their options. For example, when applying
the HCAS use case on my hardware, many tools dropped off because
of the defined technical restrictions like that there is no Nvidia GPU

and Windows as the operating system on the laptop. For the threat
localization system use case, no fitting verification method was found
by the framework because of the complexity of the YOLO model and
the object detection task.

In the end, the limits of the framework were discussed and further
steps and ideas were presented. Guidance on requirements on other
object types and their specific properties can be included in the
framework in the future and extensive verification tool testing can be
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done to make the tool table and thereby the framework even more
powerful.
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T O O L TA B L E

The figure of the tool table was split vertically in three parts because it
has too many columns with tool characteristic to fit on one page. These
parts can be found in Figure A.1, Figure A.2 , and Figure A.3.
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B
F U RT H E R M AT E R I A L O N T H E U S E C A S E S

b.1 further figures on applying the framework for hcas

The complete verification task table was also split and can be found in
Figure B.2, Figure B.3, Figure B.4, Figure B.5, Figure B.6, and Figure B.7.
Two example outputs of running the DetermineMethod() function on
a local input-output property and on a generalization property are
shown in Figure B.8 and Figure B.9. Figure B.10 and Figure B.11 show
examples of the console outputs from running Marabou that were
saved in the VerificationTask objects.

b.2 further figures on applying the framework on the

threat localization system

Figure B.13 and Figure B.14 show the console outputs of the Deter-
mineMethod function. For the first example, the attribute output_type
was not set and therefore ignored in the selection of matching methods.
In the second example, it was set to ObjectDetection.
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Figure B.2: Section of the Verification Task table
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Figure B.3: Section of the Verification Task table
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Figure B.4: Section of the Verification Task table
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Figure B.5: Section of the Verification Task table
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Figure B.6: Section of the Verification Task table
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Figure B.7: Section of the Verification Task table
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Figure B.8: Example Console Output of DetermineMethod()
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Figure B.9: Example Console Output of DetermineMethod()
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Figure B.10: Example Console Output of running Marabou-Win
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Figure B.11: Example Console Output of running Marabou-Win



B.2 further figures on applying the framework on the threat localization system 112

Fi
gu

re
B.

1
2
:P

ro
pe

rt
y

ta
bl

e
of

th
e

th
re

at
lo

ca
liz

at
io

n
sy

st
em



B.2 further figures on applying the framework on the threat localization system 113

Figure B.13: Example Console Output of running the DetermineMethod func-
tion on the threat localization system



B.2 further figures on applying the framework on the threat localization system 114

Figure B.14: Example Console Output of running the DetermineMethod func-
tion on the threat localization system with the attribute out-
put_type added
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