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• Motivation

• Why are some problems so difficult to solve ?

• How can we use quantum objects to do computations 
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MOTIVATION

• We can simulate the
     behavior of complex
     macroscopic objects
• We do not understand 
     some properties of
     small materials

• Why is it so more difficult ?

• How difficult to simulate it ?
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! Spoiler:

the reason why these problems are so difficult
is the same that makes quantum computers superior to classical ones
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Elektron

Control of the charge
degree of freedom

Electronics

Digital World

Electric charge Intrinsic angular momentum - Spin

Control of the spin
degree of freedom

Spintronics

New age of
Technology

Electrical Components
Electrical Components

+
Spin based Components

Paramagnetic metal  - free charge carriers

(one possibility to realize a qubit)
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SPIN SYSTEMS – zero temperature

Classical Quantum

• Local interactions

• Zero temperature
  solution of the problem = find configuration that minimizes energy

} }



• There are         different configurations

• Impossible to solve if 

Configuration Energy
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000…011
…           
111…111

0.351
0.296
-0.256
-0.555
…
0.654

CLASSICAL SYSTEMS – Example



• There are         different configurations

• Impossible to solve if 

Configuration Energy

000…000
000…001
000…010
000…011
…           
111…111

0.351
0.296
-0.256
-0.555
…
0.654

CLASSICAL SYSTEMS – Example



Configuration Energy
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CLASSICAL SYSTEMS – Example

Configuration Energy

000…000
000…001
000…010
010…101
…           
111…111

+1000
+998
+997
-1000
…
+1000

Symmetries: Translation invariance, Rotation invariance,…

Antiferromagnetic groundstate

Conclusion:
• Classical systems are difficult to simulate
• Practical problems – it is relatively simple to find the solution
• There exist numerical methods for finite temperature
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QUANTUM SYSTEMS
Double slit experiment – particle wave duality

• Waves passing a double slit show a typical interference pattern

• However, the same pattern is observed if single electrons are used (or even atoms and molecules)

If we throw a classical stone:

If we throw a QM stone:

- The stone is at a specific position at each point in time

- The stone is at multiple positions at each point in time
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QUANTUM SYSTEMS

Superposition of states: Classical
(Bits)

Quantum mechanical
(Qubits)

System:

Entaglement of spins:

System:

Question:
How many bits do we need to write down a general classical / QM state composed of N spins ?

Classical:  N Quantum mechanical:
70 spins need                    numbers = 1 zettabyte

Amount of digital data in the world



How to solve QM problems ?

Physical Hilbertspace

Find a good ansatz for the (finite dimensional)
Many body wavefunction and opimize it
• Density functional theory (1998 nobel prize in chemestry)
• Quantum monte carlo
• Density matrix renormalization
• Dynamical mean field theory
• Matrix product states / Tensor networks
• Numerical renormalization group
• …
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How to solve QM problems ?

Physical Hilbertspace

Find a good ansatz for the (finite dimensional)
Many body wavefunction and opimize it
• Density functional theory (1998 nobel prize in chemestry)
• Variational quantum monte carlo
• Density matrix renormalization
• Dynamical mean field theory
• Matrix product states / Tensor networks
• Numerical renormalization group
• …

If we want to simulate a system of 300 spins:

Classical computer:
if we would store one bit of information in a single
atom the whole (observable) universe wouldn‘t be
enough to represent a single state

Quantum computer:
how many qubits / atoms do we need?  -  300...



(Digital) QUANTUM COMPUTER – Building blocks
Qubits:
• nitrogen vacancies (spins)

➢ Tomorrow: Dr. Gopalakrishnan Balasubramanian (XeedQ)
•  superconductors
• trapped ions
• photons
• ...
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Logic gates – realized for example by laser beams
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Logic gates – realized for example by laser beams

(Digital) QUANTUM COMPUTER – Building blocks

Quantum circuit

Qubits:
• nitrogen vacancies (spins)

➢ Tomorrow: Dr. Gopalakrishnan Balasubramanian (XeedQ)
•  superconductors
• trapped ions
• photons
• ...



QUANTUM COMPUTER – conclusion

Using N (perfect) Qubits and a universal set of quantum logical gates:

• We can prepare a quantum state that represents       N-Bit states at the same time

• We can perform operations on      N-Bit states at the same time (quantum parallelism)

Exponential speedup for a specific set of problems:

• Simulation of quantum mechanical materials
• Prime factorization – Shor‘s algorithm

• … 
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NITROGEN FIXATION

Ammonia / Ammoniak
Ammonia plant in india

• Very common fertilizer
• We woudn‘t have 8 billion people
     on earth without ammonia
• Its production consums
     ~2% of world‘s energy
    (high temperature / high pressure)

Very inefficient way!



NITROGEN FIXATION

Ammonia / Ammoniak
Ammonia plant in india

• Very common fertilizer
• We woudn‘t have 8 billion people
     on earth without ammonia
• Its production consums
     ~2% of world‘s energy
    (high temperature / high pressure)

Very inefficient way!

Cyanobacteria spontaneously produce ammonia at room temperature…

… But we still don‘t know how it works since it is a quantum process
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