INTRODUCTION TO QUANTUM COMPUTING FROM THE PERSPECTIVE OF A SOLID STATE PHYSICIST

- Motivation
- Why are some problems so difficult to solve ?
- How can we use quantum objects to do computations

Fabian Eickhoff, SC-HPC, 06.09.2023

MOTIVATION

- We can simulate the behavior of complex macroscopic objects
- We do not understand some properties of small materials

- Why is it so more difficult ?
- How difficult to simulate it ?

Spoiler:

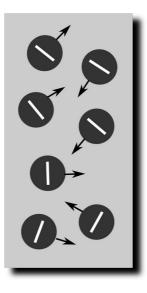
the reason why these problems are so difficult is the same that makes quantum computers superior to classical ones

- We can simulate me behavior of complex macroscopic objects
- We do not understand some properties of small materials

- Why is it so more difficult ?
- How difficult to simulate it ?

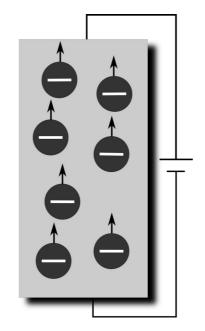
Elektron

metal - free charge carriers



Elektron

metal - free charge carriers



Electric charge

Control of the charge degree of freedom

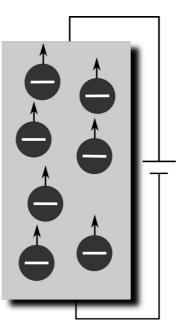
metal - free charge carriers

Elektron

Electronics

Electrical Components

Digital World



Electric charge

Control of the charge degree of freedom

Elektron

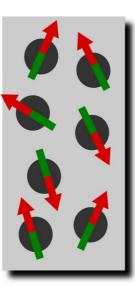
Intrinsic angular momentum - Spin

(one possibility to realize a qubit)

Paramagnetic metal - free charge carriers

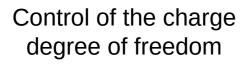
Electronics

Electrical Components



Digital World

Electric charge



Intrinsic angular momentum - Spin

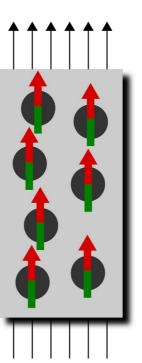
(one possibility to realize a qubit)

Paramagnetic metal - free charge carriers

Electronics

Electrical Components

Digital World



Electric charge

Control of the charge degree of freedom

Intrinsic angular momentum - Spin

(one possibility to realize a qubit)

Control of the spin degree of freedom

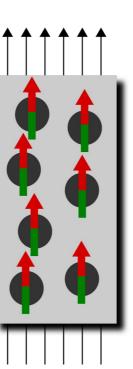
Paramagnetic metal - free charge carriers

Elektron

Electronics

Electrical Components

Digital World

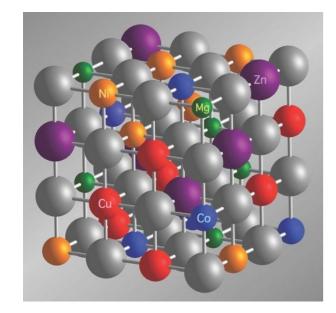


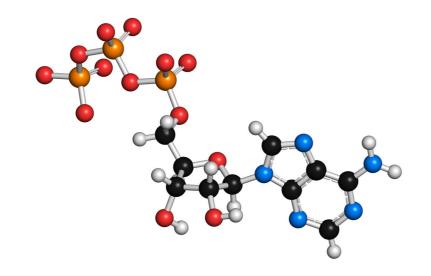
Spintronics

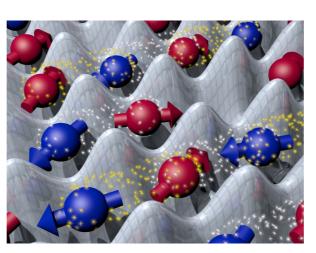
Electrical Components + Spin based Components

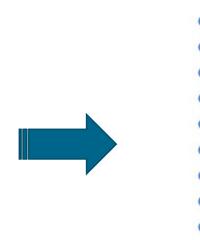
New age of Technology

MODELS – Physical Systems

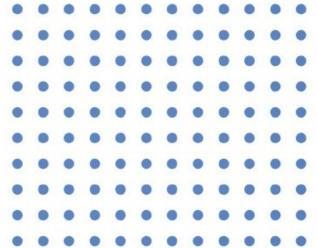








Lattice Models



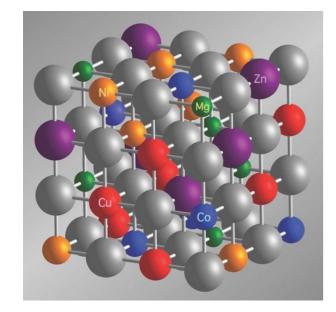
- Discretization of space
- Interactions among constituents

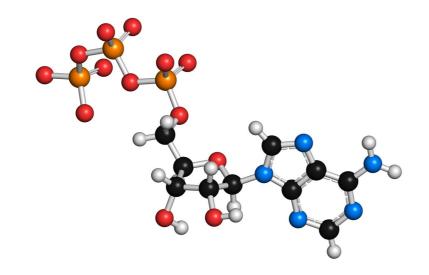
Energy of different configurations

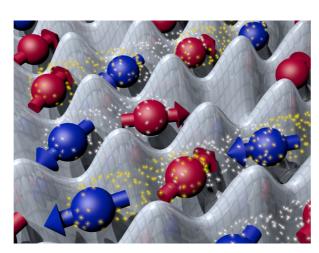
Hamiltonian: $H = \dots$

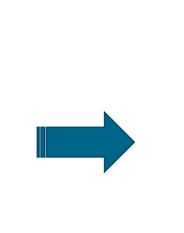
(cost function)

MODELS – Physical Systems

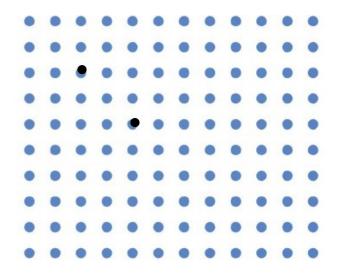








Lattice Models



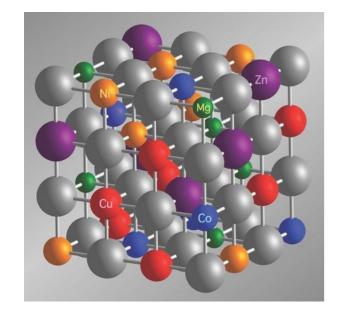
- Discretization of space
- Interactions among constituents

Energy of different configurations

Hamiltonian: $H = \dots$

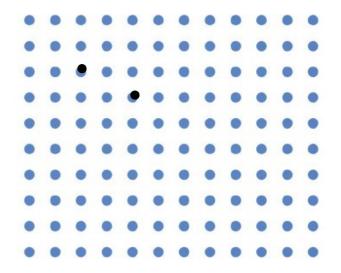
(cost function)

MODELS – Physical Systems





Lattice Models



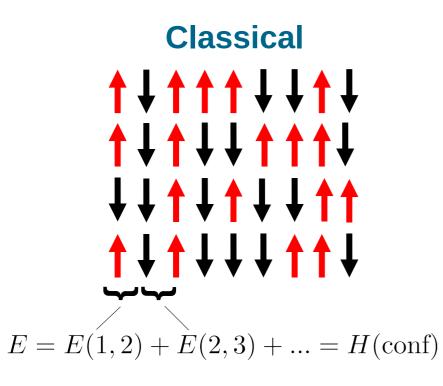
- Discretization of space
- Interactions among constituents

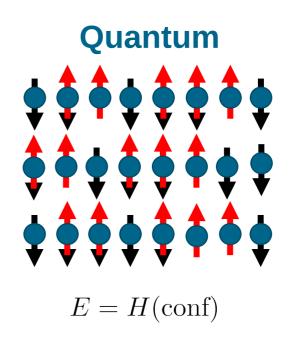
Energy of different configurations

Hamiltonian: $H = \dots$

(cost function)

SPIN SYSTEMS – zero temperature

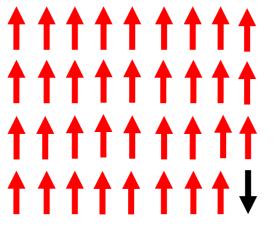




- Local interactions
- Zero temperature
 - \blacktriangleright solution of the problem = find configuration that minimizes energy

Configuration	Energy
000000	0.351
000001	0.296
000010	-0.256
000011	-0.555 🔶
 111111	0.654

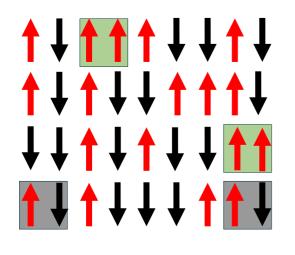
- There are 2^N different configurations
- Impossible to solve if $N = \mathcal{O}(100)$



E =	E(1,2)	+E(2,3) -	$+ \dots$
-----	--------	-----------	-----------

Configuration	Energy
000000	0.351
000001	0.296
000010	-0.256
000011	-0.555 🔶
 111111	 0.654

- There are 2^N different configurations
- Impossible to solve if $\,N={\cal O}(100)\,$



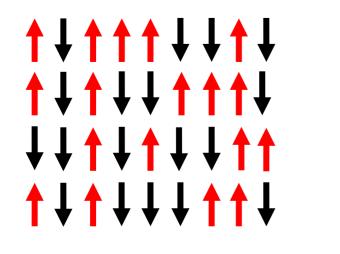
Configuration	Energy
000000	-1000 🔶
000001	-998
000010	-997
010101	+1000
111111	-1000 🔶

 $E = E(1,2) + E(2,3) + \dots$

Ferromagnetic groundstate

Symmetries: Translation invariance, Rotation invariance,...

 $\begin{array}{c} \uparrow \uparrow / \downarrow \downarrow \\ \downarrow \uparrow / \uparrow \downarrow \\ E = -1 \\ E = +1 \end{array}$

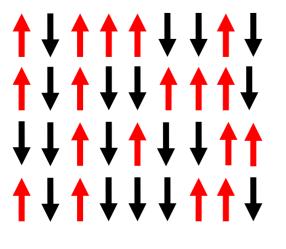


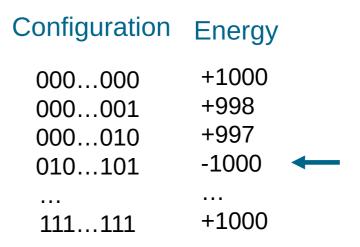
Configuration	Energy	
000000	+1000	
000001	+998	
000010	+997	
010101	-1000	-
 111111	 +1000	

 $E = E(1,2) + E(2,3) + \dots$

Antiferromagnetic groundstate

Symmetries: Translation invariance, Rotation invariance,...





$E = E(1,2) + E(2,3) + \dots$

Antiferromagnetic groundstate

Symmetries: Translation invariance, Rotation invariance,...

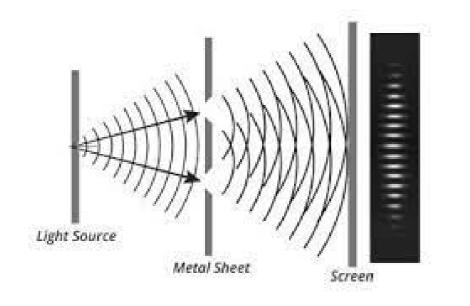
$$\mathbf{\uparrow} \mathbf{\uparrow} \mathbf{/} \mathbf{\downarrow} \mathbf{\downarrow} \qquad E = +1$$

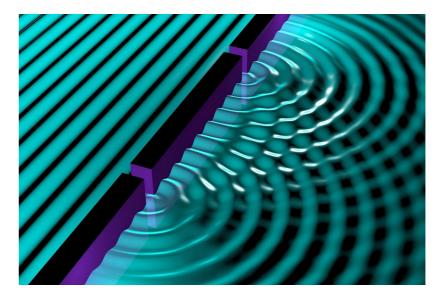
$$\mathbf{I} \uparrow \mathbf{I} = -1$$

Conclusion:

- Classical systems are difficult to simulate
- Practical problems it is relatively simple to find the solution
- There exist numerical methods for finite temperature

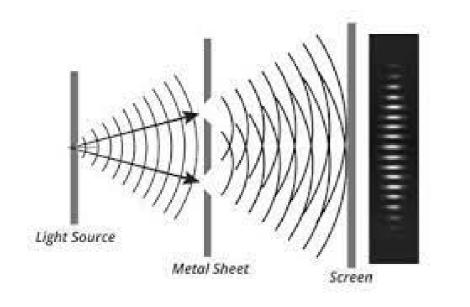
Double slit experiment – particle wave duality

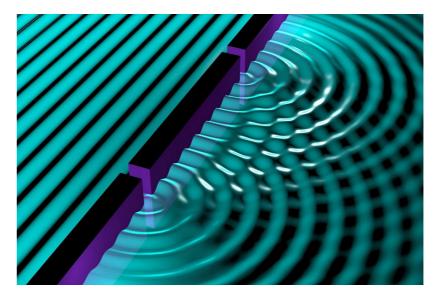




- Waves passing a double slit show a typical interference pattern
- However, the same pattern is observed if single electrons are used (or even atoms and molecules)

Double slit experiment – particle wave duality





- Waves passing a double slit show a typical interference pattern
- However, the same pattern is observed if single electrons are used (or even atoms and molecules)

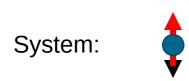
If we throw a classical stone: $\vec{x} = f_{\text{Newton}}(t)$

- The stone is at *a specific position* at each point in time

If we throw a QM stone: $\operatorname{prob}[\vec{x}] = |\Psi_{\mathrm{SGL}}(\vec{x},t)|^2$

- The stone is at *multiple positions* at each point in time

Superposition of states:



Classical (Bits) $|0\rangle, |1\rangle$ Quantum mechanical (Qubits)

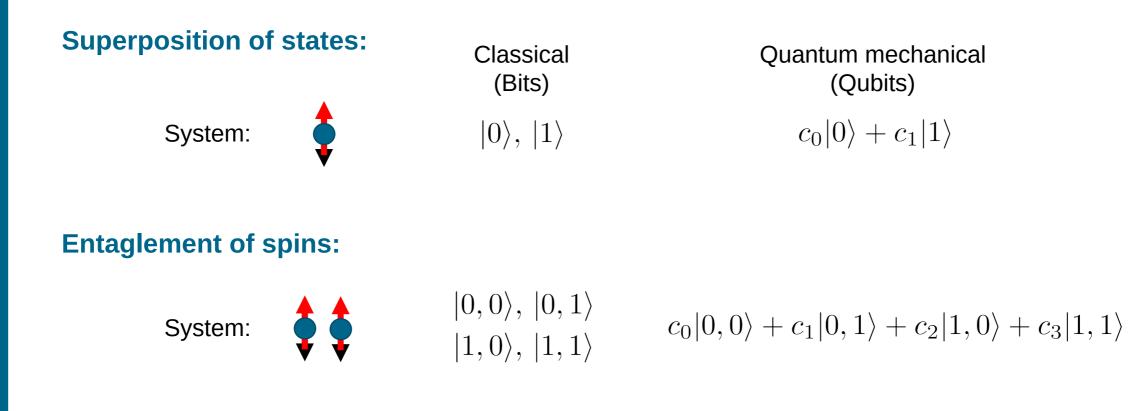
 $c_0|0\rangle + c_1|1\rangle$

System:

Classical (Bits) $|0\rangle, |1\rangle$ Quantum mechanical (Qubits) $c_0|0
angle+c_1|1
angle$

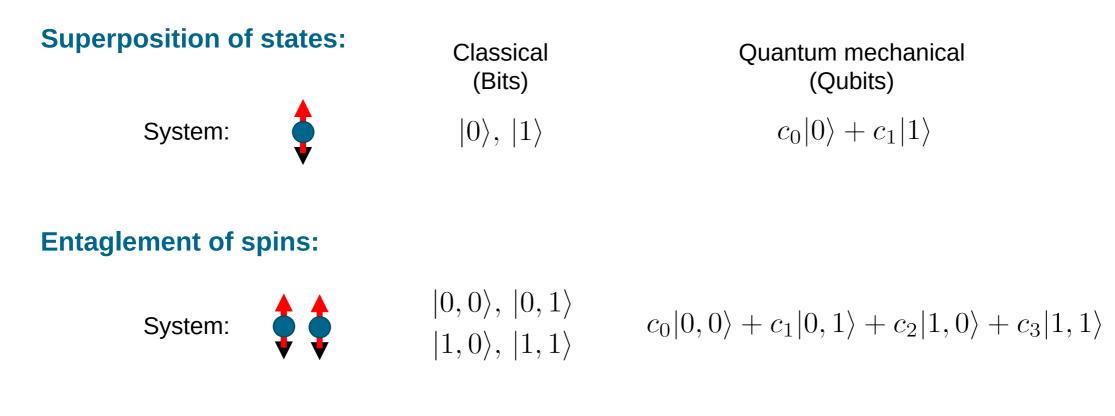
Entaglement of spins:

 $c_0|0,0\rangle + c_1|0,1\rangle + c_2|1,0\rangle + c_3|1,1\rangle$



Question:

How many bits do we need to write down a general classical / QM state composed of N spins ?



Question:

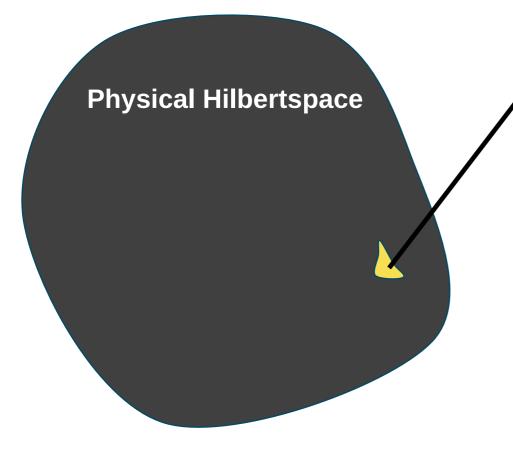
How many bits do we need to write down a general classical / QM state composed of N spins ?

Classical: N Quantum mechanical: $\mathcal{O}(2^N)$

Amount of digital data in the world

70 spins need $2^{70} \approx 10^{21}$ numbers = 1 zettabyte

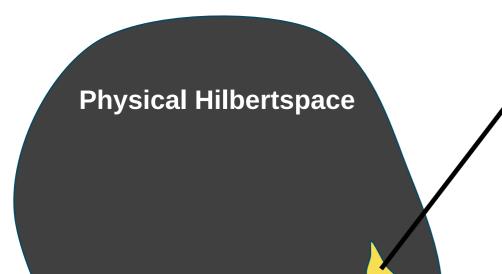
How to solve QM problems ?



Find a good ansatz for the (finite dimensional) Many body wavefunction and opimize it

- Density functional theory (1998 nobel prize in chemestry)
- Quantum monte carlo
- Density matrix renormalization
- Dynamical mean field theory
- Matrix product states / Tensor networks
- Numerical renormalization group
- ...

How to solve QM problems ?



Find a good ansatz for the (finite dimensional) Many body wavefunction and opimize it

- Density functional theory (1998 nobel prize in chemestry)
- Variational quantum monte carlo
- Density matrix renormalization
- Dynamical mean field theory
- Matrix product states / Tensor networks
- Numerical renormalization group
- ...

Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

— Richard P. Feynman —

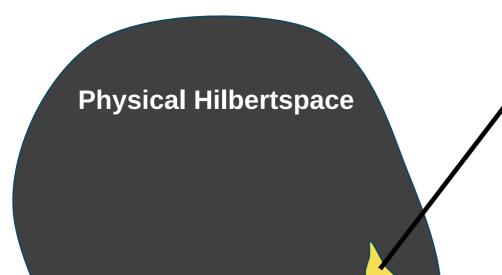
If we want to simulate a system of 300 spins:

Classical computer:

if we would store one bit of information in a single atom the whole (observable) universe wouldn't be enough to represent a single state

Quantum computer: how many qubits / atoms do we need?

How to solve QM problems ?



Find a good ansatz for the (finite dimensional) Many body wavefunction and opimize it

- Density functional theory (1998 nobel prize in chemestry)
- Variational quantum monte carlo
- Density matrix renormalization
- Dynamical mean field theory
- Matrix product states / Tensor networks
- Numerical renormalization group
- ...

Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

— Richard P. Feynman —

If we want to simulate a system of 300 spins:

Classical computer:

if we would store one bit of information in a single atom the whole (observable) universe wouldn't be enough to represent a single state

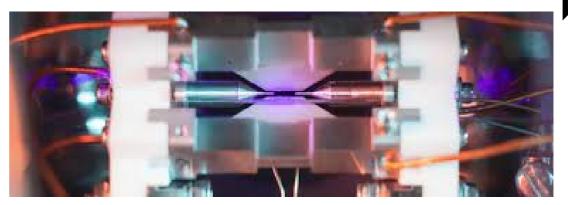
Quantum computer:

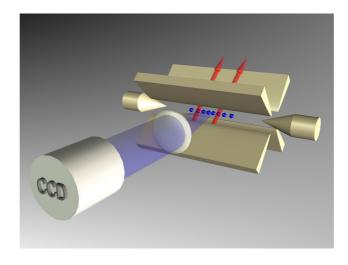
how many qubits / atoms do we need? - **300...**

Qubits:

- nitrogen vacancies (spins)
 - Tomorrow: Dr. Gopalakrishnan Balasubramanian (XeedQ)
- superconductors
- trapped ions
- photons

• ...

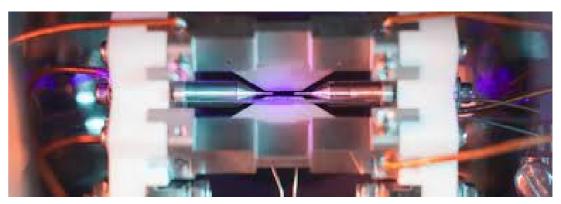




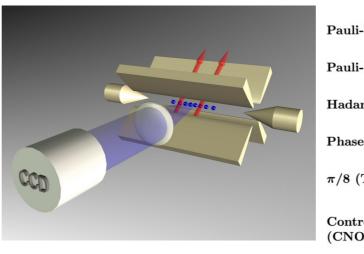
Qubits:

- nitrogen vacancies (spins)
 Tamarrayu Dr. Canalakriahnan Balaguhran
 - Tomorrow: Dr. Gopalakrishnan Balasubramanian (XeedQ)
- superconductors
- trapped ions
- photons

. . .



Logic gates – realized for example by laser beams



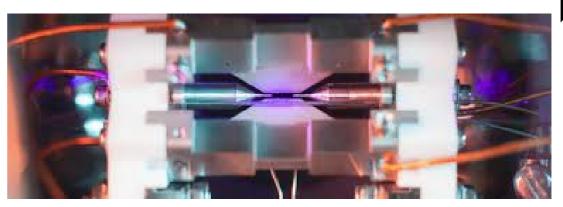
Operator	Gate(s)	Matrix				
Pauli-X (X)	- x -	$- \bigoplus - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$				
Pauli-Y (Y)	- Y -		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$			
Pauli-Z (Z)	$-\mathbf{Z}$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$			
Hadamard (H)	$-\mathbf{H}$	$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$				
Phase (S, P)	- S -	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$				
$\pi/8~(\mathrm{T})$	- T -		$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$			
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$			
Controlled Z (CZ)		$\mathbf{+}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$			

Qubits:

- nitrogen vacancies (spins)
 Tomorroum Dr. Conclusivity press
 - Tomorrow: Dr. Gopalakrishnan Balasubramanian (XeedQ)
- superconductors
- trapped ions
- photons

. . .

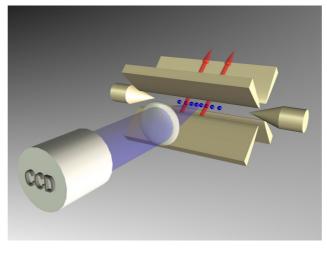
.



1			I. I.		
Logic gates -	- realized for	example	nv ia	aser I	neams
Logio galoo		onampio	~ ,		oouno

	2^{3}	2^2	2^1	2^{0}		
	0	1	0	0	=	4
+	0	1	1	0	=	6
	1	0	1	0	—	10

Compare two bits (two bit operations)

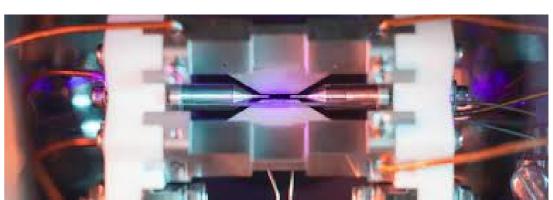


Operator	Gate(s)	Matrix			
Pauli-X (X)	- x -	$- \bigoplus \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$			
Pauli-Y (Y)	- Y -		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$		
Pauli-Z (Z)	$-\mathbf{Z}$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$		
Hadamard (H)	-H-		$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$		
Phase (S, P)	$-\mathbf{S}$	$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$			
$\pi/8~(\mathrm{T})$	- T -		$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$		
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$		
Controlled Z (CZ)		$\mathbf{+}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$		

Qubits:

- nitrogen vacancies (spins)
 Tomorrour Dr. Consoletrichnen Beleeubrer
 - Tomorrow: Dr. Gopalakrishnan Balasubramanian (XeedQ)
- superconductors
- trapped ions
- photons

. . .



	0	Operator	Gate(s)		Matrix
Logic gates – realized for example by laser beams	P:	Pauli-X (X)	- x -		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
	Pa	Pauli-Y (Y)	- Y -		$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$
\downarrow	Pa	Pauli-Z (Z)	- Z -		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
	C / CC / CC / H	Hadamard (H)	$-\mathbf{H}$		$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$
Quantum circuit	P	Phase (S, P)	- S -		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
	π,	r/8 (T)	- T -		$\begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$
$ 0\rangle$ \mathbf{I} \mathbf{I} $ 000\rangle + 111\rangle$		Controlled Not CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
	C	Controlled Z (CZ)		$\overline{}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
$ 0 \rangle - H $					

QUANTUM COMPUTER – conclusion

Using N (perfect) Qubits and a universal set of quantum logical gates:

- We can prepare a quantum state that represents 2^N N-Bit states at the same time $|\Psi\rangle = c_0|00...0\rangle + ... + c_{2^N}|11...1\rangle$
- We can perform operations on 2^N N-Bit states *at the same time* (quantum parallelism) $\hat{O}|\Psi\rangle = c_0\hat{O}|00...0\rangle + ... + c_{2^N}\hat{O}|11...1\rangle$

Exponential speedup for a *specific* set of problems:

- Simulation of quantum mechanical materials
- Prime factorization Shor's algorithm

• ...

QUANTUM COMPUTER – conclusion

Using N (perfect) Qubits and a universal set of quantum logical gates:

- We can prepare a quantum state that represents 2^N N-Bit states *at the same time* $|\Psi\rangle = c_0|00...0\rangle + ... + c_{2^N}|11...1\rangle$
- We can perform operations on 2^N N-Bit states *at the same time* (quantum parallelism) $\hat{O}|\Psi\rangle = c_0\hat{O}|00...0\rangle + ... + c_{2^N}\hat{O}|11...1\rangle$

Exponential speedup for a *specific* set of problems:

- Simulation of quantum mechanical materials
- Prime factorization Shor's algorithm

٠

. . .

Difficulties / Drawbacks:

- Mapping between QM and classical world
 - \succ we need to prepare the quantum state
 - \succ we can only extract N-bits of information from N-qubits
- Loss of coherence (quantumness) with time
 - Circuits need to be very short
- Reduced connectivity between qubits
- Number of controlled (logical) qubits is small ~ 50-100

QUANTUM COMPUTER – conclusion

Using N (perfect) Qubits and a universal set of quantum logical gates:

- We can prepare a quantum state that represents 2^N N-Bit states *at the same time* $|\Psi\rangle = c_0|00...0\rangle + ... + c_{2^N}|11...1\rangle$
- We can perform operations on 2^N N-Bit states *at the same time* (quantum parallelism) $\hat{O}|\Psi\rangle = c_0\hat{O}|00...0\rangle + ... + c_{2^N}\hat{O}|11...1\rangle$

Exponential speedup for a *specific* set of problems:

- Simulation of quantum mechanical materials
- Prime factorization Shor's algorithm

٠

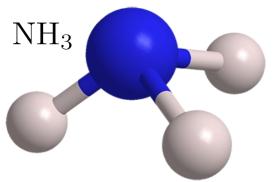
. . .

Difficulties / Drawbacks:

- Mapping between QM and classical world
 - \succ we need to prepare the quantum state
 - \succ we can only extract N-bits of information from N-qubits
- Loss of coherence (quantumness) with time
 - Circuits need to be very short
- Reduced connectivity between qubits
- Number of controlled (logical) qubits is small ~ 50-100

NITROGEN FIXATION

Ammonia / Ammoniak



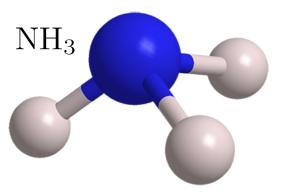
- Very common fertilizer
- We woudn't have 8 billion people on earth without ammonia
- Its production consums
 ~2% of world's energy
 (high temperature / high pressure)

Very inefficient way!

Ammonia plant in india

NITROGEN FIXATION

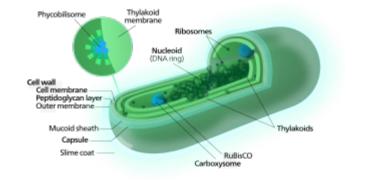
Ammonia / Ammoniak



- Very common fertilizer
- We woudn't have 8 billion people on earth without ammonia
- Its production consums
 ~2% of world's energy
 (high temperature / high pressure)

Very inefficient way!

Ammonia plant in india



Cyanobacteria spontaneously produce ammonia at room temperature...

... But we still don't know how it works since it is a quantum process