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ABSTRACT Natural disasters and epidemics are unfortunate recurring events that lead to huge societal and
economic loss. Recent advances in supercomputing can facilitate simulations of such scenarios in (or even
ahead of) real-time, therefore supporting the design of adequate responses by public authorities. By incor-
porating high-velocity data from sensors and modern high-performance computing systems, ensembles of
simulations and advanced analysis enable urgent decision-makers to bettermonitor the disaster and to employ
necessary actions (e.g., to evacuate populated areas) for mitigating these events. Unfortunately, frameworks
to support such versatile and complex workflows for urgent decision-making are only rarely available and
often lack in functionalities. This paper gives an overview of the VESTEC project and framework, which
unifies orchestration, simulation, in-situ data analysis, and visualization of natural disasters that can be driven
by external sensor data or interactive intervention by the user. We show how different components interact
and work together in VESTEC and describe implementation details. To disseminate our experience three
different types of disasters are evaluated: a Wildfire in La Jonquera (Spain), a Mosquito-Borne disease in
two regions of Italy, and the magnetic reconnection in the Earth magnetosphere.

INDEX TERMS Scientific visualization, high-performance computing, topological data analysis, in-situ
processing, interactive data processing, ensemble simulation, decision making.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

I. INTRODUCTION
Urgent decisions are made by a wide range of public bod-
ies, officials and scientists in response to dangerous or
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disastrous events. These events are mostly driven by the
ongoing growth in global warming and its associated climate
change is materializing in an increase of natural disaster
events. Examples of such natural disasters include Wildfires
(e.g., in Portugal, Croatia, and France) in 2017 [1], the (re-
)occurring Hurricanes/Typhoons in the Atlantic and Pacific
oceans [2], or extreme flooding such as the one that happened
in Germany in 2021 [3]. Also, the progressive expansion of
non-native mosquito species raises concern on the increased
risks of large epidemics such as dengue, chikungunuya, and
Zika [4]. Lastly, geomagnetic storms in the Earth’s magne-
tosphere are taxing trillions of dollars [5] in repairs through
disruptions in power grids, communication infrastructure,
and satellite operations.

With disasters affecting the local population, infrastructure
and environment, national and international authorities and
organizations started to analyze the evolution of the incident
to mitigate its effects. In this sense, simulation platforms
are becoming a necessary tool to support strategic analysis
for agencies, including operational units and incident field
crews, dispatch centers, and incident command posts [6], [7].
In fact, many public and private entities such as forest public
agencies, electrical utilities, insurance and forestry compa-
nies are already relying on science-based decision making
systems. These enable them to assess hazard and risk and
make decisions in real-time (e.g., CAL FIRE and electrical
utilities are using Wildfire Analyst®).

The urgent decision-making process involves multiple
stages starting with the acquisition of the latest data related
to the incident. Such data ranges from static topographic
datasets, like digital elevation models (DEMs), to live sensor
data describing the actual incident in physical units. An exam-
ple is hotspot data provided trough satellites, describing the
occurrence of above-normal thermal radiation when investi-
gatingwild fires. In order to evaluate the effects of the disaster
on additional entities, such as infrastructure, more datasets
are required. For critical infrastructure, these might be data
about buildings or powerlines allowing for a detailed impact
assessment.

Having the initial datasets acquired, domain experts then
trigger the disaster simulation. The challenge then is to
continuously update the simulation. This process not only
involves a continuous stream of new input data, but also
deals with forces in the field providing crucial updates on
the current situation. The urgency in decision-making, the
complexity of models, the uncertainty of nature, and the
amount of data to be processed and analysed, often limit the
use of such simulation approaches in real-time scenarios.

High-Performance Computing (HPC) is the field of using
supercomputers to solve large, computationally demanding
problems. Today, HPC systems are reaching an ExaFLOP
(1018 operations per second) of performance,1 and thus their
capabilities allow for estimating risks for different natural
hazards, the use of stochastic approaches to assess risks and

1www.top500.org

potential impacts at large scales and permitting the kinds of
data-driven workflows required by urgent computing. Such
supercomputers can facilitate the (near real-time) modeling
and simulation of complex phenomena, such as simulating
how wildfires or diseases spread or how the magnetic recon-
nection in the Earth magnetosphere evolves. Furthermore,
by tightly integrating and augmenting these simulations with
real-time sensor data (for example, near real-time satellite
information of hotspots) located in close proximity to the
disaster, we can:

• estimate how these disasters will unfold ahead of time by
including multiple alternative timelines through ensem-
ble simulations;

• quantify their potential economical and societal
expected impact in order to develop mitigation actions
such as to evacuate populated areas, reduce disease
transmission via public health interventions, or alter
satellite trajectories for better monitoring affected
areas.

The idea of combining multiple sources of information
(e.g., sensor data, big data, predictive simulations and anal-
ysis, visualization, etc.) is by itself not new [8], [9], [10],
but orchestrating and supporting these complex workflows
that leverage and exploit supercomputing resources remains
mostly unexplored.

Thus, there is a strong need for a software framework
which enables to: (i) orchestrate complex workflows on HPC
resources, (ii) integrate and link sensor data acquisition with
high-performance simulators, (iii) integrate and run ensemble
simulations (e.g., multiple perturbed) for various domains,
(iv) exploit advanced in-situ data analysis to extract key
information, (v) interactively visualize the results in order
to assess uncertainty, (vi) simplify data accessibility through
an easy-to-use graphical frontend for decision-makers and
domain experts.

In this paper, we give an overview of the VESTEC
project [11], which was an interdisciplinary project driven
by a consortium of both computer scientists and domain
experts. Throughout the project we developed a prototype
of a general-purpose framework that integrates extreme-scale
computing for urgent decision-making.

As depicted in Figure 1, VESTEC is foreseen to be used
in scenarios where a dangerous or critical event is detected
and transmitted to a crisis management center that can imme-
diately launch, monitor, analyze, and act on a continuously
evolving high-precision forecast of the detected critical sit-
uation. The main contribution of the VESTEC system is to
bring in heterogeneous data into supercomputers, such as data
coming from sensor or social networks and/or statistics from
the internet. This information is used to refine and steer the
disaster simulation forecast. VESTEC supports several data
analysis methods to distill out the most informative pieces
of ensemble simulations, which can be visually explored and
analyzed. In short, VESTEC aims to provide crisis man-
agement and to support operational disaster relief staff with

87806 VOLUME 11, 2023



M. Flatken et al.: VESTEC: Visual Exploration and Sampling Toolkit

FIGURE 1. VESTEC Overview: External data sources, e.g. provided by
satellites, are incorporated into extreme scale ensemble simulations
executed on high-performance computing machines. Crisis management
centers can guide the disaster relief forces based on the insight they got
from interactive data analysis and visualization. Additionally, feedback
from the forces in field should help the crisis manager to adapt and
tweak the simulation scenario.

the best possible knowledge of the evolving situation. Crisis
management staff can also inject domain-specific knowledge
into the VESTEC system to guide the evolving simulation,
which can then be used to influence the mitigation actions
prompted by the crisis manager. Since the source code is
released on GitHub,2 future extensions can come directly
from the community.

To demonstrate the scalability and effectiveness of the
VESTEC system at supporting urgent decision-makers,
we evaluate the system on three different use-cases:

• Probabilistic forest fire forecasting and monitoring;
• Mosquito-borne diseases spreading;
• Space weather forecasting.
The paper and its content are organized as follows.

First, in Section II, we describe project background and
related activities in urgent computing, exascale and in-situ
visualization, and topological data analysis. In Section III,
we introduce the VESTEC system, in which we describe the
key components of the system and reveal implementation
details. In Section IV, we describe and introduce the three
domain-specific use cases that we integrated in VESTEC,
describing their importance, their background, and how they
are simulated. In Section V, we evaluate the use-cases, show-
ing how the VESTEC system can be used to combat natural
disasters or diseases. Finally, in Section VI we draw some
concluding remarks and discuss directions for future work.

II. BACKGROUND
In this section, we present key background notions and
activities rooted in urgent computing, exascale and in-situ

2https://github.com/VESTEC-EU

visualization, and topology data analysis linked to the
VESTEC system.

A. URGENT COMPUTING
Even if HPC machines have a long history of simulating
disasters after the fact happened, it is less common for these
to be exploited in real-time as soon as a disaster is unfolding.
This requires data-integrated predictive HPC simulation with
the exploitation of real-time sensor data. Historically, the
SPRUCE project [12] experimented with such uses of HPC,
but this was enabled via the fairly static approach of providing
users with tokens that could then be redeemed to run urgent
jobs manually. The urgency of their workload (e.g., whether
they would only be given priority in the queue or addition-
ally would interrupt running jobs) determined the number of
tokens deduced for each run.

However, whilst such approaches as SPRUCE demon-
strated promise, the approach of manually submitting urgent
jobs based on tokens proved to be rather inflexible and very
much a solution for the early 2000s. By contrast, modern
urgent decision-makers require rich visualizations involving
insights gained from the latest real-time data. Therefore a
variety of workloads must run, but the exact time that they
need to execute is often unpredictable (e.g., driven by the
arrival of data). This dynamic behaviour is further compli-
cated by the fact that, additionally, individual simulations
can vary considerably in computational intensity, and sim-
ulation execution can be driven in real-time by emergency
responders.

Then, the challenge of running urgent workloads on HPC
systems is not just to run a specific predefined simulation
promptly as provided by SPRUCE, but instead to enable the
timely execution of many different coupled codes, driven by
the unpredictable arrival of data and computational steering.
Therefore, this represents a much more complex problem
than the one that has been solved previously.

Put simply, modern HPC machines are not designed for
such real-time workloads. There are two general reasons for
this:
(i) their batch queue systems are designed for overall job

throughput rather than minimising the wait and execu-
tion time associated to each individual job;

(ii) they do not operate within Service Level Agreements
(SLAs) constrains required by emergency workloads.

Given the prevailing research nature of many supercomput-
ers, it is not unusual for these machines to undergo some
degree of down time which, whilst annoying for research
workloads, could be catastrophic for emergency ones. While
the reader might assume the solution is to install a dedicated
machine for performing urgent simulations, this is often not
practical. Supercomputers powerful enough to handle latest
generation HPC workloads, involved in urgent simulations,
are extremely expensive and, thus, these dedicated machines
tend to be rather small. Consequently, most of the time such
machines are idle, while during a disaster they are often not
powerful enough to meet the requirements of the workloads.

VOLUME 11, 2023 87807



M. Flatken et al.: VESTEC: Visual Exploration and Sampling Toolkit

In the short to medium term, it is possible to provide tech-
nological solutions to these issues in a manner that enables
the rich flexibility required by emergency responders, which
indeed the VESTEC system, as described in Section III,
does. However, to properly support the processing of urgent
emergency workloads on HPC machines, policy changes are
required on behalf of the supercomputing sites. Such pol-
icy changes can be a significant hurdle requiring numerous
approvals. Thus, we believe that the VESTEC system has an
important role to play in demonstrating the benefits that can
be delivered to facilitate these long-term changes.

B. EXASCALE AND IN-SITU VISUALIZATION
Producing accurate forecasts in case of an unfolding disaster,
by combining real-time sensor data with numerical simula-
tions, lead to enormous data amounts. The sheer volume of
the raw data and the necessity to quickly provide insights
in order to improve decision-making involves challenges for
efficient data analysis and visualization. Especially in the era
of exascale computing, data analysis and visualization as well
as the corresponding algorithms have to be re-designed to
accommodate highly parallel data processing and interactive
user investigation.

In order to deal with these massive scientific datasets
produced by the urgent workloads, many use case specific
software solutions have been developed. Two well known
and generic applications in the field of scientific visualization
are ParaView [13] and VisIt [14]. Both are based on the
Visualization Toolkit (VTK) [15] and exploit a client/server
architecture to incorporate HPC resources for parallel pro-
cessing.

While offloading these heavy processing workloads to the
HPC machines greatly improved the time to solution, a main
bottleneck to tackle is data I/O. In classical post-processing,
the data is stored over multiple files on a distributed file
system. These files are then analyzed and visualized after-
wards. Just loading the data from the file system into the
main memory of the machines accounts for a large portion
of the total analysis time and often prohibits interactivity.
An increasing performance gap between theCPU andfile sys-
tem exacerbates this problem and classical post-processing
becomes often impractical.

To address the I/O bottleneck, a solution is to operate
the analysis and visualization pipeline directly on the HPC
machines while the simulation runs. This approach, known
as in-situ processing, allows the analysis and visualizations
steps to directly access the simulation data in main memory
and therefore strongly benefit from the supercomputer pro-
cessing power. An overview of in-situ processing techniques
for large scale scientific visualization is given in [16].
In-situ analysis and visualization is enabled in ParaView

by using the Catalyst library [17], [18]. Each simulation code
integrates a specific adaptor that passes its internal data to
VTK in a 0-copy way, i.e., by just sharing memory locations
without allocating new memory. Then, the data is forwarded

from the simulation model to the analysis and visualization
pipelines in order to perform, for example, Topological Data
Analysis (TDA) (cf. Section II-C), data reduction, or enabling
an in-situ live visualization. The developed data analysis
pipelines running on top of ParaView rely on the Topology
ToolKit (TTK) [19], [20] in order to compute topological
abstractions. The Topology ToolKit (TTK) is an open-source
software library, available on GitHub,3 for Topological Data
Analysis. As soon as the data analysis step starts providing
results, the ParaView (or ParaView Lite) graphical user inter-
face is used to visually explore them.

Besides classical rasterization with OpenGL, which usu-
ally requires a dedicated GPU for rendering, ParaView
additionally provides a CPU based ray-tracing engine. This
engine is implemented using the Intel OSPray open-source
library. Intel OSPRay [21], [22] is highly optimized for
scientific visualization and supports the combined ren-
dering of volumetric and geometric data. Since compute
nodes on a supercomputer are often not equipped with
dedicated graphics hardware, OSPRay utilizes the mas-
sive parallelism of CPU cores available on modern HPC
systems via multi-threading and vectorization. Also,
the implemented ray-tracing-based rendering algorithms,
in combination with physically-based materials, enable high-
fidelity photo-realistic visualizations at interactive speed.

C. TOPOLOGICAL DATA ANALYSIS
To generate insight into simulation ensembles of an unfold-
ing disaster, efficient data analysis has to be applied. These
analysis algorithms should support:
(i) the extraction of the most dominant features from all

simulations in the ensemble;
(ii) the comparison of simulation runs from the overall

ensemble by creating a compact representation for each
simulation member. These representations will help
cluster the simulations and identify outliers;

(iii) the compression of the simulation results for efficient
local rendering.

Topological Data Analysis (TDA) [23] has demonstrated
over the last two decades its utility to support interactive
visualization tasks [24]. It robustly and efficiently captures,
in a generic way, the features of interest in scalar data. These
features are stored within concise, yet informative, topolog-
ical data signatures. As discussed in Section III-D, these
signatures are typically orders of magnitude smaller than the
data itself and they can be used as a proxy to the data. Exam-
ples of successful applications of TDA include e.g. turbulent
combustion [25], [26], [27], material sciences [28], [29],
[30], [31], nuclear energy [32], fluid dynamics [33], medical
imaging [34], chemistry [35], [36], [37] or astrophysics [38],
[39] to name a few. An appealing aspect of TDA is the ease
it offers for the translation of domain-specific descriptions
of features into topological terms. Moreover, to distinguish
noise from features, concepts from persistent homology [23],

3https://github.com/topology-tool-kit
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FIGURE 2. Critical points (spheres, light brown: minima, light green:
maxima, other: saddles) and persistence diagrams of a clean (a) and noisy
(b) 2D scalar field. From left to right: 2D data, 3D terrain visualization,
persistence diagram. In both cases, the two main hills are clearly
represented by salient persistence pairs in the diagrams. In the noisy
diagram (b), small pairs near the diagonal correspond to noisy features in
the data. 
2020 IEEE. Reprinted, with permission, from IEEE [62].

[40] provide importance measures, which are both theoreti-
cally well established and meaningful in the applications, and
particularly useful for multi-scale data representations [41],
[42], [43]. Among the existing abstractions, such as con-
tour trees [44], [45], [46], [47], Reeb graphs [48], [49],
[50], [51], or Morse-Smale complexes [52], [53], [54], [55],
we focus in the following on the persistence diagram [40].
Its conciseness, stability [56], and expressiveness make it
an appealing candidate for data summarization tasks. For
instance, its applicability as a concise data descriptor has
been well studied in data science [57], [58], [59], [60], [61].
In visualization, it provides visual hints about the number,
data range and salience of the features of interest, which helps
users visually apprehend the complexity of their data, and
distinguish salient features from noise.

Given an input scalar field f (provided on a 1D, 2D or 3D
triangulation or regular grid), its persistence diagram D(f )
is a concise and stable topological signature which encodes
the topological features of the data as a function of their
salience [23]. Technically, this is a 2D point cloud (illus-
trated in Figure 2), where each off-diagonal point denotes a
topological structure. Its X coordinate corresponds to the f
value of the creation of the topological structure, while its
Y coordinate corresponds to the f value of its destruction,
as one continuously sweep the data by increasing f values.
Its vertical distance to the diagonal denotes its salience and
is called topological persistence. In the examples of Figure 2,
two prominent structures (i.e. the two hills of the terrain) cor-
respond to the two points standing away from the diagonal,
while low amplitude noise (b) corresponds to points in the
vicinity of the diagonal.

Generally, persistence diagrams can be computed
by matrix reduction [23]. For special cases, such as
saddle-extremum diagrams (which are particularly relevant in
our applications), they can be computed very efficiently from
merge trees [46]. Their implementation is publicly available
in TTK [19], [20].

When dealing with time-varying data and ensembles,
we have to use a methodology for comparing them, or tech-
nically, measuring their topological distance. The distance
between two diagrams D(f ) and D(g) can be evaluated
with an established metric, called the L2-Wasserstein dis-
tance [23], [63], [64], [65], noted W2

(
D(f ),D(g)

)
. It can be

computed by solving an optimal assignment problem, a noto-
riously computationally expensive task, for which exact [66]
and approximate [67], [68] algorithms exist.
Given this distance metric, datasets can then be compared

by comparing their persistence diagrams. This paves the way
for several advanced statistical analysis of ensemble data.
In particular, given a set SD = {D(f1), . . . ,D(fN )} of per-
sistence diagrams (typically corresponding to the diagrams
of an ensemble of N scalar fields), let F(D) be the Fréchet
energy of the set, under the metricW2:

F(D, α) =

∑
D(fi)∈SD

W2
(
D,D(fi)

)2
. (1)

Then the diagram D∗
∈ D (where D is the space of

persistence diagrams) which minimizes F(D) is called the
Wasserstein barycenter [65] of the setSD (or its Fréchet mean
under the metric W2). From a practical point of view, this
is a persistence diagram which is well representative of the
set SD (i.e. of the ensemble). Then, this diagram barycenter
can act as a visual summary of an entire ensemble, but it can
also be used in more advanced analysis tasks. In particular,
it can be used within the popular k-means algorithm, to derive
a topological clustering of the ensemble (in the space of
persistence diagrams) which is faithful to the topological
features found in the ensemble.

III. THE VESTEC APPROACH
Figure 3 illustrates the overall architecture of the VESTEC
system, where a wide range of urgent decision-makers inter-
act with the system via their familiar, existing, domain-
specific tools. These integrate with the core VESTEC system
(the blue component of Figure 3), also known as the mar-
shalling and control system. This marshalling and control
system can be thought of as middleware which controls the
supercomputers and simulation runs. The interaction between
client applications in yellow and the VESTEC system in blue
occurs via two routes; a RESTful API and the External Data
Interface (EDI). The RESTful API is a predefined set of
services for undertaking activities common to many urgent
workloads including the management of incidents, retrieval
of data, and tracking of performance statistics. Additionally,
each type of urgent situation often provides bespoke data to
the system for the underlying simulations to action. This is
where the EDI comes in since it can operate in both pull
and push modes. The pull mode is designed for data that
will be provided by specific sources, such as satellites or
social networks. Conversely, the push mode is designed for
the situation where a data source explicitly sends data to
the VESTEC system, for example, by real-world activities
occurring in the urgent environment. In both approaches, the
EDI is driven by rules that match the source of the data with
information where it should be posted to for ingestion by the
system. Moreover, the push ingestion mechanism effectively
provides a flexible API that tools can use in a domain-specific
manner, for instance pushing in run-specific configuration
that the RESTful API has not envisaged.
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FIGURE 3. VESTEC Architecture: End-users (green) do interact with front-end applications
(yellow) in order to steer and analyse their use cases. The VESTEC system (blue) abstracts
and hides the complexity of workflow execution, job submission, data transfer, and job
monitoring by providing flexible services via a RESTful API. Simulations, in-situ data
processing and analysis is executed on remote HPC environments (purple).

As a technical solution to address the unsuitability of
current generation HPC machines to run real-time urgent
workloads, as highlighted in Section II-A, the VESTEC sys-
tem is designed to federate over multiple HPC machines, for
instance, all the supercomputers of Europe. It then determines
on a simulation-by-simulation basis where to execute the
simulations. This trade-off is based on calculated metrics
including predicted queue wait time, application suitability
for a given machine, and overhead of any data movement.
Additionally, this approach solves the reliability SLA issue
highlighted in Section II-A since the VESTEC system con-
tinuously monitors the progress of submitted and running
simulations. In case of a system failure, it will re-submit the
job elsewhere, in a way transparent to the user.

A. VESTEC ARCHITECTURE AND WORKFLOWS
Urgent workloads typically comprise numerous repeatable
steps, each of which depends upon specific conditions such
as the completion of proceeding simulations or the arrival
of input data. Throughout this research, we have found it
is natural to describe these as workflows, which is pro-
vided by the workflow manager in blue of Figure 3. These
workflows are built upon the Advanced Message Queuing

Protocol (AMQP) [69] and the RabbitMQ framework [70].
RabbitMQ provides an implementation of AMQP which is
used as the substrate for communicating messages between
workflow stages andmarshalling their activation. Each urgent
workload, defined per use-case, is provided to the system
as a set of annotated Python functions that make up an
overarching workflow, with triggers fired that will schedule
other stages to run [71]. The EDI, handling the arrival of
data, integrates closely with this. The data is forwarded to the
appropriate workflow stage on arrival, and theworkflow stage
handling this as appropriate. Using this approach, all use-
case-specific functionality is provided in a structured manner.
Thus, it enables different workflows to plug in and out, and
enables the system to handle a variety of situations. Addi-
tionally, this approach is agnostic to the data formats. The
applications triggered during the execution of the workflow
are responsible for data handling.

The majority of the VESTEC system (illustrated in
Figure 3) can be considered as a set of underlying ser-
vices which abstract the mechanism of running urgent work-
loads across multiple HPC machines. When integrating new
use-cases with the VESTEC system, programmers need to
develop their own bespoke workflows. These workflows
call lower-level managers routines via pre-defined APIs.
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FIGURE 4. Example of interaction between a use-case workflow and the services forming the VESTEC
system.

An example of this is the scheduling of simulations on the
HPC machine (see Figure 4). To achieve this, the use-case-
specific workflow stage will trigger the appropriate API call
of the SimulationManager (SM)with details of the job to run,
input data-sets required, and optional workflow callbacks to
be executed when the job reaches specific states. The Simula-
tion Manager then calls the Machine Status Manager (MSM)
that continually polls the status of connected HPC machines.
MSM determines the exact machine used for execution based
upon a machine learning model. This model predicts the
queue wait time correlated against application suitability.
Once the target machine is determined, the SM then calls the
Data Manager (DM) to undertake any required data move-
ment to set up the simulation on this specific supercomputer.
The physical connection to HPC machines is handled by the
Machine Interface (MI), providing a set of services to the
simulation, machine status, and data managers, which are
translated into appropriate commands depending upon the
specifics of the machine. For instance, if an HPC machine is
connected to the system via OpenSSH and is using the Simple
Linux Utility for Resource Management (SLURM)4 batch
queue system, the machine interface handles this by using
the OpenSSH adaptor with SLURM commands generated
for gathering the status of the queue, and for submitting and
cancelling jobs. All of this is abstracted from the workflow
stage, with a unique identifier. This identifier can be used to
retrieve further information for that job, e.g. the queue used,

4https://slurm.schedmd.com/

the number of compute nodes utilized, or sizes of memory
allocated.

B. SUPERCOMPUTER SIDE ORCHESTRATION
The VESTEC system federates over multiple HPC machines
and manages submitted simulations. However, at the indi-
vidual machine level, there is a significant complexity that
must be managed. This includes how to physically configure
different simulations, how to couple simulations, and how to
undertake any required data movement. Ideally, all of this
should be achievable in a machine-independent manner so
that the VESTEC system can remain system agnostic. One
might assume that a shell script approach could be used,
however, this was quickly found to be brittle and lacking
generality [72].
Furthermore, there is also a trade-off between the flexi-

bility provided by fine-grained HPC machine federation and
the overhead that this entails. Therefore, the ability to couple
simulation executions on an HPC machine, such that upon
the completion of a simulation the next one will run automat-
ically, is beneficial. From the VESTEC system, these coupled
execution can be seen as a single atomic step, requiring only
one queue submission.

To meet these requirements, we use the Common Work-
flow Language (CWL) [73] on the HPC machine side.
CWL is a mature standard for workflow description which
has gained popularity in numerous fields. Therefore, CWL
provides a well-engineered reference execution tool to run
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the HPC machine-side workflows. Hence, all workloads are
described in CWL. The script is then submitted to the batch
queue system, with the CWL system then deciding what
applications to execute and when [74]. In addition to provid-
ing a convenient approach for coupled application execution,
CWL also presents a structured way of configuring the appli-
cations themselves. In this manner, skeleton configurations
are provided via CWL, with run specific parameters then
injected via YAML files. In this way, the core CWL configu-
ration is machine agnostic, enabling quick and easy porting of
codes between supercomputers, with machine-specific spe-
cialisation provided by a single YAML file.

A VESTEC workflow targeting a particular urgent
decision-making scenario invokes the execution of multiple
applications as depicted in the purple box of Figure 3. The
workflow is then defined in CWL and includes applications
for pre-processing, simulation models, and post-processing.
For example, a CWL configuration for such a workflow first
prepares the input data, then executes a numerical simulation
model for performing the forecast, and finally computes key
statistics in a post-precessing step.

The VESTEC system automatically determines the appro-
priate level of granularity for executing these stages, depend-
ing on the state and load of the HPC machines. For example,
if the available resources are limited, then all stages are sub-
mitted as a single atomic step. Conversely, if there are enough
resources available, logically grouped steps will be submitted
and executed concurrently. This is entirely abstracted from
the user and workflow.

C. EDGE/IoT SENSORS AND DATA
As described earlier in this section, data is ingested into the
VESTEC system via the External Data Interface (EDI). It can
operate in both a pull and push mode to best suit the data
source. Endpoints in the EDI are registered by the use case.
This is typically done during the initialization of workflow
stages. The stage set up rules about which workflow stage
should be activated when data arrives from a defined source.

As described in Section IV, the use cases of VESTEC
exploit different sets of input sensor data. At the begin-
ning of the project, we initially defined the term sensor
as the measuring tool being mounted on a remote sensing
apparatus. In addition to that sensor, datasets store dynamic
measurements that are highly dependent on space and time.
Throughout the integration of the different use cases, we con-
cluded that the initial sensor data, e.g. obtained by satellite
sensors, sometimes need to be validated and edited by the
user. Therefore, we introduce the possibility to create new
input data that were not acquired by the sensor itself but
instead collected by forces on the field. With these feature,
we consider the user itself as a source of sensor data.

D. TOPOLOGY DATA ANALYSIS FOR URGENT DECISION
MAKING
As introduced in Section II-C, Topological Data Analysis
(TDA) has demonstrated over the last decades its utility to

FIGURE 5. Statistical analysis of persistence diagrams on example data
sets from the three VESTEC use cases (a: Embedding of persistence
diagrams as a 3D point cloud through MDS for the Mosquito-Borne
Diseases use case, b: Diagram embedding with additional topological
clustering on the Space Weather use case, c: Topological clustering on the
Wildfire use case).

support interactive analysis and visualization. In VESTEC,
for each workflow, we want to exploit TDA in order to gener-
ate descriptive representations of the raw data. Since, we deal
with ensemble simulations and large-scale data, we have to
define efficient strategies to compute such topological rep-
resentations. First, we define an in-situ computation pipeline
for extracting such proxies during simulation, and then, in a
post-processing step, we perform a statistical analysis.

1) IN-SITU COMPUTATION OF TOPOLOGICAL PROXIES
In order to enable in-situ computation in VESTEC, we rely
on the Topology ToolKit (TTK) [19], [20]. TTK leverages the
VTK/ParaView ecosystem, that supports in-situ computation
with Catalyst [18]. Typically, an analysis pipeline using TTK
modules is first modeled in the form of a Python script, which
can be generated manually with a text editor or through the
ParaView user interface. Next, Catalyst can be configured to
run the above Python script at user-defined time steps of the
simulation. Note that the simulation code must implement an
interface with Catalyst, to make its internal data available in
the form of VTK objects. The output of the analysis pipeline
can be, itself, stored to disk if desired. In VESTEC, this
strategy is particularly relevant for the in-situ computation
of topological proxies. It enables to compute and store these
reduced data representations, without having to store the
actual simulation data, which would not be feasible in an
exascale context.
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The persistence diagram (section II-C) is used in VESTEC
as the main topological proxy for a reduced representation
of each scalar field. It is chosen for being concise, multi-
scale, stable and representative of the main features of the
data. Additionally, it may be desirable for some applica-
tions to store selected scalar fields for key time steps at full
resolution. To cope with data size, a topology-preserving
compressor can also be used [75]. The persistence diagrams
and the topology-preserving compressor are computed in-situ
for different time steps of the simulation. The results are then
written into a CINEMA database [76], which is a SQL-type
database for VTK files. This database is exploited for statis-
tical analysis of the descriptors in a post-hoc post-processing
fashion.

2) STATISTICAL ANALYSIS OF PERSISTENCE DIAGRAMS
As soon as the CINEMA databases are made available,
a statistical analysis step is performed to compare different
simulation runs of an ensemble.

To compare scalar fields and identify similarities or dif-
ferences between the results of different simulation runs,
TTK supports efficient approximations [62], [68] of Wasser-
stein distances (section II-C) between persistence diagrams.
Given the ensemble of persistence diagrams encoded in the
database, aWasserstein distance matrix is computed and used
to embed the diagrams as a 3D point cloud. This is achieved
byMulti-Dimensional Scaling (MDS) [77], a standard proce-
dure for dimension reduction in data science. In short, MDS
consists in generating a point cloud (in our case in 3 dimen-
sions, where each point represents a persistence diagram),
such that pairwise Euclidean distances in 3D are optimized
to coincide (as much as possible) with the pairwise distances
provided by theWasserstein distancematrix. For an ensemble
of persistence diagrams, computed at different time steps
for different simulation runs, this representation effectively
displays dissimilarities between simulation runs.

In the context of the VESTEC project, new methods
were developed to provide summarized representations of
an ensemble of persistence diagrams, specifically to com-
pute barycenters and clusters of diagrams in a progressive
and efficient way [62], [78]. Such progressive algorithms
guarantee time constraints, which are important for urgent
decision making. These algorithms are available in TTK
and used to give insight about the trend variability in an
ensemble of simulation runs. The barycenters provide visual
clues about the main features, while our centroid-based topo-
logical clustering finds a classification of the data based on
their topology, together with a barycenter of each cluster. In
practice, such a clustering enables the identification of several
trends in the ensemble (in terms of features of interest), and
each trend can be represented by its barycenter diagram,
which is a faithful visual summary of the diagrams of a given
cluster [62], [78], [79].

Figure 5 illustrates these operations on example data sets
from the three VESTEC use cases. Figure 5a shows the

visualization provided by the embedding of persistence
diagrams with MDS for five simulation runs of the
mosquito-borne disease use case spawning one year each,
which illustrates the similarity between runs (one color per
run). Each point corresponds to a single persistence diagram.
In particular, the five runs have a similar temporal pattern,
describing a closed curve (the simulation spans a full year),
with sharp U-turns located at solstices. In contrast, the same
representation on four runs of the Space Weather use case
with different input parameters (Figure 5b) shows how the
runs exhibit distinct behaviors, past a certain point in time.
The embedding is augmented with the result of the topo-
logical clustering (colors) performed on the last steps of the
simulations. Figure 5c shows the result of the topological
clustering on a small data set from the Wildfire use case,
where the clustered diagrams (top row) match a ground truth
classification (bottom right). The centroids (top row, gray dia-
grams) are representative of the topology inside each cluster.

E. VISUALIZATION AND WEB INTERFACE
As mentioned earlier in this section, the applications high-
lighted in yellow of Figure 3 include the visualization and
data analysis tools that the end-users can interact with. Since
each use case could have different requirements, e.g., linked
to user interactions and visualization techniques for their
specific data, we support and integrate tailored visualization
applications to demonstrate that VESTEC supports data anal-
ysis and visualization for many application domains.

Currently, the following visualization applications are inte-
grated in the system.

1) WILDFIRE ANALYST
The Wildfire Analyst web interface, developed by Tecno-
sylva for the VESTEC project, is based on the Wildfire
Analyst®API and allows users to quickly estimate fire
behavior probabilities during forest fire incidents. It supports
them in making urgent decisions such as where to locate
resources, where to construct a fireline or where and when
to protect or evacuate assets or specific locations. The Wild-
fire Analyst web frontend application directly communicates
with the VESTEC system through the dedicated Restful API.
The bi-directional communication allows triggering several
processes in the VESTEC system according to the predefined
workflows. These processes include gathering/fetching of
input data, preparing the data according to the user defined
area of interest, preparing the input data to be forwarded
to the simulation code, storing and moving the simulation
results, and providing results back to the frontend application.
The Wildfire Analyst web frontend as depicted in Figure 6
is the main application for the forest fire use case. The user
directly interacts with this graphical user interface in order to
configure and run simulations and to assess and analyze its
results.

The user interface is equipped a Geographical Informa-
tion System (GIS) component that has been specifically
designed and developed for urgent decision-making purposes
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FIGURE 6. The wildfire analyst web user interface developed in VESTEC.

FIGURE 7. ParaView interface with an analysis pipeline showing two
slices of a simulated Space Weather magnetic field.

in VESTEC to support the forest fire use case (described in
Section IV). It allows users to visualize and edit hotspot data,
e.g., captured by remote sensing satellites. Users can eval-
uate and modify their metadata, or add additional hotspots.
Furthermore, the user interface allows setting forest fire sim-
ulation parameters and triggering new forest fire behavior
simulations based on the hotspots or existing assets. Finally,
the corresponding results of the simulation runs (static and
probabilistic forest fire simulations) are visualized.

2) ParaView
Reference [13] is an open-source, multi-platform data analy-
sis and visualization application. ParaView users can quickly
build visualizations to analyze their data using qualitative and
quantitative techniques (cf. Figure 7). The data exploration
can be done interactively in 3D or programmatically by using
ParaView’s batch processing capabilities. ParaView itself is
based on a client-server architecture, that enables the analysis
of extremely large datasets, e.g., as produced by the space
weather use case (described in Section IV). The server then
exploits the distributed memory computing resources on the
HPC machine. While the server now runs in parallel on
the supercomputers to process datasets of petascale size, the
client can be executed on commodity hardware such as a
laptop. Therefore, ParaView has become a state-of-the-art
tool in many national laboratories, universities, and indus-
tries, and has won several awards related to high-performance
computing.

FIGURE 8. ParaView Lite is the web version used in VESTEC. The figure
depicts a rendering of a persistence diagram in the web browser.

FIGURE 9. CosmoScout VR: Analysing and interacting large-scale terrain
data in virtual reality environments.

Besides the classical approach of using ParaView as a
desktop application, VESTEC exploits and extends ParaView
Lite. ParaView Lite is a web-based visualization application
based on vue.js that enables data analysis and visualization in
a web browser. In practice, the frontend application connects
to a running ParaView server instance on the HPC machine,
which is connected to the simulation using Catalyst [17], [18].
This setup is used when doing in-situ processing. Data from
the simulation is processed and rendered on the server. The
frontend application, either ParaView or ParaView Lite, just
receives a video stream at interactive frame rates. Within this
eco-system, all functionalities available in TTK, as described
in section III-D, can be exploited. Furthermore, interactive
ray-tracing, based on Intel’s OSPRay rendering library, can
be performed.

3) CosmoScout VR
References [80], [81], as depicted in Figure 9, is a modular
virtual universe developed as open-source software at the
GermanAerospace Center (DLR). Because of its strong focus
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FIGURE 10. CosmoScout VR: Visualization and analysis of space weather
phenomena. The parallel coordinate plot enables end-users to quickly
select subdomains in the data based on multiple thresholds.

on virtual reality and user interaction, the seamless navigation
allows end-users to explore massive geo-referenced datasets.
This data exploration includes tasks such as measuring ter-
rain structures, the identification of obstacles to guide relief
forces, or to assess mitigation strategies for the disaster being
studied.

In particular, CosmoScout VR enables 3D immer-
sive visualization, analysis, and presentation of large-scale
Earth observation and remote sensing data, and this data,
in VESTEC, is then augmented with the simulation and
analytic results. In addition to the visualization of 2D and
2.5D surface data, an interactive volume rendering approach
based on Intel’s OSPRay library [21] has been developed
and integrated. This plugin enables interactive visualization
of massive space weather simulation results as depicted in
Figure 10.
To provide the end-users with detailed visualizations of

context information, e.g., through monthly temperatures or
precipitation values, the interfaces based on the Web Map
Service (WMS) in CosmoScout VR have been extended
to enable querying time dependent data. As described in
Section III-D, it has been also evaluated and demonstrated
the usefulness of the topological proxies for urgent decision
making, by combining their visualization with the simulation
results. Therefore, a brushing-and-linking approach was inte-
grated. End-users can directly interact with the persistence
diagrams. They can brush data in the diagram and, then, the
selected data is immediately highlighted in the 3D view of
CosmoScout VR. With this feature, end-users can quickly
identify and select prominent features within the ensemble
simulation and directly spot the areas of interest. Finally, the
user interface has been extended with a graph-based editor,
as depicted in Figure 14, to allow user-friendly data analy-
sis. This HTTP and JavaScript-based user interface further
enables direct communication with the VESTEC system by
integrating the end-points of the RESTful API, described
in section III. Therefore, end-users can not only fetch and
visualize result data, but also login to the VESTEC system,
define and trigger the execution of an incident or upload some

input data for the simulation itself, e.g., the latest information
from the field.

IV. URGENT DECISION MAKING: THE VESTEC USE-CASES
Real-time emergency response applications require the com-
bination of highly parallel simulationswith high-performance
data analytics [82], [83], [84], [85], [86]. Classical exam-
ples for real-time disaster simulations are simulations and
predictions of earthquakes, floods / tsunamis and typhoons,
wildfires, diseases, critical traffic simulations, and simula-
tions of evacuation scenarios. In the following, the VESTEC
use-cases and their simulators are described: mosquito-borne
diseases, magnetic reconnection in space weather, and prob-
abilistic forest fire forecast and monitoring.

A. MOSQUITO-BORNE DISEASES
The dynamics of mosquito abundance over time represent
a crucial ingredient to assess the risk of vector-borne dis-
ease outbreaks and their potential spread in human pop-
ulations. The main goal of the Mosquito-Borne Diseases
(MBD) use-case is to integrate innovative epidemiological
models with high-performance computing approaches, data
analytics processes, and visualization tools to support urgent
decision-making during future epidemic threats. Such goal
was motivated by the progressive expansion of tropical dis-
eases transmitted throughmosquito bites to temperate climate
areas. Globalization and climate changes have led different
Aedes species to expand their habitat to temperate regions.
This phenomenon is raising significant concern in Europe
since there could be an increasing risk of experiencing large
epidemics linked to diseases that have been primarily char-
acterized by sporadic and short transmission chains. The risk
associated with mosquito-borne diseases largely depends on
the abundance of competent vectors for the transmission of
the infection. The estimate of the potential vector abundance
is a crucial issue for the public health decision-makers, as the
CDC Epidemic Prediction Initiative well documents [87].
Existing computational models cannot estimate the absolute
abundance of different mosquitos’ species at high resolu-
tion over large spatial scales, nor update estimates in nearly
real-time to reflect changes in the meteorological or epidemi-
ological conditions. A novel modeling approach extending
on [88] was therefore developed, calibrated as informed by
a large set of entomological data collected in the last decades
in Italy and the US, and integrated into the VESTEC system.

1) SIMULATION
The modeling approach extends [88] and it is based on two
simple ideas. The first one is that the overall abundance of
the vector is driven by a variety of socio-demographic and
eco-climatic factors, such as gross domestic product (GDP),
human density, temperature, and precipitation records. The
second idea is that an increase in the abundance of adult
mosquitoes occurs because of persisting favorable tempera-
ture conditions over a certain period. Specifically, we assume
that the relative abundance of female adult mosquitoes at any
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given day d can be approximated with a logistic function of
the average temperature observed over a certain time window
preceding that day and a set of static socio-demographic and
eco-climatic measures associated with the geographical area
considered. Leveraging on available estimates on the capture
rate associated with different Aedes species and mosquito
traps, the developed model can rapidly produce estimates on
the absolute abundance of the vector population for each day
of the year with a spatial resolution of 250m x 250m, and
compute the transmission potential associated with dengue,
chikungunya and Zika across any location of interest in
Europe. Model parameters were calibrated separately for Ae.
aegypti and Ae. albopictus through a Markov chain Monte
Carlo approach applied to the Negative Binomial likelihood
of observing the number of captured female adult mosquitoes
over time across different years and geographical locations.
The Mosquito-Borne Diseases (MBD) simulator is suffi-
ciently flexible to be integrated with any HPC infrastructure
and to be coupled with sensor data or weather simulation
forecasts to provide real-time updates on the current outbreak
risks.
The production of a massive variety of scenarios accounting
formodel uncertainties on a large spatial scale requires proper
management of processing power and memory to provide
timely model estimates to the end-user. Its implementation
within the VESTEC framework, therefore, includes the man-
agement of simulation ensembles, progressively building up
statistically accurate pictures of emerging time-critical phe-
nomena, the integration of suitable data compression, the
extraction of topological features characterizing the output
data, and the appropriate visualization of results.

B. SPACE WEATHER FORECASTING
In the context of space weather simulations, our goal is to
perform ensemble simulations ofmagnetic reconnection [89],
[90] under several different space weather conditions (e.g.
different solar wind velocity, and magnetic field) to enable
data analysis and uncertainty quantification studies.Magnetic
reconnection is an important physical phenomenon regulating
the exchange of energy and momentum between the solar
wind and Earth’s magnetosphere [91], [92], [93]. In essence,
magnetic reconnection converts the magnetic field stored
in Earth magnetosphere into kinetic energy of plasma jets.
Among other effects, magnetic reconnection jets are respon-
sible for generating aurora on the Earth. The main scientific
question we address with VESTEC is how the magnetic
reconnection dynamics varies by changing the space weather
conditions. To address this question, we spawn and moni-
tor multiple iPIC3D simulations. iPIC3D [94] is a widely-
used, massively parallel Particle-in-Cell (PIC) code, used for
magnetic reconnection and magnetospheric modeling. For
demonstration purposes, we use the base configuration from
the GEM Reconnection Challenge [95]. The GEM challenge
is a community-defined benchmark to understand which
simulation model accurately captures magnetic reconnection

dynamics and in particular the rate magnetic reconnection
occurs. The GEM challenge simulation configuration mimics
the configuration of Earth’s magnetotail and can be applied
for studying magnetic reconnection under different condi-
tions varying the intensity of a background magnetic field to
mimic the dayside magnetopause reconnection or the back-
ground densities of plasma populations.

For the ensemble simulations, we use different parameters
characterizing the solar wind conditions, e.g., density and
magnetic field convected by the solar wind and perform 3D
iPIC3D simulations. For simplicity, we focus on characteriz-
ing the magnetic reconnection dynamics by varying the inten-
sity of a background magnetic (called magnetic guide field)
along the direction perpendicular to plane where the recon-
nection occurs (in our simulation, the reconnection develops
on the x − y plane so the background guide field is indi-
cated with B0z). Therefore, several pre-processed input files
with different backgroundmagnetic fields are exploited. Each
simulation of the ensemble provides the characteristic distri-
bution functions to be compared directly with the observed
distribution functions from the NASA Multiscale mission5

[96] and particle-trajectories for further post-processing and
data analysis [97].

1) SIMULATION
As said earlier in this section, to simulate SpaceWeather phe-
nomena we use the Particle-In-Cell method (PIC) [94], [98].
The PIC method focuses on simulating the trajectories of
plasma particles, such as electrons and protons. The method
itself calculates the forces between particles (e.g., Coulomb
and Lorentz forces) using a mean-field grid-based method.
We calculate the fields on each grid point by applying and
solving Maxwell’s equations, where we are given the current
density and charge on each point in the grid. We redirect
the interested reader to excellent books on the topic of com-
putational plasma physics [99], [100] for a more detailed
explanation of the method. Implicit PIC methods, such as
the one iPIC3D uses, allows for simulations with relatively
large time step and grid spacing, when compared to explicit
methods.

Algorithmically, the PIC method is composed of four dis-
tinct phases. The first phase initializes the particle positions,
velocities, and electric/magnetic fields and is followed by the
remaining three phases: Particle Mover/Pusher, Particle-to-
Grid Interpolation (also known as Moment Calculation), and
the Field Solver.

a: THE PARTICLE MOVER
The Particle Mover (or Pusher) is responsible for solving
the equation associated with the motion of each simulated
particle based on its position xp and its velocity vp. We use
an implicit in-time discretization scheme for the particle
equation of motions, as measured in CGS units, and couple

5Available on the MMS Science Data Center (SDC) at https://lasp.
colorado.edu/mms/sdc/public/
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that with a predictor-corrector scheme to calculate average
velocities according to v̄p = (vnp + vn+1

p )/2 during the time-
step 1t with n indicating the time level:

ṽp = vnp +
q1t
2m

Ēp (2)

v̄p =
ṽp +

q1t
2mc

(
ṽp × B̄p +

q1t
2mc (ṽp · B̄p)B̄p

)
(1 +

q21t2

4m2c2
B̄2p)

, (3)

where p is the index of the calculated particle, q andm are the
particle charge and mass, respectively, and c is the familiar
speed of light in vacuum media.

The number of iterations we use to compute v̄p is either
set by a pre-described error tolerance (configured by an
expert) or manually fixed to a small number of iterations.
In our implementation, we use three different iterations for
the electron and proton particles. To compute v̄p, we depend
on both the electric andmagnetic field for a particular particle
position, Ep and Bp, respectively. However, the values of Ep
and Bp are only available and defined at the grid points in the
PICmethod, andmust thus be computed using an interpolated
(or weighted) functionW (xg − xp) that we define as:

W (xg − xp) =

{
1 − |xg − xp|/1x if |xg − xp| < 1x
0 otherwise.

(4)

Here we use a linear interpolation function (W (xg − xp))
albeit higher-order function can be used. Through interpola-
tion, we can easily calculate both the electric and magnetic
field at a particular particle position of interest from the values
on the grid-point g:

Ep =

Ng∑
g

EgW (xg − xp) Bp =

Ng∑
g

BgW (xg − xp). (5)

Knowing the average particle velocities, we now can
update each particle position (and its velocity) according to:{

vn+1
p = 2v̄p − vnp

xn+1
p = xnp + v̄p1t.

(6)

For a more detailed and comprehensive mathematical
derivation of the discretized equation, we refer the interested
reader to [98], [101], and [102].

We would like to point out and stress that the particle
mover/pusher consumes the majority of the computational
time when simulating Space Weather phenomena, and there-
fore, is an excellent candidate for performance optimiza-
tions. For example, it is not uncommon for the particle
mover/pusher to claim between 68%-73% in typical Space
Weather simulations [103] (subject, of course, the studied
problem at hand). Hence, in the VESTEC project, we have
not only used a CPU-based particle solver but also developed
a prototype GPU-based solver named sputniPIC [104] to
enable performance increases on heterogeneous supercom-
puters.

b: PARTICLE-TO-GRID INTERPOLATION
After the particle mover/pusher phase is complete, we start
the particle-to-grid interpolation phase, where we calculate
any quantities that are the source (or input) for our field
solver. In our implicit PIC method, these quantities include
the current density (Jg), the charge density (ρg), and the pres-
sure density tensor (Pg). All of these quantities are defined on
the grid points and are all calculated based on the particles’
positions and their velocities. As with the calculation of the
magnetic-/electric-fields in the particle mover/pusher phase,
we continue to use the interpolation functions W (xg − xp) to
determine ρg, Jg,Pg at the grid point g:

{ρ, J,P}g =

Np∑
p

q{1, vp, vp ⊗ vp}W (xg − xp). (7)

This phase is the second-most (after the particle
mover/pusher) computationally demanding part of our PIC
method, and in typical scenarios of magnetic reconnec-
tion, it can require up to 25% of the entire computational
cycle [103]. As with the particle mover, the particle-to-grid
interpolation is an excellent candidate for performance opti-
mization, and in the VESTEC system, it has been extended
in the sputniPIC prototype to support GPU-based systems.

c: THE FIELD SOLVER
The computational cycle in our implicit PIC method ends
with the field solver, which computes the solution of the
discretized Maxwell’s equations on the grid. In essence, this
phase takes the previously computed quantities (ρg, Jg,Pg)
and computes Eg and Bg. We compute said quantities by
solving a linear system of equations that arise when we
discretize Maxwell’s equations implicitly in time using a
generalized minimal residual (GMRes) [105] linear solver.
Aside from GMRes, we also solve a discretized Poisson
equation using the conjugate gradient (CG) method at each
computational cycle in the simulation in order to ensure that
the continuity equation remains satisfied [101]. Performing
this additional step is often called divergence cleaning. Unlike
the two previous phases, which consume a large fraction
of the computational cycle, this phase requires a mere 6%
of the entire computational cycle. For this reason, we can
afford to leave the GMRes solver on the general-purpose host
processor.

C. PROBABILISTIC FOREST FIRE FORECAST AND
MONITORING
In case of a wildfire emergency, first responders require
accurate prediction of:

• the fire spread and behavior,
• potential impact on communities and assets,
• associated risk indices to optimize different suppression
alternative.

In this sense, Wildfire Analyst®applies research and tech-
nology together to improve the implementation of fire models
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in real-time, situational awareness and decision-making in
operational environments. The platform has a user-friendly
software interface that includes real-time data integration
(e.g. fire progression with hotspots), weather forecast ser-
vices, high-resolution thematic cartography, improved fire
modeling capabilities and viewers to interpret the outputs.
Wildfire Analyst is the forest fire simulation software that
has been integrated in the VESTEC system to address the
specific emerging use case of wildfire monitoring and fore-
casting. The implemented code aims to improve a running
wildfire simulation using a guided Monte Carlo approach.
The forest fire propagation forecasting is based on the well-
known quasi-empirical model proposed by Rothermel [7]
and Albini [106]. The implemented model exploits a heat
balance equation. It additionally requires certain parameters
to be tuned based on wind tunnel experiments and well docu-
mented historical fires. This model has been used for decades
as one of the main wildfire simulation tools in the U.S.A. and
Europe and forms the basis of the currently most advanced
forest fire simulators. In VESTEC, the used model takes the
weather simulation outputs from the MESO-NH code [107]
as an input for running simulations with weather variances.

1) SIMULATION
MESO-NH [107] is a limited-area atmospheric model that
applies to a wide range of resolutions, from synoptic to
turbulent scales. Implemented in Fortran 90 and MPI, its
large parallel computing capability has been tested up to
130 000 cores to reach a performance of 4 Teraflop/s [108]
and used for research purposes with 16 000 cores and more
than 1 billion gridpoints [109]. The initial and boundary con-
ditions provided toMESO-NH are given by the U.S. National
Weather Service Global Forecast System (GFS). The grid
configuration has a horizontal spacing of 2 km and a vertical
spacing stretching from 12m near the surface to 600m at
the top of the model. The MESO-NH outputs provide hourly
records on temperature, relative humidity, wind speed and
direction at 6 m height. This information is then used as input
by Wildfire Analyst.

The Wildfire Analyst simulation model makes use of
the main fire behaviour variables such as vegetation type,
wind speed and orientation, terrain slope, vegetation moisture
content, canopy cover, and height of the overstory, among
other parameters. The simulation model can also take into
account other phenomena such as crown fire and fire spotting.
The forecasted time evolution of the forest fire progression is
based on a minimum travel time (MTT) algorithm [110]. The
simulation uses a non-overlapping, hybrid, OpenMP - MPI
parallel implementation, making use of as many threads per
rank as stated in the configuration file. This simulation code
simulates probabilistic as well as non-probabilistic results of
forest fire propagation. The non-probabilistic outputs include
the estimation of the initial non-perturbed fire simulation.
Given a set of weather inputs obtained from the MESO-NH
weather model and fire ignition location(s) (i.e., hotspots)

FIGURE 11. Fire time of arrival of free simulated fire growth (left) and
calibrated simulated fire growth (right) considering the adjustment
factors obtained through location and time control points. The fire
duration of this fire example was 2.5h.

from satellite sensors or from the user itself, a first simula-
tion is carried out representing the initial non-perturbed fire
simulation. From this initial simulation, further hotspots on
the terrain will be used to calibrate the rate of spread (ROS)
of the simulation and update the simulation output, trying to
fit this information into the simulation results. The capability
of being able to adjust fire simulations is crucial in the simu-
lation of fire behaviour. Due to inherent model inaccuracies,
lack of model applicability, or erroneous input data, many
times wildfire predictions become significantly inaccurate
and not reliable. Data-driven techniques aim to circumvent
this problem by using observed fire front data to tune or cali-
brate simulations to the observed fire patterns. This approach
is very promising and it can be powered by observations from
satellite sensors, unmanned aerial vehicles (UAVs), and GPS
locations of suppression resources. A common way to reduce
inaccuracy of a simulation model is to adjust the simulated
fire growth to the observed fire progression by tuning the ROS
adjustment factors [111]. These adjustment factors are a set
of fuel-related constants ‘‘Adjfuel’’ used to modify fire’s rate
of spread (ROS) in a simulation in the following way:

ROSfinal = Adjfuel ∗ ROSmodel (8)

These factors are well known by fire practitioners and
researchers since they provide a direct way to calibrate fire
simulations for observing fire spread. Nevertheless, manually
determining these factors is a hard and time-consuming task
that requires patience and a good set of trial and error attempts
to be completed. During a fire simulation, calibration data is
given through a set of control points where the arrival time of
the real fire is known, these are obtained from satellite sensors
(such as VIIRS and MODIS) or directly introduced by the
user through the user interface. Every time new hotspots
become available, these are used by the simulation code to
calibrate the performed simulations. The adjustment method
is based on determining the best ROS adjustment factors
using a least-squares approach to minimize the error between
the simulated fire growth and the real fire [112]. An example
of an adjustment of the simulation of the Castell D’Aro
fire [111] is depicted in Figure 11.

The left picture shows the output of an initial non-perturbed
forest fire simulation without any adjustment. The right pic-
ture shows the result of the simulation after performing the

87818 VOLUME 11, 2023



M. Flatken et al.: VESTEC: Visual Exploration and Sampling Toolkit

adjustment through the use of control points. These indi-
cate to the simulator where the fire front was located at
which time and is used by the simulator to adjust the rate
of spread of the fire. Then another simulation with similar
conditions is executed, providing more realistic fire propa-
gation results. Regarding probabilistic outputs, the Wildfire
Analyst®simulation code creates an ensemble of semiMonte
Carlo simulations with slightly different weather and vege-
tation moisture. These varying input conditions are used to
obtain a probabilistic analysis of the fire behaviour. It also
makes use of the provided control points to make a prob-
abilistic search to find the best fit simulation among the
set of simulations according to the provided input variables.
This provides decision-makers with a more reliable source
of data that already takes into account input or modelling
inaccuracies. Themain graphical outputs provided are the fire
burning probability and the fire front location probability at
each spatial cell of the spatial domain at a given moment in
time. These outputs are composed of three preliminary main
layers that are used by the code to generate the previously
mentioned final outputs. These preliminary layers are:

• rasNfire: representing the number of times a fire is
estimated to reach a given spatial cell.

• rasMean: representing the average time at which fires
reached a given spatial cell.

• rasVariance: representing the time variance at which
fires reached a given spatial cell.

These three base layers provide a Gaussian distribution
characterization of the times at which fires reached a given
spatial cell and therefore allowmaking use of normal distribu-
tions to compute the fire burning probability. Another output
calculated by the code is the estimation of exposure fire sheds.
The major concern for fire incident commanders at the time
a fire starts is usually how to protect vulnerable areas such
as wildland urban interfaces (WUIs), protected natural areas,
or critical infrastructures. A fire behavior expert may suggest
an evacuation or shelter-in-place decision based on predicted
fire weather conditions, observed fire behavior, fire suppres-
sion capability, access to escape routes, and characteristics
of the population or community. For this reason, having a
dynamic fire arrival time for those areas to be protected is cru-
cial to support the decision-making of the fire analyst. These
exposure sheds are estimated using a simulation method in
inverse mode (PIM). This allows quantifying the impacts of
weather uncertainty on fire behaviour and, subsequently, the
time of a wildfire reaching an asset to be protected from each
spatial cell of the landscape. The PIM method is based on
a Monte Carlo approach. Fire simulations in inverse mode
are based on a fire inverse travel time mode technique [113],
[114] that allows computing x-hour firesheds around defined
exposure cells (i.e., areas to be protected such as buildings,
infrastructures, nuclear power plants, etc). This fire shed
output represents the time that a standard fire simulation (i.e.,
a fire starting from an ignition source) starting at any spatial
cell in the landscape would take to reach the user-defined
exposed cells. When calculating the firesheds, the source

FIGURE 12. Abstract view over the use-case execution, showing key steps
and components.

code takes the defined variations into account (e.g. weather
and vegetation moisture conditions) and provides the best fit
simulation result from the set of simulations calculated.

V. RESULTS
In this section we evaluate the VESTEC system by executing
the use cases integrated in it. The list of datasets used by each
use case is given in Table 1.

A. EXPERIMENTAL PLATFORM
All use-cases were executed on the ARCHER2 supercom-
puter provided by the University of Edinburgh (EPCC).
The ARCHER2 supercomputer has a total of 5860 compute
nodes, where each node contains two AMD EPYC 7742
64-core processors running at 2.25 GHz and is equipped
with 256 GiB of main memory. The compute nodes are
interconnected using HPE Cray Slingshot.

Additionally, the Space Weather use case has also been
demonstrated on a workstation with an eight-core Xeon
E5-2609v2 processor running at 2.5GHz. The workstation is
equipped with a total of 72GB DRAM. The storage consists
of two 4TB HDD (WDC WD4000F9YZ / non-RAID) and a
250GB SSD (Samsung 850 EVO).

In the remaining of this section, each case study is orga-
nized into four subsections: methodology describes the
overall workflow of the use-case; execution qualita-
tively describes the use-case and how it was carried out;
performance presents aspects related to computer perfor-
mance of the use-case; and finally relevance discusses the
importance and applicability of the use-case to key stakehold-
ers and decision-makers.

The general flow (specific use-case descriptions are pro-
vided in the following sections) of triggering an incident (i.e.,
running a use-case) is shown in Figure 12 and is organized
into four steps: (i) the user (a stakeholder) uses an intuitive
frontend interface where they enter credentials and select the
type of incident along with required other parameters (e.g.,
data sources, areas of interest, etc.), (ii) when the incident is
started, the VESTEC system orchestrates the execution and
connects the local frontend to the high-performance comput-
ing resources and launch ensembles of simulation associated
with the incident, (iii) the supercomputer (in our cases,
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TABLE 1. Sensor datasets used by the three applications in VESTEC.

ARCHER2) then executes all simulations, and either stores
the result locally or in case of in-situ visualization streams
the results to the intermediate visualization node as the simu-
lation unfolds, and finally (iv) the VESTEC system, when the
simulations provide some outputs or is completed, transfers
the result from the supercomputer back to the stakeholder for
inspection, further analysis, or refinement/re-execution of the
workflow.

B. CASE STUDY 1: URGENT DECISION MAKING THROUGH
APPROPRIATE VISUALIZATION OF MOSQUITO-BORNE
DISEASES OUTPUTS
The following section presents the result obtained while exe-
cuting the Mosquito-Borne Diseases (MBD) use-case using
the VESTEC system.

1) METHODOLOGY
The overall methodology involves the use of CosmoScout
VR as the main graphical user interface to access the
mosquito-borne diseases workflow and visualize the results.
The ARCHER2 supercomputer systemwas used for perform-
ing the simulations. There are roughly four steps that are
performed during the VESTEC mosquito-borne diseases use
case: (i) a user logs in the VESTEC system via CosmoScout
VR, (ii) the user defines the required simulation parameters
(area of interest, mosquito species, disease, number of mem-
bers in the ensemble simulation), and starts the workflow, (iii)
simulations are carried out on the supercomputer, including
the computation of topological proxies via TTK, and (iv) the
result data is streamed to CosmoScout VR for interactive
visualization and analysis.

2) EXECUTION
The overall goals of the mosquito-borne diseases (MBD)
use-case are: (i) to demonstrate the integration and usage
of VESTEC components to provide robust indications about
epidemiological risks associated with MBD, covering a large
area (e.g., continental scale) and with a spatial resolution
comparable to the scale of disease spread (i.e., approxi-
mately 250m), (ii) to show how supercomputers can help
decision-makers make fast and effective decisions regarding
threats associated with MBD, and (iii) to concretely show

FIGURE 13. Execution workflow for the Mosquito-Borne Diseases use
case.

examples of model estimates on areas with known past cir-
culation of MBD, using ensemble simulations by leveraging
the VESTEC approach.

The incident described here is based on the Lazio region
in Italy, where the largest MBD oubreak caused by Aedes
species in the history of continental Europe has occurred.
We therefore used the model described in Section IV by
selectingAedes albopictus as the vector species, chikungunya
as the disease of interest, and the the Lazio region as the area
to be analyzed.

As shown in Figure 13, in mosquito_init step the incident
is initialized with a json file containing all the user-defined
input parameters, the VESTEC system orchestrates several
simulations (mosquito_simulation step) at the supercomputer,
and the user has to wait until first results are available and
streamed from the VESTEC system to CosmoScout VR.
The user gets a feedback about the progress of simula-
tions directly from the user interface. Initially, the maps,
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FIGURE 14. Analysis and visualization of the MBD simulation results
augmented with topological information represented in the persistence
diagram. Vertical bars do represent areas with highest risk of an outbreak.

covering the selected area and used as input, are extracted
from large datasets. These maps are used to perform the
simulations and include meteorological data, the population
density and the gross domestic product (GDP). Thereafter,
in the mosquito_convert step, the time-varying simulation
results describing the abundance of female mosquitoes per
hectare and the disease reproduction number R0 are made
available. Lastly, in the mosquito_postprocessing step, the
topological proxies (persistence diagrams) on the R0 maps
are generated and deployed.

Figure 14 presents the visualization of the R0 map with
vertical bars highlighting the peaks from the persistence dia-
gram. The simulation result shows a dense region of high
R0 values in the area of Anzio, whichwas indeed the epicenter
of the outbreak in 2017. Also, a high peak in the persistence
diagram can be noted in the same area, and this represents
a qualitative measure of the overall risk in that subregion.
Further peaks in the persistence diagrams are identified by the
model in many additional municipalities, including suburbs
of Rome, which were subject to significant local disease
transmission.

When the workflow is completed, all data is available for
the user to download from the VESTEC system for further
analysis. This means that results from previously computed
incidents can also be overlayed for comparison of different
simulation runs.

3) PERFORMANCE
Simulating MBD on a large geographic scale at a high res-
olution is a computationally demanding problem that can be
eased by the use of an HPC machine.

The MBD use-case can exploit two types of paral-
lelism: increasing the number of ensemble simulations
and parallelization of a single simulation. To demonstrate
the effect of these two ways of parallelizing, we simu-
late the use case (the chikungunya virus) using a fixed
global problem size with 105662 total grid cells, and then
we perform two actions: (i) we change the number of
processor cores allocated to the simulation, and (ii)we change

FIGURE 15. The strong-scalability performance of the mosquito-borne
disease use-case, where we see that the use-case can scale up-to
1024 processing cores, demonstrating that urgent decision makers can
leverage the large compute capacities of modern supercomputers to have
a better basis onto-which to combat the spread of diseases.

the number of ensemble simulations. In both (i) and (ii),
we record and observe the change in execution time. The
results are displayed in Figure 15. We observe that, inde-
pendently from the number of ensemble simulations, the
simulation code can exploit and take advantage of multiple
cores to reduce the time to reach a solution. For example,
simulating 200 ensembles with a single core takes more than
a minute, while using 256 cores in ARCHER2 reduces this
time to 2.5 seconds. We also observe that the more ensembles
we launch, the better the simulation code scales. For example,
the performance of using 10000 ensembles scalesmuch better
than only 200 ensembles. These results show that coupling
such use-case with HPC resources allows decision-makers to
both run simulations faster and get a better understanding of
possible countermeasures to cope with such mosquito-borne
disease.

4) RELEVANCE TO DECISION MAKERS
The MBD use-case highlights how integrating data-driven
epidemiological models with innovative HPC and visualiza-
tion frameworks can effectively address relevant public health
challenges.Model performances were assessed by comparing
the obtained epidemiological predictions with known data
from previous MBD outbreaks. While we limit the compari-
son to the chikungunya outbreak in Anzio, the we have also
produced valid risk estimates for chikungunya outbreaks in
Guardavalle, Italy in 2017, for dengue in Madeira, Portugal
in 2012 (mediated by a different vector species), and for Zika
in Florida in 2016.

The simulator computes an ensemble of probabilistic esti-
mates on the daily absolute number of adult females per
hectare expected for both Ae. albopictus and Ae. aegypti, esti-
mating the transmission potential for dengue, chikungunya,
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and Zika. Model estimates can be obtained for any geo-
graphical area of interest, by using only data on local
socio-demographic and eco-climatic conditions. Such esti-
mates can be used in several circumstances and are especially
useful when there is a lack of entomological and/or epi-
demiological records in the considered area, or the area to
be monitored out-weight the monitoring capability of the
public health system. The integration of the developed model
with computational technologies provided by other partners
in the VESTEC project greatly expands the potential for a
useful public health application of the model results. First,
the use of HPC systems enabled to speed-up the simula-
tion. Second, the use of interactive and immersive visual-
ization software represents a significant improvement with
respect to the current state of the art that relies on static
risk maps neglecting the temporal changes associated with
the disease risks during the season for public health deci-
sion making. Such improvements include three-dimensional
map browsing, map search, and the visualization of multi-
ple layers through customizable color schemes and opacity,
and filters applied through threshold values defined by the
end-user. Finally, the computation of topological proxies
provides summary indicators of the risk of infection in dif-
ferent areas. This eases the understanding of the complexity
of model outcomes and supports the evaluation of possible
countermeasures.

C. CASE STUDY 2: URGENT DECISION MAKING THROUGH
UNDERSTANDING OF MAGNETIC RECONNECTION IN
SPACE WEATHER
The following section presents the result obtained while
executing the Space Weather use-case using the VESTEC
system.

1) METHODOLOGY
The overall methodology involves a local terminal node
that end-users use to access the space weather workflow,
an intermediate visualization node required for in-situ visual-
ization, and the ARCHER2 supercomputer system. There are
roughly five steps that are performed in the VESTEC space
weather use case: (i) a user logs in to the VESTEC system,
(ii) selects and starts the space weather incident workflow,
(iii) optionally performs steps to enable in-situ visualization
of simulations, (iv) simulations are carried out using iPIC3D
on the supercomputer, and (v) after the completion of simula-
tions, the data can be downloaded for offline post-processing
(using, e.g., topological proxies).

To better profile and evaluate the performance, this
use-case has been executed on a local high-end workstation,
available in the consortium, and on the ARCHER2 super-
computer. Since running the workflow is nearly identical
between the workstation and the ARCHER2 supercomputer,
with the exception of using the visualization node for the
catalyst connection, we do not differentiate between them in
the qualitative execution section that follows next.

2) EXECUTION
The overall goals of the space weather use-case are: (i) to
demonstrate the integration and usage of VESTEC com-
ponents to understand space weather phenomena, (ii) to
show how supercomputers can help decision-makers make
effective decisions regarding threats associated with space
weather, and (iii) to concretely show an example of howmag-
netic reconnection can be detected in-situ and with ensemble
simulations. The magnetic reconnection simulation can be
configured using magnetic field and density values obtained
from the NASAMMS spacecrafts’ observations [96], and use
parameters described in Section IV.

As shown in Figure 16, in spaceweather_init step the
magnetic reconnection simulation is initialized with a json
file containing all the user-defined input parameters. The user
has then the option to in-situ visualize the (soon to be started)
simulation. This is performed by either starting ParaView
from the local terminal or from the visualization node on
the HPC machine. For example, to in-situ visualize in a pri-
vately owned cluster machine, VESTEC provides a script that
automatically launches several ParaView instances and helps
the user to connect them to the simulations. At this point,
the user controls one (or several) ParaView instances that are
ready to receive data from an active simulation. The user is
then enabled to interact with said simulation, for example by
pausing and resuming it.

In spaceweather_simulation step, the VESTEC system
launches and orchestrates several simulations of magnetic
reconnection on the supercomputer. The user can either visu-
alize the simulation while it is running or wait until all
simulations are completed and then download the final results
for an offline inspection. If the user objective is to visualize
the simulation, signs of amagnetic reconnection phenomenon
can be identified by inspecting the simulation and visualiz-
ing the background electron charge density, called ρe,0. For
example, Figure 17 shows the contour-plots of ρe,0 for two (of
the many) ensemble simulations as they unfold as a function
of simulated time. Both these simulations have a similar start-
ing point with minor perturbations in their initial condition,
which enable the exploration of possible different outcomes.
On the left image of Figure 17, we notice that a magnetic
reconnection is occurring since the magnetic field energy is
converted into high-speed jets that exit in the positive and
negative x-directions.

During the simulation and when the in-situ mode is
enabled, the user can also choose to analyze any other relevant
available metric. For example, in Figure 18, the plane mag-
netic component (Bz) is shown. In this Figure, we can observe
the forming of the quadrupolar structure of the magnetic
field. This is caused by the Hall magnetic field and is a clear
signature of magnetic reconnection.

Once the user is satisfied with visualizing the simulations
and/or the simulations are finished, the data can be down-
loaded from the VESTEC system for an offline analysis.
In spaceweather_postprocessing step, the user can analyze
the results of many different ensemble simulations that have
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FIGURE 16. Execution workflow for the Space Weather use case.

FIGURE 17. Observing the evolution of electron density during magnetic
reconnection occurring in-situ using the VESTEC system and the iPIC3D
simulator with (right panel) and without (left panel) an initial guide field.

FIGURE 18. Inspecting the contour-plot of out-of-plane magnetic field
values (Bz ) shows a noticeable guiding field in the right simulation.

been produced during the workflow and summarized with
topological proxies. As shown in Figure 19, for example,
topological proxies and a dimension reduction technique
can be used to generate a point cloud in 2D- or 3D-space.

FIGURE 19. Using topological proxies, we can easily visualize the
different dynamics of simulations with different guide field values
(different trajectories in the topological proxy plot).

Through these techniques, we can track different magnetic
reconnection dynamics and detect anomalies, representing
regions of interest in the simulation, which can further clarify
the simulation results.

Similarly to the MBD use-case, all data generated either in
the simulation or in the postprocessing steps is available for
download for further offline analysis.

3) PERFORMANCE
Simulating space weather phenomena is a computationally
intensive problem that can benefit the use of anHPCmachine.
The iPIC3D simulator, used in this use case, has been previ-
ously shown to strongly scale to millions of cores, making
it ready for future exascale challenges [116], [117]. For this
particular use-case, the performance of the system depends on
whether Kitware’s Catalyst and in-situ visualization is used or
not. For example, on ARCHER2, using catalyst leads to com-
plete the entire simulation in ∼546 seconds, while disabling
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FIGURE 20. The Space Weather use-case strongly scales with the number
of available processor cores, here showing that the execution time
decrease from ∼9 minutes of simulation time on 128 cores
(corresponding to one node) down to ∼45 seconds on 4,096 cores
(corresponding to 32 nodes). Such performance enables swift exploration
of magnetic reconnection in space and study different scenarios for space
weather applications.

Kitware’s Catalyst and thus reducing the interactivity lowers
the execution time to ∼45 seconds.

Figure 20 shows the scalability of this use case on
ARCHER2 system. We monitor how the execution time for
1,000 simulation cycles of the use-case evolves as a function
on the number of ARCHER2 nodes used, where one node cor-
responds to 128 cores. We notice that the speed-up strongly
scales when the number of nodes increases. Considering these
results, we can claim that in the future, when new HPC
systems will be available, the use case problem size can be
scaled even with more HPC resources.

4) RELEVANCE TO DECISION MAKERS
The use-case has demonstrated that decision-makers can
observe how magnetic reconnection unfolds in-situ under
several different realistic scenarios. Magnetic reconnection
is part of space weather events that could produce harmful
effects for the society and infrastructures in space and on the
Earth. Such effects include (but are not limited to): (i) atmo-
spheric drag on satellites, which makes them lose altitude
(and thus lifespan),6 (ii) overloading and disruption of power
grids (caused by induced currents into Earth-bound objects),
and, related to the previous one, (iii) increased corrosion in oil
and natural gas pipelines. Many of the above effects can be
mitigated and understood by visually simulating and analyz-
ing space weather phenomena using the presented workflow.
One obvious challenge, which is not a limitation in VESTEC
per se, is to access space weather data in real-time. In our
use-case execution, we used data from the NASA MMS

6For example, the great solar storm of 1989 caused thousands of space
objects to lose several kilometers in altitude [5].

mission, while in the future, we would like to execute the
simulations directly on data coming from real-time sensors
in orbit (assuming such sensor data is immediately accessible
and not released after a long time).

D. CASE STUDY 3: URGENT DECISION MAKING BASED ON
FOREST FIRE BEHAVIOUR SIMULATION RESULTS
The following section presents the result obtained while exe-
cuting the forest fire use-case using the VESTEC system.

1) METHODOLOGY
The forest fire use-case has the scope to trigger and visualize
forest fire prediction simulations for a user-defined area of
interest (AOI). The goal is to support urgent decision-makers
in defining the necessary operational and tactical strategies
to fight the fire and determine whether evacuation of cer-
tain areas or points in the territory is needed. The use-case
allows visualizing and editing hotspot data coming from
satellite forest fire sensors (e.g., MODIS and VIIRS sensors).
Based on these hotspots, the use-case performs forest fire
behavior-related probabilistic simulations through ensemble
simulations. From hundreds to thousands of simulations can
be triggered and are orchestrated by HPC machine(s) to
provide static and probabilistic results to the user through
Wildfire Analyst Web.

The overall methodology involves: (i) the Wildfire Ana-
lyst Web to allow users to access the functionalities of
the use-case and to visualize the simulation results, (ii) the
VESTEC system web interface to monitor the status of the
simulation and (iii) the ARCHER2 supercomputer system to
execute the simulations.

From the user perspective, there are roughly four steps
that are performed in the VESTEC system: (i) a user logs
in to the VESTEC System via the Wildfire Analyst Web
interface; then (ii) selects simulation parameters (area of
interest, ignition, and control points, sets simulation variables
configuration), and triggers the wildfire incident workflow in
the VESTEC system; (iii) simulations are then carried out on
the supercomputer, including the computation of topological
proxies through TTK; and, lastly, (iv) the simulation results
are downloaded through a web API interacting integrated
in the Wildfire Analyst Web for offline visualization and
analysis.

2) EXECUTION
The overall goals of the forest fire use-case were: (i) to
demonstrate the integration and use of VESTEC components
to provide operational and probabilistic forest fire behavior
results based on weather, satellite, and user sensor data; (ii) to
show how supercomputers can help decision-makers to make
effective decisions regarding threats associated with forest
fires; and (iii) to concretely demonstrate examples of fire
model estimates using ensemble simulations by leveraging
the VESTEC approach.

The forest fire workflow starts when end-users access the
Wildfire Analyst Web (see Figure 6). Then, the users can
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FIGURE 21. Execution workflow for the Wildfire use case.

create an incident in the Wildfire Analyst Web GUI. The
incident described in the following is based on one of the
worst forest fire ever happened in Spain, the fire in the La
Jonquera region in the summer of 2012.

As depicted in Figure 21, the workflow starts with the
wildfire_init step, in which the user first selects and vali-
dates the ignition and control points from the satellite sen-
sor data. Then he/she defines the simulation parameters.
The wildfire_init step triggers three distinct initialization
steps for initializing the MESONH solver, static forest fire
data and a hotspot sensors listener (wildfire_mesonh_init,
wildfire_static_init step, and wildfire_hotspot_init steps,
respectively). When the initilization step is completed, the
VESTEC system then orchestrates such ensemble simula-
tions on the HPC machines. The Wildfire Analyst Web and
the VESTEC system GUIs keep the user always informed
about the progress of simulations.

During the workflow, the VESTEC system uses
base maps such as vegetation fuels or DEM lay-
ers (wildfire_mesonh_physiographic step) and runs the
MESO-NH solver to get the latest weather data available
for the defined AOI (wildfire_mesonh_getdata step). Also,
from now on, as the fire progresses, when new sensor data
becomes available a new simulation process is launched
with updated data. In Figure 21 this corresponds to a loop
including the steps between wildfire_newhotspots_listener

FIGURE 22. Example of a best fit simulation result representing the
estimated time of arrival of the fire in Wildfire Analyst.

and wildfire_process_hotspots. These sensors can either be
hotspots coming from the VIIRS (wildfire_modis_newdata)
and/or MODIS satellite sensors (wildfire_viirs_newdata)
(reviewed by the user through ground observations) or new
hotspot data entered by the user itself using a JSON text
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FIGURE 23. An example of the fire presence probability simulation result showing the potential burning probability of a fire in the La
Jonquera region (Spain).

file. When MESONH solver and the hotspots complete
their tasks, the main wildfire simulation is executed in
wildfire_simulation step.
The Wildfire Analyst simulation solver generates four

main simulation results: (i) best static forest fire progression
simulation, (ii) fire burning probability, (iii) fire front pres-
ence probability, and (iv) fire exposure based on identified
assets. The output is encoded in a GeoTIFF raster. The best
static forest fire progression simulation is the simulation
from the ensemble that best fits the provided control points
(selected from VIIRS and MODIS) and the defined simula-
tion parameters and variables (e.g., weather, control points,
and fuel conditions weight and deviations). The graphical
result of the best static forest fire progression shows the
expected arrival time of the fire. The information is displayed
to the user through a map in Wildfire Analyst Web.

For example, in Figure 22, yellow represents a lower time
of arrival of the fire, while dark orange represents a higher
time of arrival. The fire burning probability provides the
possibility of fire at each cell. This value is obtained by
summing the ensemble simulations. Hence, each cell of the
resulting raster includes the burning probability according
to the number of times the given cells burned during the
Monte Carlo analysis. As shown in Figure 23, this output is
represented by using a color scale that represents the ranges
of values of the fire presence probability.

The simulation also estimates the probability on the pres-
ence of a fire front, and fire exposure sheds around assets,
these allow analysing how much time the fire needs to reach
a particular user-defined exposure asset. This is based on
different conditions such as fuel availability, fuel moisture,

terrain topography and the weather. For each probabilistic
result each cell in the raster image includes the corresponding
probability, i.e., burning probability or fire front location
probability.

Additionally to these simulation outputs generated by
the solver, in the wildfire_postprocessing step, topological
descriptors are generated for each simulation. Each simula-
tion ensemble has a set of persistence diagrams that can be
further visualized for inspection in ParaView Lite.

3) PERFORMANCE
Simulating fire behavior probabilities is a computationally
demanding problem that highly benefits from the use of
HPC computing. The WFA model was developed in the
VESTEC project, and to estimate the performance of the
use-case, we consider simulations at a regional scale. Sim-
ulations are performed in parallel and the user can define a
number of ensemble members. The result of these ensemble
simulations are summarized to fire behavior probabilities,
encoded as raster files. In our evaluation, we parallelized
over 16 nodes (in total, 1024 cores) on the ARCHER2 sys-
tem. As expected, the execution time for the computation of
individual ensemble simulations decreases over the number
of cores used. For simulations that used identical AOI and
simulation hours, we observe that simulations having a large
deviation in weight parameters (used by a simulation error
function defined by the user in the WFA GUI) require more
time compared to those using intermediate parameters values
(1161 seconds vs. 784.2 seconds).

To compare the ARCHER2 results against those of a local
workstation (a workstation with Intel CPU with 4 cores
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FIGURE 24. The performance impact of coupling High-Performance
Computing (HPC) resources with urgent decision making, showing the
Wildfire use-case throughput (in ensembles/sec) and comparing a
workstation system with the ARCHER2 supercomputer. We see a clear
benefit of using supercomputing resources receive better data (more
ensembles) to improve decision that can be taken.

and 32 GB of RAM), we benchmark the throughput of
ensemble members per second (Figure 24). The HPC system
requires 784 seconds (∼13 minutes) to complete the simu-
lation with 400 ensemble members, while the workstation
needs 4740 seconds (∼80 minutes) to complete the simula-
tion with only 30 ensemble members.

4) RELEVANCE TO DECISION MAKERS
The use-case execution demonstrated how decision-makers
can observe the fire behavior predictions and (i) timely act
to assign and position firefighting resources to combat the
spread of the fire, and (ii) take preventive actions to remedy
any harmful effects on people and infrastructures inside the
affected area. We believe that the ability to (within minutes)
be able to easily interpret the visually disseminated forest-fire
simulation can drastically support the operational decision
and, at the same time, help to save lives and infrastructures
and reduce the monetary loss.

Decision-makers can use the results of our simulation to
invoke preventive and operational measures, such as identi-
fying high-risk areas (or assets), and, based on the simulation
results, to deploy preemptive countermeasures such as vege-
tation treatments.

VI. CONCLUSION
In this paper, we gave an overview of the VESTEC
project [11] and its framework that integrates extreme-scale
computing for urgent decision-making. VESTEC has been
designed to be used in scenarios where a dangerous or
critical event is detected and relayed to a crisis manage-
ment center that immediately launch, monitor, analyze, and
act on a continuously evolving high-precision forecast of
the detected critical situation. The main contribution of the
VESTEC system has been to bring heterogeneous data into

supercomputers, such as data coming from sensor or social
networks and/or statistics from the internet, to refine and steer
the disaster simulation forecast. VESTEC supports several
data analysis methods to extract the most informative pieces
of ensemble simulations, which can be visually explored
and analyzed. Also, VESTEC supports the injection (per-
formed by the Crisis management staff) of domain-specific
knowledge into the system to guide an evolving simulation,
so to influence the simulation with the mitigation actions
prompted by the crisis manager. Lastly, VESTEC defines
a standardized way to integrate new applications or other
scenarios through text-based scripting languages (CWL and
YAML). For further developments and contributions, the
VESTEC System has been released as open source software
on GitHub.7

In order to demonstrate the scalability and effectiveness
of VESTEC system in supporting urgent decision-makers,
we have evaluated the system in three different use-cases:
(i) Mosquito-borne diseases; (ii) space weather forecast-
ing; (iii) probabilistic forest fire forecast and monitoring.
In the experimental evaluation, we demonstrated that HPC
can support and improve urgent decision-making processes.
VESTEC’s flexible and innovative job orchestration and
scheduling reduce waiting times and increase utilization.
Also, thanks to the efficient parallelization of simulation
codes on such machines, the time to get to a solution have
been reduced by orders of magnitude. Furthermore, VESTEC
enabled the execution of an ensemble of simulations paired
with efficient in-situ topological data analysis that permitted
to reduce of uncertainties during the decision-making pro-
cesses. Through the use cases integrated inVESTEC,we have
shown the generality of the system. It is then envisioned that
users can add their own complex workflows (e.g., for other
disasters such as Earthquakes [118]) and tools (e.g., based
on deep-learning models such as the recent ChangeOS [119])
extending the VESTEC system.

Therefore, the VESTEC project represents a milestone
activity that will drive future effort in the field of
extreme-scale computing for urgent decision-making. In the
future, further security aspects can be considered, like: (i) the
certification of crises management centers to request services
from dedicated HPC systems, and (ii) the protection of the
data and communication channel to avoid falsification of
streamed results. Also, we can envision the use of Virtual or
Mixed Reality for performing real-time mitigation strategies
while the simulation is still ongoing.

Systems such as VESTEC are growing in importance,
and while there are many activities that are ongoing on the
EU level to incorporate HPC resources into urgent decision-
making (e.g., ChEESE8 or LEXIS9), there is a dire need
to consolidate all these efforts in the future. Since the most
important stack-holder is the European Commission, the

7https://github.com/VESTEC-EU
8https://cheese-coe.eu/
9https://lexis-project.eu/web/
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responsibility for urgent decision support has to be assigned
to governmental agencies. They also have to provide an
appropriate infrastructure which can be used immediately
and guaranteed as soon as an urgent incident occurs. Con-
sequently, urgent decision making services have to be hosted
as well on the EU level. For this reason, Tier-0 HPC centers
have to block sufficient computing resources for interactive
supercomputing dedicated to emergency cases. But from a
crises management center point of view, it should be trans-
parent which computing center is involved. This may lead to
cloud-like interfaces.

The current generation of VESTEC system has demon-
strated the importance of organising urgent workloads as
workflows, and to move forwards we believe that this should
be further consolidated. Currently, the workflows in the
VESTEC marshalling and control system (powered by Rab-
bitMQ) and those on the HPC machines (powered by CWL)
are separate, and it would be beneficial to unify these such
that all workflows are described using CWL. This will
not only standardise the marshalling and control workflows
themselves, but also enable improved error checking. Fur-
thermore, whilst writing these workflows in Python is fairly
accessible currently, it would be interesting to explore visual
representations of such workflows to lower the barrier to
entry further in integration.

Finally, a tight collaboration between experts of different
fields is crucial for strengthening the use of HPC technologies
in evidence-based decision making.
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