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1 Introduction

In recent years there has been an immense research activity aimed at understanding
the detailed dynamics of quantum systems exposed to strong time-dependent external
fields. Examples include light-induced surface states [1], topological phases of matter
[2, 3] and photo-induced superconductivity [4]. The quantum mechanics of explicitly
time-dependent Hamiltonians generates a variety of novel phenomena not accessible within
ordinary stationary quantum mechanics [5].
If the external field is periodic in time, it is convenient to use the Floquet formalism
to study the arising dynamics. The solutions for such systems, as the solution of the
time-dependent Schrödinger equation, reduce to eigenvalue equations for the Floquet quasi-
energies, from which properties of the system can then be derived. Although this formalism
is a well-performing tool to treat time-periodic Hamiltonians, these eigenvalue equations
are not analytically solvable in most cases. This means that to compute the quasi-energies,
one generally has to apply numerical methods. There exist various techniques to tackle
this on a classical computer, but most are either not universally applicable or their runtime
scales exponentially with system size [6].
In quantum mechanics, there are a lot of problems that cannot be solved efficiently on
a classical computer. A prominent example is the correlation of measurement results of
two entangled photons [7]. For this reason it has been proposed to use quantum systems
as computers to overcome those limitations of classical computers. The emerging field of
quantum information deals with the research and the possible realization of such a device,
called a quantum computer [8]. There are multiple paradigms of quantum computation.
The most famous one is the gate-based model. Gate-based quantum computers use
quantum bits, or qubits, which are the analogon to the classical bit on a classical computer.
A qubit is a quantum mechanical two-level system, whose base states represent the
respective 0 and 1 states of a classical bit. Instead of just a two-level system, there is
also the possibility to have a system with more than two basis states, which is then called
a qudit. Operations on a quantum computer are represented by gates, which are unitary
operators acting on one or multiple qubits or qudits. A quantum algorithm then consists
of a sequence of gates, the circuit, which implements the algorithm and measurements to
obtain the results. If a quantum circuit depends on externally set parameters, it is called
a parametrized quantum circuit.
However, currently available quantum devices have several problems. Noise and qubit
limitations severely constrain the implementability of many quantum algorithms [9].
Current devices, which we refer to as noisy intermediate-scale quantum (NISQ) devices,
have been argued to be able to outperform classical computers in certain mathematical
tasks, but speed-up for practical applications has yet to be realized. To address this,
the strategy of variational quantum algorithms, among others, has emerged, which
accounts for the constraints imposed by NISQ devices by combining classical and quantum
resources [10]. To achieve that, the problem is first encoded into a cost function.
Then, a parametrized quantum circuit is used to evaluate this cost function which is
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then optimized on a classical computer. The parametrization, i.e. the gates and the
variational parameters, of the quantum circuit is called the ansatz for the variational
quantum algorithm. Constructing the ansatz is an important part of variational quantum
computing, since the ansatz determines the precision and the runtime of the algorithm
[10].
In this work, we present the Fauseweh-Zhu-2 algorithm as a possibility to treat a quantum
system with a time-dependent, periodic Hamiltonian using such a variational quantum
algorithm. We especially focus on finding an efficient ansatz construction scheme for a
mixed qubit-qudit architecture, which we implement and evaluate for this algorithm.
We approach this by first discussing the theoretical background in section 2. We first
explain Floquet theory in general and then discuss a numerical method to treat it, namely
the method of Floquet matrix. After that, variational quantum algorithms (VQAs) are
presented, where we first explain the principle of variational quantum algorithms and
then look into the variational quantum eigensolver (VQE) as a special case of a VQA.
We then explain the Fauseweh-Zhu-2 algorithm as an specific VQA for treating Floquet
dynamics. We then discuss one way for the diagrammatic construction of an ansatz to use
with the VQE using perturbation theory. In section 3 we then discuss a way to improve
the algorithm presented in section 2. We show a way to algorithmically implement the
diagrammatic ansatz construction scheme and present another, more general scheme. We
then combine both these methods to find an ansatz construction scheme for a mixed qubit-
qudit architecture. We implement and evaluate the Fauseweh-Zhu-2 algorithm using the
constructed ansatz in section 4, and compare it to a general, not problem-specific ansatz.
We see that the systematically constructed ansatz performs better than the general ansatz
for simple examples.
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2 Theoretical Foundations

In this section we first introduce the theoretical foundations of time-dependent interactions
and Floquet theory in section 2.1. First, we review its theoretical background in section
2.1.1, and then look at the method of Floquet matrix as a way to treat it numerically
in section 2.1.2. We review the concept of variational quantum algorithms in section 2.2,
specifically variational quantum eigensolvers, as a way to treat this numerical problem.
We present a general outline for a variational quantum algorithm in section 2.2.1 and the
principle for variational quantum eigensolvers in section 2.2.2, as well as the significance of
the ansatz state in section 2.2.3. We present the Fauseweh-Zhu-2 algorithm as a particular
variational quantum algorithm for solving Floquet dynamics using the method of Floquet
matrix in section 2.2.4. Following that, we study the problem of finding a suitable ansatz
for a variational quantum algorithm. We first explain some theoretical foundations for
ansatz construction in section 2.3.1 and then present a problem-specific diagrammatic
method to construct an ansatz in section 2.3.2. For the purposes of comparison, we also
present a general, not problem-specific ansatz in section 2.3.3.

2.1 Floquet theory

In this section we introduce Floquet theory as a way to solve the time-dependent
Schrödinger equation. Let f be a function in t, A be an operator depending on t and
c ∈ C be a constant. We first consider a differential equation of the form

A(t)f(t) = c
d
dtf(t) (1)

where A(t) is periodic in t, so A(t) = A(t+T ) with a period T . The Floquet theorem [11]
now implies that there exist solutions fα to eq. (1) that are of the form

fα(t) = exp
(1
c
εαt

)
gα(t). (2)

with a periodic function gα(t+ T ) = gα(t).

2.1.1 Floquet formalism

Using this result, we can characterize solutions to the Schrödinger equation of a system
with a time-periodic Hamiltonian [5]. We consider a quantum system with its Hamiltonian
being a periodic function of time,

H(x, t) = H(x, t+ T ), (3)

where T again denotes the period. The Schrödinger equation for the quantum system may
be written as (

H(x, t)− i~ ∂
∂t

)
Ψ(x, t) = 0 (4)
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with

H(x, t) = H0(x) + V (x, t), V (x, t) = V (x, t+ T ). (5)

The unperturbed Hamiltonian H0(x) is assumed to possess a complete orthonormal set
of eigenfunctions {ϕ(x)} with corresponding eigenvalues {En}. We can now apply the
Floquet theorem. According to eq. (2) there exist solutions to eq. (4) that have the form

Ψα(x, t) = exp(−iεαt/~)Φα(x, t), (6)

where Φα(x, t) is periodic in time, so it obeys

Φα(x, t) = Φα(x, t+ T ). (7)

We call Φα a Floquet mode, where εα is a real parameter unique up to multiples of ~Ω,
with Ω = 2π/T denoting the driving frequency, and is called the Floquet quasienergy.
The functions Ψα(x, t) are called Floquet-state solutions.
Introducing the Hermitian operator

H(x, t) ≡ H(x, t)− i~ ∂
∂t

(8)

one finds that

H(x, t)Φα(x, t) = εαΦα(x, t). (9)

We notice that the Floquet modes

Φα′(x, t) = Φα(x, t) exp(ijΩt) ≡ Φα,j(x, t) (10)

with j ∈ Z yield the identical solution to that in eq. (6), but with shifted quasienergy

εα′ = εα + j~Ω ≡ εα,j . (11)

Hence, the index α corresponds to a class of solutions indexed by α′ = (α, n). The
eigenvalues {εα} therefore can be mapped onto a first Brillouin zone obeying −~Ω/2 ≤
ε < ~Ω/2.
For the operator H it is convenient to introduce the composite Hilbert space R⊗T made
up of the Hilbert space R of square integrable functions on configuration space and the
space T of function which are periodic in t with period T = 2π/Ω.
The inner product for the spatial part is defined by

〈φ|ψ〉 ≡
∫

dxφ∗(x)ψ(x). (12)
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We therefore get that

〈ϕn|ϕm〉 ≡
∫

dxϕ∗n(x)ϕm(x) = δn,m. (13)

The temporal part is spanned by the orthonormal set of Fourier vectors 〈t|j〉 ≡
exp(−ijΩt), n ∈ Z and their inner product in T reads

〈k|j〉 = 1
T

∫ T

0
dt exp[−i(j − k)Ωt] = δk,j . (14)

This means that the eigenvectors |Φα〉 of H obey the orthonormality condition on the
composite Hilbert space R⊗ T ,

〈〈
Φα′(t)

∣∣Φβ′(t)
〉〉
≡ 1
T

∫ T

0
dt
∫ ∞
−∞

dxΦ∗α′(x, t)Φβ′(x, t) = δα′,β′ = δα,βδn,m, (15)

and form a complete set in R⊗ T .

2.1.2 Numerical approach

In most cases, a quantum system with explicitly time-dependent interaction potentials
cannot be solved exactly. In general we therefore have to invoke numerical procedures.

Method of Floquet matrix

To solve for the quasienergies, we can expand the Floquet solutions into the Fourier vectors
|j〉, j ∈ Z, such that 〈t|j〉 = exp(−ijΩt). The Fourier vectors {|j〉}j∈Z form a basis of T

Φα(x, t) =
∞∑

j=−∞
c(j)
α (x) exp(−ijΩt). (16)

The functions c
(j)
α (x) can furthermore be expanded in terms of the unperturbed

eigenfunctions of H0(x), namely {ϕn(x), n ∈ N}, which yields

Φα(x, t) =
∞∑
n=1

∞∑
j=−∞

c(j)
α,n(x)ϕn(x) exp(−ijΩt), (17)

with c(j)
α,n =

〈
ϕn
∣∣∣c(j)
α

〉
. The Floquet equation in bra-ket notation then reads

∞∑
n=1

∞∑
j=−∞

Hc(j)
α,n|j〉|ϕn〉 =

∞∑
n=1

∞∑
j=−∞

εαc
(j)
α,n|j〉|ϕn〉, (18)

where we used the operator H as defined in eq. (8). We now multiply this equation with
〈ϕm|〈k| from the left. This yields

∞∑
n=1

∞∑
j=−∞

〈ϕm|〈k|H|j〉|ϕn〉c(j)
α,n = εαc

(k)
α,m, (19)
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where we used the scalar product notation from eq. (15).
Using eq. 14, we can now explicitly calculate the scalar product, keeping in mind that
|φj〉 is time-independent. We write

〈ϕm|〈k|H|j〉|ϕn〉 = 〈ϕm|
(

1
T

∫ T

0
exp(ikΩt)H exp(−ijΩt)

)
|ϕn〉

= 〈ϕm|
1
T

∫ T

0
H(t) exp[−i(j − k)Ωt]|ϕn〉

− 〈ϕm|
1
T

∫ T

0
exp(ikΩt)i~ ∂

∂t
exp(−ijΩt)︸ ︷︷ ︸

=−n~Ωδj,k

|ϕn〉. (20)

We now define

Hj−k ≡ 〈k|H|j〉 = 1
T

∫ T

0
dtH(t) exp[−i(j − k)Ωt]. (21)

and we find the Floquet-matrix representation for eq. (19),

∞∑
n=1

∞∑
j=−∞

〈ϕm|〈k|HF |j〉|ϕn〉c(j)
α,n = εαc

(k)
α,m, (22)

with the Floquet-matrix representation HF for H defined by

〈ϕm|〈k|HF |j〉|ϕn〉 ≡ 〈ϕm|Hj−k|ϕn〉+ j~Ωδj,kδm,n. (23)

To find the quasienergies εα we therefore have to find the eigenvalues of the Floquet
matrix HF . These eigenvalues are identical to the original time-dependent problem, up to
multiples of ~Ω. The problem of finding these eigenvalues is therefore reduced to finding
the eigenvalues of HF .
For example, we consider a sinusoidal perturbation with phase φ

H(t) = H0 − 2~λσx sin(Ωt+ φ) (24)

for one qubit. For one qubit we have R = 〈{|ϕ0〉, |ϕ1〉}〉 with |ϕ0〉 = |0〉 and |ϕ1〉 = |1〉.
In this case, the operator Hj−k takes on a triangular structure

Hj−k = H0δj,k + i~λσx(δj,k+1 exp(iφ)− δj,k−1 exp(−iφ)) (25)

We now set ~ = 1 and since the quasienergies do not depend on the phase φ, we set φ = 0.
With that, Hj−k simplifies to

Hj−k = H0δj,k + iλσx(δj,k+1 − δj,k−1) (26)

and the operator HF can be written as

HF = H0 ⊗ S0 + λ(σx ⊗ Sy) + Ω(1⊗ Sz), (27)

6



where the operators S0, Sy and Sz acting on T are defined by

〈k|S0|j〉 ≡ δj,k
〈k|Sx|j〉 ≡ δj,k+1 + δj,k−1

〈k|Sy|j〉 ≡ iδj,k+1 − iδj,k−1

〈k|Sz|j〉 ≡ jδj,k. (28)

We additionally defined the operator Sx, which will be used later. The operators
S0, Sx, Sy, Sz have the properties of spin-operators on a subspace of T , up to prefactors.
The quasienergies can now be derived from the eigenvalues of HF , namely εα,j , obeying
the periodicity conditions

εα,j = εα,0 + jΩ. (29)

With this, we now have to solve an eigenvalue problem on an extended Hilbert
space. However, due to the exponentially scaling Hilbert space, this is a difficult
problem for a classical computer. Various classical techniques have been employed
such as time-dependent dynamical mean-field theory [12], time-dependent density matrix
renormalization group [13], kinetic equations [14], perturbative high-frequency expansions
[15], and exact diagonalization [16], but most of them are either not universally applicable
or scale exponentially in system size [6].
In the next section, we therefore look at a way to tackle this problem using a variational
quantum algorithm.
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2.2 Variational quantum algorithms

In the last section we ended up with an eigenvalue problem on an extended Hilbert
space. To treat it, we employ a hybrid quantum-classical algorithm, namely a variational
quantum algorithm (VQA). This type of algorithm is designed to utilize both quantum and
classical resources to find approximate solutions to eigenvalue and optimization problems
not accessible to classical computers. In this section we first explain the working principle
of a variational quantum algorithm. Then we describe a special case of a VQA, namely
the variational quantum eigensolver (VQE). We follow the introduction to variational
quantum algorithms from [10].
A schematic of the workings of a variational quantum algorithm can be seen in fig.
1. First we define a cost function C(~θ) depending on a set of parameters ~θ, which we
want to optimize. We have to be able to get the cost function efficiently by performing
measurements on the quantum computer, otherwise there would be no potential speed-up
over classical alternatives. We then use the quantum computer only to evaluate C(~θ) for
a certain set of parameters. These are updated by the classical optimizer, using a classical
optimization procedure to find the minimal argument of the cost function argminθ C(~θ).
The end result is a set of parameters ~θmin which minimizes C(~θ).

2.2.1 Algorithm outline

The variational quantum algorithm can be outlined in the following way:

(1) Prepare the ansatz state |Ψ(~θ)〉 on the quantum computer, where ~θ can be any
adjustable parameter set. In general, the state |Ψ(~θ)〉 is prepared through application
of a unitary gate sequence U(~θ) such that

|Ψ(~θ)〉 = U(~θ)|~0〉, (30)

where |~0〉 denotes some computational basis state.

(2) Measure the cost function C(~θ) = C(|Ψ(~θ)〉).

(3) Use a classical optimization algorithm to determine new values of ~θ that decrease
C(~θ).

(4) Iterate this procedure until convergence in C(~θ). The final parameters ~θ define the
desired state. This state will be the best possible approximation of the state |Ψ(~θ)〉
that minimizes C(|Ψ(~θ)〉) achievable in the set {|Ψ(~θ)〉}~θ∈I .

We first describe the variational principle as the foundation for the variational quantum
eigensolver, which is a variational quantum algorithm specifically for finding ground states
of a quantum system. After that, we explain the specific algorithm used in this work, which
can be seen as an extension of the VQE.
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Figure 1: Schematic diagram of a variational quantum algorithm, taken from [10]. The
VQA consists of a quantum computer and a classical computer. On the quantum
computer, a parametrized circuit is applied to calculate functions depending on the
parameters ~θ. Optionally, these functions can be dependent on a set of training data
{ρk}, which can be used to improve the algorithm itself. The calculated values are used
to compute the cost function C(~θ). A classical computer optimizes this cost function and
returns the minimal argument argminθ C(~θ).

2.2.2 The variational principle

Let us consider a quantum computer S composed of N qubits, and a Hamiltonian H of a
system Q of which we want to find the ground state |ξ1〉 and the ground state eigenvalue
λ1. We furthermore order the eigenvalues such that λ1 ≤ λ2 ≤ · · · ≤ λN .
Recall that the expectation value of an operator O with respect to a state |ψ〉 is given by

〈O〉|ψ〉 = 〈ψ|O|ψ〉 (31)

We consider only the class of operators whose expectation value can be measured efficiently
on S and mapped to Q. A sufficient condition is that operators have a decomposition into
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a polynomial sum of simple operators as

O =
∑
α

hαOα (32)

where O is an operator that acts on Q and each Oα has a simple measurement prescription
on the system S. We can therefore determine the expectation values of O on Q by weighted
summation of projective measurements on the quantum device S.
The core ingredient of variational quantum computing is the variational principle. Suppose
we have a Hamiltonian on the system Q, whose mapping to S we call H. The variational
principle states that for a multi-parameter family of normalized states {Ψ(~θ)}~θ∈I , it holds
for all ~θ that

〈H〉|Ψ(~θ)〉 ≡ 〈H〉(
~θ) = 〈Ψ(~θ)|H|Ψ(~θ)〉 ≥ λ1. (33)

The elements ~θ of I are vectors which represent sets of real valued parameters {θi} that
define the parametrized state Ψ(~θ) on S.
If we therefore find a minimum of 〈Ψ(~θ)|H|Ψ(~θ)〉, we get the closest possible solution to
the ground state reachable within the set {Ψ(~θ)}~θ∈I . To find this minimum, we can now
use a variational quantum algorithm as described in the last section, where we use

C(~θ) = 〈Ψ(~θ)|H|Ψ(~θ)〉 (34)

for the cost function.
To find eigenstates and eigenvalues of H we thus have to find the choice of ~θ which
minimizes 〈H〉|Ψ(~θ〉.

2.2.3 The ansatz state

For the performance of any variational quantum algorithm, the parametrization of the
state |ψ(~θ)〉, called the ansatz, is of great importance. To retain the possibility of speed-
up over classical computers, the number of parameters θi should remain relatively small
while |ψ(~θ)〉 has to be able to reach the ground state of H, or the minimum of C(~θ),
at least approximately. In general, even parametrized quantum circuits will still not be
able to represent the ground state exactly [17]. However, they do offer an expressivity
advantage compared to classical generative algorithms [18].
Constructing an ansatz for a parametrized quantum circuit is non-trivial in general. There
exist several approaches to construct an ansatz for a given VQE or hardware architecture
[19, 20]. Later in this work we present possibilities to construct ansatzes based on the
Hamiltonian of which we want to find the eigenvalues using a VQE.

2.2.4 Algorithm for treating Floquet dynamics

We now present a specific variational quantum algorithm to find the eigenvalues of the
Floquet matrix HF defined in eq. (23). The algorithm we present is the Fauseweh-Zhu-2

10



algorithm from [6].
Written in its Fourier components, HF reads

Hj,kF = Hj−k − jΩδj,k, (35)

where Ω denotes the driving frequency and ~ has been set to 1. Note that the operator

HF = H − Ω(1⊗ Sz), (36)

with Sz defined as in eq. (28), acts on the extended Hilbert space R⊗ T . The operators
Hj,kF act on the Hilbert space R. We denote a state of the extended Hilbert space as
|j〉|Ψ〉. We furthermore define N ≡ dim(R).
To find the eigenvalues of HF , we want to use a variational quantum algorithm. However,
since the Fourier space T is infinite-dimensional, we have to truncate it at jmax, so the
indices j, k run over {−jmax, . . . , jmax} instead of Z. Thus, the truncated space T (jmax)

has dimension 2jmax + 1. After the truncation the matrix HF can be written as

H(jmax)
F = H(jmax) − Ω(1N ⊗ S(jmax)

z ), (37)

where S(jmax)
z is the (2jmax + 1)-dimensional matrix Sz acting on T (jmax) as defined in eq.

(28) for j, k ∈ {−jmax, . . . , jmax}. The matrix H(jmax) is defined by its Fourier components
H

(jmax)
j,k = Hj−k for j, k ∈ {−jmax, . . . , jmax}.

To simplify the following consideration we now switch to a single-index notation for
R ⊗ T (jmax), so instead of (n, j), n ∈ {1, . . . , N}, j ∈ {−jmax, . . . , jmax} we use l,
l ∈ {1, . . . , (2jmax + 1)N}, where the single index (jmax − j)N + n corresponds to the
double index (n, j). We now assume that the driving frequency Ω is much larger than the
eigenvalues {λl}l∈{1,...,(2jmax+1)N} of H(jmax) from eq. (37), therefore

λl � Ω. (38)

We now order the (2jmax + 1) · N eigenvalues {λl}l∈{1,...,(2jmax+1)N} of H(jmax) and
{γl}l∈{1,...,(2jmax+1)N} of H

(jmax)
F by

λ1 ≥ λ2 ≥ · · · ≥ λ(2jmax+1)N and

γ1 ≥ γ2 ≥ · · · ≥ γ(2jmax+1)N . (39)

Note that the ordering of the {λl}l∈{1,...,(2jmax+1)N} is not related to the ordering of the
{γl}l∈{1,...,(2jmax+1)N}. We proceed similarly for the eigenvalues {Ωl}l∈{1,...,(2jmax+1)N} of
Ω(1N ⊗ S(jmax)

z ), such that

Ω1 ≥ Ω2 ≥ · · · ≥ Ω(2jmax+1)N . (40)

The eigenvalues of Ω(1N⊗S(jmax)
z ) are jΩ, and each one is N -times degenerate. Therefore,
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if we assume the above ordering, then for each l ∈ {1, . . . , (2jmax + 1)N} it holds that

Ωl = jΩ for l ∈Mj = {(jmax − j)N + 1, . . . , (jmax − j + 1)N}, (41)

since jΩ decreases when jmax − j increases and the sets

{Mj = {(jmax − j)N + 1, . . . , (jmax − j + 1)N}}j∈{−jmax,...,jmax} (42)

form a partition of {1, . . . , (2jmax + 1)N} where each set Mj contains exactly N

consecutive indices.
In ref. [21] it has been shown that, given the orderings above, for the eigenvalues
{γl}l∈{1,...,(2jmax+1)N} of H

(jmax)
F from eq. (37), it holds that

max
α+β=(2jmax+1)N+l

λα + Ωβ ≤ γl ≤ min
α+β=l+1

λα + Ωβ. (43)

Since λl � Ω and due to eq. (41), we know that for all choices of α1, α2 and β1, β2 such
that

Ωβ1 < Ωβ2 ⇔ ∃j′ ∈ {1, . . . , 2jmax} : Ωβ2 = Ωβ1 + j′Ω (44)

it holds that

λα1 + Ωβ1 < λα2 + Ωβ2 . (45)

Hence, due to the orderings in eq. (39) and eq. (40), we get that

max
α+β=(2jmax+1)N+l

λα + Ωβ = max
{µ∈{1,...,(2jmax+1)N},Ωl+µ=Ωl}

λ(2jmax+1)N−µ + Ωl+µ︸ ︷︷ ︸
=Ωl

≥ λ(2jmax+1)N + Ωl and

min
α+β=l+1

λα + Ωβ = min
{µ∈{1,...,(2jmax+1)N},Ωl−µ=Ωl}

λ1+µ + Ωl−µ︸ ︷︷ ︸
=Ωl

≤ λ1 + Ωl. (46)

Combined, this gives

λ(2jmax+1)N + Ωl ≤ γl ≤ λ1 + Ωl. (47)

From eq.(41) we now get that

λ(2jmax+1)N + jΩ ≤ γl ≤ λ1 + jΩ for l ∈Mj . (48)

For simplicity, we now drop the superscript jmax and write HF instead of H(jmax)
F for the

truncated operator. Writing λmin ≡ λ(2jmax+1)N and λmax ≡ λ1 as the minimum and
maximum eigenvalues of H and returning to the index notation (n, j), n ∈ {1, . . . , N}, j ∈
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{−jmax, . . . , jmax}, where the double index (n, j) corresponds to the single index (jmax −
j)N + n, we finally obtain for the eigenvalues{

γn,j = γ(jmax−j)N+n
}
n∈{1,...,N},j∈{−jmax,...,jmax}

(49)

of HF the inequality

λmin + jΩ ≤ γn,j ≤ λmax + jΩ. (50)

This means that for every j ∈ {−jmax, . . . , jmax} there are exactly N eigenvalues
{γn,j}n∈{1,...,N} of HF with the property

γn,j = λn,j + jΩ (51)

with λn,j ∈ [λmin, λmax] and λn,j � Ω. We therefore get a band structure for the
eigenvalues of H(jmax)

F , where we have one band of N eigenvalues for each value of j.
This means that if we want to get the quasienergies εα, we have to find the values of λn,j .
Due to finite-size errors introduced by the truncation these values are only approximations
for the εα. We also have to note here that the λn,j in general are not the same for different j.
However, we expect the finite-size errors to be smallest in the center of the band structure,
so we want to find only the eigenvalues {λn,0}n∈{0,...,N}. These are the N eigenvalues of
HF with the lowest absolute value. Therefore, we minimize H2

F instead of HF to find the
eigenstates of H2

F .
These can then be used to get the corresponding eigenvalues of HF by measuring the
expectation value of HF after optimization. We note here that since we optimize the
expectation value of H2

F , we run into a problem which occurs when the operator HF has
two eigenvalues λ1 and λ2 with λ1 6= λ2 ∧ λ2

1 = λ2
2 ⇔ λ1 = −λ2. An extension for this

algorithm which solves this problem is presented in section 3.1. Using that procedure,
we will find the eigenvalue with the lowest absolute value, which makes sure that the
eigenvalue lies in the center of the band structure. A graphical interpretation of the
procedure is shown in fig. 2.
To find eigenvalues other than just the ground state eigenvalue, we define the cost function
to optimize using a Lagrange multiplier to project out the previously computed θβ.

C(~θ) = 〈~0|R〈~0|T U
†(~θ)H2

FU(~θ)|~0〉T |~0〉R + Λ
∑
β

∣∣∣〈~0|R〈~0|T U †(~θβ)U(~θ)|~0〉T |~0〉R
∣∣∣2, (52)

where we assumed an ansatz state to be the parametrized state given by |ψ(~θ)〉 =
U(~θ)|~0〉T |~0〉R, with the computational basis state |~0〉T |~0〉R. The Λ-term, with Λ > 0,
prevents us from finding solutions for already obtained eigenvalues by adding the overlap
with all previously found solutions as a penalty to the cost function. The algorithm is
outlined in alg. (1).
This algorithm benefits from a mixed qudit-qubit architecture, as the truncated part of T
naturally leads to states such as |±j〉T |ϕ〉R with |ϕ〉R in R.
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C H2
F

C

Figure 2: Graphical representation of the algorithm to find the quasienergies εα, adapted
from [6]. The Hilbert space is extended by Fourier expansion of the Hamiltonian. A
parametrized quantum circuit then approximated the combined Floquet state described
by both physical and Fourier quantum numbers. The operator H0 acts within one plane,
while the operators Hj introduce hopping in j-direction.

The executability and the speed-up of this algorithm, like with any variational quantum
algorithm, depends on the ansatz [19]. We now turn our attention to methods of
constructing such an ansatz. We first present a general approach to finding an ansatz
for a variational quantum algorithm, which we then use to construct an ansatz for this
algorithm in particular.
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Algorithm 1 Fauseweh-Zhu-2
Require:
Parametrized quantum circuit U(~θ) in extended Hilbert space R⊗ T
Previous solutions ~θβ
Floquet matrix HF
Truncation value jmax
procedure Optimize(U(~θ))

Choose initial parameters ~θ
while Minimize C(~θ) do

Evaluate observable 〈~0|R〈~0|T U †(~θ)H2
FU(~θ)|~0〉T |~0〉R

Evaluate circuits U †(~θβ)U(~θ)|~0〉T |~0〉R
Update parameters ~θ to decrease target C(~θ)

end while
Compute εα ± jω = 〈~0|R〈~0|T U †(~θ)HFU(~θ)|~0〉T |~0〉R
return εα ± jω, ~θα

end procedure

2.3 Ansatz construction

As we already mentioned in section 2.2.2, for a variational quantum algorithm the ansatz
is of great importance. It determines the possible accuracy of the result and the speed of
the algorithm, since the number of parameters affects the runtime of the quantum circuit
as well as the convergence behaviour of the optimizer. There exist several approaches to
create an ansatz for a VQE. They can be general ansatzes suitable for any problem, or
problem-specific ansatzes, i.e. ansatzes tailored to a specific problem. In this section we
focus on the problem-specific perturbative ansatz constructed in [22]. There, an ansatz is
constructed by a diagrammatic ansatz finding scheme for a given Hamiltonian.
This will help us construct our own ansatz for the Fauseweh-Zhu-2 algorithm. Before
we outline the perturbative scheme, we first present an overview of general ansatz
construction.

2.3.1 Theoretical basics

We define a variational ansatz on Np parameters by a pair (U, |~0〉) wih a starting state
|~0〉 ∈ C2Nq and a smooth map from the parameter space RNp to a unitary operator U(~θ).
The variational state to parameters ~θ of this ansatz is then |ψ(~θ)〉 = U(~θ)|~0〉 with
variational energy E(~θ) = 〈ψ(~θ)|H|ψ(~θ)〉.
We call a variational ansatz (U, |~0〉) a product ansatz if the unitary operator U(~θ) for
all ~θ can be written as

U(~θ) =
Nu∏
i=1

Ui(θni) (53)

where each Ui has a generator Ti such that

Ui(θni) = eiTiθni (54)
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A schematic for such an ansatz can be seen in fig. 3.

Figure 3: Schematic diagram of a product ansatz, taken from [10]. The unitary U(~θ),
with θ a set of parameters, can be expressed as a product of L unitaries Ul(θl) sequentially
acting on an input state |~0〉. Each unitary Ul(θl) can in turn be decomposed into a sequence
of parametrized and unparametrized gates.

We furthermore call the ansatz ordered if i > j ⇒ ni > nj and a Pauli-type ansatz if
each generator Ti ∈ PNq := {I,X, Y, Z}⊗Nq , where X,Y and Z denote the Pauli-x, y and
-z-operators respectively.

2.3.2 Diagrammatic perturbative construction

Now we consider a more complex method for constructing an ansatz proposed in [22]. To
explain the construction we first need to state some further definitions. Then, we look
into a diagrammatic expansion of the ground state of a Hamiltonian using perturbation
theory, which we can use to find an ansatz for the VQE algorithm.
To construct the ansatz we first define an ansatz which spans the whole space, from which
we can then construct smaller ansatzes by taking only specific generators. This ansatz,
namely the quantum combinatorial ansatz (QCA) is defined as an ansatz (U, |~0〉)
with

U =
Nq∏
n=1

U (n), where U (n) =
∏
j=0,1

∏
S∈S(n)

eiθ
n
S,jSR

(n)
j (55)

with |si〉 = |~0〉, R(n)
0 = Xn, R

(n)
1 = Yn and S(n) = 〈Xi, i ∈ {1, . . . , n− 1}〉. The generators

of this ansatz are given by TnS,j = SR
(n)
j .

We can now look at ansatzes derived from this one. A product ansatz (U ′, |~0′〉) is called a
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child ansatz of a parent product ansatz (U ′, |~0′〉) if each U ′i of U ′ also appears in U . Our
goal is now to find for a specific Hamiltonian H a child ansatz of the QCA which can get
to the ground state of H efficiently.

Construction

To construct this child ansatz we now again apply perturbation theory. For this, we first
split the Hamiltonian into a non-interacting part H0 and a coupling part JV (‖H0‖, ‖V ‖ ∼
1):

H = H0 + JV (56)

We denote the computational basis states by |~s〉, which can be expressed in terms of the
eigenstates of H0, namely |E0

j 〉.
If we try to perform this construction we run into a challenge called ”back-action”. This
describes the fact that the action of a unit Ui(θi) on the state

∏
j<i Uj(θj)|~0〉 may be very

different to the action of Ui(θi) on the starting state. This could potentially generate
undesired terms to the variational wavefunction which would then have to be cancelled
out by later rotations. It can be shown that the ansatz constructed here automatically
cancels out the back-action terms [22].
The construction process is based on the target equality

|E0〉 ' |ψ(~θ)〉, (57)

where |E0〉 denotes the ground state of the Hamiltonian H and |ψ(~θ)〉 = U(~θ)|~0〉 denotes
the parametrized state of the ansatz. The construction is based on expanding both sides
of this equation in terms of a Pauli decomposition of the perturbation

JV =
Nc∑
i=1

JiVi, where Vi ∈ PNq (58)

and equating terms based on the order of their polynomial dependence on each Ji. This
can be thought of as a formal way to treat a perturbative ansatz under the assumption
that we can decompose the perturbation into products of Pauli matrices. However, this
restriction makes this ansatz construction unsuitable for some specific cases, especially for
an architecture which also features qudits.

Diagrammatic expansion of the ground state

For the expansion of the ground state |E0〉 we use vector notation ~J and ~V for the coupling
terms Ji and the operators Vi respectively. We furthermore use the notation

~a·
~k ≡

∏
i

akii (59)
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With that we can write the expansion of the ground state as a Taylor series in ~J

|E0〉 =
∑

~k∈NNc

~J ·
~k|ψ~k〉, (60)

where the |ψ~k〉, after a standard Dyson expansion, take the form

|ψ~k〉 = C~k
~V
~k|~0〉. (61)

We can now assign to each coefficient C~k a so-called perturbative diagram. First we note
that a vector ~V of Nc Pauli operators defines a phase Γ(~k) ∈ {0, 1, 2, 3} and a state ~s(~k)
on a vector ~k ∈ NNc by

~V
~k|~0〉 = iΓ(~k)|~s(~k)〉. (62)

For a contribution C~k we call the set of qubits on which at least one Vi with ki 6= 0 acts non-
trivially the support of ~k. We furthermore say that a contribution C~k is disconnected
if one can write ~k = ~kA + ~kB, where the respective supports of ~kA and ~kB do not share
any qubits. We can now give the following definition:
Let ~V define the order of a decomposition of the perturbation ~J · ~V to a non-interacting
Hamiltonian H0. A perturbative diagram for a vector ~k is defined as a bipartite graph
with one circular vertex for each qubit, and kβ square vertices for each interaction Vβ. We
draw edges between each square vertex and the qubits that the corresponding Vβ-term
acts non-trivially on, and color the edge to qubit i blue, red or black if [Vβ]i = X,Y or Z
respectively. Each circular vertex is then colored black or white if it is connected to by
an odd or even number of colored edges respectively. Examples for perturbative diagrams
are illustrated in fig. (4). We can then read off some properties of this graph:

• A contribution C~k is connected if all square vertices in the perturbative diagram are
connected.

• We can read off ~s(~k) off the graph by setting ~si(~k) = 0 when the corresponding
circular vertex is white and ~si(~k) = 1 otherwise.

• Since the red lines represent Y -operators, we can read off Γ(~k) mod 2 as being the
number of red lines modulo 2.

We can now perform a Taylor expansion of the variational ansatz U(~θ) and compare the
terms based on the order of their polynomial dependence on each Ji. We find that for
a child ansatz derived from the QCA to be able to find the ground state of H, the only
generators we need to consider are those generators T

~s(~k),a(~k), where a(~k) := Γ(~k) mod 2
and T~s,a is defined by

iT~s,a|~0〉 = ia|~s〉. (63)

We can find all generators with nonzero coefficients by constructing the perturbative
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Figure 4: Example for perturbative diagrams, taken from [22]. An example for a connected
diagram for a real contribution to ~s(~k) = |100100〉 with labels for qubits i and terms Vβ
is given by (a). In (b) we see a disconnected diagram for an imaginary contribution to
~s(~k) = |100111〉.

diagrams associated to each ~k. We then can impose a condition on the perturbative
diagrams which tells us if T

~s(~k),a(~k) has to be a generator of the final ansatz. We first
define what it means for a connected perturbative diagrams to be sub-leading to another
one. We call a diagram D for a vector ~k sub-leading to a diagram D′ for a vector k′ if

• D and D′ have identically colored vertices, implying ~s(~k) = ~s(~k′).

• D and D′ have the same number of red edges modulo 2, implying a(~k) = a(~k′).

• D′ has fewer interaction vertices than D, implying |~k| < |~k′|

We then call a diagram leading with respect to a set of diagrams P if it is not a sub-leading
diagram to any other D′ ∈ P .
The condition for T

~s(~k),a(~k) to be a generator of the ansatz is now that the associated
perturbative diagram is connected and leading [22]. Furthermore we can even define an
order on the generators by |~k|1 =

∑
i |ki| of the contribution, which gives us the order in

J of the prefactor of the contribution in eq. (60). These conditions now can be used to
find an implementable rule for constructing this ansatz.

Example: spin-chain

We demonstrate the diagrammatic construction of this ansatz by considering the example
of the one-dimensional transverse-field Ising model. Its Hamiltonian is given by

HTFIM = −
Nq∑
i=1

hZi +
Nq−1∑
i=1

JXiXi+1. (64)

We now construct all the connected leading perturbative diagrams for the TFIM with
Nq = 4, illustrated in fig. 5.
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Figure 5: The seven lowest order leading diagrams for the four-site TFIM, labeled by their
associated ~k. Depicted at the bottom are examples of diagrams which do not need to be
considered. At the bottom left we see a disconnected diagram, and the diagram at the
bottom right is sub-leading of the ~k = (0, 1, 0)-diagram above. Figure taken from [22].

From the diagrams we can then read off the generators for the variational ansatz. They
are given by taking Xi operators for the respective black circles until the last one, for
which we take Yi if the number of red lines is even and Xi if it is odd. We get

T1 = X1Y2, T2 = X2Y3, T3 = X3Y4,

T4 = X1Y3, T5 = X2Y4, T6 = X1Y4,

T7 = X1X2X3Y4 (65)

We can now order the generators corresponding to their order in J , giving

• 3 contributions at order J (to T1, T2 and T3)

• 2 contributions at order J2 (to T4, and T5)

• 1 contribution at order J3 (to T6)

• 1 contribution at order J4 (to T7)

which finally gives us a guess for the ordering of the perturbative terms. The final ansatz
for the Nq = 4 spin-chain then reads (U, |~0〉) ,where

U(~θ) =
7∏
i=1

exp(iθjTj). (66)

and |~0〉 = |0〉⊗4.
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(1, 0, 0, 0) (0, 1, 0, 0)

(0, 0, 1, 0) (0, 0, 0, 1)

(1, 1, 0, 0) (0, 1, 1, 0)

(0, 0, 1, 1) (1, 1, 1, 0)

(0, 1, 1, 1) (1, 1, 1, 1)

(1, 2, 1, 0) (0, 1, 2, 1)

(1, 2, 1, 0) (0, 1, 2, 1)

Figure 6: The lowest order diagrams for the five-site TFIM. All the diagrams for the
four-site TFIM are represented, plus additional ones exclusive to the five-site TFIM.

For comparison, we also give the generators for the Nq = 5 spin-chain, generated by the
perturbative diagrams depicted in figure 6. In this case, we have twice as many diagrams
as in the case of Nq = 4. The generators then read

T1 = X1Y2, T2 = X2Y3, T3 = X3Y4,

T4 = X4Y5, T5 = X1Y3, T6 = X2Y4,

T7 = X3Y5, T8 = X1Y4, T9 = X2Y5,

T10 = X1Y5, T11 = X1X2X3Y4,

T12 = X2X3X4Y5, T13 = X1X2X3Y5,

T14 = X1X3X4Y5. (67)

2.3.3 General ansatz

To compare to the ansatz constructed later by combining this diagrammatic method with
another more naive method, we also implemented a general, not problem-specific ansatz
for n qubits and a qudit with 3 states. For this ansatz, we choose |~0〉 = |0〉⊗n⊗|1〉qd, where
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|1〉qd is the eigenstate of Sz corresponding to eigenvalue 1 on the qudit. We construct the
general ansatz as (Ug, |~0〉) with

Ug(~θ) =
D∏
d=1

 n∏
j=1

eiθ
(1,d)
j Zj⊗1

n∏
j=1

eiθ
(2,d)
j Yj⊗1

n∏
j=1

eiθ
(3,d)
j Zj⊗1×

×
n∏
j=1

 n∏
l=j

eiθ
(4,d)
jl

XjXl⊗1

 8∏
k=1

eiθ
(5,d)
k

1⊗Gk
n∏
j=1

eiθ
(6,d)
j Xj⊗Sz

, (68)

where D denotes the depth of the circuit and {Gk}k∈{n∈N,n≤8} is the set of Gell-Mann
matrices:

G1 =


0 1 0
1 0 0
0 0 0

, G2 =


0 −i 0
i 0 0
0 0 0

, G3 =


1 0 0
0 −1 0
0 0 0

,

G4 =


0 0 1
0 0 0
1 0 0

, G5 =


0 0 −i
0 0 0
i 0 0

,

G6 =


0 0 0
0 0 1
0 1 0

, G7 =


0 0 0
0 0 −i
0 i 0

, G8 = 1√
3


1 0 0
0 1 0
0 0 −2

. (69)
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3 Algorithm Construction

We now propose a way to improve the Fauseweh-Zhu-2 algorithm presented in section 2.2.4
and find an efficient ansatz for it. In section 3.1, we explain an extension for the algorithm
which solves an issue we run into when faced with degeneration in the eigenvalues of the
Floquet matrix HF . Then we focus on constructing the ansatz for the algorithm. In
section 3.3 we present a naive ansatz construction method which is less efficient but more
generally applicable than the diagrammatic method presented in section 2.3.2. We then
explain a way to combine both those ansatz schemes to obtain a problem-specific ansatz
for a mixed qubit-qudit architecture in section 3.4. This combined ansatz construction
scheme is the one we evaluate in section 4 for the Fauseweh-Zhu-2 algorithm.

3.1 Extending the algorithm

In section 2.2.4 we explained the Fauseweh-Zhu-2 algorithm. For this algorithm, we search
for eigenstates ofH2

F and then get the eigenvalues ofHF in the center of the band structure
by taking the expectation value of HF . This means that we run into a problem which
occurs when the operator HF has two eigenvalues λ1 and λ2 with

λ1 6= λ2 ∧ λ2
1 = λ2

2 ⇔ λ1 = −λ2. (70)

In this case, the algorithm will find any vector in the span 〈|ψ1〉, |ψ2〉〉, where |ψ1〉 and |ψ2〉
denote the eigenvectors to the eigenvalues λ1 and λ2, respectively. This means that the
eigenvectors |ψ′1〉 = U(~θ1)|~0〉T |~0〉R and |ψ′2〉 = U(~θ2)|~0〉T |~0〉R we get from the algorithm
can differ from the eigenvectors |ψ1〉 and |ψ2〉 of HF in this case, which can lead to
great errors in the approximated eigenvalues of HF . To correct for this, we have to do
another step of the algorithm which finds those incorrect eigenvectors and corrects them
by optimizing again. However, we have to restrict our optimization to the eigenspace
〈|ψ1〉, |ψ2〉〉 = 〈|ψ′1〉, |ψ′2〉〉. This can be achieved by subtracting the overlap with the
subspace from the cost function. To find the eigenvectors of HF which differ from those
of H2

F , it is useful to not directly minimize 〈~0|R〈~0|T U †(~θ)HFU(~θ)|~0〉T |~0〉R, but rather
minimize the variance

Var(HF ) = 〈~0|R〈~0|T U
†(~θ)H2

FU(~θ)|~0〉T |~0〉R −
(
〈~0|R〈~0|T U

†(~θ)HFU(~θ)|~0〉T |~0〉R
)2
. (71)

We get for the modified cost function

C
(1)
〈|ψ1〉,|ψ2〉〉(

~θ) = Var(HF )− Λ2

2∑
i=1

∣∣∣〈ψ′i∣∣U(~θ)|~0〉T |~0〉R
∣∣∣2. (72)

If our ansatz can reach an eigenstate of HF on 〈|ψ1〉, |ψ2〉〉, the minimum of the Var(HF )
should always be 0. This means that, if we choose Λ2 to be large enough, the minimal
argument of this function will always be some ~θ with U(~θ)|~0〉T |~0〉R ∈ 〈|ψ1〉, |ψ2〉〉. By
optimizing C〈|ψ1〉,|ψ2〉〉(~θ) and finding the solution ~θ0, we therefore get an eigenvector of
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HF on 〈|ψ1〉, |ψ2〉〉. If we now want to find the second eigenvector of HF on 〈|ψ1〉, |ψ2〉〉,
we simply have to add the overlap with the previously found solution again as in eq. (52).
This gives

C
(2)
〈|ψ1〉,|ψ2〉〉(

~θ) = Var(HF ) + Λ1
∣∣∣〈~0|R〈~0|T U †(~θ1)U(~θ)|~0〉T |~0〉R

∣∣∣2
− Λ2

2∑
i=1

∣∣∣〈ψ′i∣∣U(~θ)|~0〉T |~0〉R
∣∣∣2. (73)

With this, we now can construct a two-step algorithm, where in the first step we find the
eigenvectors of H2

F and then in the second step, we search for eigenvectors |ψ1〉, |ψ2〉 with
eigenvalues λ1, λ2 which fulfill eq. (70) and optimize C(1)

〈|ψ1〉,|ψ2〉〉(
~θ) and C

(2)
〈|ψ1〉,|ψ2〉〉(

~θ) to
find the correct eigenvectors of HF on 〈|ψ1〉, |ψ2〉〉.

3.2 Algorithm for the diagrammatic ansatz construction

In this thesis, the perturbative construction from section 2.3.2 is used to create ansatzes for
the algorithm outlined in section 2.2.4 for different systems. For this purpose we created
and implemented the algorithm presented in alg. 2 to find the generators {Ti} for an
ansatz for a given Pauli decomposition of a Hamiltonian.

Algorithm 2 Pseudocode for perturbative ansatz construction
Require:
Decomposition of H into l products of Pauli matrices and number of qubits NQ

List K of all k-vectors of length l with |k|1 < NQ and sorted by absolute value
procedure Find all relevant diagrams(K)

For every k-vector, generate associated perturbative diagram to get list P of
perturbative diagrams.
Perturbative diagram has methods to get s(~k), get number of edges, find if it is
disconnected and create associated T -operator.
for p in P do

if p is leading w.r.t. P and p not disconnected (per definition in sec. 2.3.2) then
if s(p) 6= 0 then

Store p in list P ′.
end if

end if
end for

end procedure
Generate all the generators {Ti} from the list P ′ of perturbative diagrams.

3.3 Naive perturbative ansatz construction

We now consider a naive approach to finding an ansatz based on perturbation theory. This
simple approach is not efficient for larger systems of qubits, but is a very general approach
which works for any architecture. Therefore, this approach is applicable for single qudits,
which can be used in combination with the more complicated, size-extensive perturbative
construction explained in the section 2.3.2 to treat mixed qubit-qudit architectures.
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We consider a product ansatz with generators Ai. We now want to use perturbation theory
to find some set of matrices such that the ansatz can ”reach” all of the eigenstates of H.
We first consider a Hamiltonian consisting of a diagonal and a nondiagonal part

H = H0 +HND = HD + JV. (74)

The nondiagonal part is assumed to be small (J � 1), so that we can consider JV as small
perturbation. Let

∣∣E0
n

〉
, n ∈ I denote the eigenstates of the unperturbed Hamiltonian H0,

which in our case are just the basis vectors of the Hilbert space. We then get for the first
order correction in perturbation theory with degeneracy that

∣∣∣E0
n

〉
=
∑
k/∈Dn

〈
E0
k

∣∣V ∣∣E0
n

〉
En − Ek

∣∣∣E0
k

〉
, (75)

where Dn = {k ∈ I, En = Ek} denotes a possibly degenerate eigenspace.
We now want to find the required generators Ai for a product ansatz. In the following we
assume that we already have a partial ansatz of the same form which is able to get all the
eigenstates of H0 out of one starting state |~0〉, e.g.∣∣∣E0

n

〉
=
∏
j∈ID

eiθjAj |~0〉, (76)

where ID is a subset of the actual index set of the final ansatz. This means that we already
can reach all the eigenstates of H0 with a part of the ansatz, so we focus only on finding
the part of the ansatz that considers the nondiagonal part of the Hamiltonian. For this
purpose we again look at eq. (75). The eigenstates in first order perturbation theory have
the form

|En〉 =
∣∣∣E0

n

〉
+
∑
k/∈Dn

〈
E0
k

∣∣V ∣∣E0
n

〉
En − Ek

∣∣∣E0
k

〉
. (77)

This means that to encompass the states |En〉 in our ansatz, it has to be able to change
between states

∣∣E0
n

〉
and

∣∣E0
k

〉
if
〈
E0
k

∣∣V ∣∣E0
n

〉
6= 0. A reasonable approach to find this

ansatz would therefore be to look at all the nonzero elements of V , which are just all the〈
E0
k

∣∣V ∣∣E0
n

〉
6= 0, since H0 is diagonal, and then include in the ansatz some operators which

can change between those states.

Transitioning between states

We now have a condition for an ansatz to be able to reach all possible eigenstates. The
ansatz has to include operators which can transition between specific states given the
matrix elements of the perturbation operator in the eigenbasis of H0. We now have to
find generators that create operators able to transition between specific eigenstates of H0.
We first look at the simple case of a two-state system and then extend the method to a
general system.
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2-state system

We first consider the simple case of a two-level system. In this case, we only have two
states, |0〉 and |1〉 with Z|0〉 = |0〉 and Z|1〉 = −|1〉. We can describe any pure state of
this system using the Bloch-sphere, e.g.

|ψ〉 = cos
(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉. (78)

We can rotate between these states using the rotation matrices e−iθA, where A ∈ {X,Y, Z},
to rotate in the different rotational bases of the Bloch-sphere.

Rotating between general states

Now we can apply this principle of rotating between states on our system. If we want
to rotate between two states

∣∣E0
n

〉
and

∣∣E0
k

〉
, we first find some operator A(nk)

z with
A

(nk)
z

∣∣E0
n

〉
=
∣∣E0

n

〉
and A

(nk)
z

∣∣E0
k

〉
= −

∣∣E0
k

〉
. This operator is easy to find in our case,

because HD is diagonal. We therefore have that(
A(nk)
z

)
ij

= δinδjn − δikδjk. (79)

To apply the same procedure as in the previous example, we have to find A(nk)
x and A(nk)

y

with the same commutation relations to A(nk)
z as the X, Y to Z, so we can construct the

rotation operators like in the last section. We can define the A(nk)
x , A(nk)

y as(
A(nk)
x

)
ij
≡ δinδjk + δikδjn and

(
A(nk)
y

)
ij
≡ i(δinδjk − δikδjn). (80)

We can rotate between the two states by using e−iθA
(nk)
i , i ∈ {x, y}. Which of A(nk)

x or
A

(nk)
y we need is dependent on whether the actual state we want to transition to or from

is imaginary or real. If it is imaginary, we need A(nk)
x . If it is real, we need A(nk)

y . If it is
neither imaginary nor real, we need both.

Example: linear-driven spin-1
2

We now look at an example for this naive ansatz construction, namely for the linear driven
spin-1

2 . The time-dependent Hamiltonian is given by

H(t) = −∆
2 Z + A

2 sin(ωt)X (81)

The Floquet matrix as in eq. (27) is then given by

HF = ω(Sz ⊗ 1)−∆(1⊗ Z)︸ ︷︷ ︸
HD

+A (Sy ⊗X)︸ ︷︷ ︸
V

, (82)
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where we truncate the Hilbert space at jmax = 1 as explained in section 2.2.4, such that

Sx =


0 1 0
1 0 1
0 1 0

, Sy =


0 i 0
−i 0 i

0 −i 0

, Sz =


1 0 0
0 0 0
0 0 −1

 (83)

We now want to find the ansatz to find the Eigenvalues of this operator. We use the Method
presented in this section, assuming ω is large, so we can apply perturbation theory.
For that we have to look at the matrix

(Sy ⊗X) =



0 0 0 i 0 0
0 0 i 0 0 0
0 −i 0 0 0 i

−i 0 0 0 i 0
0 0 0 −i 0 0
0 0 −i 0 0 0


, (84)

which consists of the only nondiagonal elements of HF . We now see that in the upper
triangular matrix, only V14, V23, V36 and V45 are nonzero. Since they are all imaginary,
we have to take the A(nk)

x to form our ansatz:

A(23)
x =



0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, A(14)

x =



0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, (85)

A(45)
x =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0


, A(36)

x =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0


(86)

These matrices, together with the matrices 1⊗ Y , S4 ⊗ 1 and S5 ⊗ 1 with

S4 =


0 0 0
0 0 1
0 1 0

 and S5 =


0 1 0
1 0 0
0 0 0

 (87)

which we need to reach the eigenvalues of the unperturbed Hamiltonian, now can be used as
generators for an ansatz to calculate the eigenvalues ofH. The difficulty with this approach
is that the ansatz we obtain consists only of general matrices which are potentially hard
to implement on a multi-qubit quantum computer. Furthermore, since the number of
nondiagonal matrix elements in the Hamiltonian can scale quadratic in system size, the
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number of parameters for the ansatz can get very large, potentially negating the speedup
achieved by using quantum resources. Therefore, in the next section we present a more
applicable method to find an ansatz for a given Hamiltonian.

3.4 Combination of the construction methods

In section 2.3.2 and section 3.3, we presented two possibilities for constructing an ansatz
for a variational quantum algorithm using perturbation theory. The method from section
3.3 is in principle universally applicable, but it generally requires a very large parameter
space. The method presented in section 2.3.2 requires significantly less operators, but it
cannot always be applied, since it needs the target Hamiltonian to decompose into Pauli
operators, which is not always the case, e.g. in the case of qudit-qubit architectures where
the qudit has more that two basis states. For the Fauseweh-Zhu-2 algorithm presented
in section 2.2.4, which benefits from a mixed qudit-qubit architecture, it therefore could
be reasoned that a combination of the two construction methods can be used to obtain
an ansatz. In this section we propose a method to combine those methods to obtain a
problem-specific ansatz for a mixed qubit-qudit architecture. In the following, we call
this ansatz the combined ansatz. This is the method we apply to the Fauseweh-Zhu-2
algorithm and evaluate in section 4.

Method

For combining the construction methods we first decompose the Hamiltonian into three
parts, one part acting only on the qubit system, one part acting only on the qudit and
one interaction part acting on the qudit and the qubit system. We write

H = Hqb +Hqd +Hint (88)

with

Hint =
∑
k∈K

H
(qb)
k ⊗H(qd)

k (89)

for some index set K. If we consider the Floquet matrix method presented in section 2.1.2
and assume that the time-dependent perturbations are always cosine or sine, we always
have H(qd)

k ∈ {Sx, Sy}.
We now construct our ansatz by the following three steps:

(1) First, use the diagrammatic construction to construct an ansatz from Hqb given by
the generators {Ai}i∈I .

(2) Now use the naive method to construct an ansatz from Hqd and all H(qd)
j occurring

in the Hamiltonian, given by the generators {Bj}j∈J .

(3) Finally, use the diagrammatic construction again to find an ansatz from the
interaction term. Since this construction depends on the decomposition of the
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Hamiltonian into Pauli-matrices, it does not work for the qudit, which has more than
two basis states. However, if we replace the Pauli-matrices for the qudit by Sx, Sy
and Sz respectively, we can implement this construction with a qudit. We can then
consider the qudit the same way we would an additional qubit. The diagrammatic
construction method stays the same. We get the generators {Ck}k∈K .

For the final ansatz we then get (U, |~0〉) with

U(~θ) =
∏
l

eiθ
(1)
l
Al⊗1

∏
j

eiθ
(2)
j 1⊗Bj

D∏
d=1

∏
k

eiθ
(1,d)
k

Ck
∏
l

eiθ
(2,d)
l

Al⊗1
∏
j

eiθ
(3,d)
j 1⊗Bj

, (90)

where D is the depth of the algorithm. We choose |~0〉 = |0〉⊗n ⊗ |0〉qd, where n is the
number of qubits and |0〉qd is the eigenstate of Sz corresponding to eigenvalue 0 on the
qudit.

Example

We consider a spin-chain of length 4. The Hamiltonian of a spin-chain of length Nq is
given by

Hchain = −
Nq∑
i=1

hZi +
Nq−1∑
i=1

(JxXiXi+1 + JyYiYi+1 + JzZiZi+1), (91)

with the coupling coefficients Jx, Jy and Jz.
We assume the time-dependent term as

A

Nq∑
i=0

Xi

 cos(Ωt) +

Nq∑
i=0

Yi

 sin(Ωt)

 (92)

and we truncate at jmax = 1. We can now construct the Floquet operator HF like in eq.
(35). We get

HF =

Hqb︷ ︸︸ ︷
−

Nq∑
i=1

hZi +
Nq−1∑
i=0

(JxXiXi+1 + JyYiYi+1 + JzZiZi+1) +

ΩSz︸︷︷︸
Hqd

+A

Nq∑
i=0

Xi

⊗ Sx +

Nq∑
i=0

Yi

⊗ Sy


︸ ︷︷ ︸
Hint

. (93)

Now we go through the steps of the construction.

(1) First, we use the diagrammatic approach to obtain the generators for Hqd. All
generators we get for

∑
YiYj and

∑
ZiZj are already contained in the set of

generators obtained for
∑
XiXj . Therefore, we can get all the generators for the

diagrammatic ansatz using only
∑
XiXj as perturbation. This is exactly the example
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we already constructed in section 2.3.2. This means we have as generators the
operators

{Ai}i∈I = {X1Y2, X2Y3, X3Y4, X1Y3, X2Y4, X1Y4, X1X2X3Y4}. (94)

(2) We use the naive method to construct the ansatz for

Sx =


0 1 0
1 0 1
0 1 0

 and Sy =


0 i 0
−i 0 i

0 −i 0

. (95)

In the same way as in section 3.3 we get the matrices

B1 = A(12)
y =


0 i 0
−i 0 0
0 0 0

, B2 = A(23)
y =


0 0 0
0 0 i

0 −i 0



B3 = A(12)
x =


0 1 0
1 0 0
0 0 0

, B4 = A(23)
x =


0 0 0
0 0 1
0 1 0

 (96)

In the construction we assumed that we already can rotate between the eigenvalues
of the unperturbed Hamiltonian ΩSz = Hqd, so normally we would have to add
further matrices. However, B3 and B4 can already rotate between all the eigenstates
of Sz, so the matrices

{Bj}j∈J = {B1, B2, B3, B4} (97)

are sufficient.

(3) For the interaction term we now consider

Hint = A

(( 3∑
i=0

Xi

)
⊗ Sx +

( 3∑
i=0

Yi

)
⊗ Sy

)
. (98)

For the construction, we replace Sx by σx and Sy by σy and construct the ansatz
for the qubit part with an additional qubit. This means we have 5 qubits in total.
We then can apply the construction method the same way we did before. Note that
we can get generators from this construction that are already contained in {Ai}i∈I .
These can be taken out of this part, because they are already contained in the ansatz.

After removing all the terms we already have in {Ai}i∈I , we get

{Ck}k∈K = {X4Y5, X3Y5, X2Y5, X2X3X4Y5, X1Y5, X1X3X4Y5, X1X2X3Y5}.
(99)

From these three sets we get an ansatz, depending on circuit depth, as in eq. (90).
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4 Numerical Results

In this section we show the results of an explicit implementation of the Fauseweh-Zhu-
2 algorithm presented in section 2.2.4. We focus on evaluating the combined ansatz
construction from section 3.4 as a way to construct an ansatz for the algorithm. Recall
that we call the ansatz obtained using this scheme the combined ansatz.
First, we briefly outline the system used for the evaluation and its parameters. We then
explain how the algorithm was implemented in section 4.1. In section 4.2, we show the
relevance of the two-step algorithm explained in section 3.1 by comparing the algorithm
with and without the second step. Following that, we move to evaluating the ansatz
construction scheme by comparing an implementation of the algorithm with the combined
ansatz to an implementation of the algorithm with the general ansatz presented in
section 2.3.3.
The system we use for the evaluation is the spin-chain. Its Hamiltonian is given by

Hchain = −
Nq∑
i=1

hZi +
Nq−1∑
i=1

(JxXiXi+1 + JyYiYi+1 + JzZiZi+1), (100)

with Nq being the chain length and Jx, Jy, Jz the coupling coefficients.
For the time-dependent external field we take

A

Nq∑
i=0

Xi

 cos(Ωt) +

Nq∑
i=0

Yi

 sin(Ωt)

, (101)

where A denotes the amplitude of the external field and Ω denotes the driving frequency.
We can now construct the Floquet operator HF . Since the single-qubit operators Zi
are irrelevant for the perturbative diagrams, we leave these operators out of HF for the
purposes of evaluating the ansatzes. For simplicity, here we furthermore choose Jx = Jy =
Jz = K. For a truncation value of jmax = 1, we then get, as in eq. (93), that

HF =

Nq−1∑
i=0

K(XiXi+1 + YiYi+1 + ZiZi+1)

+

ΩSz +A

Nq∑
i=0

Xi

⊗ Sx +

Nq∑
i=0

Yi

⊗ Sy
 (102)

For all further implementations we set the coupling coefficient to K = 1 and the driving
frequency to Ω = 10.

4.1 Numerical methods

We first explain the method by which the results presented in the following section were
obtained. To implement the combined ansatz for a given system Hamiltonian, the steps
from section 3.4 were implemented in a c++-program. We additionally used a python
program which implements the algorithm from section 3.2 to get the diagrammatic ansatz
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for the respective Hamiltonians required and saves them to be read out by the c++-
program. The c++-program then implements the complete algorithm outlined in section
2.2.4. It provides the possibility to use either the previously implemented combined ansatz
or the general ansatz for an execution of the algorithm.
For the optimizer we used the ”bfgs2”-optimizer, which is a gradient-based optimizer [23]
from the c++-library gsl [24]. The components of the required gradient of an ansatz state
of the form eiθ1T1 . . . eiθNTN |~0〉, where (Ti)i∈{1,...,N} are the generators, were calculated
using the formula(

~∇
(
eiθ1T1 . . . eiθNTN |~0〉

))
i

= eiθ1T1 . . . iTie
iθiTi . . . eiθNTN |~0〉. (103)

The gradient for the entire cost function C(~θ) in eq. (52) was then obtained by applying
the product rule.
We used two stopping conditions for the optimizer. For the first 100 iterations, the only
stopping condition is that the gradient of the function is below a value of 10−3. This
condition alone, however, in some cases lead to a high convergence time. For this reason,
after the first 100 iterations, the optimizer will also stop when the difference between its
current function value and the previous one is below 10−7. The choice of these values is
purely for practicality, ensuring adequate accuracy while still having acceptable runtimes.
We executed the program for spin-chains of length 3, 4 and 5. First, the combined ansatz
was used, as described in section 3.4. Then, as comparison, the general ansatz, as described
in section 2.3.3 was used. The algorithm was run for all depths in the set {n ∈ N, n ≤ 8}
for each chain length. One execution of the algorithm for a given chain length, depth and
ansatz choice consists of choosing a starting value A0 for the amplitude A of the external
field and calculating the approximated eigenvalues for this value and then increasing this
value by an increment δA and calculating the eigenvalues for the next value of A. We repeat
this for a predefined number N of steps, such that we get solutions {~θi}i∈{0,...,N} for all
values of A in the set {Ai = A0 + i · δA}i∈{0,...,N}. As starting values for the parameters
~θ

(0)
0 of the optimizer at A0, we used random values in the interval (0, 2π). Inside each
execution of the algorithm, the starting values for the next iteration are then chosen as
the calculated values of the previous iteration, i.e. if we got the parameters ~θi for A = Ai

as solution of the optimizer, for the next value Ai+1 = Ai + δA we choose the starting
values ~θ(0)

i+1 as the previous values ~θi. If the overlap term in the cost function in eq. (52)
is higher than a threshold, the optimization procedure is repeated, where this time the
starting values are chosen from a neighbourhood of the previous solution ~θ0. This means
that only the starting parameters at A = A0 were chosen at random.
All the operators and states were implemented as matrices and vectors. For the matrix
operations we used the c++-library Eigen. The resulting eigenvalues

{
E

(A,calc)
k

}
k∈{1,...,Ne}

of HF for each value of A, where Ne denotes the number of eigenvalues calculated, were
then saved for further evaluation. This was done by a python program, which calculated
the normalized sum of the absolute difference of the calculated eigenvalues to the exact
ones calculated directly from the matrix using the scipy package. The calculated quantity
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for a given value A is then given by

DA = 1
Ne

Ne∑
k=1

∣∣∣E(A,calc)
k − E(A,exact)

k

∣∣∣. (104)

In all the following examples, Ne was chosen to be the number of eigenvalues in the
first Brillouin zone, given by Ne = 2Nq , where Nq denotes the chain length. The values
E

(A,calc)
k and E(A,exact)

k denote the calculated and exact eigenvalues for a given amplitude
A, respectively.
Furthermore, for all the examples, we repeat the algorithm for 5 random starting values
for the optimizer at the starting value A0 and take the results where the sum over all
differences

∑
ADA is minimal as final results.

The runtime of this algorithm was generally very high, ranging from hours at chain length
3 to weeks at chain length 5. The order of magnitude of the runtime for each chain length
considered is depicted in table 1. The high increase in runtime can be explained with
the increase in the number of operators and the quadratic scaling of matrix dimension
with system size, i.e. Hilbert space dimension. This observation further underlines the
relevance of choosing the ansatz as small as possible, given that reducing the number of
operators in the ansatz reduces the time needed to calculate the parametrized state for a
given parameter set.

Chain length Runtime
3 multiple hours
4 multiple days
5 multiple weeks

Table 1: Orders of magnitude for the runtimes of the algorithm for the considered chain
lengths.

4.2 Two-step algorithm

To show the relevance of the second step of the algorithm proposed in section 3.1, we first
test the algorithm with and without the second step for a chain length of Nq = 3 and using
the general ansatz defined in eq. (68). To evaluate the algorithm we first calculate the
exact eigenvalues of HF . We then calculate the sum of the differences of the eigenvalues
as shown in eq. (104). We plot the inverse of the difference DA against the amplitude
A. To see the dependency of the accuracy of the results on the depth, we plot this for all
depth values in {n ∈ N, n ≤ 8}. We can see that the accuracy of the calculated eigenvalues
dramatically decreases with increasing A. We can create the same plot, this time using the
two-step algorithm from section 2.2.4. Both plots are shown in figure 7. Comparing these
plots, we see very well that the second step of the algorithm increases the accuracy of the
eigenvalues by multiple orders of magnitude, especially for higher A. The dependency of
A is presumably due to the fact that the eigenvalues which are degenerate in H2

F but not
in HF are further apart for higher values of A. For A = 0, the concerned eigenvalues are
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0, so they are degenerate in H2
F and HF , which implies that the second step should not

lead to any increase in accuracy. This explains the high accuracy even without the second
step for A = 0 and the increasing improvement due to the second step with increasing A.

(a) Difference plot without the second step

(b) Difference plot with the second step

Figure 7: Comparison of the algorithm with and without the second step for a chain length
of 3. In both cases, we used the generic ansatz. As we can see, for larger amplitude A of
the external field there is quite a high increase in accuracy due to the introduction of the
second step.

4.3 Comparison of ansatz schemes

We now look at the actual results of running the program described above. We consider
chain lengths of 3, 4 and 5. For a chain length of 3 and 4 we executed the algorithm once
for a starting value of A0 = 0 with a stepwise increase of δA = 0.1 and once for a starting
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value of A0 = 1 with a stepwise increase of δA = 0.5, in each case with 10 steps. For a
chain length of 5 we only executed the algorithm for A0 = 1 with a stepwise increase of
δA = 0.5, since the runtime was already very high in this case. All the executions of the
algorithm were done once using the combined ansatz and once using the general ansatz.

Chain length 3

First, we consider a chain length of 3. We repeat the same procedure as in the previous
section for the general ansatzand for the combined ansatz.We again plot the difference
sum DA against A for all depth values in {n ∈ N, n ≤ 8}. The results are shown in figures
8 and 9.
As we can see, for the general ansatz, it takes a higher depth for the difference to be
in the same order of magnitude than for the combined ansatz. One interesting thing to
note, however, is that the combined ansatz performs really badly for the case of A = 0.
The reason for this is unclear, however, since the combined ansatz was constructed using
the perturbation term, this could explain why it performs badly in its absence. Another
explanation could be that in the case of A = 0, some eingenvalues are degenerate in HF .
Since the second step of the algorithm only looks for two degenerate eigenvalues id H2

F

which are not degenerate in HF , it could restrict the subsequent search for eigenvectors
of HF on the wrong subspaces, leading to high errors in the eigenvalues.
Despite this, we can see that, for a nonzero A, the required number of parameters to
reach a given proximity to the real eigenvalues is much smaller in the case of the combined
ansatz, since we need a lower depth to get to the same proximity. For the combined ansatz
we only need a depth of 2 to get to roughly the same proximity, for which we need a depth
of 3 with the general ansatz. The number of parameters depending on the depth is shown
in table 2. We see that even the number of parameters at the same depths are smaller
for the combined ansatz. We have to note, however, that after that, the accuracy of the
general ansatz increases still with increasing depth, while in the case of the combined
ansatz it stays roughly the same.

Depth Combined ansatz General ansatz
1 18 23
2 29 46
3 40 69
4 51 92
5 62 115
6 73 138
7 84 161
8 95 184

Table 2: Number of parameters depending on depth of the combined ansatz and the
general ansatz for a chain length of 3.
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(a) General ansatz

(b) Combined ansatz

Figure 8: Comparison of the combined ansatz and the general ansatz for a chain length
of 3 and an initial external field amplitude A = 0 with a stepwise increase of 0.1. The
plots show that the combined ansatz reaches a higher accuracy with lower depth. We also
see very clearly that for A = 0, the combined ansatz completely fails, as opposed to the
general one.
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(a) General ansatz

(b) Combined ansatz

Figure 9: Comparison of the combined ansatz and the general ansatz for a chain length of
3 and an initial external field amplitude A = 1 with a stepwise increase of 0.5. We see that
for higher A, the combined ansatz still reaches higher accuracy with lower depths, but we
also see that the maximum accuracy achievable seems to be with the general ansatz at
much higher depths.
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Chain length 4

We now consider a chain length of 4. The resulting plots are shown in figures 10 and
11. We can make very similar observations to the case of chain length 3. We see that
to get to the same accuracy we can reach with a depth of 2 of the combined ansatz, we
already need a depth of 5 of the general ansatz. This increase in depth to get a good
approximation of the eigenstates corresponds to already confirmed results about depth-
dependency of ansatzes for a VQE [25]. Interestingly, for the combined ansatz, it seems
that even depth 2 could already be enough to get a good approximation, as it was in the
case of a chain length of 3. This suggests a much lower depth scaling for the combined
ansatz. The number of parameters needed is therefore again much higher for the general
ansatz, as seen in table 3.
As we already saw in the case of chain length 3, the minimum difference value we get for the
general ansatz is at ≈ 10−7. Since we stopped the optimizer at a function value difference
of 10−7, this is also the expected difference value for an ansatz that could potentially
reach all the eigenstates exactly. For the combined ansatz, we get a smaller minimum
difference value at ≈ 10−5, but we reach it at lower depths, and therefore lower numbers
of parameters. The accuracy furthermore increases more with depth, even at already high
depths. The combined ansatz therefore seems to need a much lower number of parameters
to get to the same accuracy as the general ansatz, but the accuracy is limited at a threshold
which is lower than the maximum possible accuracy we can reach with the general ansatz
at much higher depths. However, this could also be due to convergence behaviour of the
optimizer, so this implication is only speculative.

Depth Combined ansatz General ansatz
1 29 30
2 47 60
3 65 90
4 83 120
5 101 150
6 119 180
7 137 210
8 155 240

Table 3: Number of parameters depending on depth of the combined ansatz and the
general ansatz for a chain length of 4.
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(a) General ansatz

(b) Combined ansatz

Figure 10: Comparison of the combined ansatz and the general ansatz for a chain length
of 4 and an initial external field amplitude A = 0 with a stepwise increase of 0.1. We
can basically make the same observations as for the case of chain length 3, except that
the general ansatz, as expected, needs a higher depth to give a good approximation of
the eigenstates, which does not seem to be the case for the combined ansatz. What we
can see very well in this plot is that the accuracy of the general ansatz, as opposed to the
combined one, seems to increase still with higher depths, even beyond depth 6.
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(a) General ansatz

(b) Combined ansatz

Figure 11: Comparison of the combined ansatz and the general ansatz for a chain length
of 4 and an initial external field amplitude A = 1 with a stepwise increase of 0.5. The
observations are again similar to the ones made for chain length 3. Here we can also see
well that the combined ansatz of depth 2 seems to have performed a little worse than the
ones of higher depths, hinting also a depth scaling of this ansatz, albeit much lower than
the one in case of the general ansatz.
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Chain length 5

For a chain length of 5 we could not obtain a full set of data points like for the other chain
lengths, since especially in the case of the general ansatz with lower depths the program
runtime was very high. The fact that the program could not even find the eigenvalues
for the starting value of A in this time, however, is a strong indicator for the fact that
for these depths, the general ansatz does not perform well. The comparison is shown in
figure 12. This would suggest that the general ansatz has acceptable accuracy only for a
depth 7 or higher. In case of the combined ansatz, again even for a depth of 2 we already
seem to get a good approximation for the eigenstates. Therefore, the depth scaling for the
combined ansatz again seems to be a lot lower that the one for the general ansatz. This
again means a much higher number of needed parameters in case of the general ansatz,
seen in table 4. These findings, however, would require further confirmation, since the
data is incomplete.

Depth Combined ansatz General ansatz
1 53 38
2 88 76
3 123 114
4 158 152
5 193 190
6 228 228
7 263 266
8 298 304

Table 4: Number of parameters depending on depth of the combined ansatz and the
general ansatz for a chain length of 5.
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(a) General ansatz

(b) Combined ansatz

Figure 12: Comparison of the combined ansatz and the general ansatz for a chain length
of 5 and an initial external field amplitude A = 0 with a stepwise increase of 0.1. Here,
we do not have as many datapoints due to the high runtime of the algorithm. This was
a big problem in particular for the general ansatz with depths 2 to 6. However, the slow
convergence of the optimizer in those cases suggests that the ansatz could not reach the
eigenstates well. The combined ansatz again seems to perform reasonably well even at
depths 2 and 3, wich again suggests a much lower depth scaling as for the general ansatz,
but since we do not have much data, we can not make a definite statement about this.
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5 Conclusion

In this work, we have presented the Fauseweh-Zhu-2 algorithm to treat Floquet dynamics
using a variational quantum algorithm. We developed an ansatz construction scheme
for a mixed qubit-qudit architecture, which we implemented and evaluated for this
algorithm. In section 2 we first introduced the basics of Floquet formalism, including
the method of Floquet matrix as a numerical method to treat Floquet dynamics. We then
introduced variational quantum algorithms and presented the Fauseweh-Zhu-2 algorithm
as a way to treat Floquet dynamics using this numerical method as introduced in [6].
We furthermore introduced a diagrammatic way to construct an ansatz for a variational
quantum algorithm taken from [22]. In section 3 we then constructed the implementation
of the Fauseweh-Zhu-2 algorithm we evaluated in this work. We developed an extension for
the algorithm to address an issue with degenerate eigenvalues. Furthermore, we presented
another, more naive ansatz construction method which is less efficient but more general
than the diagrammatic one. We then combined both the naive and the diagrammatic
method to develop a problem-specific ansatz construction scheme for a mixed qubit-
qudit architecture. We used this scheme to construct an ansatz for the algorithm and
implemented the algorithm with this combined ansatz and a general, not problem-specific
ansatz for comparison. The algorithm was evaluated for spin-chains of various lengths,
driven by an external field. The numerical results are presented in section 4. First,
we confirmed the relevance of the extension of the algorithm, showing a high increase
in accuracy a high amplitude of the external field. For the general ansatz, we see a
dependency on the depth, where the accuracy increases with depth. This corresponds to
the results seen also in [25]. For the combined ansatz, we can see the same tendency,
however, for the tested examples, the combined ansatz performed better than the general
one at much lower depths, implying a much lower depth scaling for the combined ansatz.
These first results suggest a strong improvement over a general ansatz at lower depths, so
that the combined ansatz needs a much lower number of parameters to reach the same
accuracy as the general ansatz. However, we only considered relatively small system sizes,
so it would need further work to confirm these findings for more complex systems. For
higher depths the general ansatz seems to be able to reach a better maximum accuracy
than the combined ansatz, although the confirmation of this, too, would require further
work.
Due to long runtimes for higher system sizes, the systems considered in this work are
relatively simple examples. This leaves the study of this approach for higher system sizes
and higher truncation values jmax as a possibility for further work. Furthermore, we
were unable to fully explain some of the data collected in the work, namely the extreme
inaccuracy of the combined ansatz for A = 0 and the difference in depth scalings at high
depths between the general and the combined ansatz. Another important aspect not
covered in this work is the effect of qubit noise on the performance of the algorithm and
the ansatz. Since all the implementation in this work was done on a classical computer,
studying the algorithm on real quantum hardware would be necessary to properly evaluate
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its performance.
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