
Immersive and Interactive 3D Visualization of
Large-Scale Geo-Scientific Data

Markus Flatken *

German Aerospace Center
(DLR)

Simon Schneegans †

University of Bremen
Riccardo Fellegara ‡

German Aerospace Center
(DLR)

Andreas Gerndt §

German Aerospace Center
(DLR)

University of Bremen

Figure 1: The images above were all produced using the framework described. The first image displays a pseudo-volumetric
rendering of a 2.6 TB weather simulation, in which interactive exploration of the time-dependent data set is enabled through
view-dependent, distributed feature extraction. The framework also enables exploration of simulation data stored on remote
clusters, such as large-scale climate simulations, as shown in the center image. The last example does not use a distributed data
processing backend but the highly parallel ray tracer OSPRay developed by Intel.

ABSTRACT

In this paper, we present a software architecture and framework
developed over the past decade to enable scalable and highly in-
teractive visualizations for large datasets and display sizes. The
framework integrates distributed data processing, data streaming,
and dynamic scheduling to allow for view-dependent feature extrac-
tion and progressive data streaming. Additionally, the framework
has been designed to support visualizations from local desktop work-
stations to large multi-display virtual environments.

Index Terms: Computing methodologies—Modeling and
simulation—Simulation types and techniques—Scientific visual-
ization; Human-centered computing—Human computer interaction
(HCI)—Interaction paradigms—Virtual reality

1 INTRODUCTION

The visualization of large-scale scientific datasets is a demanding
task. Local resources available on a single workstation do not pro-
vide the necessary compute capability to analyze and visualize such
datasets interactively, where the user continuously changes the pa-
rameters and styling of the visualization itself. In such scenarios, the
response time, i.e., the time until changes are visible to the user, is
often unacceptably high, hindering interactive and explorative data
analysis.

Hence, there is a need to distribute the computation, which is why
distributed client/server applications like ParaView [1] or VisIt [2]

*e-mail: markus.flatken@dlr.de
†e-mail: sschneeg@uni-bremen.de
‡e-mail: riccardo.fellegara@dlr.de
§e-mail: andreas.gerndt@dlr.de

have been developed. These applications offload heavy processing to
a server running on a High-Performance Computing (HPC) cluster,
while allowing the user to interact with a locally running graphical
user interface. This distribution drastically improves response times,
but in some applications, such as Virtual Reality (VR) setups where
interaction with the data is crucial, the response times are not low
enough and the applications often still stutter or freeze until results
are available. Progressive data streaming is a possible solution, but
these techniques are only rarely available. Additionally, the data dis-
tribution for parallel processing typically follows a static scheduling
approach, where data is distributed to processing nodes based on its
spatiality. This can result in some processes experiencing high load
during computation, while others remain idle during a query.

We presume that there is a lack of software frameworks which
allow for parallel processing of large-scale scientific datasets, data
streaming, as well as parallel rendering of the extracted data in multi-
display virtual environments. This overall prohibits the scaling of
such applications from the desktop, to local head-mounted displays
(HMD), up to huge VR installations. Consequently, domain scien-
tists seldomly have the chance to explore their data in large-scale
virtual environments.

In this paper, we introduce a software architecture and framework
that have been developed over the past decade to enable scalable
and highly interactive visualizations for large datasets and display
sizes. In order to manage these large-scale datasets, we have in-
tegrated distributed data processing, data streaming, and dynamic
scheduling, where data is distributed not only based on its spatial-
ity but also considering additional meta-information such as active
scalar ranges, or the current camera perspective. This allows for
view-dependent feature extraction and progressive data streaming.
Additionally, we have developed a scalable visualization frontend
that supports visualizations from local desktop workstations option-
ally equipped with a head-mounted display up to large multi-display
virtual environments.

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works. Get the full version at https://doi.org/10.1109/VRW58643.2023.00052



HPC Cluster

Main Instance
LAN / WAN

Parallel Viracocha BackendCosmoScout VR

synchro-
nization

CosmoScout VR
Rendering Node

CosmoScout VR
Rendering Node

CosmoScout VR
Rendering Node

Viracocha Frontend

Data Channel

Command Channel

Rendering Cluster

data
distribution

Worker

Worker

Worker

LAN

requests

extracted data

Scheduler

Figure 2: Viracocha is integrated as a CosmoScout VR plugin to enable client/server based analysis and visualization of large-scale datasets.
The heavy workload, such as feature extraction, is outsourced to a parallel backend application running on remote resources, such as a HPC
cluster. Compute requests are sent to the backend where they are distributed to a set of worker processes. The extracted features are finally
streamed to the main instance of CosmoScout VR or directly to the rendering nodes. The frontend can also run on a cluster of rendering nodes,
in order to drive multi-pipe virtual environments or tiled displays.

The structure of this paper is as follows: In the next section, we
introduce the software architecture and provide a brief overview of
the different domains where the software is being utilized. Then,
we describe the various hardware systems where this system can
be used. We also provide exemplary performance measurements
to demonstrate the interactivity of the system. Lastly, we conclude
with some lessons learned and an outlook on future developments.

2 SOFTWARE ARCHITECTURE

Our software framework is composed of both a frontend and back-
end application. The frontend application provides interactive 3D
visualization and can be configured to run on a single workstation
or on a cluster of multiple machines to power stereoscopic multi-
display setups. The backend can be configured to run on the same
machine as the frontend or on the compute nodes of a HPC cluster,
allowing for distributed computation and data processing. Figure 2
shows a high-level overview of the involved components.

2.1 The Frontend: CosmoScout VR
As visualization frontend, we developed CosmoScout VR, an open
source 3D solar system [11]. The software enables scientists to virtu-
ally navigate from planet to planet and explore time-dependent data
across many magnitudes of scales. A key feature of CosmoScout
VR is its precise rendering of planet-scale terrain datasets (eleva-
tion and imagery) using standard web-map service protocol (WMS).
With CosmoScout VR as frontend application, we can visualize
many different kinds of datasets, as long as they have some kind
of spatial reference. Examples include, but are not limited to, cli-
mate or weather simulation data, satellite data, subsurface data, or
interplanetary data such as space-weather data.

CosmoScout VR supports Virtual Reality devices such as head-
mounted displays (HMDs) or stereoscopic multi-projection systems
like CAVEs, but can also be used on traditional desktop PCs. In
fact, the user interface of CosmoScout VR has been developed in
a desktop-first fashion. We understand that domain scientists do
not typically work in Virtual Reality, but rather on their desktop
workstations. Consequently, we focus on developing interactive
tools that are primarily designed for desktop usage, but also scale
well to VR setups.

Most of the functionalities of CosmoScout VR are loaded at run-
time from plugins. This allows for fast prototyping development
times on the one hand; on the other hand, different features can be
developed independently, as the core modules usually do not need
to be changed. To support the analysis of large-scale geo-scientific
datasets using remote HPC resources, CosmoScout VR has been
extended with a plugin providing a graph-based user interface (visi-
ble in the center image of Figure 1) and local rendering algorithms
for meshes and volumes. The graph-based user interface enables

scientists to configure and control the overall data analysis pipelines,
executed on the backend, or modify parameters of the rendering
algorithms. Since CosmoScout VR uses HTML and JavaScript to
render the 2D user interface elements, this node graph could be
implemented using the D3.js framework.

2.2 The Backend: Viracocha

The results of large-scale numerical simulations are usually not
stored on a local hard drive. These datasets are mainly generated
by using parallel solvers running on HPC resources. Copying the
generated raw data, often multiple terabytes, from the HPC cluster to
the local workstation for analysis is impracticable or even impossible.
In order to avoid this data transfer, we opted for a client/server
architecture.

The server application has been developed based on the Viracocha
middleware layer [6] using MPI [3]. It is executed on a HPC system,
and allows for efficient feature extraction. Examples include the
extraction of vertical profiles or probing a specific location of a
time-dependent climate simulation (depicted in the center image
of Figure 1), or the clouds of a weather simulation represented by
different iso-contours [10] as depicted on the left in Figure 1.

When a user requests the extraction of a specific feature, a mes-
sage is sent over the network to the parallel backend application
using the command channel. When received, the scheduler creates
independent tasks which are scheduled for parallel processing using
multiple workers. These workers finally execute the feature extrac-
tion algorithms on the data and results are immediately streamed
back to CosmoScout VR (see Figure 2). When focusing on inter-
active data exploration, this is an iterative process which leads to
costly data processing and heavy I/O demands. Parallelizing feature
extraction improves response times — the time a user has to wait
until results are visible — but when data is really huge, execution
times are still high. In order to further increase the interactivity, op-
timized scheduling strategies are employed. These strategies define
the order of data processing on the worker nodes, and can utilize
tree-like accelerations structures for view-dependent data processing
and progressive data streaming as presented in [4, 10].

In order to enable the development of domain specific solutions,
programming interfaces are offered as often as possible. These
interfaces enable application developers to integrate own algorithms,
messages types, scheduling strategies, and custom user interfaces
into Viracocha and CosmoScout VR.

3 USE CASES

The following subsections describe some examples of domain spe-
cific applications in which we use the described system to enable
interactive data analysis and visualization.



3.1 Exploration of Weather Simulations
Weather simulations produce large time-dependent data which is
difficult to analyze interactively. An example dataset was provided
for the 2017 IEEE SciVis Contest by the HD(CP)² project [10]. This
dataset contains 240 time steps with a total of 2.6 TB. Each timestep
contains the weather conditions over Germany in a 3D volume of
multiple chemical scalars.

In order to interactively explore this data, we have decomposed
each time step into small chunks of data which are used as leaf
nodes in a multi-resolution octree. Viracocha is then used to extract
features in parallel, giving a higher priority to octree nodes close to
the virtual camera.

Hence, when the user moves through the data or changes a pa-
rameter, e.g. a threshold of a scalar range, results are progressively
generated by the Viracocha workers and immediately streamed to
CosmoScout VR, always updating parts in the user’s vicinity first.
The same happens when the simlation time progresses: parts of the
data closest to the user will reflect the change in a matter of mil-
liseconds, while data in the distance may take a couple of seconds
to be updated. A screenshot presenting this use case is provided
in the first image of Figure 1. Additionally, we present exemplary
performance evaluations of this application in Section 5.

3.2 Exploration of Chemistry-Climate Simulations
Within the ”Earth System Chemistry Integrated Modelling (ES-
CiMo)” initiative, chemistry-climate-simulations were executed
to support upcoming scientific assessments by the World Meteo-
rological Organization (WMO), the United Nations Environment
Programme (UNEP), and the Intergovernmental Panel on Climate
Change (IPCC) [7]. The analysis of the resulting data represents an
important and yet difficult task in global climate change research. It
is challenging due to the multi-dimensional data including hundreds
of chemical variables, a high temporal resolution covering nearly
100 years of simulation time, as well as due to the sheer data size of
more than one petabyte.

To enable interactive analysis of this data, we added multiple
filters to Viracocha, such as the parallel computation of averages
and standard deviations for time ranges, the extraction of vertical
profiles using 3D fields, or probing and plotting of time series values
at user defined positions. Additionally, visualizing differences for
two of these filters enables comparing different simulations of the
overall ensemble. Another common use-case is to map chemical
values onto isosurfaces extracted on different scalars. An example
of such a setup is shown in the second image of Figure 1.

Figure 3: The desktop-oriented user interface of CosmoScout VR
is also used in Virtual Reality. While the interaction with complex
widgets like a transfer function editor or a parallel coordinates plot
is not ideal, this eases the learning process for domain scientists.

Figure 4: The Virtual Reality lab at the German Aerospace Center
in Brunswick, Germany is used regularly to evaluate the framework
described in this paper. The lab uses four stereo projectors (three for
the back projection and one for the floor projection). Each projector
is connected to a separate workstation. Images courtesy of German
Aerospace Center, DLR (CC-BY).

3.3 Visualization of Mantle Convection
While enormous data collected from space missions and telescopes
enhanced the understanding of the thermo-chemical evolution of
terrestrial planets, the understanding of their interior dynamics is
still limited. However, over the last decades, numerical simulations
of the planet interiors have become powerful tools to model the
evolution of mantle flow [8].

In order to analyze the resulting data together with a high-
resolution terrain topography, Viracocha has been extended with
appropriate filters for contouring and slicing. Most filters support
time-parallelization, where multiple time steps are processed con-
currently on the Viracocha workers. Additionally, an interactive
volume-rendering approach has been developed [5]. The corre-
sponding plugin for CosmoScout VR is based on Intel’s OSPRay
Raytracing toolkit. In this case, the data processing and rendering is
done locally. Yet the ray-tracing of the volume runs asynchronously
to not affect the interactivity of the entire frontend application. To
hide the vayring frame rates, we integrated image warping tech-
niques. These were also used to generate stereoscopic image pairs
when running in a VR setup. An example of this volume rendering
is shown in the last image of Figure 1 as well as in Figure 3.

4 HARDWARE

The framework is mostly being developed on desktop workstations,
however it is frequently tested and evaluated not only on HMDs, but
also in the Virtual Reality lab at the German Aerospace Center in
Brunswick, Germany (shown in Figure 4). Here, we also have access
to a high-performance data analytics (HPDA) cluster for running the
backend application.

The Virtual Reality lab, in which we use the software on a daily
basis, features a back projection, a floor projection, active stereo,
and head tracking. The displays are powered by four Barco F50
projectors. Three projectors are mounted in a backroom to drive the
powerwall and one is mounted on the ceiling for the floor projection.
The powerwall uses three projectors in order to increase the pixel
resolution. Each projector is connected to a workstation equipped
with 2x Intel Xeon E5-2630 v3 CPUs, 128 GB of main memory, and
a single NVIDIA Quadro P6000 graphics card.

For evaluation purposes, the backend is usually executed as a
parallel application on a HPDA cluster comprised of four compute
nodes. Each node is equipped with four Intel Xeon Skylake 6132
processors and has 384 GB of main memory. Each CPU of each
node runs at 2.60 GHz and has 14 cores. The cluster is connected
with 4 Gbit/s to the VR environment shown in Figure 4.



5 PERFORMANCE EXAMPLE

In order to benchmark the performance of our software framework
when analyzing large scale datasets, we executed CosmoScout VR
in combination with a Viracocha backend executed on the HPDA
cluster. The weather simulation data and plugins used are from the
2017 IEEE visualization contest [10].

Figure 5 depicts the measured timings for parallel and view-
dependent extraction of four isosurfaces. Timings are captured
starting from a low resolution perspective, where surfaces are gener-
ated for just a few octree nodes. When zooming in, the resolution
increases and a continuous stream of requests is sent to the backend
(orange line). Most of the time, there are enough workers available
to instantly process the requests and send back the extracted geome-
try of the isosurfaces. The amount of rendered octree nodes (green
dotted line) steadily increases up to 1103. At frame 288, the simula-
tion time step is changed, which leads to a complete re-processing
of all visible nodes. As requests are prioritized by view distance, the
octree nodes close to the camera are updated first. Initial results are
available after about 80 ms. And after 2.4 s, the complete scene is
updated. One time step of the octree contains about 12.6 GB of data
from which 658.4 MB of geometry have been extracted and send to
the CosmoScout VR client for the benchmarked perspective.

The table below depicts the achieved timings when launching the
backend with a varying number of MPI processes.

Backend Processes 8 16 32 64 128 256

Update Time 25.0 s 12.7 s 6.7 s 3.9 s 2.4 s 2.3 s

The time for re-processing all 1103 visible nodes with 8 MPI
processes took 25 s. When running with 256 MPI processes, the time
could be reduced to 2.3 s. We can see that up to 128 processes we
have nearly linear scaling. However, when the number of processes
further increases, the efficiency decreases. This is both due to the
limited network bandwidth available between the CosmoScout VR
clients and the HPDA cluster, and the required disc reads of the raw
data. Nevertheless, during the entire session the overall frame time
stayed mostly below 16.67 ms which allow us to explore the 2.6 TB
dataset interactively.

6 CONCLUSION AND SOME LESSONS LEARNED

In this paper, we presented the architecture of a software framework
which can be used to visualize and explore large-scale geo-scientific
data. We combined CosmoScout VR and Viracocha in order to
create a system which can be scaled in terms of rendering clients
for the frontend as well as compute nodes for the backend. Hence,
it allows creating applications which can be launched on a single
workstation as well as on a distributed rendering cluster connected
to an HPC cluster.

For our software development, we chose a desktop-first policy.
We understand that domain scientists do not typically work in Virtual
Reality but rather at their local desktop workstations. Hence, we
focus on developing interactive tools that are primarily designed for
desktop usage but also scale well to VR setups. This is supposed
to reduce the barrier for domain scientists to explore and present
their data in virtual environments. We think that this approach
is not only valuable for data analysis but can also foster effective
communication of scientific findings to colleagues and to the general
public, since the same software can be used for data analysis as well
as for data presentation.

During development, we found that device input, interaction with
the virtual scene, and 3D navigation are areas where it has been
fairly simple to map the desktop interactions to Virtual Reality input
devices. However, the main challenge we have faced is in the user
interface. A traditional 2D interface with buttons, sliders, and text
input fields can look out-of-place in VR and can be difficult to

250

500

750

1000

1250

5 ms

10 ms

15 ms

20 ms

25 ms

Frame
Time

Workers
Nodes

CosmoScout Core

Drawn Nodes

Pending Requests

Busy Workers

Draw Octree Nodes

Resolve A-Buffer

Upload Octree Nodes

Gradual Descent into Data
Frame 0 - 264

Load New Time Step
Frame 288 - 404

Figure 5: In the first half of the 450 frames shown in the graph above,
the camera approached the weather data located above Germany. At
frame 288, the visualized time step was changed leading to many
pending requests. The graph shows GPU timings as well as the
number of rendered octree nodes, pending compute requests and
currently active worker processes on the parallel backend. The
dotted grey line indicates a frame time of 16.67 ms.

interact with. Especially complex user interfaces like the dataflow
graph editor do not work well in Virtual Reality. Nevertheless, we
have chosen to show the entire 2D interface in VR. This approach
eases the transition for users as there is no new interface to learn.
Furthermore, it greatly reduces development overhead since it does
not require developing two user interfaces in parallel.

Also, the decision to put most of the functionality of the Cos-
moScout VR frontend into plugin libraries has paid of very well.
On the one-hand side, this reduces development time significantly
as a recompiled plugin can be hot-reloaded at runtime without the
need to restart the application. On the other hand, it greatly simpli-
fies the maintainability of the software in a research context, where
parallel development of long-living branches is common. Usually,
different plugins are developed in different projects and even after
months of development it will be possible to merge them into the
main development branch if necessary.

As the software can be deployed on various hardware setups, we
can compare analyzing the same data on different hardware setups.
Overall, we see three main advantages of Virtual Reality laboratories
when compared to head-mounted displays. First, a large VR instal-
lation typically induces less motion sickness and users can work
for longer periods than when working with an HMD. Second, a VR
laboratory is an impressive installation which we frequently use for
presenting to visitors such as the general public. This would not be
possible with a single HMD. Third, a laboratory can provide much
more computing resources to power the display setup. When visu-
alizing large datasets, both performance and display resolution are
crucial. While there are high-resolution HMDs available, it is very
difficult to achieve high frame rates as they are only connected to a
single GPU. With a multi-display setup, we can scale the resolution
by adding additional rendering nodes.

In the future, we plan to release Viracocha as an open-source
software. The presented frontend application — CosmoScout VR —
is already open source [9]. Furthermore, we plan to revisit contem-
porary game engines such as Unity or Unreal and evaluate whether
they could serve as an alternative frontend for our framework. Over
the years, the software has matured significantly and as it became
more and more stable it now serves as a solid basis, both for research
regarding desktop-based scientific data visualization techniques, and
for new Virtual Reality approaches.



REFERENCES

[1] J. Ahrens, B. Geveci, and C. Law. ParaView: An end-user tool for
large data visualization. Visualization Handbook, 2005.

[2] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant,
J. M. Favre, and P. Navrátil. VisIt: An End-User Tool For Visualizing
and Analyzing Very Large Data. In High Performance Visualization–
Enabling Extreme-Scale Scientific Insight, pp. 357–372. Oct 2012.

[3] L. Clarke, I. Glendinning, and R. Hempel. The MPI message passing
interface standard. Technical report, 1994.

[4] M. Flatken, A. Berres, J. Merkel, I. Hotz, A. Gerndt, and H. Hagen.
Dynamic Scheduling for Progressive Large-Scale Visualization. In
E. Bertini, J. Kennedy, and E. Puppo, eds., Eurographics Conference on
Visualization (EuroVis) - Short Papers. The Eurographics Association,
2015. doi: 10.2312/eurovisshort.20151122

[5] J. Fritsch, M. Flatken, S. Schneegans, A. Gerndt, A.-C. Plesa, and
C. Hüttig. Raypc: Interactive ray tracing meets parallel coordinates,
2022. doi: 10.48550/ARXIV.2207.12011

[6] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, and C. Bischof. Vira-
cocha: An efficient parallelization framework for large-scale CFD
post-processing in virtual environments. pp. 50– 50, 12 2004. doi: 10.
1109/SC.2004.66

[7] P. Jöckel, H. Tost, A. Pozzer, M. Kunze, O. Kirner, C. A. M.
Brenninkmeijer, S. Brinkop, D. S. Cai, C. Dyroff, J. Eckstein,
F. Frank, H. Garny, K.-D. Gottschaldt, P. Graf, V. Grewe, A. Kerkweg,
B. Kern, S. Matthes, M. Mertens, S. Meul, M. Neumaier, M. Nützel,
S. Oberländer-Hayn, R. Ruhnke, T. Runde, R. Sander, D. Scharffe, and
A. Zahn. Earth system chemistry integrated modelling (ESCiMo) with
the modular earth submodel system (MESSy) version 2.51. Geoscien-
tific Model Development, 9(3):1153–1200, 2016. doi: 10.5194/gmd-9
-1153-2016

[8] A.-C. Plesa and C. Hüttig. Numerical simulation of planetary inte-
riors: Mantle convection in a 2D spherical shell. In Workshop on
Geodynamics, 2008.

[9] S. Schneegans, M. Flatken, and A. Gerndt. CosmoScout VR. doi: 10.
5281/zenodo.3381953

[10] S. Schneegans, L. Neary, M. Flatken, and A. Gerndt. STRIELAD -
a scalable toolkit for real-time interactive exploration of large atmo-
spheric datasets. In IEEE Visualization, Oktober 2017.

[11] S. Schneegans, M. Zeumer, J. Gilg, and A. Gerndt. CosmoScout VR: A
Modular 3D Solar System Based on SPICE. In 2022 IEEE Aerospace
Conference (AERO), pp. 1–13. IEEE, 2022. doi: 10.1109/AERO53065.
2022.9843488

[12] N. Q. Zhu. Data visualization with D3. js cookbook. Packt Publishing
Ltd, 2013.


	Introduction
	Software Architecture
	The Frontend: CosmoScout VR
	The Backend: Viracocha

	Use Cases
	Exploration of Weather Simulations
	Exploration of Chemistry-Climate Simulations
	Visualization of Mantle Convection

	Hardware
	Performance Example
	Conclusion and some Lessons Learned

