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Context – Artificial Neural Networks (NNs)
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▪ Raise of interest for AI algorithms and especially for NNs.

Sources:

Maslej, N.; et al., "The AI Index 2023 Annual Report", Stanford Institute for Human-Centered Artificial Intelligence (HAI), 2022 
Symbols from: https://www.flaticon.com/

Implementation

?
Artificial Neural Network (NN)

https://www.flaticon.com/


Context – NNs on edge devices
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Source: Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of Deep Neural Network Models for Practical Applications. 2017. arXiv: 1605.07678.

Neural network’s

accuracy (%)

Operations (G-Ops)

Power consumption (W)

Number of parameters Memory footprint

Inference time (ms)

=> Metrics that matter at the edge

=> Need evaluation flow to find optimized mappings



Proposition and presentation outline
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I. Fundamentals & 

hypothesis

II. Timing prediction flow

III. Power and energy

analysis flow

IV. Design Space Exploration 

(DSE) flow

V. Conclusion & Prospects
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I. Fundamentals & hypothesis – Challenges of NN 
deployment on multi-core platforms
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(2) Contention for shared resources:(1) NN parallelism

Other aspects:

• Use of power management

• Platform size (number of cores, memory)

• NN different workloads => no « one fits all » solution

Timing and 

energy

overheads

Deployment
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I. Fundamentals & hypothesis – Related work
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Evaluation of NNs

on embedded platforms

Rapid prototyping Analytical models Simulation
- Implementation and 

measurement on prototyping

platform

- Highest accuracy

- Slow (need to deploy NN and 

measure)

- Limited architectural search

- Mathematical formula

- Fast to execute

- Lower accuracy than rapid

prototyping

- Limitations to describe complex

phenomenoms

- Virtual platform described in HDL

- Slower than analytical, faster than

rapid prototyping,

- High accuracy

• [Galanis2020] Galanis I. et al. “Inference and Energy Efficient Design of Deep Neural Networks for Embedded Devices”, IEEE Computer Society 

Annual Symposium on VLSI (ISVLSI), 2020

• [Tsimpourlas2018] Tsimpourlas F. et al. “A Design Space Exploration Framework for Convolutional Neural Networks Implemented on Edge 

Devices”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCADICS), 2018

• [VelascoMontero2020] Velasco Montero D. et al. "PreVIous: A Methodology for Prediction of Visual Inference Performance on IoT Devices", IEEE 

Journal of Internet of Things, 2020

• [Guo2023] Guo X. et al. "Automated Exploration and Implementation of Distributed CNN Inference at the Edge", IEEE Journal of Internet of Things, 

2023

• [Osterwind2022] Osterwind A. et al.  "Hardware Execution Time Prediction for Neural Network Layers", IoT, Edge, and Mobile for Embedded 

Machine Learning (ITEM), 2022

• [Venieris2019] Venieris, S. and Bouganis, C.-S. "fpgaConvNet: Mapping Regular and Irregular Convolutional Neural Networks on FPGAs", IEEE 

Transactions on Neural Networks and Learning Systems, 2019

• [Parashar2019] Parashar, A. et al. "Timeloop: A Systematic Approach to DNN Accelerator Evaluation", ISPASS 2019

• [Garbay2021] Garbay, T. et al. "CNN Inference Costs Estimation on Microcontrollers: the EST Primitive-based Model", IEEE International 

Conference on Electronics, Circuits, and Systems (ICECS), 2021

• [Lee2022] Lee, J. et al. "Implication of Optimizing NPU Dataflows on Neural Architecture Search for Mobile Devices" - ACM Transactions on Design 

Automation of Electronic Systems (TODAES), 2022

• [Sombatsiri2019] Sombatsiri, S. et al. "A Design Space Exploration Method of SoC Architecture for CNN-based AI Platform", Synthesis And System 

Integration of Mixed Information technologies (SASIMI), 2019 

Evaluation 

speed:

Accuracy:

Other

criterias:
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▪ Research challenges:

➢ 1. How to provide fast yet accurate 
evaluation early in design phases of 
timing and energy properties for 
streaming NNs deployments on multi-
core platforms?

➢ 2. Is a model-based approach more 
relevant than rapid prototyping?

➢ 3. Is a model-based approach suited 
for early, fast and confident Design 
Space Exploration (DSE) of streaming 
NNs deployments on multi-core 
platforms?
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I. Fundamentals & hypothesis – Research challenges 
to address
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I. Fundamentals & hypothesis – Model of Computation 
(MoC), Model of Architecture (MoA), mapping
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▪ SDF: Synchronous DataFlow

▪ Strict separation

computation/communication

▪ Actors,

▪ Channels,

▪ Tokens.

MoC

▪ MoA: Model of Architecture

▪ Two versions:

▪ Without power 

management: polling

▪ With power management: 

interrupt + clock gating

Mapping



Performance/power 

analysis
MappingClustering (description using

a dataflow-oriented MoC)

I. Fundamentals & hypothesis – Model of Computation 
(MoC), Model of Architecture (MoA), mapping

9

Artificial Neural

Network (NN)
Q. Dariol > PhD defense > 27.11.2023 > Early Timing and Energy Prediction and Optimization of Artificial Neural Networks on Multi-Core Platforms
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I. Related work & work

hypothesis

II. Timing prediction flow

III. Power and energy analysis

flow

IV. Design Space Exploration 

flow

V. Conclusion & Prospects
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II. Timing modeling flow - Overview
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[1] Vu, H.-D. "Fast and Accurate Performance Models for Probabilistic Timing Analysis of SDFGs on MPSoCs", PhD thesis, Université de Nantes, 2021 

[2] Schlaak, C.; Fakih, M. & Stemmer, R. “Power and Execution Time Measurement Methodology for SDF Applications on FPGA-based MPSoCs”, International Workshop on High 

Performance Energy Efficient Embedded Systems (HIP3ES), 2017 

[3] Stemmer, R.; Vu, H.-D.; Le Nours, S.; Grüttner, K.; Pillement, S. & Nebel, W. “A Measurement-Based Message-Level Timing Prediction Approach for Data-Dependent SDFGs on Tile-

Based Heterogeneous MPSoCs”, Applied Sciences, 2021 
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II. Timing modeling flow – Computation time model
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N: number of neurons in cluster, M: number of inputs of layer

Zoom on a

neuron

Zoom on den1 actor
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II. Timing modeling flow – Computation time model
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N: number of neurons in cluster, M: number of inputs of layer
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II. Timing modeling flow – Model calibration
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III. Timing modeling flow – Simulation described in SystemC
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III. Timing modeling flow – Experimental results, test cases

▪ 1 - Overall accuracy: >97% on 54 mappings.

▪ 2 - Evaluation speed: ~20s.

▪ 3 - NN different workloads

▪ MLP1: 0,83%, MLP2: 0,31%, MLP3: 0,62%, CNN1: 0,43%. OK

▪ 4 - Communication procedure (polling or interrupt) 

▪ 5 - Number of cores used: 

▪ 6 - NN clustering complexity: 

▪ 7 - Communication rates: 

▪ 8 - Comparison with analytical model:

▪ Error up to 30% on multi-core scenarios.

▪ Very high evaluation speed (~1ms)
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I. Related work & work

hypothesis

II. Timing prediction flow

III. Power and energy analysis

flow

IV. Design Space Exploration 
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IV. Power modeling flow - Overview
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IV. Power modeling flow – Proposed model
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Without power management With power management



(II.6)
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IV. Power modeling flow – Power model calibration

Q. Dariol > PhD defense > 27.11.2023 > Early Timing and Energy Prediction and Optimization of Artificial Neural Networks on Multi-Core Platforms

: Computation

: Read/Write

: Clock gating

Static + 

dynamic

power (W)

System’s power consumption in   

tested configurations   II

: Computation

: Read/Write

: Clock gating

Static + 

dynamic

power (W)

(II.1) (II.2) (II.3) (II.4) (II.5) (II.7)



21

IV. Power modeling flow – Power model calibration
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▪ 1 - Overall accuracy: >93% on 54 mappings.

▪ 2 - Evaluation speed: ~20s.

▪ 3 - NN different workloads: average prediction error

between 1,8% and 3% for the 4 NNs

▪ 4 - Use of power management: average is 2,11% without, 

3,92% with

▪ 5 - Number of cores used and communication rates 

▪ 6 - Analytical model:

▪ Maximum error: ~20%

▪ Evaluation time: ~1ms

IV. Power modeling flow – Experiments
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▪ Use to jointly evaluate and optimize multi-core platform architectures and NN 

deployments under power and energy constraints

IV. Power modeling flow – Experiments
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Static power consumption only Static + dynamic

Multi-core Single-core Multi-core Single-core

< 5% < 5% ~ 5% > 10%

Multi-core platform versions:

Single-core platform versions:
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I. Related work overview

II. Technical background

III. Timing prediction flow

IV. Power and energy

analysis flow

V. Design Space

Exploration flow

VI. Conclusion & Prospects
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V. Design Space Exploration (DSE) - Overview
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▪ 2 phases:

▪ Phase 1: Fast exploration using best 

case pure analytical models

▪ Phase 2: Slower but accurate

evaluation of most relevant mappings

using simulation.

▪ Branch & Bound enhanced

clustering and mapping search

▪ Possibility to perform several

iterations of the flow in order to 

consider additional branches.
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V. DSE – Branch & Bound enhanced clustering search
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V. DSE – Branch & Bound enhanced clustering search
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V. DSE – Branch & Bound enhanced clustering search
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…
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…

V. DSE – Branch & Bound enhanced mapping search

…
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…

V. DSE – Branch & Bound enhanced mapping search

…
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▪ The flow finds optimized non trivial 

solutions.

▪ The flow indicates when power 

management is worth using to enhance

timing and energy.

V. DSE – Example use of the DSE flow
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Found candidate solutions for MLP1 
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▪ Comparison of Branch & Bound-enhanced and exhaustive clustering 

search:

V. DSE – Evaluation of the DSE flow
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=> The optimal clustering compared to exhaustive 

search is always found.
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▪ Comparison of Branch & Bound-enhanced and exhaustive mapping search
▪ Similar observations. However optimal mapping is not guaranteed to be found.

▪ Use of pure analytical models for pruning vs simulation
▪ => Similar results are obtained with the analytical models / simulation.

V. DSE – Evaluation of the DSE flow
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I. Related work overview

II. Technical background

III. Timing prediction flow

IV. Power and energy

analysis flow

V. Design Space

Exploration flow

VI. Conclusion & Prospects
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VI. Conclusion – Research challenges
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• 1. How to provide fast yet accurate evaluation early in 

design phases of timing and energy properties for 

streaming NNs deployments on multi-core platforms?

➢ Use hybrid modeling flow: simulation, analytical 

models, measurements.

• 2. Is a model-based approach more relevant than rapid 

prototyping?

➢ Yes. 6 times faster with high accuracy + doesn’t 

need the NN to be trained.

• 3. Is a model-based approach suited for early, fast and 

confident Design Space Exploration (DSE) of streaming 

NNs deployments on multi-core platforms?

➢ Yes, we demonstrated it with our DSE 

approach.
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▪ Prediction error (standard deviation) 

on power and energy raises up to 7% 

with the communication rate per tile

(70%).

▪ On single-core platforms with

important private memory allocated

(1024kB, 2048kB), power and energy

modeling has error > 10%.

▪ The analytical models used for the 

DSE flow could be improved.

VI. Conclusion – Limitations 
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VI. Conclusion – Perspectives
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▪ Extend the flow to support Neural 

Architecture Search (NAS) [1]

▪ Offer modeling and exploration of 

external memory accesses

(necessary for larger NNs)
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[1] Elsken, T.; Metzen, J. H. & Hutter, F. "Neural Architecture Search: A 
Survey“, Journal of Machine Learning Research (JMLR), 2019
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Appendice – Prototype platform
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I. Fundamentals & hypothesis – Considered NNs

Q. Dariol > PhD defense > 27.11.2023 > Early Timing and Energy Prediction and Optimization of Artificial Neural Networks on Multi-Core Platforms



Context – Internet of Things (IoT)
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Inspiration for figure:
• Gunathilake, N. A.; Buchanan, W. J. & Asif, 

R. "Next Generation Lightweight
Cryptography for Smart IoT Devices: 
Implementation, Challenges and 
Applications« , 2019 IEEE 5th World Forum 
on Internet of Things (WF-IoT), 2019

• ur Rehman, M. H.; Yaqoob, I.; Salah, K.; 
Imran, M.; Jayaraman, P. P. & Perera, C., 
"The role of big data analytics in industrial 
Internet of Things“, Future Generation 
Computer Systems, 2019

More 

centralized

Less

centralized



Appendice – Private memory model for tile sizing
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Appendice – Communication time model 
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*: All delays in 

processor cycles
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