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Abstract:
The industrial sector accounts for a huge amount of energy- and process-related CO2 emissions. One decar-
bonization strategy is to build an energy concept which provides electricity and heat for industrial processes
using combination of different renewable energy sources such as photovoltaic, wind turbine, and solar thermal
collector system combined with energy conversion power-to-heat components such as heat pump, electric
boiler etc. The challenge for the industries is the economic aspect of the decarbonization, as industries require
a cost-efficient solution. The total cost for an industrial energy concept includes investment and operating
costs. This complex problem of minimizing cost and emission requires two major tasks: (I) modeling of com-
ponents and (II) multi-objective coupled design and operation optimization of the energy concept. The optimal
design and capacity of the components and optimal system operation depend majorly on the modeling of the
components. The modeling of the components is either physics-driven or data-driven. The corresponding
multi-objective coupled optimization is a complex problem with a large number of variables and constrains in-
volved. This paper shows different types of physics- and data-driven modeling of energy components for the
multi-objective coupled optimization for minimizing cost and emission of an industrial process as a case study.
The optimization problem is solved as single-level problem and bi-level problem with different combinations of
physics- and data-driven models. Different modeling techniques and their influence on the optimization are
compared in terms of computational effort, solution accuracy and optimal capacity of components. The results
show that the combination of physics and data-driven models have computational time reduction up to 37%
with high accuracy compared to complete physics-driven models for the considered case study. Specific com-
bination of physics-driven and polynomial regression models show the best trade-off between computational
speed and accuracy.

Keywords:
energy concept, renewable energy sources, coupled optimization, data-driven modeling

1. Introduction
Sustainable development is one of the most pressing challenges for the industrial sector today. Industrial sector
accounts for 34% of the end-energy-related CO2 emissions in Europe [1]. A very crucial hurdle that needs to be
overcome for sustainable future is the immense use of fossil fuels. The associated greenhouse gas emissions
require urgent solutions to mitigate their effects on climate. Renewable energy sources (RES) such as wind and
solar can be promising alternatives to fossil fuels as they are abundantly available and provide cleaner means
of energy [2]. Energy transition concepts such as integrated energy systems (IES) combining RES, conversion
components and fuel-based energy generation components could effectively improve the utilization of RES
as well as promote the mitigation of CO2 emissions. Energy-efficiency of such concepts plays a vital role in
reducing CO2 emissions. Efficient design and operation decisions of IES combine ecological and economic
aspects; i.e., it does not only have potential for reducing CO2 emissions, but it also supports significant cost
savings as shown in various literature for industrial energy systems [3–5], district and urban energy systems
[6–8] and building energy systems [9,10]. The design decisions are determined before and implemented during
the development of the energy concept, such as the capacity of the energy components involved. The operation
decisions are implemented after development of the energy concept, such as the physical conditions under
which the system is operated [11]. However, complex energy component capacity configuration and various
operation strategies make further development of such energy concepts for minimizing cost and emission
difficult [12].
Multi-objective design and operation optimization is one of the most effective methods for solving such prob-
lems [13]. This optimization problem falls under coupled optimization category, where design and operation of
the IES have to be optimized together to achieve the multi-objectives such as minimum CO2 emissions and
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minimum costs. Different literature have shown coupled optimization solved with different methods, such as
bi-level and single-level optimization. Bi-level solution strategy is where an upper level problem decides the ca-
pacity of the components and a lower level decides the operation strategy based on the design decisions from
upper level. Single-level solution strategy integrates design and operation optimization in a single mathemati-
cal problem. The authors in [7] showed a mixed integer linear program (MILP) of bi-level coupled optimization
of district energy systems (DES) for minimizing overall cost as a single objective. In [14] a multi-objective,
non-linear coupled optimization with bi-level problem formulation is presented. In [15] single-level MILP multi-
objective coupled optimization for buildings is discussed. In [16] topology optimization of DES as MILP single-
level formulation with scenario based operating conditions is presented. Above discussed researches have
not majorly focused on industrial processes with multi-objective single-level coupled optimization. In this paper
the multi-objective coupled design and operation optimization problem of an energy concept is solved using
single-level as well as bi-level methods.
Modeling is an important aspect of energy system’s design and operation optimization. Physics-driven mod-
eling of energy components are majorly non-linear involving large number of variables and constraints, which
makes the coupled optimization computationally expensive [16]. Data-driven models have opened new possi-
bilities for energy system modeling [17]. Data-driven models could imitate the same physical relations hidden
in the data sets without focusing on physical description of the process, which makes them quite flexible to
use in an optimization problem [18]. The recent advancement in machine learning (ML) has a capability to
handle high complexity of such energy system modeling arising from non-linearity of the physics [17]. In this
paper data-driven models for solar thermal (ST) collector system and heat pump (HP) are used to formulate
reduced order optimization problem and are compared with the physics-driven counterparts in terms of accu-
racy, computational efforts and optimal capacity of components. Comparison is carried out for both single-level
and bi-level multi-objective optimization problem to show the optimization results’ consistency.

2. Methods
The coupled design and operation optimization problem in this paper is formulated for a case study energy
concept of a small- to medium-sized food and cosmetic company in Germany. Fig. 1 shows the proposed
initial energy concept for the case study. It includes RES such as photovoltaic (PV), wind turbine (WT), ST;
energy conversion components such as HP, gas boiler (GB), electric boiler (EB); electric grid (EG) and gas
grid (GG) to suffice the consumption demand of the production. The heat is required for the steam generation,
which is further used for heating and pasteurizing the products in batches. Electricity producing components
and electricity consuming components are connected to an electricity hub (EH). In the same manner heat pro-
ducing and consuming components are connected to a heat hub (HH). Energy storage components such as
battery-storage (BAT) and thermal energy storage (TES) are not considered in this paper for the optimization,
but can be integrated in future energy concepts for higher flexibility of operation. The coupled optimization
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Figure 1: Concept of IES

problem of the energy concept shown in Fig. 1 is complex due to large number of continuous variables such
as capacity of the components, power consumption of the components etc., and binary variables such as
existence of component in the energy concept are involved with non-linear modeling of the energy compo-
nents consisting large number of constraints. The total number of variables and constraints involved in this
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optimization problem are 1741 and 2748, respectively. It falls under the general category of mixed-integer
non-linear programming (MINLP) non-convex problems, which is computationally very expensive to solve [19].
Different types of physics- and data-driven models are integrated into multi-objective coupled optimization.
Physics-driven modeling of the components is majorly followed as described in [20]. Solution accuracy and
computational efforts of different models in optimization are compared later in section 3. The time horizon for
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Figure 2: Monthly electricity and daily heat demand of the case study considered

the operation optimization is 1 year with an hourly time-step. The operation of the plant takes place for 5 days
in a week daily for 8 hours. 21 days in a month are working days and 9 days are assumed to be off-days.
The operation of the plant is assumed to be scenario-based for the optimization, where 1 working day and 1
off-day in each month are taken as the representative days. The heat demand for working day is shown in Fig.
2 (b). It can be seen that heat demand is divided into 4 operating scenarios for different operating hours on
a working day for different batch processes. Off-days have base load requirement of 200 kWh of electricity.
Monthly electricity demands are shown in Fig. 2 (a).
2.1. Problem formulation
This case study problem has two objectives to minimize: Total annualized cost (TAC) and global warming
impact (GWI). TAC includes investment cost C and operational cost OC. The production facility of the case
study is already built. The investment cost for building the facility is excluded. GWI is the measurement of the
CO2 emission. The minimization problem is formulated as

min
x,y

[TAC(x, y), GWI(x, y)], (1)

with TAC and GWI as the minimization objectives. The first minimization objective TAC includes operational
cost of the energy concept and investment cost of each component, which is defined as

TAC(x, y) = OC(x, y) +
∑
i∈S

Ci (xi ), (2)

where, the operational costs depends on the net electricity and gas bought from the grids. Which is shown as

OC(x, y) =
∑
m∈M

(pel
buy · Eel

in,m − pel
sell · Eel

out ,m) + pgas
buy · Egas

in,m), (3)

and the investment cost Ci of each component is represented as

Ci =
(

(β + 1)τ · β
(β + 1)τ − 1

+ α

)
· CAPEX , (4)

which includes capital expenditure CAPEX , maintenance cost factor α, interest rate β and time horizon τ for
financing cost [20]. CAPEX is calculated based on reference capacity xi of each component as

CAPEX = CAPEX 0 ·
(

xi

x0

)γ

, (5)

where, γ represents the scaling exponent for the nominal capacity [20]. The second minimization objective
GWI is presented as

GWI(x, y) =
∑
m∈M

(gel · (Eel
in,m − Eel

out ,m) + ggas · Egas
in,m), (6)
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where, M = {Jan, Feb...., Dec} and S = {PV , WT , SH, GB, EB, HP}. x = [APV , PWT
nom, QGB

nom, QEB
nom, QHP

nom] are the
design variables and y = [Eel

in,m, Eel
out ,m, Egas

in,m] are the operational variables for the objective function. GWI is
calculated based on the net buying of electricity and gas from the grid. Each net consumed unit of electricity
Eel

in,m − Eel
out ,m and gas Egas

in,m has been given corresponding CO2 factors gel and ggas, respectively, for the
calculation of GWI. Parameters for the OC and GWI are shown in Table 1. Table 2 shows the parameters for
calculating investment cost of each component and it also shows the minimum part load requirement λmin for
the components.

Table 1: Cost and emission parameters for grids taken from [20,21]

Name Parameter Value

electricity buying price pel
buy 0.31 [e]

electricity selling price pel
sell 0.06 [e]

gas buying price pgas
buy 0.15 [e]

CO2 factor for net consumed electricity gel 0.349 [kg − CO2eq/kWh]
CO2 factor for consumed gas ggas 0.244 [kg − CO2eq/kWh]

The heat demand constraint is shown as

Qdem − (QST + QGB + QEB + QHP) ≤ 0, (7)

which indicates that the heat generated from ST, GB, EB and HP should fulfill the heat demand of the production
in each time step. Constraint on the capacity of the components is shown as

xi
min · zi ≤ xi ≤ xi

max · zi ∀i ∈ x and zi ∈ {0, 1}, (8)

where, xi
min and xi

max are the lower and upper bounds of the capacity of each components. z is the binary
variable, which is linked to the existence of the component in the concept. Equations (1)-(8) represent single-
level multi-objective coupled design and operation optimization problem.

Table 2: Component parameters for investment costs and part-load constraints [20]

Components reference capacity x0 CAPEX 0[e] γ α β τ [a] λmin

PV A0 [m2] 1400 0.95 0.01 0.03 10 0
WT P0

nom [kW ] 5000 0.95 0.03 0.03 10 0.33
ST A0 [m2] 400 0.95 0.02 0.03 10 0
GB Q0

nom [kWh] 2700 0.45 0.02 0.03 10 0.2
EB Q0

nom [kWh] 70 0.95 0.01 0.03 10 0
HP Q0

nom [kWh] 1655 0.66 0.02 0.03 10 0

2.2. Modeling of components
Modeling of the components is a crucial part of the optimization problem. In this subsection, for each compo-
nent integrated in the energy concept either a physics-driven and/or data-driven models are explained. List of
all variables, constant parameters and input parameters for physics-driven component modeling is presented
in Table 3.
2.2.1. Photovoltaic

The electrical power PPV
out generated by the PV unit is constrained by the solar irradiance I, the efficiency of PV

unit ηPV and total area APV
nom of the PV system. It is represented by

PPV
out ≤ APV

nom · ηPV · I. (9)

The case study facility already has some PV panels built on the terrace, with a tilt angle 5°for the PV model.
Moreover, PV unit has the maximum output power limited to its nominal capacity, which is presented as

PPV
out ≤ APV

nom · PPV
nom, (10)
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Table 3: Component variables including binary variables, parameters and inputs for single-level problem

Components Design
variables x

Operational
variables y

Constant pa-
rameters c

Input paramters in
each timestep

Total number of
variables

PV APV
nom PPV

out ηPV ,PPV
nom I 3

WT PWT
nom λWT ,PWT

out - v 4

GB QGB
nom λGB, Egas

in η0 - 4

EB PEB
nom λEB, PEB

in ηEB - 4

ST AST
nom T w

out , Tout , Tin IAM , η0, ṁST I, Tamb, ṁw 5

HP QHP
nom

λHP , hw
out , T w

out ,
PHP

in

a, b, c, d ,
T c

in, T w
in

ṁw 6

Electric grid - Eel
in , Eel

out - - 2

Gas grid - Egas
in - - 1

where, PPV
nom is chosen as 0.171 kWm−2 [20] and efficiency ηPV is chosen to be 0.09 in order to meet the actual

output data of PV panels built on the case study facility. PPV
out is an operational variable and APV

nom of the unit is a
design variable. Total number of variables in Table 3 shows number of design, operational and binary variables
to be computed in each time step in optimization problem.
2.2.2. Wind turbine

The power output PWT
out of WT is limited by the wind velocity, which in turn determines the part-load behavior of

WT and its nominal power [22]. The output power of WT is given by

PWT
out ≤ ηWT (λWT ) · PWT

nom, (11)

where, PWT
out is an operational variable and PWT

nom of the wind turbine is a design variable. Operational variable
λWT depends on the wind velocity (λWT = v/vref , where vref = 12m/s [20]). The efficiency of wind turbine
ηWT (λWT ) is given by

ηWT (λWT ) =

⎧⎪⎨⎪⎩
0 if λWT ≤ 0.33
1.5393 · λWT − 0.5091 0.33 ≤ λWT ≤ 1
1 λWT ≥ 1.

(12)

2.2.3. Gas boiler

Heat output of the GB is determined by the part-load efficiency, which is given as

ηGB(λGB) =
21.75378 · λ3 − 7.00130 · λ2 + 1.39731 · λ− 0.07557
20.66646 · λ3 − 5.34196 · λ2 + 0.67774 · λ + 0.03487

· η0, (13)

where η0 is chosen to be 0.8 [1], which is called nominal efficiency. The heat output depends on the efficiency
shown in (13), consumed gas power to heat up the incoming fluid Pgas

in and nominal capacity QGB
nom, which is

presented as

QGB
out = ηGB(λGB) · Pgas

in , QGB
out = λGB · QGB

nom. (14)

Here, heat output QGB
out , consumed power Pgas

in and the part-load λGB are operational variables and nominal
capacity QGB

nom is the design variable. The integration of consumed power Pgas
in over the operation horizon

delivers the total energy Egas
in consumed from gas grid.

2.2.4. Electric boiler

EB is modeled in the same manner as GB. Efficiency ηEB for EB is assumed to be constant at 0.95. The
operational variable heat output of the EB depends on operational variables such as consumed electric power
PEB

in , part-load λEB and design variable nominal capacity QEB
nom. It is shown as

QEB
out = ηEB · PEB

in , QEB
out = λEB · QEB

nom. (15)
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2.2.5. Solar thermal collector

There are two kinds of ST collectors generally used in the market, flat plate and evacuated tube. For this case
study, flat plate collectors with tilt angle of 40° are chosen to be integrated in the energy concept [23]. ST
model is based on the quadratic efficiency model developed by [24], which is shown as

ηST = η0 −
a1 ·ΔT

I
− a2 ·ΔT 2

I
, (16)

where η0 represents optical collector efficiency, a1 and a2 are loss coefficients related to linear and quadratic
terms, ΔT represents temperature difference between collector fluid temperature and ambient temperature,
and I as mentioned before is global solar irradiance on the collector surface. European EN 19275 standards
prescribe the collector fluid temperature as average collector temperature of its inlet and outlet temperature
[25].
Complete hourly weather data for the location of the case study plant has been gathered from European
commission photovoltaic geographical information system [26]. The global solar irradiance and ambient tem-
peratures are the important data for the ST collector model. Complete physical ST collector model is shown in
(17) - (20). The ST collector efficiency is shown as

ηST = η0 · IAM − a1 · (Tm − Tamb)
I

− a2 · (Tm − Tamb)2

I
, (17)

where, IAM represents incidence angle modifier, which corrects the optical efficiency for the irradiation not
perpendicular to the surfaces [23]. Tm is the average collector fluid temperature, which depends on inlet and
outlet temperature T ST

in and T ST
out , respectively. The optical collector gain is represented by

Q0 = η0 · IAM · I · AST
nom, (18)

and thermal losses due to temperature difference between average fluid temperature and ambient temperature
is modeled as

QL =
(
a1 · (Tm − Tamb) − a2 · (Tm − Tamb)2) · AST

nom, (19)

where, collector surface area is AST
nom of the collector surface is the design variable.

Qu =

{
Q0 − QL, if Q0 > QL

0 if Q0 ≤ QL
(20)

Equation (20) shows the useful solar gains with the condition of positive net solar gains. The authors in [23]
compared this simplified physical model with detailed simulation model in TRNSYS. The parameters for the
physical models are collected in [27], in which extensive research has been carried out for different ST flat
collector manufacturers data in Germany and related parameters. Parameters chosen for the case study are
shown in Table 4. Fig. 3(a) shows the ST collector with the heat-exchanger (HEX) used in the energy concept.
The heat transfer over HEX is given by

QST = ṁw · cw
p · (T w

out − T w
in ). (21)

For calculating the operational variable heat transfer QST over HEX in each time step, 5 different equations (17)-
(21) must be solved in the physical model, which consist 3 additional operational variables such as collector
inlet temperature T ST

in , collector outlet temperature T ST
out , water/steam outlet temperature T w

out and one design
variable, area AST

nom of the collector surface. Large number of variables and constraints make the optimization
expensive. In order to reduce the number of variables and constraints, data-models are trained and used in
the optimization.
Data-driven approach to model ST collector could have some advantages over physical model. Proposed
data-driven approach is presented as

QST = f (T w
in , ṁw , I, AST

nom), (22)

where, operational variable heat output of the whole ST collector system depends on 4 inputs. These inputs in-
clude only one design variable AST

nom, 3 input parameters T w
in , ṁw , I and none of the operational variables shown

before. f in (22) represents a generic data-driven model. This data-driven model represents the relationship
between the given input parameters including the design variable area AST

nom with the output variable heat output
QST . In this paper data-driven models such as linear regression (LR), polynomial regression (PR) and artificial
neural network (ANN) are considered. These data-driven models are trained with the input and output data
generated from the physical model. In this manner, operational variables to be optimized are reduced to 1 in
each time step and all other constraints are eliminated.
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Table 4: Parameters for ST flat collector

Collector η0 a1 [W/(m2K )] a2 [W/(m2K )] IAM

Flat plate 0.79 4.03 0.0078 0.86

HEX

Solar Thermal Collector

(a) Solar flat plate collector with HEX

HEX

HEX

(b) HP consisting a compressor, 2 HEX and a turbine

Figure 3: ST collector and HP schematic diagram

2.2.6. Heat pump

HP can use the industrial waste heat as a thermal energy source as well as renewable electricity as the power
input to decarbonize industrial thermal processes, which makes it an essential technology [28]. In this case
study, waste heat is considered as constant. Renewable electricity is generated from PV and WT. There are
many different physical models to describe the performance of the HP. The authors in [28] have investigated
different case studies of different types of HPs and came up with different coefficient of performance (COP)
regression models. Fig. 3(b) shows a heat pump consisting of two HEXs (condenser and evaporator), a
compressor and a turbine. T c

in and T c
out represent input and output temperatures on cold side, whereas T w

in and
T w

out are the input and output temperatures on the hot side, respectively. The heat output of the HP depends
on its nominal capacity QHP

nom and part-load λHP , which is shown as

QHP
out = λHP · QHP

nom. (23)

The output temperature T w
out on the hot side depends on the outlet pressure of water/steam pw

out on hot side
and enthalpy hw

out of water/steam, which is a function of heat output QHP
out and inlet temperature T w

in of water on
the hot side, shown as

T w
out = f (hw

out (Q
HP
out , T w

in ), pw
out ). (24)

The COP is calculated based on the model

COP = a · (ΔTlift + 2b)c · (T w
out + b)d , (25)

suggested by [28]. The coefficients a,b,c and d of this model are chosen according to the suitable temperature
ranges of the case study (80°C < T w

out < 160°C). The heat output is a function of COP and the consumed
electrical power PHP

in , as well as the input and output enthalpy hw
in and hw

out of water/steam on hot side, which is
shown as,

QHP
out = COP · PHP

in , QHP
out = ṁw · (hw

out − hw
in). (26)

Equation (23)-(26) represent the physics-driven model of HP. The detailed list of design and operational vari-
ables of HP are shown in Table 3. As seen from the physical model, 5 different equations need to be solved in
each time step, which include 5 operational variables QHP

out , COP, PHP
in , λHP , T w

out and one design variable QHP
nom.

Data-driven approach for HP is shown as

COP = f (ṁw , T c
in,λHP , QHP

nom), (27)

which includes 1 design variable QHP
nom, 1 operational variable λHP and 2 input parameters ṁw and T c

in as inputs
to compute the output variable COP without any constraints. Table 5 shows the total number of variables and
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constraints over the whole time-horizon for the single-level multi-objective coupled optimization. It is evident
from Table 5 that the total number of variables and constraints involved in coupled optimization problem de-
creases with the use of data-driven models compared to the complete physics-driven models of ST and HP.
Data-driven models for ST and HP reduce the number of variables by 388 and constraints by 504, which is
22% and 18% less than the complete physics-driven models.

Table 5: Total number of variables and constraints in single-level multi-objective coupled optimization problem for different combinations
of physics-driven and data-driven models of HP and ST

ST HP Total number of variables Total number of constraints

Physics-driven Physics-driven 1741 2748
Data-driven Data-driven 1353 2244
Data-driven Physics-driven 1525 2316

Physics-driven Data-driven 1669 2676

3. Results
3.1. Comparison of data-driven models
As shown in Table 5, the data-driven models have fewer variables and constraints to compute in coupled
optimization. Table 6 shows the inputs, outputs, number of parameters and amount of data samples. This data
samples are divided into training and validation data. 75% of the data samples is used for training the models
and 25% of the data samples is used for validating the trained models. Table 7 shows the training time and
comparison of accuracy between physical models (actual values) and different data-driven models (predicted
values) based on coefficient of determination R2 method [29]. Three types of data-driven models: LR, PR

Table 6: Data-driven models’ input, output and number of samples

Component Inputs Output Number of data samples

ST T w
in , ṁw , I, A QST 439199

HP ṁw , T c
in, λHP , QHP

nom COP 206054

and ANN are trained for ST and HP. In particular, PR models have two variant such as 2nd degree PR (PR-1)
and 3rd degree PR (PR-2) models. Furthermore, ANNs are feed forward neural networks with two different
specifications: (I) 2 hidden layers, 5 neurons in each hidden layer (ANN-1) (II) 3 hidden layers, 7 neurons in
each hidden layer (ANN-2). The number of hidden layers and number of neurons in each hidden layer are
optimized using hyper-parameter tuning technique. ANNs are trained with k-fold cross validation method with
k=4 [30].
It can be seen from Table 7 that the R2 score of ST is less for ANN-2 compared to ANN-1. See also Fig. 4
(b), where for ANN-2 the predicted output data does not match properly with actual output data. In contrast,
Fig. 5 shows results for the two different ANN models of HP, where ANN-2 showing better fitting performance

Table 7: Data-driven models’ training time and accuracy

Model Specification Training time
for ST [s]

Training time
for HP [s]

R2 for ST R2 for HP

LR degree 1 2.12 1.82 0.96 0.45
PR-1 degree 2 5.33 4.31 0.972 0.68
PR-2 degree 3 11.26 9.25 0.986 0.825

ANN-1 2 hidden layers
5 neurons each

1254 1008 0.999 0.862

ANN-2 3 hidden layers
7 neurons each

1852 1369 0.845 0.982
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(a) ANN-1 (2 layers, 5 neurons each)
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Figure 4: Comparison of ANN models output prediction to actual output of ST

compared to ANN-1. Therefore, the optimized ANN for ST is ANN-1 and for HP is ANN-2. As expected, LR and
PR models for HP have lower values of R2 score compared to ANN models. On the other hand ST has quite
higher R2 score for LR and PR models. Training time for LR and PR models are lesser than their respective
ANN models. Training time for ANN is higher due to large number of weights and biases involved in the ANN
model. ANN-1 model and ANN-2 model have 35 and 112 such coefficients (and constants), respectively, which
makes them time-expensive to compute when these ANN models are integrated into the coupled optimization.
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Figure 5: Comparison of ANN models output prediction to actual output of HP

3.2. Comparison of optimization results
Fig. 6 shows several Pareto-fronts of TAC and GWI as results of multi-objective coupled design and operation
optimization of the case study energy concept. These pareto-fronts are formed by various combinations of
physics- and data-driven models. In particular, Fig. 6 (a) shows the single-level optimization results and (b)
shows bi-level optimization results for different combinations of ST and HP models. The optimal Pareto-front
of complete physics-driven model (black dots) of the IES is used as the reference solution to evaluate the
accuracy and computational effort of the different model combinations.
The original multi-objective MINLP optimization problem is linearized and converted into a MILP optimiza-
tion problem. The MILP problem is solved with GUROBI solver [31] on PYOMO platform included in CO-
MANDO [22]. More specifically, the single level multi-objective pareto-front is generated by the augmented
ε-constraint method [32]. Bi-level problem is not linearized and solved on PYMOO platform with non-sorting
genetic algorithm (NSGA-II) on the design level and differential evolution on the operation level [33]. Both
optimization problems, single-level and bi-level problem, are solved on 11th Gen Intel(R) Core(TM) i7-1185G7
with 16 GB RAM. It can be seen from Fig. 6 (a) and Fig. 6 (b) that the physics-driven model of HP with
ANN-1 data-driven model of ST (blue dots) gives the most accurate results, which is close to the complete
physics-driven model. The second most accurate result is provided by physics-driven model of HP and PR-2
data-driven model of ST (violet dots). This trend applies to both, single-level and bi-level optimization.
Fig. 7 shows the comparison of computational time and solution accuracy of the coupled optimization results
for combination of different models. Accuracy is calculated based on R2 method, where complete physics-
driven model is reference. It can be seen that the best trade-off between computational time and accuracy is
found for HP physics-driven model and ST PR-2 model (violet dots). This combination of models reduces the
coupled optimization computation time up to 37% with optimization results being approximately 90% accurate
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Figure 6: Comparison of the optimization results for different model combinations of ST and HP
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compared to complete physics-driven models. In contrast, ST ANN-1 model with HP physics-driven (blue
dots) model in coupled optimization is also very accurate, but the computational time for solving the coupled
optimization problems with ANN-models are very high due to large number of weights and biases.
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Figure 8: Capacity of components for reference solution and best trade-off solution for single-level coupled optimization

Fig. 8 shows the optimal capacity of the components for the total physics-driven models and the best trade-off
combination of physics- and data-driven models, which is chosen based on best trade-off between computa-
tional time and solution accuracy according to Fig. 7. Both Fig. 8 (a) and 8 (b) show that for minimum TAC
small HP and large GB is required to meet the heating demand, while for minimum GWI large HP is required.
The size of ST and PV remains almost constant in all of the Pareto-results. In some solutions, EB is needed
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when HP and GB are not sufficient to provide the required heat. The optimal capacity of the components fol-
low a similar trend for complete physics-driven and combined physics-data-driven models, demonstrating the
credibility of the combined models.

4. Conclusion and outlook
This paper showed a multi-objective coupled design and operation optimization of an energy concept of a food
and cosmetic industry as a case study. Single-level optimization for minimizing TAC and GWI as well as design
and operation variables for each component involved is described. The aim of this paper is to compare different
types of physics- and data-driven models and to integrate them into a coupled optimization problem to reduce
the computational time while maintaining the accuracy of the optimization results. The results showed that the
combination of data-driven PR model of ST and physics-driven HP model better than all other combinations
in terms of computational time and solution accuracy. The accuracy of the optimization result is up to 90%
compared to complete physics-driven model and the computational time is reduced by 37%.
Future work for this case study is to include energy storage models into the energy concept. Integration of
thermal and electrical storage can increase the flexibility. Different scenarios such as retrofit designs, greenfield
designs, cost neutral solutions and emission free solutions can be optimized for the given case-study and
different design-operation solutions can be provided. Combination of physics-data models can be very useful
in optimizing these scenarios at less computational efforts and high accuracy.
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