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Abstract

This thesis is dedicated to the research of a feedback mechanism in the context of
learning from demonstration, which is intended to improve the interaction between
humans and robots. In this context, an augmented reality interface for the HoloLens 2
in combination with the SARA robot was developed and subsequently evaluated in a
user study with 20 participants. The aim was to investigate the influence of feedback
during the learning from demonstration process on the intuitive interaction with the
robot, the efficiency of the demonstrations, the reduction of the knowledge gap between
man and machine and the quality of the demonstrations.

The results show that augmented reality interfaces have the potential to improve
the intuitive handling of the robot. Furthermore, they have the potential to increase
the user’s understanding of the robot’s learning process. However, no specific quality
improvements were found in the results of algorithm learning from demonstrations.
The discussion of the results emphasizes the importance of user preferences and
requirements in the development of augmented reality interfaces for learning from
demonstration systems.

Future research will focus on investigating more complex tasks, alternative output
devices and different interaction methods for non-expert users. These findings will help
to better understand how augmented reality technologies can improve the approach of
learning by demonstration and make it more intuitive for non-experts.
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1 Introduction

Could robots soon be our new everyday colleagues? This question is more relevant
today than ever before, as small and medium-sized enterprises are struggling with a
persistent shortage of staff, which is affecting efficiency and productivity. This lack of
qualified staff not only poses financial risks, but also threatens the existence of many
businesses [HK22; DIH23].

In this context, the use of robots offers a promising solution for many tasks in the
manufacturing industry and other areas. However, the conventional programming of
robots often requires special expertise and a certain technical affinity, which makes
them inaccessible to non-experts. This poses a significant hurdle to digitising within
the context of robotics, especially in smaller companies that produce only small batch
sizes or have frequently changing tasks. However, especially in the case of monotonous
work and in areas where skilled staff are limited, robotics could be a crucial factor in
saving resources.

The solution to this problem lies in the development of an intuitive programming
interface that allows employees without special robotics knowledge to quickly and
easily adapt robots for different tasks. This would not only increase efficiency and free
up skilled staff for complicated tasks, but also reduce costs and enable small businesses
to use robotics technology in an effective way.

Intuitive programming and especially Learning from Demonstration, abbreviated LfD,
is a promising approach that allows non-experts to teach robots by demonstrating a task.
However, learning through demonstrations has some limitations that are particularly
problematic for inexperienced users, that is, a user group that is not familiar with the
field of robotics. One major limitation with the current state of the art is the quality of
the demonstration, which significantly influences the result of the algorithm [SZH18].
Another problem is the discrepancy in the level of knowledge between humans and
machines. During the execution of such systems, there is a knowledge gap between
the user and the robot in terms of what the user thinks they have taught the robot and
what the robot has actually learned [SH20]. This can cause uncertainty and distrust of
the system and frustration among users.

In this regard, previous research has highlighted the need to understand how data
can be displayed to the user and how the user can and should interact with the data in
Learning from Demonstration [Azu+01; Bru+06]. In particular, the need for feedback
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1 Introduction

to close this knowledge gap was pointed out [SZH18], as well as the need to establish
a set of proven user interface elements for common tasks in industrial application
environments [Pae14].

Past works presenting feedback solutions focus on the feedback mechanism, but
are mainly directed towards expert users. In most cases, users are assumed to have
advanced prior knowledge, which does not correspond to reality. Even experts cannot
always guarantee error-free demonstrations in the LfD process [SGR22].

This thesis explores how Augmented Reality, abbreviated AR, can be used as a
solution approach to enable intuitive programming of robots for non-experts. AR
offers the possibility to merge the real and virtual worlds and provide users with an
immersive and visual interface to interact with robots. We will explore the use of AR
in this context in more detail and develop a solution that will enable even non-expert
users to program robots in an intuitive way. AR technology has the potential to provide
visual feedback to the user that can help them understand the robot’s learned behaviour
and improve their demonstrations. For this purpose, an AR concept is developed and
implemented, which is then evaluated by a user study. The user study explores various
aspects of the developed interface in terms of intuitiveness and effect on the user.

This thesis aims to contribute to the existing body of knowledge by investigating the
potential of AR technology in relation to LfD and its impact on the knowledge space,
as well as the user’s ability to provide better demonstrations.

In doing so, the outline is divided as follows. First, an introduction to the topic of
Augmented Reality and Learning from Demonstration. Afterwards, the problems are
discussed in more detail before an interface concept is developed and implemented.
The hypotheses are then confirmed or rejected through a user study. The results are
then discussed. This thesis then ends with a conclusion and an future outlook.
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2 Fundamentals

This section explains the basic terms and concepts that will be used in this thesis. The
concepts of Augmented Reality, Learning from Demonstration and the Lerosh project
are introduced, before introducing related work in this context in the next chapter.

2.1 Intuitive Programming of Robots

There are several approaches for the intuitive programming of robots. Some of these
include Natural Language Processing, where the user can formulate tasks in natural
language, Walk-Through Programming, where the user moves the end effector to
perform and record the task, and Learning from Demonstration, where the robot learns
a task from the user’s demonstration [Vil+18]. In this paper we follow the principle
of Learning from Demonstration in more detail, but the findings of this paper can be
useful for other principles as well.

2.1.1 Definition

Learning from Demonstration (LfD) or Programming by Demonstration (PbD) is a
method to simplify robot programming by allowing users to transfer their skills to
the robot through more intuitive interactions. This allows non-experts to program
robots through an intuitive interface [Bla+18; TSC12]. Non-experts are defined here by
humans who have little or no technical expertise in the field [SZH18].

LfD algorithms rely on demonstrations provided by users to learn new skills [Cal18].
A human Demonstrator demonstrates a task which is then translated into a new skill
for the machine. By deriving movement paradigms, demonstrated actions can then be
applied to other or similar tasks.

Demonstration approaches

There are several types of demonstration approaches to train a robot. One of them is
through kinaesthetic learning or observation learning [Rav+20], which are visualised
by Calinon et al. [Cal18] in Figure 2.1. The blue person symbolizes the robot and the
green person the human teacher.

3



2 Fundamentals

(a) Kinesthetic Learning (b) Observational Learning

Figure 2.1: Illustration of demonstration approaches [Cal18]

• Kinesthetic learning In kinaesthetic learning, the user demonstrates the desired
movements of the robot through physical movement. For example, a robot arm
can be moved into the desired positions or trajectories.

• Observational learning: In observational learning, the robot learns by passively
observing the user. The user performs the task with his own body while the robot
acts as a passive observer. For example, by observing the manual grinding with a
grinding block.

Functionality

The functioning of LfD can be described in several steps:

• Data collection: First, the system acquires data, for example, of the movement
and action of the teacher, this can also include environmental information. Data
can be collected by cameras, sensors on the robot, etc.

• Data representation: The captured data must then be converted into an un-
derstandable form for the system, which can then also be fed into the learning
algorithm. In kinesthetic teaching, for example, the configuration of the robot
over time could be used. In observational learning, for example, the user can use
their hand to perform the demonstration and the contact points with the surface
can be tracked.

4



2 Fundamentals

• Learning algorithm/modeling: The captured data can then be fed into machine
learning methods and algorithms and a model can be created that is able to
mimic the demonstrated behaviour. This aspect in particular is an important
point for LfD. Several methods have already been explored in research, including
approaches such as symbolic reasoning methods, reinforcement-learning-based
methods, dynamic system modelling methods, probabilistic methods, particle-
based approaches, and geometric-based methods [SH20].

• Imitation: After the model has been created, the demonstration can be replicated.

• Refinement and adaptation: The system continues to learn and adapt its be-
haviour. This can be done by new input from the user.

Knowledgespace

The knowledgespace is the knowledge base of the robot. This can be a wide range of
variables and data sets. For example, the robot can include a knowledgespace in which
each object in the robot’s workspace is stored with its position and orientation. We
refer to this knowledgespace as ontology in this thesis.

2.1.2 Possibilities

LfD systems offer a number of advantages that make them a promising method in
intuitive robotics programming. The three main advantages of LfD systems are:

• Intuitive. Allows non-experts to program robots and enables intuitive/easy
knowledge transfer [Rav+20].

• Performance: More time-efficient, effective and resource-saving for systems that
need to be frequently reprogrammed [Mol+15].

• Data efficiency: Needs less data compared to other machine learning
approaches [Rav+20].

2.1.3 Limitations

Although LfD is a promising approach to robotics programming, there are also some
limitations and challenges associated with this approach. These limitations can affect
the performance and applicability of LfD systems and require careful consideration.
Some of the main limitations and challenges are listed below:
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2 Fundamentals

• Human-machine problem: LfD must also address human-robot interaction prob-
lems such as the selection of an appropriate interface, variability in human
performance and knowledge, and differences between different human subjects.
The success of LfD depends not only on the person teaching the robot, but also
on the platform used (robot and interface) [Rav+20]. One challenge is that robots
cannot give feedback in the same way as humans, which can impact the trust in
robots [Die+20].

• Demonstration. When a system relies on human input during its learning process,
its performance depends significantly on the quality of the data provided by
humans. Three main problems can result from inadequate demonstrations in the
context of teaching applications: unconsidered states, ambiguous demonstrations
and unsuccessful demonstrations. Especially with inexperienced users, such a
lack of demonstration can occur, resulting from a lack of a mental model or an
unclear understanding of how the robot learns during the learning process. In
addition, different learning policies can change the requirements for the data to
be provided. Especially for naive users, it can therefore be difficult to determine
the optimal learning strategy [SH20; SZH18; Rav+20].

• Machine Learning: LfD-algorithms are impacted by challenges in machine learn-
ing, including the curse of dimensionality, incremental learning, learning from
sparse datasets and noisy data [Rav+20]. LfD also suffers from lack of robustness
to changes in initial conditions [Lue+19].

• Variations: LfD must account for various forms of variation that are more complex
than simple recording and playback. Variations may occur due to requirements
of the task to be performed or the kinematic structure of the robot [Cal18]. For
example, it is easier to put a sugar cube into a cup than to put a golf ball into the
same cup.

• Control theory problematics: When LfD is used to control a physical robotic
system, challenges arise from control theory, such as predicting the response of
the system in the presence of external disturbances, ensuring stability on contact,
and guaranteeing convergence [Rav+20].

2.2 Augmented Reality

In the literature, the term Augmented Reality (AR) has been frequently discussed
and defined for quite some time. AR generally refers to the integration of virtual
information such as text or images into a real environment [Fur11; Pro23; Azu+01].
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2 Fundamentals

This is also known as mixed reality because there is a mixture of reality and virtuality.
Milgram et al. [Mil+94] has illustrated the underlying concept clearly in a diagram,
which can be seen in Figure 2.2. The left side of the spectrum represents reality and
the right side represents a purely virtual world. Between these extremes, we define a
mixed reality, which is a mixture of both. In addition, we can divide it again into two
areas. In an Augmented Reality, which provides the real world with virtual objects and
an Augmented Virtuality, which integrates aspects from reality into the virtual world.

Figure 2.2: Visualization of the mixed reality continuum [Mil+94]

AR has the potential to change the way we interact with and program robots. Four
relevant areas where AR is already being used in robotics today include: Intuitive
Robot Programming, Advanced Robot Guidance, Robot Maintenance and Diagnostics,
and Training and Education. In doing so, AR can help optimize processes, reduce
errors and downtime, and increase efficiency and profitability.

2.2.1 Technology

Thanks to the continuous improvement of output devices, we have an increasingly wide
range of options available to us today. In this context, it is important to emphasize that
AR is not limited to specific output devices [Fur11]. The most common output devices
for AR applications are Hand-held Device (HHD) such as tablets or smartphones, Head-
Mounted Display (HMD) such as AR glasses, or projection devices such as overhead
projectors [Azu+01]. With respect to HMD, an additional distinction is made between
"see through" and "video based". Some applications also use stationary displays such
as computer monitors. In terms of input devices for interaction, touchscreens, hand
tracking systems, haptic gloves, or even mouse and keyboard are often used [Nag+22;
NO23].
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2 Fundamentals

2.2.2 Possibilities

The integration of AR into robotics opens up a variety of possibilities and benefits that
can significantly improve human-robot interaction and robotics programming. In the
context of robotics, some of the key benefits of AR are:

• Rapid teaching of content:. Fast content delivery is an important benefit as
search time for relevant information becomes increasingly important. By using
AR technology, information can be quickly and more efficiently communicated.
In doing so, the relevant data can be displayed in the user’s field of view, as well
as information can be projected directly onto the workpiece [MS17].

• Sustained communication of content: By combining different senses, content
can be conveyed in a more sustainable way. By considering multisensory learning
in the development of AR applications, communication processes and structures
can be optimized [MS17].

• Simplification of complex processes: AR makes complex applications in the
technical field tangible and understandable [MS17].

• Multitasking capability: AR can also contribute to the parallelization of different
activities. Visualization of additional information can efficiently support complex
activities, which increases multitasking capability [MS17].

• Reduction of mental workload: A study by Stadler et al. [Sta+16] shows that the
mental workload can be reduced. This refers to expert users, as well as novice
users, but for these the processing time increases.

• Support: Especially in manual workflows, for example in assembly or mainte-
nance, AR proves to be an effective tool to support users. According to forecasts,
AR is expected to reduce the downtime of production facilities by 50% and thus
bring a significant advantage in cost and time savings [LU22].

2.2.3 Limitations

The integration of AR into robotics certainly offers many advantages, but there are also
some challenges and limitations that need to be considered. These limitations can be
divided into hardware-, user-, and interface-specific problems:

• Hardware: For example, head-mounted displays may have insufficient brightness,
poor resolution, a field of view that is too small, or a lack of display contrast.
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2 Fundamentals

Other hardware-related problems, which also apply to handheld and projection-
based approaches, can include size, weight, and cost [Azu+01]. Especially when
it comes to applying such technologies in an industrial environment, a harsh
environment can be damaging to the hardware [LKK18]. The hardware should
be adapted to be used in parallel with safety measures. For example, it must be
possible to use an HMD with a helmet [LKK18].

• User concerns: Cyber sickness can also be observed in some cases with HMD AR
Applications, but not as pronounced as in virtual reality applications [Hug+20;
Lut18]. Among other things, eye strain can also occur if the focus has to be
changed frequently between the remote real world and the virtual object on
the display [Blo14]. Also not to be underestimated are safety concerns for the
user. Especially when objects in the real world are to be obscured by virtual
objects. With see-through glasses such as the Hololens, it is not possible to
completely cover the object, but attention can be significantly diverted from
important information [Lut18].

• Design Problems: The interface of the AR Application can involve immense
drawbacks. Contrary to the advantage that AR Applications can relieve the user
mentally, the visualization of too much information or a too complex presentation
can cognitively overload the user [Van07]. Not to be underestimated is also the
wrong representation of objects, which are not optimized [LU22]. Also, the user
should not be made dependent on the interface, so that important real-world
information is obscured/hidden [Van07; LU22].

• Expert Knowledge: An obstacle to the use of AR solutions can be insufficient
expert knowledge in companies, as well as a limitation to the correct use [LU22].

• Social Aspects Social aspects can also be limiting, for example many people rely
on an unobtrusive fashionable appearance (for example helmet, gloves) [Van07]
and also Mehler-Bicher et. al. [MS17] mentions a concern about the right to one’s
own image, which the use of cameras in public spaces entails, thus many people
feel that their personal rights are violated.

2.3 Lerosh

The Lerosh project [wer23] is an innovative concept idea that aims to support small and
medium-sized enterprises in digitization through the use of robotics. It was developed
to enable in particular monotonous grinding work with the help of robots. The focus is
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2 Fundamentals

on making programming and using robots accessible to non-experienced users without
additional training.

The main goal of the Lerosh project is to save resources such as time and personnel.
By implementing this concept, craftspeople could obtain a user-friendly and intuitive
system with which they can teach robots on their own. This would enable them
to implement specific tasks in batch size 1, which means that they can carry out
individualized work efficiently.

One area where the Lerosh project is particularly useful is sanding, which is a
widespread activity in many businesses. Nationwide, for example, some 40,000 car-
pentry stores, about 3,000 orthotics makers and about 1,200 musical instrument manu-
facturing businesses could benefit from the project’s solutions. These industries could
optimize their processes and increase their productivity by relying on the benefits of
robot-based digitization [wer23].

In the course of this work, the concept will be developed in which a user programs
a robot with the help of AR and LfD in such a way that this robot can then in return
process a workpiece.

10



3 Related Work and State of the Art

This chapter presents research projects and scientific papers that have already addressed
the use of AR in robotics. In particular, the use of AR in intuitive programming of
robots is discussed, but areas such as robot maintenance and diagnostics as well as
robot training and education are also explored to gain a broad insight.

3.1 AR in Intuitive Programming of Robots

In the category of intuitive programming of robots, several relevant works have been
reviewed that use AR as a tool to improve user interaction and feedback in teaching
and demonstration processes. Here are the most relevant works that relate to Learning
from Demonstration systems:

• Liu et al. [Liu+18]: This work developed an AR interface specifically designed
for HoloLens and a Rethink Baxter robot. The system uses LfD and allows the
user to view the task graph during the teaching process. This graph provides
high-level feedback to the user and indicates future states. In addition, the user
can add new tasks to the graph.

• Luebbers et al. [Lue+19]: This work provides an AR interface that allows the
user to set constraints that affect the execution of the robot. Before the actual
execution begins, the trajectory of the end effector is virtually displayed to the
user in the form of hologram waypoints. The interface allows the user to specify
three different types of constraints: a height constraint, an orientation constraint,
and a location constraint. These are visualized differently.

• Mollard et al. [Mol+15]: In this work, an interface was developed for a learning
by demonstration system in which a robot performs an assembly task to build
an object such as a chair. The AR system allows the system to request specific
demonstrations or clarifications from the user. A user study with 14 participants
validated the benefits of combining demonstration and feedback and emphasized
the importance of informing the user of the knowledge acquired by the robot to
improve programming time and accuracy. Despite the positive results of the user
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study, it can be seen in Figure 3.1 that it is a more complex user interface, which
requires prio knowledge of the field of robotics.

Figure 3.1: Interface of application to assembly a chair [Mol+15]

• Soares et al. [SPM21]: This work uses imitation learning to allow the user to draw
a path in the air, which the robot then mimics. Design-specific considerations
were made here, such as the color choice of the path to ensure a clear distinction
from the industrial environment.

This related work has shown how AR can be used to support intuitive programming
of robots. They provide a high level of visualization, but have some limitations,
especially in terms of suitability for inexperienced users and the impact of feedback.
The question remains open in which context feedback can actually help or hinder.
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In addition to AR applications for LfD systems, other studies have examined how the
Microsoft HoloLens can be used as a feedback mechanism. For example, Blankemeyer
et al. [Bla+18] and Guan et al. [Gua+19] used HoloLens in their work to enable intuitive
programming of robots. Here, users can select or program motion paths. Gaschler et al.
[Gas+14] present an approach using a handheld pointing device to program trajectories
without using AR. This example illustrates that the nature of user input and interaction
are also key aspects of intuitive programming.

3.2 AR in Robot System Maintenance and Diagnosis

Two promising applications of AR have been identified in the field of robot maintenance
and fault diagnosis:

• Diehl et al. [Die+20]: The work of Diehl et al. focused on the use of AR in
an industrial context. A verification tool was developed that allows users to
detect errors in the execution. This was achieved through semantic descriptions
and simulations of actual robot execution. Through a study, three different
visualization technologies are also investigated, including through a Hololens
1 with AR simulation, a tablet with AR simulation, and a tablet with RViz-like
simulation. It was found that users did not prefer the Hololens variant due to
hardware-specific issues such as wearing comfort and limited field of view. In
addition, some participants felt that it took more time and training to get used to
interacting with the application on the Hololens compared to the tablet devices.

• Avalle et al. [Ava+19]: This project focused on the visualization of industrial
robot errors using an adaptive AR system. This allowed to effectively display
an error message according to the user in the room without being occluded or
disturbing. The results showed that users were able to detect faults faster with
the adaptive mode than with the non-adaptive solution. The ability to place error
messages in the user’s field of view helped overcome the limitations of the limited
field of view of AR devices such as the Microsoft HoloLens.

These two papers highlight the potential of AR in fault diagnosis and maintenance
of robotic systems. The work by Diehl et al. highlights the challenges that can arise
when using HMDs such as the Hololens, while the work by Avalle et al. presents a
promising solution for effectively visualizing faults, which could also be conceivable in
the feedback domain.
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3.3 AR in Robot Training and Education

In the area of training and education on the robot, two interesting works have been
studied:

• Cruz et al. [De +22]: In the work of Cruz et al. a mixed reality application
was developed for mobile devices that allowed users to select different desired
trajectories, visualize the behavior of the robotic arm, and understand its operation
through animations. The usability evaluation showed a high usability of the AR
tool, indicating that the application is well suited in the training and support of
industrial manipulators.

• Herrera et al. [Her+20]: This work focused on the application of AR technology
as a tool for simulating a mobile manipulator robot training system to provide
a better understanding of the robot’s movements and to develop and evaluate
autonomous control algorithms. For this purpose, they developed an application
for training mobile manipulator robots using augmented reality. This application
allowed users to interact with the robot, learn about its parts through animations,
and visualize its movements in 2D or 3D markers. They conducted a survey
with 15 participating engineering students, the results of which showed that the
application is very useful for training mobile manipulator robots.

This work provides valuable insight into the use of augmented reality for robotic
training, particularly in terms of feedback mechanisms that have been used effectively.

3.4 Summary

In this chapter, we have presented a variety of related works that address different
aspects of our topic. These works have been analyzed in depth to provide important
insights. In doing so, we have identified successful approaches as well as challenges
and difficulties that researchers have encountered in this area.

The papers presented, provide a reference point and inspiration for our own work.
They allow us to adopt best practices and methods to develop effective solutions. At
the same time, the challenges discussed help us identify potential problems early and
develop appropriate strategies to address them.

The summary of this related work provides valuable context for our own research
and highlights the relevance and added value of our contribution to the field. In the
next chapter, we will then revisit the exact issues at stake and elaborate on the concept
we have developed.
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The focus of this chapter is the overall consideration and solving of the central chal-
lenges. For this purpose, they will be revisited in more detail before proposing a
solution approach in the form of an AR interface.

4.1 The Challenge

In this section, we take a detailed look at the challenges that arise in robotic applications.
These challenges are fundamental and require focused solution approaches to fully
harness the potential of robotics technology and enable its application for non-expert
in small businesses.

4.1.1 User-Related Problems

Missing intuitive solutions for non-expert users

One of the outstanding challenges is to create intuitive solutions that are accessible to
non-expert users. In many cases, existing AR applications for robots are complex and
require some previous knowledge in the field of robotics. This significantly limits the
target user group to experts [Fu+23; SGR22]. A good example of a interface can be seen
in 3.1. This would need a specific training for non-experts.

Immersion in the Task and Transparency

To address a broader audience it needs immersive and transparent solutions. The
current user experience can be negatively affected by non-ergonomic interactions
during human-robot interaction (HRI) and human-robot collaboration (HRC). This not
only affects task performance, but also imposes an unnecessarily high cognitive load
on users and may result in a rejection of the technology during user operation [Fu+23;
AB17].
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4.1.2 Learning by Demonstration

Dependence on the Demonstration

The effectiveness of LfD systems depends heavily on the demonstrations performed.
The quality of the demonstrated actions determines how well the robot can learn the
desired tasks. However, during the demonstration, interfering factors can also influence
the data. The user performing the demonstration is a crucial factor in this regard.

Multiple Demonstrations Required In many cases, multiple demonstrations of the
same task may be required to ensure that the robot successfully learns the desired
capabilities. This may require additional investment of time and demonstrations
[Fu+23]. Inexperienced users also face the problem that without instructions from the
robot, there is no sense of when the demonstrations are enough or when to give a new
demonstration. Maeda et al. [Mae+17], for example, develops a system based on this
problem that uses an audio signal to request further demonstrations when the system
is very uncertain.

Discrepancy Between User Expectations and Robot Learning

One of the most important problems in LfD is the rather a mismatch between the
models (that the user has, the user believes the robot has and the actual model the
robot has).

user and machine. A discrepancy may exist between the user’s expectations and
the robot’s actual learning progress. The user might believe that the robot has learned
certain skills, while in reality this is not the case [SZH18; SH20]. For this reason, many
previous papers have also emphasized the need for feedback to the user. Thereby,
especially for non-experienced users, this discrepancy can be a major obstacle that
prevents the establishment of robots with LfD in small companies.

4.2 Feedback as Solution

In this thesis we present a feedback-mechanism as the central element of our approach to
overcome the challenges in the field of robotics programming. Feedback plays a crucial
role in increasing the efficiency, accuracy, and usability of the robotics programming
process.

Our solution integrates various approaches, including learning by demonstration,
learning by feedback, and knowledge transfer using AR, with the goal of optimizing
the whole workflow of robotics programming. The use of AR-based feedback enables
continuous improvement and adaptation of a human teacher’s behavior, ultimately
leading to improved demonstrations and better results [Mol+15].

16



4 Methodology

Our feedback approach is specifically designed to suit novice users and serve as a
guide to improve their interactions with the robot. It enables users to gain a deeper
understanding of the system and perform tasks more effectively. Our main goal is
to narrow the gap between human and robot capabilities, giving the human teacher
insights into what the robot has already learned. This allows for more focused and
efficient demonstrations without requiring a deep understanding of the learning pro-
cesses.

The need to use directed feedback in AR interfaces is also emphasized by Paelke at
al. [Pae14]. In this context, extensive research is needed to conduct extensive studies
on visualization, interaction, and technological components to shape the future of user
interfaces in work support systems.

Therefore, this study is devoted to explore how feedback, especially in the context
of AR, can be used to improve learning by demonstration and, more importantly,
to optimize robotics programming. We have carefully analyzed existing approaches
and challenges in this area and identified the urgent need for a user-centric solution,
especially tailored to non-expert users.

Our proposed solution involves the design of a user-centric AR feedback system
that integrates various mechanisms to improve user understanding and optimize the
robotics programming process. Through extensive testing and evaluation, we aim
to ensure the efficiency and effectiveness of our solution and ultimately provide a
validated user interface element for future LfD systems.

4.3 Hypotheses

In order to be able to evaluate our implemented solution, we have set up the following
hypotheses, which we would like to investigate in the context of our feedback system.
We mainly refer to our system in comparison to a system without feedback.

H1: The use of the AR interface leads to an increased intuitive handling of the LfD
robot compared to the use without interface

Users benefit from the visual interface in the sense, that the programming process of
the robot is perceived to be more intuitive.

H2: Visualization of the process helps increase the efficiency of the demonstrations
in terms of accuracy, compared to situations without visualization

The feedback provided about the LfD process allows the user to achieve more accurate
results in the segmentation.
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H3: The use of visual feedback allows to reduce the existing knowledge gap
between humans and machines

The knowledge gap described by Sena et al. [SZH18] between humans and robots can
be reduced by using AR Feedback.

H4: Compared to discrete feedback, continuous feedback while the demonstration is
still in progress can increase effectiveness in terms of quality

Compared to discrete feedback provided after a demonstration is complete, we hypoth-
esize that real-time feedback during the demonstration is more beneficial to the user.
This is based on research by Sena et al. [SZH18; SH20].

H5: Targeted use of AR technologies can further improve the learning by
demonstration approach and make it more intuitive

Our hypothesis is that using AR interaction methods such as hand tracking to enable
imitation learning in our process can make user interaction more intuitive and user-
friendly.

4.4 AR Interface

For the AR interface, we developed a concept combining the HoloLens 2 and DLR’s
Safe, Autonomous Robotic Assistant (SARA) robot. This interface was purposefully
designed to address the previously described challenges in human-robot interaction in
an efficient manner.

To begin, we would like to explain the basic workflow for robot programming that
we have established as a starting point. Then, we will formulate the requirements that
our system must meet in order to address the challenges mentioned above.

4.4.1 Process for Programming Robots with AR

The concept for the interaction between human and robotic system is described in this
section, where the user in this case is an employee in a manufacturing facility. This was
developed specifically for the interaction with an AR Device. In Figure 4.1 this process
is visually represented as a flowchart diagram. The steps of this concept are described
below:

• Workpiece scanning: The user places the workpiece on the table and performs
a complete scan, looking at the workpiece from all sides. This scan generates
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Figure 4.1: Flowchart diagram of the process flow for programming the robot using the
AR interface

a detailed 3D point cloud of the workpiece, which is passed to the algorithm.
Before the scanned object is passed on to the robot, it is displayed to the user for
verification to identify any errors before continuing to the next step.

• Demonstration on the workpiece: the user performs a demonstration on the
workpiece by using the robot’s end effector to demonstrate the desired grinding
surface. The contact points recorded during the demonstration are converted by
the robot into an appropriate geometric shape that best matches the recorded
points of the demonstration and the scanned workpiece. This matched geometric
shape can be presented to the user for evaluation. If the fit is insufficient, the user
can perform further demonstrations to improve the result.
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• Setting up no-go zones: Once the appropriate shape is found, it is presented to
the user for final review. Here, the user has the option to mark no-go zones on
this shape that the robot should avoid during processing. The robot can then
calculate a trajectory for processing. If needed, the no-go zones can be adjusted
iteratively, recalculating the trajectory each time until the user agrees.

• Review and execution: the calculated trajectory for processing the workpiece is
presented to the user. In this final step, the user has the opportunity to review
the trajectory before it is executed by the robot.

4.4.2 Concept Approach

Implementing our concept and hypotheses requires various settings and design deci-
sions, which are explored in this paper. In doing so, we follow design guidelines from
related research areas. The goal is also to establish user interface elements that can be
used in future LfD applications.

In H1 we evaluate the effectiveness of our interface in general. Our goal is to
investigate whether the interface provides an intuitive and user-friendly solution for
the users.

Regarding H2, we investigate whether the quality of the demonstration can be
affected by the presence of feedback. We compare whether the method without
feedback is different from the methods with feedback to check the validation of the
developed interface in terms of added value for the user in terms of quality. We measure
the quality by the accuracy of the results, which are segmented by the robot.

As part of H3, we provide several visual elements to convey information to the user.
We visualize the contact points that the user enters during the demonstration, as well as
the intersection of the point cloud that matches the segmented surface. We also explore
whether the additional display of the segmented surface adds value for the user. In
doing so, we implement the information directly on the workpiece as suggested by
Bruno et al. [Bru+06].

In the context of H4, different update rates are enabled during the demonstration
process, either in the form of real-time continuous feedback or discrete feedback
provided after the demonstration is complete. This approach is based on research by
Sena et al. [SZH18], who use discrete feedback in their solution. Our goal ist to find an
update rate which is better than the one original proposed.

As part of H5, research is being conducted to determine whether the use of AR
solutions can further support users. According to the findings of Gavish et al. [Gav+11],
observational learning is properly integrated into the training protocol to increase the
efficiency of training. As an example, we test whether interaction with the robot can be
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eliminated by a virtual input tool and imitation learning can be used to simplify the
interaction for the user.

4.4.3 Requirements

In order to implement this programming concept in a high-quality manner, specific
requirements have been formulated that the AR application must meet. These require-
ments are based on previous work and the current state of the art. The requirements
are as follows:

• Feedback: The interface should provide feedback to the users to help them
understand the system and adjust their demonstrations accordingly. This includes
contextual information, visualizations, and adaptation to the environment.

• User-friendliness: The interface should be user-friendly and intuitive without
overwhelming the user or relying too heavily on the interface.

• Real-time: The interface should be as responsive as possible, and avoid delays as
well as being equipped with a discrete update rate.

• User Interaction: The interface should allow user interaction to fix bugs and
improve or customize demonstrations.

These requirements form the basis for the development of the application, which is
described in detail in the next chapter.
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In the following chapter, the developed application is presented and discussed in more
detail, focusing on the main components.

5.1 Hardware and Software

For the implementation of the application, the HMD: Microsoft HoloLens 2 was chosen
as the display device. This decision was made especially because of its advantages,
which we discussed previously, in terms of intuitiveness and the possibility of user-free
interaction, which could be especially beneficial for non-expert users.

Unity version 2021.3.6f1 on Windows was used to implement the application. The
SARA lightweight robot from German Aerospace Center (DLR) is used to demonstrate
and execute the developed application.

In addition, a hand tracking system was used by Unity and the Mixed Reality
Toolkit (MRTK) to enable interaction between the user and the AR application. This
system allows the user to interact with the application without physical controllers.

5.2 Interface Components

This section describes the implementation highlights and the various components.

5.2.1 Robot Logic

The logic of the robot is not covered in detail in this paper, but is mentioned for
completeness. The robot logic has a relatively simple structure. The algorithm expects
as input a representation of the workpiece, as a point cloud, and a demonstration on
the robot. During the demonstration, contact points are recorded that lie on the surface
of the workpiece. The algorithm then fits a primitive shape to these contact points
that best match the points on the workpiece. The result of the algorithm provides the
intersection of the point cloud of the workpiece with the fitted primitive shape, as well
as the primitive shape itself. The implementation of this algorithm is beyond the scope
of this work and is taken as given. We reference the primitive shape found by the
algorithm as a segmentation or segmented shape.
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5.2.2 User Interface Design

The User Interface (UI) consists of several graphical components, including the hand
menu, which serves as the main menu for the user and from which pop-up menus can
be accessed. In addition, design decisions have been made that affect the rendering of
the UI objects, particularly in terms of shaders and materials.

Menu

There are a total of three popup menus: ontology, lerosh, and settings, which are
accessed through a central hand menu. The MRTK plugin assets were used as a
template, as they have been optimized through numerous user tests and provide an
optimized user experience. In

• The Ontology menu allows the user to view the knowledge space of the robot in
relation to the elements in the ontology.

• The Lerosh menu allows the user to start and step through the process for
grinding the workpiece. In Figure 5.1 you can see the three main steps of the
application menu. Warnings are also displayed to the user as in Figure 5.1 b).
Above the menu, the process and status are visualized for the user to follow.
Depending on the step, individual settings can be made as shown in Figure 5.1 c).

• The Settings menu was designed mainly as a tool for development. Here the user
can set the IP address of the server, view the log, and access the calibration of the
coordinate systems.

Shaders and Materials

Shaders and materials were purposefully chosen to be used in industrial environments
while being easy for users to understand. Different features have been colored differ-
ently to provide clear visual distinction. For example, the point cloud is displayed in
white by default. When selected, it changes color to either blue to represent segmenta-
tion or red to highlight no-go zones. The segmented primitive shape is displayed in
green, and contact points are highlighted in pink. Care was taken to create a strong
contrast between the colors and with the environment.

To visualize the workbench, a full 3D model was first used to overlay with the real
workbench. However, an accurate 3D model affected the performance of the HoloLens
and occluded the objects on the table, preventing them from being seen by the user. The
solution was to take a more discreet approach, using a grid shader. This was designed
to show only the tabletop as a grid, which improved performance. Nevertheless, this
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(a) Scanning process (b) Demonstration process

(c) Editing process

Figure 5.1: Lerosh-Menu Steps

also resulted in the objects on the workbench disappearing visually. Therefore, the
visualization of the workbench was replaced by four corner points.
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Virtual Hands

To more closely link the virtual world with the real world, the user’s hands are tracked
and a virtual model is superimposed on them. This is a feature of MRTK that greatly
improves the visibility of hands and facilitates interaction with virtual objects. This
overlay also allows the virtual objects to not overlap the real hands, providing a better
view of the environment. This is an effective alternative to occlusion, where virtual
objects can block the view of real objects. The virtual hands provide the user with a
more user-friendly way to interact with the virtual objects.

5.2.3 Communication

Communication between the HoloLens 2 and the robot represents one of the central
components. A server is used for this, which acts as an intermediary between the
different parts of the system.

Server

The server acts as the central interface and connection point between the components:
HoloLens, Robot and Ontology. It is based on a simple Flask server that can be accessed
by the HoloLens via REST requests. In addition, the server accesses the ontology and
the robot’s knowledge space via DLR’s Links and Nodes middleware.

An important task of the server is to process requests and forward them to the
appropriate components. For example, requests to generate point clouds are sent to the
server and forwarded from there to the robot.

In addition, the server acts as a data storage device. Important information and data
are stored on the hard disk, including created point clouds and calibration data.

Data

The processing of information and data plays a crucial role in the implementation. This
data processing is mainly done on the server side. An example of this is the conversion
of functions into mesh structures or the conversion of point clouds into appropriate
data types.

The server is responsible for managing various types of data exchanged between
the HoloLens and the robot. To make the transfer and storage of data efficient, the
JSON format is used as one of the main formats. In addition, captured point clouds are
stored as .PLY files on the hard disk.

Throughout the process, there is continuous communication between the HoloLens
and the server. This allows the server to forward requests to the robot and perform
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calculations. This continuous data transfer plays a crucial role in the coordination of
the process and interaction between the different components of the system.

5.2.4 Coordinate Systems

Coordinate systems play a critical role in this application because the HoloLens, Unity,
and the robot each use different coordinate systems. There is no automatic alignment
of these coordinate systems, so explicit calibration is required. The coordinate systems
of HoloLens and Unity have differences, even when Unity is running on HoloLens. In
addition, the robot’s coordinate system differs significantly from those of HoloLens
and Unity. Therefore, careful calibration and alignment of all three coordinate systems
is essential.

A visualization of the coordinate systems and how they relate to each other in the
application can be seen in Figure 5.2. It should be noted that Unity uses a left-handed
coordinate system, while HoloLens uses a right-handed system. The robot’s coordinate
system is also right-handed, but is also rotated. This requires a conversion of the
coordinates when data is exchanged between the systems. Currently, this conversion
is done on HoloLens because both HoloLens and the robot use the same coordinate
system. In the future, however, it is planned to have this conversion done entirely by
the backend.

Figure 5.2: Visualisation of the three different coordinate systems and their linking in
the application
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Calibration

Alignment of all coordinate systems is done using calibration, which aligns all systems
to the origin of Unity. The calibration of the robot was originally performed using the
Vuforia Plugin, but proved to be insufficient due to its unreliability. Therefore, a switch
was made to manual calibration, where the user positions the virtual workbench to
match the real world. The calibration of the table can be seen in Figure 5.3. The 3D
model of the workbench is placed accordingly in space.

Calibration of the HoloLens coordinate system was initially to be performed by an
automatic process in which Unity accessed native pointers of the HoloLens. However,
due to lack of experience and time constraints, it was also switched to a simpler manual
calibration. This involves scanning a point cloud that is moved by the user to match the
real world. Note that it is also possible to adjust the calibration through a control panel.

It is worth noting that the calibration of the coordinate systems was performed as
accurately as possible, with the freezing of the axes for the table in particular providing
greater accuracy than using Vuforia. This can be seen in Figure 5.3, where an options
menu allows the user to freeze a specific axis or rotation around the Y-axis. This was
sufficient for the purposes of this work, although automatic calibration will be done for
future applications.

5.2.5 Ontology

An important component for displaying the robot’s knowledge is the ontology. This
component is decoupled from the Lerosh process, but may still be useful to the user in
the future. A robot’s ontology contains all the elements that are currently in the robot’s
workcell. These elements can be displayed through the user interface. This means,
for example, that the robot’s tools on the workbench can be made visible to the user.
This can be seen in 5.4. In the future, the positioning of the workpiece to be processed
could also be checked first through the ontology before starting the Lerosh process.
This could avoid the possibility of positioning errors, such as placing a workpiece
outside the robot’s workspace. It could also be possible to display the penetration of
the workpiece through the grinding process directly on the workpiece using a heat
map. An example of how this could look is shown in 5.4.

The ontology is accessed through the server, which receives the data from the robot
through a service call from the HoloLens. The data received is in JSON format and
contains information such as the name, type, and position of the objects. These objects
are already known to Unity and can be spawned into the scene as prefabs, taking into
account their position with respect to the robot’s coordinate system. In the future, the
models can also be dynamically loaded from the server when the application is started.
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Figure 5.3: Calibration of the workbench which is in relation to the robot base

By moving the objects by the user and then confirming them, the objects can be
updated in the ontology. This allows the user to interactively design the virtual
environment and make changes in the ontology.

5.2.6 Scanning

The scanning process of the workpiece is the first step in the programming process.
This process is performed by the HoloLens accessing its sensors, specifically the depth
images from the Long Throw Sensor. The captured depth images are tagged with
a transformation matrix to the origin of the HoloLens coordinate system and then
transmitted to the server. This data transfer is done via sockets, as REST requests would
be too slow. On the server, the backend accesses this data and generates a point cloud
from the images and the transformations.

An alternative option was to access MRTK’s spatial mesh. However, this spatial mesh
is very coarse and a more accurate representation would require too much computing
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Figure 5.4: Ontology displayed onto the workbench

power, which is not feasible with HoloLens 2.
The generated point cloud is requested by Unity during scanning and displayed as a

particle system. However, this is a trimmed-down version of the point cloud in order
not to impair performance by too many particles.

Sensor Streaming

The sensors are accessed indirectly through Unity, as they access the HoloLens data
due to a DLL plugin written in C++. The repository for this plugin comes from
GitHub [Gsa23]. After some adjustments, it was possible to access the LongThrow
sensor instead of the AHAT sensor. Accessing the HoloLens data through the C++
plugin creates an additional coordinate system that we reference as the HoloLens
coordinate system. In order to access the sensor data, developer mode must be enabled
on HoloLens.

An alternative method was to access the sensor directly through Unity using the
MRTK plugin. Then the conversion of the coordinate systems could be done in a later
step. However, due to lack of experience and insufficient documentation, this approach
was not pursued.
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Figure 5.5: Pointcloud visualised on top of the workbench

Point Cloud Generation

Point cloud generation is one of the most important components of this work, as it
serves as input to the LfD algorithm. In our application, point clouds play a central
role as they provide a deep understanding of the environment and provide valuable
context for our robot. These point clouds not only serve as input to our algorithm, but
are also used as output to the user.

The basis for generating these point clouds is the depth image. Here we use a matrix
leading from the HoloLens object to the origin of the HoloLens coordinate system, and
a matrix leading from the HoloLens object to the depth sensor object. Internally, we use
a look-up table to convert the depth points of the frame to the correct position in space.

Our software uses the Open3D library to process the above data and generate high-
quality point clouds. These are then exported to a .PLY file. To ensure the quality of our
point clouds, we overlay different point clouds and perform downsampling to simplify
overlapping points.

We also tried to apply different algorithms like global registration with ICP or
RANSAC to optimize the point clouds. Unfortunately, these approaches did not
provide the desired results and required too much computational time.

It is worth mentioning that the coordinate systems and matrices provided by the
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HoloLens are stable enough, so no further algorithms are needed for stabilization. This
allows precise and efficient processing of point clouds in our application.

Visualization of the Point Cloud

The point cloud is visualized as a particle system in Unity as seen in Figure 5.5.
Computing the position is non-trivial, since particle objects cannot be easily rotated
like GameObjects. To display the point cloud correctly, we put the particle system
into a GameObject that represents the origin point of the HoloLens. This GameObject
is related to the Unity coordinate system, so calibration as described is necessary.
When calculating particle positions, a transformation matrix of the origin point of the
HoloLens is used to calculate the transformation and rotation of each particle in the
Unity world coordinate system. This ensures that the point cloud is displayed correctly
in space.

5.2.7 Demonstration

The demonstration is next to the pointcloud one of the crucial components in the
LfD algorithm. It involves recording contact points that are subsequently used in the
segmentation algorithm. This demonstration can be done in a number of ways, playing
a critical role in the interaction and training of the robot.

On the Robot

A common method of demonstration is carried out directly on the robot. This involves
a physical demonstration in which the end effector is equipped with a special grinding
tool with a sensor. This end effector is used by the user to sand a workpiece. During the
interaction, the sensor measures the applied force. When the measured force exceeds a
predefined threshold, a contact point is recorded. These contact points are published by
the robot via DLR’s Links and Nodes middleware. The backend server can then access
these published contact points and stream them to the HoloLens. The contact points
are then visualized as pink spheres to the user, like suggested by Fang et al. [FON14].
The visualized feedback can be seen in 5.6.

With the Interface

An alternative way to demonstrate is to use the HoloLens glasses, which eliminates
the need for the robot itself. We developed this approach in the context of H5. In this
method, the contact points are recorded through the interface. In this case, a drawing
tool is provided to the user, which can then be used to mark contact points on the
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Figure 5.6: Visualisation of the demonstration feedback

surface of the point cloud. A contact point is drawn whenever the tool touches a
particle of the point cloud. A pink sphere is then placed at this position of the particle,
which symbolizes the contact point as in the demonstration with the robot. A more
detailed description about how the drawing tool works is given in the next section 5.2.8.
The marked points on the HoloLens are sent at regular intervals to the backend, from
where they are transmitted to the robot. This process allows the user to perform the
demonstration conveniently and intuitively on the HoloLens without having to interact
directly with the robot.

The option to display additional information in the form of the segmented basic
shape during the demonstration has also been implemented. In this case, the basic
shape is displayed as a mesh in space.

5.2.8 Editing

Editing, especially for establishing no-go zones, is an important step in the context of
our LfD system. Here, we use the same drawing tool as the tool we use during the
demonstration via the interface to allow users to mark specific areas in the environment
to give the robot clear instructions on how to avoid these zones.

32



5 Implementation

Figure 5.7: Editing No-Go Areas using the editing tool

The Drawing Tool

Our drawing tool consists of a virtual sphere attached to the user’s index finger. When
the user activates the editing mode, the drawing tool is launched at the same time. Due
to the specific way we visualize the scanned environment with a particle system, it
is not possible for us to perform collision detection in real time. Therefore, we resort
to the position of the particles and the drawing tool to calculate the distance between
them. If this distance is smaller than the given drawing radius, the system changes
the color of the corresponding particle. In Figure 5.7 you can see the drawing tool
representing the red sphere, the segmented area in blue and the edited no-go areas
marked in red.

Edit and Undo

Selected locations can be deleted at any time with the click of a button, and the editing
process can be restarted. This allows the user the flexibility to make changes and
adjust the no-go zones as needed. The editing process is designed to be intuitive and
user-friendly to ensure smooth configuration of zones.

33



5 Implementation

Transfer to Backend

Once editing is complete, the user exits the editing mode and the selected points are
transferred to the backend. From there, they are forwarded and passed to the robot.
This step ensures that the no-go zones defined by the user can be effectively and
precisely integrated into the robot’s action planning.

The editing process thus plays a crucial role in the interaction between humans and
robots in our application, allowing users to actively control the robot’s movements and
actions in their environment.

5.2.9 Execution

Execution is the final step in the LfD algorithm. At this stage, the robot’s learned
motions and actions are presented to the user and then executed.

Displaying the Trajectory

The first part of the execution is to show the user the planned trajectory of the robot.
This trajectory is visualized as a line in space and is located on the workpiece to be
machined. This step serves to give the user a clear idea of how the robot will perform
the task and provides an opportunity to verify the planned motion.

Execution of the Action

After the trajectory is displayed and the user has had a chance to review it, the action
is executed. The robot follows the planned trajectory and performs the previously
demonstrated task. This step is the culmination of the LfD process, where the robot
puts the learned behavior into practice.

After the execution has been completed, it is possible to machine additional work-
pieces. The "Execution" thus represents the end point where the acquired knowledge
of the robot is transferred into practical application. It should be noted that the actual
execution of the robot has not been implemented at this point, but the necessary infras-
tructure is in place. By calling the server to the robot and the execution function yet to
be implemented, this step can be integrated in the future. Currently, however, this call
results in an empty function.

5.3 Problem Points/Limitations

This section highlights various problem points and limitations of our system that were
identified during the development process.
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• Manual Calibration: Calibration of both Unity and HoloLens 2 coordinate sys-
tems currently requires manual adjustments. This can be time consuming and
requires precise procedures.

• Calibration Stability: The calibration of the HoloLens coordinate system to the
Unity coordinate system can shift after a reboot of the system, which can lead to
inaccuracies.

• Calibration Quality: The quality of the calibration between the different elements
of the system can have a significant impact on the accuracy and reliability of
the acquired data. Especially for robotic demonstrations, accurate calibration is
critical to prevent discrepancies between the demonstration points and the point
cloud.

• Vuforia tracking accuracy: Vuforia tracking accuracy can be insufficient, leading
to problems in the acquisition and placement of the robot coordinate system. An
average offset in this case is about 2 cm. For this reason, a manual approach was
preferred.

• Performance: If the number of particles is high, the performance of HoloLens
can be significantly affected, which negatively impacts the user experience. For
this reason, particles are sampled down before they are displayed.

• Hardware issues: HoloLens sensors do not function optimally in dark environ-
ments, and visibility of the real-world environment may be limited due to the
brightness of the holograms, posing potential safety risks. Likewise, reflective
surfaces also pose problems as they can interfere with the depth sensors, resulting
in erroneous environmental information.

These identified problem points and limitations represent important areas for future
development work and optimization. Solving these challenges will help to further
improve the overall performance and usability of our application. However, for the user
study, these limitations do not pose problems and therefore do not skew the results.

5.4 Summary

In this chapter, we presented and discussed our developed application in detail, focusing
on the main components. At the end we also highlighted the challenges and limitations
of this system, including the manual calibration of the coordinate systems and the
performance aspects. This chapter provides a comprehensive look at the implementation
and technical aspects of the application.
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6 User Study

6.1 Structure of the User Study

To test and validate the hypotheses as described in chapter 4.3, we conducted a
comprehensive user study. In this study, participants went through the process of
processing a workpiece using the interface with different settings to investigate the
effects of different aspects.

6.1.1 Test Description

The study involved participants evaluating the AR interface, examining different
components. For this purpose, we have defined different settings, which are explained
in more detail in the following description of the tests. In total, there are five different
tests, each with a different setting.

Test 1: Without Feedback

The test subject performs the Lerosh process once. No visual feedback is given from
the robot side. The user only performs the demonstration step. After the test, a
questionnaire is filled out.

Test 2: With Feedback through the HoloLens

The test subject performs the Lerosh process with different settings a total of four times.
In this process, the HoloLens is used as a feedback mechanism. The user goes through
the steps of scanning, demonstration and setting up no-go zones. A questionnaire is
filled out after each test.

• Setting 1: With feedback through the HoloLens and continuous or discrete
feedback during the demonstration. With discrete feedback, the new state is
always visualized after the demonstration is completed, while with continuous
feedback, the state is already displayed during the demonstration.

• Setting 2: With feedback through the HoloLens and demonstration by hand.
Demonstration is done with the drawing tool through the HoloLens.
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• Setting 3: With feedback through the HoloLens and visualization of the seg-
mented primitive shape. Here, the segmented area is displayed as a plane over
the point cloud for example.

Study Design

Participants were divided into four groups, which can be seen in Table 6.1. The
tests performed are listed in the respective column of each group, and the order of
performance corresponds to the top-to-bottom order.

Test 1 and Test 2 were permutated differently for each group as well as setting 1.1
to obtain independent results. The setting of Test 1.2 and 1.3 were deliberately always
performed at the same point of the study. While this does not give us an independent
result, it does leave room for conjecture and some initial insight.

At the beginning of the study, each participant received a detailed explanation of the
study procedure and the objective. This was followed by a hands-on introduction to
the use of HoloLens using a demo app and an introduction to the robot setup. The
main goal of each test session was to teach the robot to grind the top of a box, leaving
out the corners. Participants had the freedom to perform the demonstration as many
times as they deemed appropriate. In addition, they could stop the demonstration at
any time once they believed the robot had sufficiently learned the task.

Group A Group B Group C Group D
Test 1 Without Feedback Discrete Continuous
Test 2 Discrete Continuous Continuous Discrete
Test 3 Continuous Discrete Without Feedback
Test 4 Demonstration per Hand
Test 5 Additional Information

Table 6.1: Group division of the user study

6.1.2 Data Collection

During testing, we actively collected data to provide a comprehensive picture of
participant interactions and experiences. This data is collected in two main ways:
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Questionnaire

To collect and analyze subjective results from our user study, we use a structured
questionnaire. The questionnaire is used to collect demographic information of the
participants and to assess intuitiveness and other relevant factors regarding the testers
perceptions.

Demographic Information: In this section of the questionnaire, we collect basic
demographic information from the participants. This includes:

• Age: The age range of the participants.

• Gender: Gender affiliation of the participants.

• Profession: The professional background information of the participants.

• Experience with robots: Participant’s previous experience working with robots.

• Experience with Augmented Reality: Participant’s previous experience with AR
technologies.

Intuitivity Assessment: In this section of the questionnaire we accessed the intuitive-
ness using questions from two different question sets:

• NASA TLX Question Catalog: TLX stands for NASA Task Load indeX and is
a questionnaire developed by NASA to specifically measure the workload at
various levels [NAS]. This catalog captures: Mental Demands, Physical Demands,
Temporal Demands, Performance, Effort, Frustration.

• QUESI Question Catalog: QUESI stands for Questionnaire for Measuring the Sub-
jective Consequences of Intuitive Use, and measures intuitive handling through
the unconscious application of users prior knowledge [NH10]. This catalog
captures the subjective component of intuitive use and includes five different com-
ponents: Cognitive Demand, Goal Achievement, Learning Difficulty, Familiarity,
Error Rate.

Participants answer these questions after each test to capture changes in perceived
intuitiveness.

Process-Understanding Questions: After each test, 5 additional questions were asked
in addition to the NASA TLX and QUESI questionnaire. These questions were related to
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perceived knowledge discrepancy during the test and measure the user’s understanding
about the robot system.

In addition to these specific questions, there was also a final questionnaire which
asked specific questions about each component of the AR interface. These questions
aimed to gather detailed feedback and identify potential areas for improvement. Fur-
thermore, participants were able to leave additional comments and notes to share their
experiences and thoughts.

The structured questionnaire forms one of the central data collection tools in our user
study. It allows us to collect quantitative and qualitative information to comprehensively
evaluate the effectiveness and usability of our AR interface from a user perspective.

Application-based Data Collection

Beyond the questionnaire, we also collect data and results during the execution of
the tests, which allow us to make comparisons between individual test settings. This
contributes to the comprehensive investigation of our research questions, particularly
on effectiveness in terms of quality. The data recorded include:

• Contact points, which were recorded during the demonstration.

• Segmented areas, which were calculated by the algorithm

• No-Go zones, which were marked by the user

6.2 Limitations of the Study

In this section, the limitations of the study conducted are described before the results
are detailed in the next section. These limitations are important in order to adequately
interpret the results of the study. The identified issues during the study include:

• Limited number of users: The study was conducted with a limited number of
users, mainly students and engineers. This might limit the generalizability of the
results and question the representativeness for real craftsmen in practice.

• Missing subject-unrelated testers: Some of the study participants had a great
deal of prior experience with robotics and augmented reality, as they came from
technical backgrounds. The absence of testers without such prior experience
could mean that the results do not reflect the full spectrum of user experience.

• Lack of opportunity for independent testing: In some cases, certain components
of the system, such as the demonstration by hand and the display of additional
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information in the form of segmentation, could not be tested independently. This
is because the limited number of participants and limited time made it difficult to
permutate these scenarios into the study. However, the way we constructed the
test provides us with an initial approach to evaluate these components.

• Controlled Laboratory Environment: The study was conducted in a controlled
laboratory environment that does not reflect the same conditions as a real work-
shop or work environment. Therefore, results could vary in a real environment.

• Lack of variation in tasks: The tasks performed in the study were limited and
may not be representative of the variety of tasks that may be encountered in the
real world.

Despite these limitations, the study provides valuable insights into human-robot
interaction in the context of augmented reality and can serve as a starting point for
future research.
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In this chapter, we evaluated the data from the user study. We will describe the results
of each component in detail. Here, we will consider the TLX and QUESI questionnaire
data, robot-understanding questions, qualitative results about the interface, and data
collected during testing. We conducted T-tests with two-sided results and paired data,
as the same participants were tested in all different settings.

For better clarity, we use the following terms: "Without Feedback" for the group that,
according to Test 1, did not receive any visual feedback via HoloLens. According to Test
2, Setting 1, we refer to the groups as "Continuous Feedback" and "Discrete Feedback".
For "Demonstration Per Hand", we refer to Test 2, Setting 2, in which the demonstration
was done manually by hand instead of using the robot. "With Segmentation" refers to
Test 2, Setting 3 in which additional information is shown.

In addition to these definitions, we will only present the significant results in this
chapter for reasons of clarity and because we have collected a large amount of data.

7.1 Demographic Participant Data

First, lets take a look at the demographic data of the participants. The average age
of the participants was 25 years, with a standard deviation of 3.5. In total 20 people
participated in this study, 16 males and 4 females. Overall, most participants had at
least some experience using robotics. Specifically, 4 participants reported having no
experience, 8 had little experience, and 8 had a lot of experience. In terms of experience
with AR, most participants had little experience. More specifically, 11 participants
indicated they had no experience with AR, 8 had little experience, and only one had a
lot of experience. In terms of grinding, 12 participants reported having no experience,
7 had a little experience in recreational activities and hobbies, and one had a lot of
experience.

7.2 TLX Data

The overall average of the TLX score for the test evaluation is shown in Figure 7.1. The
score for the individual component range from -10, with "fully disagree", to 10, which
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Figure 7.1: Average of the TLX-Score per Test

is "fully agree". For a user, the overall TLX score can therefore range from -60 to 60.
Note that we have inverted the score of the performance component, as a higher score
means a better result compared to the other components. Therefore, for the overall TLX
score, a lower score for the average means a better result now. A comparison of the
different configurations reveals a difference between "Discrete Feedback" (M = 15.95;
SD = 21.395) and "Continuous Feedback" (M = 24.65; SD = 21.8341)(t (19) = 0.05280, p
< 0.1). Note that the significance level is below 10%. However, this would lead to a
rejection in a normal case. However, as the significance of the test is just over 5%, I
mention the result here regardless, since all other comparisons did not show sufficient
significance. For this reason, the individual TLX components, shown in Figure 7.2, that
had significant results are analyzed below.

7.2.1 Mental Demand

In terms of the mental demand, it can be seen that "Without Feedback" (M = -6.7; SD =
3.938) has a lower mental load than "Discrete Feedback" (M = -1.35; SD = 4.922) (t (19)
= 5.7E-5; p < 0.05), "Continuous Feedback" (M = -3.5; SD = 4.675) (t (19) = 0.01451; p <
0.05), "Demonstration Per Hand" (M = -2.4; SD = 5.695) (t (19) = 0.00773; p < 0.05), and
"With Segmentation" (M = -3.15; SD = 4.509) (t (19) = 0.00226; p < 0.05). It also shows
that "Discrete Feedback" performed worse compared to "Continuous Feedback" (M =
-3.5; SD = 4.675) (t (19) = 0.04611; p < 0.05) and "With Segmentation" (M = -3.15; SD =
4.509) (t (19) = 0.01883; p < 0.05).
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Figure 7.2: Score of TLX components per Test

7.2.2 Physical Demand

Compared to other settings, "Demonstration Per Hand" (M = -7.1; SD = 3.820) is shown
to perform better than "Without Feedback" (M = -3.2; SD = 4.853) (t (19) = 0.00295;
p < 0.05), "Discrete Feedback" (M = -3.15; SD = 4.671) (t (19) = 0.00044; p < 0.05),
"Continuous Feedback" (M = -3.05; SD = 4.852) (t (19) = 0.00054; p < 0.05), and "With
Segmentation" (M = -2.9; SD = 4.317) (t (19) = 0.0031; p < 0.05).

7.2.3 Temporal Demand

Compared to other settings, "Demonstration Per Hand" (M = -5.3; SD = 4.518) is found
to perform better than "Discrete Feedback" (M = -3.95; SD = 4.5768) (t (19) = 0.02924; p
< 0.05).

7.2.4 Performance

"Continuous Feedback" (M = 5.1; SD = 4.288) is rated as significantly better in perceived
performance than "Without Feedback" (t (19) = 0.02224; p < 0.05).
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7.2.5 Effort

No significant results were found, so this component is not included.

7.2.6 Frustration

"Continuous Feedback" (M = -4.45; SD = 5.035) showed significantly better results than
"With Segmentation" (M = -0.2; SD = 6.281) (t (19) = 0.04832; p < 0.05).

7.3 QUESI Data

Figure 7.3: Average of Quesi-Score per Test

The mean ratings of the different settings in the QUESI questionnaire were analyzed.
The results for the individual questions in the Quesi catalogue can range from 1 to 5,
with the higher the score, the better the result. The overall QUESI score of a user can
therefore can range from 14 to 70. The results as seen in Figure 7.3 show, that "Discrete
Feedback" (M = 52.75, SD = 8.9882) received the lowest average rating, followed by the
setting "Without Feedback" (M = 54.25, SD = 10.821), "Demonstration Per Hand" (M =
54.4, SD = 13.116), and "Continuous Feedback" (M = 54.45, SD = 10.102). The highest
mean score was obtained in the setting with "With Segmentation" (M = 56.05, SD =
8.102).

Although these results did not show significant differences overall, individual com-
ponents showed a significant difference compared to other settings. For this reason, the
QUESI questions, as shown in Figure 7.4, that had significant results are analyzed per
test below.
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Figure 7.4: Score of the QUESI questions which showed a significant result

7.3.1 I achieved what I wanted to achieve with the system

The participants were asked whether the system had helped them achieve the goals
they set out to achieve. The evaluation shows that the presence of feedback had a
significant influence on the participants self-assessment. The group "Without Feedback"
(M = 3.5, SD = 0.92195) was rated worse on average than the groups that received
"Continuous Feedback" (M = 4.15, SD = 0.90967)(t (19) = 0.01926; p < 0.05) or "With
Segmentation" (M = 4.1, SD = 0.88882)(t (19) = 0.03581; p < 0.05).

7.3.2 No problems occurred when I used the system

The participants were asked whether they encountered any problems when using the
system. The evaluation shows that the presence of feedback had a significant influence
on the perceived freedom from problems. The group "Without Feedback" (M = 4.25, SD
= 0.887) rated problem-free significantly better than the group that received "Discrete
Feedback" (M = 3.6, SD = 1.068)(t (19) = 0.11550; p < 0.05).

7.3.3 The system was not complicated to use

The participants were asked whether they perceived the system to be complicated
to use. The evaluation shows that the presence of feedback had a significant impact
on perceived ease of use. The group "Without Feedback" (M = 4.5, SD = 0.741) rated
the system as less complicated to use compared to the group that received "Discrete
Feedback" (M = 4.05, SD = 0.804)(t (19) = 0.03513, p < 0.05).
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7.3.4 The system helped me to completely achieve my goals

The participants were asked whether the system helped them to fully achieve their
goals. The evaluation shows that the presence of feedback had a significant impact
on the perceived effectiveness of the system. The group "Without Feedback" (M = 3.4,
SD = 1.020) performed worse on average than the groups that received "Continuous
Feedback" (M = 4.15, SD = 0.792)(t (19) = 0.03170; p < 0.05), "Demonstration Per Hand"
(M = 4.05, SD = 0.865)(t (19) = 0.01519; p < 0.05), or "With Segmentation" (M = 4.15, SD
= 0.726)(t (19) = 0.01205; p < 0.05).

7.3.5 How the system is used was clear to me straight away

The participants were asked whether the way the system was used was immediately
clear to them. The evaluation shows that the type of feedback had a significant impact
on the perceived clarity of using the system. The group that had "Demonstration Per
Hand" (M = 4.25, SD = 0.829) rated clarity significantly higher compared to the group
receiving "Continuous Feedback" (M = 3.75, SD = 0.994)(t (19) = 0.01409; p < 0.05) or
"Discrete Feedback" (M = 3.85, SD = 0.910)(t (19) = 0.02837; p < 0.05).

7.3.6 I automatically did the right thing to achieve my goals

The participants were asked whether they automatically took the right steps to achieve
their goals. The evaluation shows that the type of feedback had a significant impact
on the perceived ability to automatically take the right steps. The group that had
"Demonstration Per Hand" (M = 4.05, SD = 0.865) rated their ability significantly higher
compared to the group "Without Feedback" (M = 3.4, SD = 1.020)(t (19) = 0.02845; p <
0.05).

7.4 Process Understanding Data

After each test, participants were asked five specific questions to capture their un-
derstanding and ratings. The questions and associated results are seen in Figure
7.5.

7.4.1 Did you understand which model was learned?

The participants were asked to rate whether they understood which model was learned
during the demonstration. The analysis shows as seen in Figure 7.5 that the presence
of feedback had a significant impact on understanding. The group "Without Feedback"
(M = 2.35, SD = 1.014) performed the worst compared to the others, while the groups
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Figure 7.5: Five questions about the model understanding per Test

that received "Discrete Feedback" (M = 3.95, SD = 0.921)(t (19) = 8.5E-06; p < 0.05),
"Continuous Feedback" (M = 3.95, SD = 0.805)(t (19) = 3E-05; p < 0.05), "Demonstration
Per Hand" (M = 3.8, SD = 1.166)(t (19) = 0.00013; p < 0.05), or "With Segmentation" (M
= 3.95, SD = 0.921)(t (19) = 7.8E-05; p < 0.05) had significantly higher mean scores.

7.4.2 Did you understand when to end the demonstration?

The participants were asked if they understood the right time to end the demonstration.
The analysis shows that the presence of feedback had a significant impact on under-
standing. The group "Without Feedback" (M = 2.5, SD = 1.162) performed the worst,
while the groups that used "Discrete Feedback" (M = 3.65, SD = 1.352)(t (19) = 0.00015;
p < 0.05), "Continuous Feedback" (M = 3.85, SD = 1.276)(t (19) = 0.00026; p < 0.05),
"Demonstration Per Hand" (M = 4.14, SD = 1.014)(t (19) = 3.9E-05; p < 0.05), or "With
Segmentation" (M = 4.15, SD = 1.108)(t (19) = 2.8E-05; p < 0.05) received a significantly
higher mean score.

7.4.3 Did you understand how to influence the model through actions?

The participants were asked if they understood how they could influence the model
through their actions. The analysis shows that the presence of feedback had a significant
impact on understanding. The group "Without Feedback" (M = 2.7, SD = 1.229)
performed the worst, while the groups that used "Discrete Feedback" (M = 3.85, SD =
0.910)(t (19) = 0.0009; p < 0.05), "Continuous Feedback" (M = 4.0, SD = 1.183)(t (19) =
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0.00061; p < 0.05), "Demonstration Per Hand" (M = 3.85, SD = 1.152)(t (19) = 0.00015;
p < 0.05), or "With Segmentation" (M = 3.9, SD = 0.889)(t (19) = 0.00140; p < 0.05) had
significantly higher mean scores.

7.4.4 Did you understand how the robot learns?

The participants were asked if they understood how the robot works during the learning
process. The analysis shows that the presence of feedback had a significant impact on
understanding. The group "Without Feedback" (M = 2.35, SD = 1.062) performed the
worst, while the groups that received "Discrete Feedback" (M = 3.25, SD = 0.766)(t (19)
= 0.00030; p < 0.05), "Continuous Feedback" (M = 3.6, SD = 0.917)(t (19) = 0.00010; p
< 0.05), "Demonstration Per Hand" (M = 3.6, SD = 0.970)(t (19) = 1E-05; p < 0.05), or
"With Segmentation" (M = 3.55, SD = 0.805)(t (19) = 4E-05; p < 0.05) had significantly
higher mean scores.

7.4.5 Did you understand what the robot needs to build a model?

The participants were asked if they understood what requirements the robot needed
to meet in order to build a model. The analysis shows that the presence of feedback
had a significant impact on understanding. The group "Without Feedback" (M = 2.8,
SD = 1.249) performed the worst, while the groups that used "Discrete Feedback" (M
= 3.55, SD = 0.740)(t (19) = 0.00390; p < 0.05), "Continuous Feedback" (M = 3.7, SD =
1.145)(t (19) = 0.01190; p < 0.05), "Demonstration Per Hand" (M = 3.65, SD = 0.963)(t
(19) = 0.01100; p < 0.05), or "With Segmentation" (M = 3.8, SD = 0.927)(t (19) = 0.00160;
p < 0.05) had significantly higher mean scores.

7.5 Qualitative Results

This section discusses the results of the qualitative interviews conducted at the end of
the study. With the help of word clouds, we highlight key words from the participants
feedback in order to present the most important findings in a summarized manner.

7.5.1 Did you prefer the process with the robot only or with hololens?

In this study, a clear result as shown in Figure 7.6 emerged in which all participants
preferred the Hololens-based solution. This preference pattern was particularly justified
by the visual feedback provided by the Hololens. Users found this visual feedback
to be extremely helpful and intuitive. The real-time display of additional information
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Figure 7.6: Did you prefer the process with the robot only or with hololens?

and the ability to detect errors were also rated positively. In addition, setting up no-go
zones was perceived as a useful feature.

7.5.2 What did you think about the visualization of the Pointcloud?

Figure 7.7: What did you think about the visualization of the Pointcloud?

The participants opinions on the visualization of the point cloud were mixed as can
be seen in Figure 7.7. While the point cloud was perceived as accurate, users expressed
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concerns about the distance between points, which they felt was too large. The edges
of the point cloud were also too indistinct for users. Furthermore, occlusion, where the
point cloud interfered with the view of the real world, was rated negatively. A striking
feature was the disagreement about whether the point cloud was actually helpful in
performing the task or not.

7.5.3 Which type of update rate during the demonstration did you prefer?

Figure 7.8: Which type of update rate during the demonstration did you prefer?

Regarding the update rate during the demonstration, participants opinions were
clear, see Figure 7.8. All participants felt that "Continuous Feedback" was the better
option. They particularly emphasized the benefits of direct feedback, as it helped
them to immediately understand the impact of their actions. Some participants also
emphasized that "Continuous Feedback" allowed them to adjust their actions in real
time, which provided an increased level of confidence. Overall, comments on the
"Continuous Feedback" updating were positive.

7.5.4 What did you think of the additional information in the form of the
segmentation vizualization?

The participants opinions on the segmentation visualization were mostly negative as
seen in Figure 7.9. The majority of users found it unhelpful and confusing or distracting,
which led to the focus being diverted from the main task. Thus, they did not experience
segmentation as a positive additional benefit. However, it is worth mentioning that
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Figure 7.9: What did you think of the additional information(segmented shape) in form
of the green plane?

a single user emphasized that the segmentation gave them a certain level of security.
It was also mentioned that one user suggested using the segmentation instead of the
point cloud.

7.5.5 What kind of demonstration approach did you prefer?

The participants were asked for their opinion on the two demonstration approaches:
demonstration with robot or demonstration by hand. The results showed that 12
participants preferred the robot variant as seen in Figure 7.10, while 8 participants
favored demonstrating by hand as seen in Figure 7.11.

The results on the robot variant was more positive overall. Participants described it
as more natural, smoother, and more intuitive. They also highlighted the quality of the
feedback. However, it was also noted that the robot variant was perceived as bulky and
could be physically demanding.

The demonstration per hand variant was described as easier and more natural.
However, some disadvantages were also mentioned, including the blurriness of the
movements, the lack of intuitiveness, and problems such as the Hololens freezing while
using the editing tool and the lack of haptic feedback.
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Figure 7.10: What kind of demonstration did you prefer? - Answer: Demonstration per
Robot

Figure 7.11: What kind of demonstration did you prefer? - Answer: Demonstration per
Hand

7.5.6 Which aspects did you particulary like?

Several aspects of the interface were positively highlighted by participants as the results
show in Figure 7.12:

• Intuitiveness and ease of use: many participants found the interface intuitive and
easy to use. These features made it easier to use and contributed to the positive
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Figure 7.12: Which aspects did you particulary like?

user experience.

• No-go areas: The ability to define no-go zones was positively evaluated by users.
This contributed to better control and safety when using the editing tool.

• Visualization of the path: The visualization of the path was appreciated by the
users. It helped to better understand the progress and movements and contributed
to the improvement of spatial orientation.

• Direct feedback: the interface provided direct feedback, which was perceived
positively by the users. This direct feedback helped users understand and adjust
their actions immediately.

7.5.7 Which aspects of the interface did you not like?

Some aspects of the user interface were rated negatively by participants as the results
show in Figure 7.13:

• Accuracy of the no-go zones: The accuracy in defining the no-go zones was found
to be problematic.

• Lag and Delay: The application was described as laggy, indicating delays and
unresponsiveness.

• Need to move the robot: The requirement to physically move the robot has been
criticized by some users.
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Figure 7.13: Which aspects of the interface didn’t you like?

7.6 Quality of the Demonstration

In this section we analyse the data collected during the tests.

7.6.1 Accurancy of the Segmentation

In order to be able to evaluate the quality of the demonstrations, the deviation of the
corner points from the ground truth was used as a measure. The segmented surface
was solved in the form of a plane equation to obtain X, Y and Z coordinates. The X
and Y coordinates were obtained from the corner points of the ground truth, while the
Z coordinate was derived from the segmented area. Note that we are using the robot
coordinate system here. By calculating the difference between these values and the
z-value of the established ground truth segmentation, we were able to determine four
values that were used to evaluate the demonstrations between users. We have summed
the 4 values obtained and the average deviation per test can be seen in Figure 7.15.

The results show that "Discrete Feedback" (M = 0.073; SD = 0.043) performs worse
on average than "Without Feedback" (M = 0.042; SD = 0.024)(t (19) = 0.00428; p < 0.05).
"Demonstration Per Hand" (M = 0.030; SD = 0.020) performs better than "Discrete
Feedback" (M = 0.073; SD = 0.043)(t (19) = 0.00054 ; p < 0.05), "Continuous Feedback"
(M = 0.052; SD = 0.029)(t (19) = 0.000981; p < 0.05) and "With Segmentation" (M = 0
.052; SD = 0.031)(t (19) = 0.00727; p < 0.05)
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Figure 7.14: Calculation of the corner point deviation

7.6.2 Contact Points

We have determined the average value of the recorded contact points per test. The
results can be seen in Figure 7.16.

The results of the contact points show that the hand variant had the lowest contact
points recorded. The "Demonstration per Hand" group (M = 337; SD = 183.043) shows
the lowest number of contact points compared to "Without Feedback" (M = 676; SD =
310.834) (t (19) = 2.133E-05; p < 0.05), "Discrete Feedback" (M = 683; SD = 410.391) (t
(19) = 0.000453; p < 0.05), "Continuous Feedback" (M = 803; SD = 309.112) (t ( 19) =
1.251E-06; p < 0.05) and "With Segmentation" (M = 776; SD = 297.070) (t (19) = 2.028E-06;
p < 0.05). Furthermore, there is a moderately significant result with more contact points
in "Continuous Feedback" (M = 803; SD = 309.112) compared to "Without Feedback"
(M = 676; SD = 310.834) (t (19) = 0.05913; p < 0.1).
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Figure 7.15: Sum of the deviation of the corner points from the ground truth

Figure 7.16: Average number of contact points per test

7.7 Summary

In this section, we have analyzed in detail the data collected during our user study.
In doing so, we have taken a closer look at the various elements, including TLX data,
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QUESI data, process understanding data, qualitative results, and information collected
during testing. In the next chapter, we will discuss these results.
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In this chapter, the results of the study are discussed and organized according to the
different hypotheses.

8.1 Discussion

H1: The use of the AR interface leads to an increased intuitive handling of the LfD
robot compared to the use without interface

The results of hypothesis H1 suggest that the use of the AR interface does indeed lead
to increased intuitive handling of the LfD robot compared to use without an interface.
The results show that the variants with feedback perform better in terms of physical
demand during the Demonstration per Hand and the perceived performance during
continuous feedback. This indicates that the AR interface is perceived as less physically
demanding and performance-enhancing when the appropriate demonstration mode
and update rate are selected.

However, an interesting finding is that the mental demand is lower for the test
"Without Feedback". This could indicate that some users find the AR interface more
mentally demanding. This could be because the interface needs a more visuall attention
from the user than the variant without visual feedback. It is important to note that
mental load is an important factor in usability and should be further explored in future
work. It should also be crucial whether the mental load is still within a tolerable range
or is overwhelming for the user. Nevertheless, especially the Quesi questions and in
particular the question whether the system helped me to achieve my goals and whether
I automatically did the right things to achieve my goals, showed that the intuitiveness
is increased when using the interface compared to without the interface.

When we asked the user directly about their thoughts about the interface, users
showed a clear preference for the AR interface. Many participants found the editing
tool intuitive and easy to use, which contributed to a positive user experience. The
visualization of the path was also appreciated by the users, as it helped to better
understand the progress and movements and contributed to the improvement of spatial
orientation.

However, there were also mentioned some negative aspects. Some users described
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the interface as "laggy" and "buggy", indicating technical problems. Interaction with
the robot was described as "bulky" by some users, indicating usability challenges.

Overall, the results suggest that the AR interface has the potential to improve the
intuitive handling of the LfD robot, but technical issues and mental load should be
considered in further development.

H2: Visualization of the process helps increase the efficiency of the demonstrations
in terms of accuracy, compared to situations without visualization

The results with regard to hypothesis H2 show that the visualization, in terms of how
we visualise the process, has an impact on the accuracy of the segmentation. For this
purpose, the deviation of the segmentation from the ground truth was taken as a
measure. In particular, the Discrete variant performs worse compared to the situation
without feedback and to the variant with Demonstration per Hand.

A possible explanation for this could be that the feedback in the discrete variant
demands too much of the users mental capacity, which leads to increased deviations.
Here, the users concentrate on the feedback, which, however, only comes after the
demonstration, and no longer concentrates on the task itself. This would need to be
investigated further to rule out the possibility that this is an accidental error.

It is also interesting to note that the Demonstration per Hand variant has the lowest
number of contact points compared to the other variants. This could be due to the way
contact points are recorded by the Demonstration per Hand variant, as it only allows
the recording of contact points that are present on the point cloud. In contrast, more
contact points can be recorded with the robot.

These results do not confirm the hypothesis that visualization of the process increases
effectiveness. Whether this is related to the relatively simple data and process is unclear.
Future research should test more complex workpieces, which may allow the results
from the different settings to have greater variation.

H3: The use of visual feedback allows to reduce the existing knowledge gap
between humans and machines

The evaluation of the user ratings for hypothesis H3 shows that the use of visual
feedback has a positive influence on the understanding and knowledge gap between
humans and machines.

In all the aspects of process understanding examined in chapter 7.4, the feedback
variants performed better than the variant without feedback. Users indicated that
feedback gave them a better understanding of the robot’s model. They were better able
to assess when to stop the demonstration, how their actions affected the model, and
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how the robot learns and builds a model. This suggests that visual feedback helps to
reduce the perceived knowledge gap.

However, it is important to note that users disagree on whether certain visual
elements, such as the point cloud and segmented area visualization, are helpful. Some
users criticized aspects such as the resolution and accuracy of the point cloud. The
visualization of the segmented area was found to be confusing and distracting by most
users. This could be due to the Field of View (FoV) and the way it was displayed.
A possible solution could be to implement a thumbnail view to improve the visual
representation of the area.

Overall, the evaluation shows that visual feedback reduces the perceived knowledge
gap between humans and machines from the users perspective. Whether the knowl-
edge gap was actually closed could not be confirmed by the achieved quality of the
segmentation results. In this respect, further more complex user tests are needed, which
show an increased knowledge discrepancy. It is also important to continue working on
improving the visual display elements to ensure an optimal user experience.

H4: Compared to discrete feedback, continuous feedback while the demonstration is
still in progress can increase effectiveness in terms of quality

The results of hypothesis H4, which examines the influence of continuous and discrete
feedback on the quality of demonstrations, show clear trends in terms of feedback type.

Analysis of the TLX questions shows that discrete feedback performs significantly
worse compared to continuous feedback. This suggests that continuous feedback is
perceived by users as more effective and of higher quality.

The results of the QUESI questions confirm this tendency. Users indicated that the
system with continuous feedback (which was the default in the tests) was better at
helping them achieve their goals compared to situations without feedback. Also, the
system with discrete feedback was rated as significantly more complicated than the
system without feedback. The perception that the goal was achieved was also more
positive for the continuous feedback variants.

The corner point deviation of the segmentation showed that discrete feedback pro-
duced worse results compared to the variant without feedback. This result is contro-
versial and would imply that a poor feedback method can produce worse results than
without feedback method.

The direct question about the preferred update rate resulted in a unanimous vote
for continuous feedback. Users clearly preferred continuous feedback during the
demonstration.

In summary, the results confirm the hypothesis that continuous feedback increases
effectiveness in terms of usability and intuitiveness of the system compared to discrete
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feedback. Users appreciated the immediate feedback and preferred the continuous
updating of information to adjust their actions in real time.

Hypothesis H4 cannot be confirmed in terms of quality, that continuous feedback
is better than discrete feedback. Nevertheless, the results emphasize the importance
of continuous feedback of the system for the user. In future research, it may be of
interest to perform more complex tasks to determine whether users can indeed adjust
their actions accordingly with continuous feedback. Because the task performed was
comparatively simple, we were unable to draw any final conclusions about whether
users actually adjusted their actions in real time.

H5: Targeted use of AR technologies can further improve the LfD approach and
make it more intuitive

The results of the study related to hypothesis H5 indicate significant differences that
prove the superiority of the hand method in various aspects. The deviation of the
corner points of the segmentation shows that the hand method achieves better results
compared to the variants without feedback, discrete feedback, and continuous feedback.
This is due to the fact that the contact points in the hand method are precisely located
on the point cloud and are not affected by possible inaccuracies in the calibration of the
robot.

Another result of this hypothesis is the significantly lower number of recorded contact
points with the hand method. This is explained by the dependence of the recording
of a contact point on the resolution of the point cloud. Due to the limited resolution
of the point cloud, the hand method was not able to record as many contact points as
the robot method. There was no significant difference in the recorded contact points
for the other variants, suggesting that the variant does not affect them. However, this
could also indicate that users understand better when to stop the demonstration when
using the Demonstration per Hand variant. This would be an interesting research topic
for the future but would require both interaction methods to be able to enter the same
number of contact points in order to continue.

The results of the QUESI questions indicate that the hand method was perceived as
significantly clearer, and users were able to identify the correct steps more intuitively.
Additionally, the hand method was rated as significantly better at supporting goal
achievement and reducing physical effort. The time burden was also perceived to be
lower compared to the discrete feedback.

User-friendliness was rated positively overall, as confirmed by the users QUESI and
TLX ratings.

It is interesting to note that the users qualitative assessment provided mixed results.
User preferences for the type of demonstration showed that 12 users preferred the
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robotic application, while 8 users favored the handheld method. The users who
preferred the robotic application described the interaction as more natural, fluid, and
intuitive. However, some users found the robotic application bulky and physically
demanding. Other criticisms of the robot application related to the need to physically
move the robot.

The hand method was also described as natural and perceived as easier. However,
it is worth noting that some disadvantages of the hand method were also mentioned,
including inaccuracies, freezing, and the lack of haptic feedback. The assessment of
whether the hand method was perceived as intuitive or not varied. No clear user
preference can be determined from the mixed nature of these results.

In summary, the results of this hypothesis demonstrate that the hand method is
superior in several aspects such as precision, user-friendliness, and physical effort,
while the robotic application is compelling in terms of more natural interaction. This
highlights the potential of AR technologies to improve the LfD approach and make it
more intuitive, with the hand method considered superior in only some aspects. This
highlights the importance of user preferences and requirements when developing AR
interfaces for LfD systems.

8.2 Conclusion

This study investigated the application of AR technologies in the LfD Approach and
the impact on intuitive handling, efficiency, the knowledge gap between human and
machine, feedback influence, and improvement of the LfD approach. Based on the
results and discussions, several conclusions can be drawn:

Regarding the first hypothesis H1, the results showed that using the AR interface
increased the intuitive handling of the LfD robot compared to using it without an
interface. Users positively evaluated the intuitive elements as well as the increased
process understanding through the AR interface , although some technical problems
and a increased mental load were mentioned.

The results related to the second hypothesis H2 suggest that visualization of the
process affects the accuracy of the demonstrations. The discrete feedback variant
performed worse compared to the no feedback variant, indicating usability challenges.
The hypothesis could not be confirmed.

Hypothesis H3 could be confirmed, as the visual feedback reduced the perceived
knowledge gap between humans and machines. However, the question remains whether
an actual knowledge gap can also be reduced with this interface.

The fourth hypothesis H4 could not be confirmed, but showed that continuous
feedback increased the usability of the demonstrations compared to discrete feedback.

62



8 Discussion and Conclusion

Users valued immediate feedback and preferred continuous updates.
In conclusion, hypothesis H5 could be confirmed as the results showed that the

targeted use of AR technologies can improve the LfD approach and enable intuitive
adaptations. The hand method showed superior results in terms of precision and
usability, while the robotic application scored in terms of more natural interaction.

These findings highlight the enormous potential of AR technologies to enrich LfD
methodology and improve human-machine interaction and enable its use in work-
shops. Nevertheless, technical challenges and user preferences must be considered to
develop optimal solutions. This underscores the importance of continued research and
development of AR-supported LfD systems for a wide range of use cases.

8.3 Further Changes

In response to the results received from the user study, we made changes to the interface.
This was primarily due to user feedback and a misunderstanding that was identified. It
became clear that the users did not understand that the segmented point cloud was not
available from the beginning, but was generated by their input and the LfD algorithm.
To communicate this concept more clearly, we developed an animation that illustrates
the progress of generating the surface. In this animation, the segmented point cloud
builds up circularly in an interval from the last contact point.

Furthermore, we integrated a simulation of the robot’s execution into the HoloLens.
This allows users to perform the planned action. In this simulation, the trajectory that
still needs to be executed is displayed in red, while the trajectory that has already been
completed appears in blue.

These adjustments made are intended for future testing and should improve the user
experience. Unfortunately, it was no longer possible to test them with another user
study as part of this thesis.
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(a) Execution through the virtual model of
the SARA Robot

(b) Trajectory status. Red line: Pending trajec-
tory. Blue line: Completed trajectory

Figure 8.1: Additional changes based on the feedback received
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9.1 Summary of the Thesis

This thesis was dedicated to the investigation of how a feedback mechanism for the
Learning from Demonstration approach can be designed and to what extent it adds
value. To this end, an AR interface combining the Microsoft HoloLens 2 and the SARA
robot was developed. This interface allowed users to receive visual feedback and track
the status of the robot during the LfD process. A comprehensive user study with 20
participants was conducted to evaluate the effectiveness of the AR interface.

The results of this study indicate that the AR interface is a promising method to
improve human-robot interaction and collaboration. Users were able to gain a better
understanding of the robot’s knowledge state with the help of the interface. In addition,
the user experience was positively affected as the visualization of the process and
the ability to monitor progress helped improve spatial orientation. The results also
confirm that visual feedback reduces the perceived knowledge gap between humans
and machines.

However, it was difficult to confirm qualitative improvements in terms of the quality
of the demonstrations. Some technical challenges, such as delays and errors in the AR
interface, clouded the user experience. In addition, mental load was slightly increased
when using the AR interface, which could be due to visual complexity.

In addition, we have made further changes to the interface, which should further
improve the user-friendliness. This meant a visualisation which should clarify the
change of the point cloud, as well as two approaches to visualise a grinding process
state with a digital twin, as well as the trajectory which is being executed.

9.2 Future Outlook

Several promising perspectives for future research emerge from this work, either to
continue research at this interface or to try new approaches to gain further insights:

Userstudy with the Changes Made to the Interface: The adjustments made should
be subjected to a more detailed examination in a further user study. Here, the focus
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should be on re-examining the understanding of the robot process and evaluating the
usefulness of the visual feedback. Does the feedback help the user to better understand
the process?

More Complex Tasks: In this study, a comparatively simple task with a box as the
workpiece was used. For a deeper understanding of the potential of the AR interface,
more complex workpieces should be considered in the user studies. Organic shapes
and more difficult fits could provide a better understanding of the actual performance
of the AR interface.

Different Display Methods: It might be useful to explore different display and visual-
ization methods to represent the robot’s knowledge state in a more effective way. This
could include the development of thumbnails, alternative user interfaces, or improved
augmented reality integration. An explicit exploration of a projector-based interface
and a comparison with the created HoloLens interface could provide more insight into
user preferences. A projector-based approach would be more natural for the FoV and
free the user from the additional weight of the HMD.

Different Interaction Methods: It would be interesting to explore different inter-
action methods, particularly with respect to more naïve users. Here, approaches such
as gesture control, voice control, or incorporating virtual reality could be included
in the studies. In the context of the projector-based interface just proposed, new in-
teraction and visualization methods will be required. Users could interact directly
with the workpiece by drawing on it, and new visualization techniques could project
2.5-dimensional views onto the workpiece.

The presented thesis has shown that AR technologies are a promising tool to im-
prove the LfD approach. With future developments and research, this potential can be
further exploited to enrich and optimize the interaction between humans and robots in
a variety of application domains.
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Abbreviations

LfD Learning from Demonstration

AR Augmented Reality

PbD Programming by Demonstration

HMD Head-Mounted Display

HHD Hand-held Device

FoV Field of View

UI User Interface

DLR German Aerospace Center

MRTK Mixed Reality Toolkit

SARA Safe, Autonomous Robotic Assistant
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