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ABSTRACT  

Mineral dust produced by wind erosion of arid and semi-arid surfaces is a major  

component of atmospheric aerosol that affects climate, weather, ecosystems, and  

socio-economic sectors such as human health, transportation, solar energy, and air  

quality. Understanding these effects and ultimately improving the resilience of affected  

countries requires a reliable, dense, and diverse set of dust observations, fundamental  

for the development and the provision of skillful dust forecasts tailored products. The  

last decade has seen a notable improvement of dust observational capabilities in terms  

of considered parameters, geographical coverage, and delivery times, as well as of  

tailored products of interest to both the scientific community and the various end-users.  

Given this progress, here we review the current state of observational capabilities  

including in-situ, ground-based and satellite remote sensing observations, in Northern  

Africa, the Middle East and Europe for the provision of dust information considering  

the needs of various users. We also critically discuss observational gaps and related  

unresolved questions while providing suggestions for overcoming the current  

limitations. Our review aims to be a milestone for discussing dust observational gaps  

at a global level to address the needs of users, from research communities to non- 

scientific stakeholders.  

CAPSULE  

This paper provides an overview of the current dust observation capabilities  

considering the provision of user-oriented dust products and existing gaps focusing on  

the region of Northern Africa, the Middle East and Europe. 
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1. MINERAL DUST IMPACTS ON EARTH AND SOCIETY  

Sand and dust storms produced in arid and semi-arid regions can transport mineral  

dust far away, making mineral dust a global phenomenon. Mineral dust is a major  

component of atmospheric aerosol affecting many aspects of the Earth system,  

including climate, weather, atmospheric chemistry, and ecosystems (Knippertz and  

Stuut, 2014; Shi et al., 2015; UNEP, 2020), but also human health and multiple socio- 

economic sectors.   

Mineral dust affects the Earth’s radiation budget directly through the absorption and  

scattering of solar and terrestrial radiation (Tegen et al. 1996; Haywood and Boucher  

2000; Myhre and Stordal 2001; Slingo et al. 2006; Perez et al. 2006; Balkanski et al.,  

2007; Miller at al., 2014; Kok et al., 2017; Ginoux, 2017; García et al. 2018; Kawai et  

al., 2020; Kok et al., 2023). By acting as cloud condensation nuclei (CCN) (Levin et al.  

1996; Karydis et al. 2017) and ice-nucleating (IN) particles (DeMott et al., 2003; Hoose  

and Möhler 2012; Murray et al. 2012; Mamouri and Ansmann, 2015; Kaufman et al.,  

2016; Lopez et al., 2018; Sanchez-Marroquin et al., 2020), dust also influences cloud  

formation and the associated indirect radiative forcing (Chen et al., 2019; Barreto et  

al., 2022). A larger number of ice and cloud condensation nuclei existing under  

favorable atmospheric conditions (Stephens et al., 2004; Creamean et al., 2013; Jiang  

et al., 2018; Gibbons et al., 2018; Cziczo et al., 2013) may trigger and/or increase the  

severity of the hazard, such as ice nucleation, high precipitation, and hail (Yuan et al.,  

2021; Nickovic et al., 2021). This type of dust-hazard is still little studied and needs  

further investigation. Through both direct and indirect effects, dust perturbs the  

hydrological cycle (Min et al., 2009; Zhao et al., 2011; Skiles et al., 2012; Painter et al.,  

2012, 2018; Gautam et al., 2013; Matt et al., 2018; Dagsson-Waldhauserova et al.,  

2015; Wittmann et al., 2017; Dumont et al., 2017; Di Mauro et al., 2019). Mineral dust  

has both positive and negative impacts on ecosystems (e.g., Okin et al., 2004; Yu et  

al., 2015; Rizzolo et al., 2017; Gross et al., 2021; Prospero et al., 2020) and the  

environment (Painter et al., 2012, 2007; Mahowald et al., 2010; Jickells et al., 2005;  

Arnalds et al., 2014; Ito and Shi, 2016). Otherwise, it has been shown that the chemical  

reactions involving more than one matter phase (i.e., heterogeneous reactions) are  

paramount among the factors that drive dust’s chemical evolution in the atmosphere  

(Riemer et al., 2019; Schwartz, 1986; Dentener et al., 1996; Bauer et al., 2004; Bauer  
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et al., 2007; Vlasenko et al., 2006; Fairlie et al., 2010; Karydis et al., 2016). Dust  

heterogeneous reactions happen mostly when mineral dust mixes with anthropogenic  

pollutants in urban and industrial areas mostly on the formation of aqueous coatings  

around the particles (Krueger et al., 2003; Li et al., 2009) and the reaction of gases  

with the particle’s surface bulk minerals (Dentener et al., 1996; Goodman et al., 2000).   

All these dust-interaction processes (i.e., radiative and chemical) are sensitive to dust  

mineralogy (e.g., Jeong et al., 2014), as dust is, rather than a homogeneous species,  

a mixture of different minerals with varying physicochemical properties. The chemical  

composition of mineral dust at local and regional scales depends on the mineralogy of  

the emitting sources (Claquin et al., 1999; Nickovic et al., 2013, 2012; Journet et al.,  

2014; Gonçalves Ageitos et al., 2023) as well as on aging in the atmosphere  

(Scheuvenset al., 2013; Formenti et al., 2011). In this sense, dust emitted from high- 

latitude dust sources has associated physico-chemical properties that differ from the  

crustal dust of the Sahara or American deserts (Shepherd et al., 2016; Arnalds et al.,  

2015; Bachelder et al., 2020; Baldo et al., 2020; Crusius, 2021). Mineralogy also affects  

the hygroscopic properties of atmospheric particles and thus the indirect radiative  

forcing by dust (Usher et al., 2002), but as well impacts the ice nucleation process  

(Atkinson et al., 2013; Boose at al., 2016; Boose et al., 2019). Additionally, climate  

change is one of the potential causes of the increase of anthropogenic sand and dust  

sources because the increasing temperature could lead to desertification processes  

extending the dust source, for example, to Europe and high latitudes by the  

accelerating the melting of the permafrost (Bullard et al., 2016; European Court of  

Auditors, 2018; Dagsson-Waldhauserova et al., 2019; Meinander et al., 2022).  

Mineral dust is also recognized as a key player affecting several socio-economic  

sectors (Shepherd et al., 2016; Middelton and Kang, 2017; Al-Hemoud et al., 2019;  

Middleton et al. 2019, ESCAP-APDIM, 2021; Middleton et al., 2020; Wu et al., 2021;  

Monteiro et al., 2022). On average in the Middle East and North Africa, welfare losses  

from mineral dust are estimated in approximately 3.6 trillion USD, where costs are  

about 150 billion USD and over 2.5 percent of Gross Domestic Product (GDP) (World  

Bank, 2019). Monteiro et al. (2022) showed that an event of few hours in Crete caused  

losses of at least 3.4 million €, showing the potential high impact of such events in  

long-range transport regions. It is largely acknowledged that mineral dust impacts  

human health (e.g., Querol et al., 2019; Giannadaki et al., 2014; Goudie, 2014; Pérez  
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García-Pando et al., 2014; De Longueville et al., 2013; Karanasiou et al., 2012; 

Kuciauskas et al., 2018; Pérez et al., 2012; Pu and Jin, 2021;Tao et al., 2012; Ueda et 

al., 2012; Prospero et al., 2008; Derbyshire, 2007; Thomson et al., 2006; Yang et al., 

2005; Gross et al., 2018; Tong et al., 2021). Short-term effects of high PM10 and 

PM2.5 (i.e., aerosol particles measured near-ground with an aerodynamic diameter 

less than 10 μm and 2.5 μm, respectively) levels include increases in asthma episodes, 

particularly in children (Cadelis et al., 2014) and mortality due to acute coronary 

syndrome (Behcet et al., 2018; WHO, 2021). The increase of the PM10 and PM2.5 

levels can be very high, even in highly polluted cities, for example, in Northwest and 

even Southwest China, where Taklimakan dust events have shown to significantly 

increase mass concentrations of PM10 (11–173%) and PM2.5 (21–172%) compared 

with non-dusty days (Li et al., 2018). Long-term exposure to dust episodes may 

increase premature mortality due to cardiopulmonary effects in the so-called “dust belt” 

extending from North Africa across the Middle East and South Asia to East Asia 

(Giannadaki et al., 2014). Dust particles are also associated with morbidity and 

mortality rates due to respiratory and cardiovascular diseases in regions highly 

affected by such particles, as in the Canary Islands (Dominguez-Rodriguez, et al., 

2020), the Middle East (e.g., Al-Hemoud et al., 2018); or Japan (El-Askary et al., 2017). 

Additionally, dust can carry bacteria, viruses, and spores (e.g., Angulo and González, 

2007; Ah Sharidah, 2021). Dust is hypothesized to be a risk factor for valley fever 

(coccidioidomycosis), which is endemic in Arizona and California (Tong et al., 2022); 

and other parts of Latin America (Hector and Laniado-Laborin, 2005, Urrutia-Pereira 

et al., 2021). Potential infection occurs when a dry spell desiccates the soil-dwelling 

fungus, and subsequent wind erosion releases the spores (Garfin et al., 2013; Comrie, 

2005; Tong et al., 2017; Weaver et al., 2018; Comrie et al., 2021). In the African Sahel, 

dust, low humidity, and temperature have been associated with meningococcal 

meningitis outbreaks (Pérez García-Pando et al., 2014a, b; Martiny and Chiapello, 

2013; Oumar et al., 2022; Thomson et al., 2006). Moreover, during dust storms, 

reduced visibility can cause road traffic accidents resulting in injury and death (e.g., 

Hyers, 1981; Novlan et al., 2007; Li et al., 2018; Bhattachan et al., 2019; Rawashdeh 

et al., 2021; AlKheder et al., 2022). 

Mineral dust can damage buildings and infrastructure (Miri et al., 2009) but also can 

cause negative impacts on electricity and solar power generation. Continuous 
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monitoring of the impact of dust aerosols on solar energy has become an important  

activity at many research and operational centers due to the growing interest in the  

solar energy industry (Jiang et al., 2011; Mani and Pillai, 2010; Goossens and Van  

Kerschaever, 1999; Sarver et al., 2013; Schroedter-Homscheidt et al., 2013; Bergin et  

al., 2017; Prasad et al., 2022, Fountoulakis et al., 2021, Papachristopoulou et al.,  

2022). Mineral dust reduces solar irradiance and thus the energy generation potential  

of solar plants by absorbing and scattering light, reducing the strength mainly of the  

direct beam (e.g., Kosmopoulos et al., 2018; Hanrieder et al., 2019) or indirectly  

favoring the formation of high cirrus (Soret et al., 2016; Ilić et al., 2022; Barreto et al.,  

2022). Moreover, the dust deposition on the solar installations reduces their efficiency  

(e.g., Costa et al., 2016; Maghami et al., 2016; Wolfertstetter et al., 2014; Rao et al.,  

2014; Smestad et al., 2020).   

Mineral dust can cause significant problems in aviation, such as rerouting due to poor  

visibility, disturbances in airport operations (including workers’ safety and cleaning  

installations), and canceling of scheduled flights (e.g., Baddock et al., 2013; Al- 

Hemoud et al., 2017; Weinzierl et al., 2012; Cuevas et al., 2021; Monteiro et al., 2022),  

and also has safety and maintenance implications on aircraft operations such as  

erosion, corrosion, pitot-static tube blockage, melting or engine flame out in flight  

(Clarkson and Simpson, 2017; Lekas et al., 2014). Ice crystals formed by the  

interaction of dust particles and super-cooled water can also block the pitot tubes or  

sensors on the engine nose cones (e.g., Nickovic et al., 2022). Otherwise, due to  

increased working turbine temperatures in recent years, the melting of dust in engines  

and associated problems is as important as the melting of volcanic ash (Wood et al.,  

2017; Bojdo and Filippone, 2019). These identified aircraft’s impacts are a function of  

exposure time and concentration (e.g., Bojdo et al., 2020), as well as dust  

mineralogical composition (Bojdo and Filippone, 2019).  

The effects of dust storms on ground transportation systems (e.g., Miri and Middleton,  

2022) include traffic accidents associated with the reduction of visibility (e.g., Middleton  

et al., 2019; Ashley and Black, 2008; Lader et al., 2016) and sand and dust on the road  

(or railroads) can result in vehicle tires losing traction, a tendency to skid and lose  

control of the vehicle (Pan et al. 2021) and increases the distance. Consequently, the  

maintenance costs of the infrastructures (i.e., road and railroads) increase.   
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In semi-arid regions, dust storms have many negative impacts on agriculture (Hojan et 

al., 2019; Hladil et al., 2008) and ecosystems (Arnalds, 2015): reducing crop yields by 

burial of seedlings under sand deposits, the loss of plant tissue and reduced 

photosynthetic activity as a result of sandblasting, delaying plant development, 

increasing end-of-season drought risk, causing injury and reduced productivity of 

livestock, and increasing soil erosion and accelerating the process of land degradation 

and desertification among others (Stefanski and Sivakumar, 2009). The deposition of 

nutrients is considered among the positive impacts of dust up on both land and marine 

ecosystems. The deposition of dust benefits marine biomass production in parts of the 

oceans suffering from a shortage of such nutrients. This could also have a negative 

socio-economic impact through the formation of marine algae (Lekunberri et al., 2010) 

for tourism because of the closing of recreative beach areas or a positive one through 

the growth of phytoplankton (e.g., Gallisai et al., 2014; Meskhidze et al., 2005) and 

consequently having impacts on the fisheries management. The mixing of dust with 

acid pollutants can also increase the solubility of iron and other key metals leading to 

an overfertilization of the ocean (Rodriguez et al., 2021). Also, dust deposited on snow 

can deteriorate its quality for sports activities and can cause avalanches (e.g., Dumont 

et al., 2020; Kutuzov et al., 2019, Monteiro et al., 2022), with consequent potential 

effects on the winter tourism sector (e.g., ski resorts). 

The multiplicity and interdisciplinary nature of the impacts related to mineral dust have 

aroused considerable interest both in the research community and in different socio-

economic sectors, which call for a better monitoring of the dust cycle (including its 

emission, transport, and deposition, as well as associated atmospheric and 

biochemical processes) for better identifying and quantifying the associated impacts 

and can develop mitigation and adaptation strategies to reduce its associated risks.  

2. A COMMON EFFORT TOWARDS A GLOBAL COORDINATION  

While there are some positive effects, overall, sand and dust storms have severe 

negative impacts, particularly in countries downwind of major sources (Middleton et al., 

2019; Shepherd et al., 2016; UNCCD, 2022) in Northern Africa, the Middle East (e.g., 

Vukovic et al., 2021; Miri et al., 2009; Sunnu et al., 2008), and Central and East Asia 

(e.g., ESCAP-APDIM, 2021). Although mineral dust emitted in the Sahara during an 

intense dust storm can reach remote regions such as Europe and Arctic (e.g., Varga 
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et al., 2021; Barkan et al., 2010), the Americas (e.g., Denejean et al., 2016; Doherty et  

al., 2008; Pu and Jin, 2021; Prospero et al., 1981; Prospero and Bracero, 2013; Yu et  

al., 2019; Zuidema et al., 2019), and Asia (e.g., Park et al., 2005; Sugimoto et al., 2019)  

emphasizing the global character of this phenomenon. The challenge of mitigating the  

impacts of sand and dust storms is recognized globally. The United Nations (UN)  

agencies are promoting measures to confront the problem and their inclusion in  

national policies through the UN Coalition for Combating Sand and Dust Storms  

(Pitkanen-Brunnsberg, 2019).   

Given the scientific importance of mineral dust in the Earth system as well as the  

numerous socio-economic impacts, it is clearly reflected in the imperative need to  

monitor and forecast dust. This is the main objective of the World Meteorological  

Organization (WMO) Sand and Dust Storm-Warning Advisory and Assessment  

System (SDS-WAS; WMO, 2007). The SDS-WAS searches to enhance the ability of  

countries to deliver timely and good quality sand and dust storm forecasts,  

observations, information, and knowledge to users through an international hub of  

research and operational communities (Terradellas et al., 2015, Basart et al., 2019).  

Despite many recent advancements, there is still much to be improved, especially in  

the harmonization of dust information and the development of dust products tailored to  

specific applications, which can only be achieved by enabling collaborations among  

researchers, operational communities, and end-users. This was the main aim of the  

International Network to Encourage the Use of Monitoring and Forecasting Dust  

Products (inDust, Nemuc et al., 2021). Because of the negative impacts identified in  

multiple socio-economic sectors, accurate and adapted dust information is needed.  

This is a fundamental step for the creation of services that ultimately can support  

decision-makers and other users. Table 1 overviews the key dust products, already  

available as operational or sometimes still in research mode, that can be of interest for  

different communities in identified socio-economic sectors, while Figure 1 is a graphical  

representation of mineral dust impacts on various socio-economic sectors and related  

observational products of interest for assessing/managing such impacts  
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Dust products Socio-economic sector 

Vertical distribution  Aviation 

Deposition Agriculture, fishery, ground 
transportation, aviation, tourism 

Icing (dust derived diagnostic related 
with the dust-IN concentrations) 

Aviation, agriculture 

PM concentrations in different size 
ranges (including PM10, PM2.5, PM1) 

Air Quality, health 

Soiling (accumulated dust deposited on 
the solar plants – this parameter 
depends on the technology of the solar 
plant) 

Solar energy 

Solar irradiance (including dust and 
clouds effects) 

Solar energy 

Visibility Aviation, ground transportation 

Table 1. Main dust parameters needed for different dust impacts identified in selected socio- 
economic sectors.  

  

Benedetti et al. (2018) discussed the observational needs for global aerosol  

operational modeling and literature reports of recent advancements in the integration  

of new dust surface parametrization in air quality models (e.g. Klose et al., 2017, Klose  

et al., 2021). Here, we provide an extended overview of the current dust observational  

capability from near-surface measurements to remote sensing observations suitable  

for user-oriented applications (including monitoring and forecasting) covering Europe  

and its surrounding regions of Northern Africa and the Middle East. Europe is in fact a  

mineral dust receptor because of its proximity to the largest desert on a global scale  

(i.e., the Sahara) and long-range transported dust from Asia (especially the Middle  

East deserts). Also, the European continent has its sources as the one located in  

countries surrounding the Mediterranean (i.e., Spain and Turkey) and in high latitudes  

(i.e., Iceland, Norway, Finland, and Greenland). The frequent arrival of dust outbreaks  

to Europe (particularly affecting Southern Europe, see Pey et al., 2013; Gkikas et al.,  
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2016) and the increase of local dust emissions (e.g., Meinander et al., 2022) impacts  

several socio-economic sectors, including health, air quality, energy, transportation,  

and agriculture (e.g., Monteiro et al., 2022; Cuevas et al., 2021). A recent analysis  

(Gavrouzou, et al., 2021) indicates that in the 2005-2019 period, the frequency of dust  

observations from satellites doubled in the Mediterranean area. This emphasizes the  

need for adaptation to the presence of sand and dust storms considering a broad  

regional perspective (i.e., including source but also long-range transported regions)  

and the requirement to build mitigation strategies considering local, regional but also  

global scales. For all these reasons and considering that Europe contributes to 15% of  

global gross domestic product (EUROSTAT, 2020) and the Mediterranean population  

is expected to increase to more than 500 million by 2030, socio-economic impacts are  

relevant even at global level. All these aspects and the presence in Europe of  

numerous research infrastructures makes a review of dust observing capabilities and  

gaps identification from user need perspectives a good starting point for a discussion  

at a global level about observations and products needed for handling dust impacts  

and fostering international cooperation on this topic.   

This paper reviews the current observational capabilities from a European perspective  

for the provision of dust information considering the needs of various users (i.e., health,  

air quality, energy, transportation, agriculture, and tourism). Also, we will discuss the  

currently unresolved scientific-technological questions and existing observational  

gaps, providing, when possible, suggestions for their solution. This critical overview is  

a fundamental step towards setting up a comprehensive global dust observation  

system, with large geographical coverage and availability of different related  

parameters, suitable to meet the needs of various users, from research communities  

to non-scientific stakeholders.   

3. CURRENT CAPABILITIES  

The mineral dust presence in the atmosphere and its impact on socio economic sectors  

is a complex issue. As reported in literature (e.g., Prospero et al., 2013 and Richter  

and Gill, 2018), synergy among advanced techniques and long-term measurements  

are needed for increasing our knowledge. To manage and forecast the related risks,  

improvements in models’ capability are essential. Many aspects related to small scale  

process in the dust formation (micrometeorology, the effect of soil surface conditions  
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(crusting), fracture mechanics parameterization for dust production, issues with shear  

stress, turbulence, saltation dynamic), lifting and transportation are key in this context.  

This primarily implies the need of multi-instrumental, extended and long-term  

measurements in the source region of thermodynamic parameters, soil characteristics  

including soil moisture, atmospheric dust size distribution, mineralogy.  

A wide range of observational platforms have been utilized to describe mineral loads’  

spatiotemporal and physicochemical features, which are highly variable due to the  

heterogeneity of emission, transport, and deposition processes governing the dust life  

cycle (Schepanski, 2018). Two main categories of observational products can be  

identified: 1) coordinated measurements at network level and satellite datasets, which  

provide standardized and sustained observations based on well-established protocols  

for quality assurance and often working on a long-term perspective, and 2)  

observations in the framework of experimental campaigns providing extensive  

observations (that usually incorporate innovative experimental setups) at key sites  

typically during short time periods. They are both precious elements for cutting-edge  

research and for developing new products. Figure 2 reports examples of advanced  

observations of desert dust size distribution obtained by aircraft in-situ measurements  

during the SALTRACE 2013 measurement campaign, vertical profiles of volume  

concentrations for fine and coarse particles obtained combining lidar and photometer  

observations, and desert dust plume image captured with a very tiny resolution by the  

recently available TROPOMI on board the Sentinel 5P satellite. Despite the most  

common aerosol remote sensing products (as aerosol optical depth and aerosol  

extinction) are not directly useable for user communities, these products are  

fundamental for producing accurate and user-oriented dust datasetssuch as the Dust  

Constraints from joint Observational-Modelling-experiMental analysis (DustCOMM,  

Adebiyi et al., 2020) dataset. DustCOMM combines an ensemble of global model  

simulations with observational and experimental constraints on the dust size  

distribution and shape to obtain constraints on four-dimensional (4-D i.e., in space and  

time) atmospheric dust properties than it is possible from global model simulations  

alone. For example, ground-based and satellite dust-derived remote sensing products  

are used to produce model analyses for forecast initialization (Di Tomaso et al., 2017;  

Escribano et al., 2022) and reanalyses through data assimilation (Di Tomaso et al.,  

2022) and to evaluate their forecasting skill (Binietoglou et al., 2015; Mona et al., 2014;  
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Yumimoto et al., 2008) as well as further improvements (Georgoulias et al., 2018;  

Ansmann et al., 2017; Cuevas et al., 2015; Basart et al., 2012; Gliß et al., 2021).   

From the ground, valuable information about dust particles’ optical (extensive and  

intensive), microphysical and chemical properties have been acquired from lidars,  

sunphotometers, and other in-situ instruments. Through the deployment and operation  

of the aforementioned sensors, in which passive and active remote sensing techniques  

are applied, it has been realized the description of airborne mineral particles’ load (i.e.,  

AOD) and nature (i.e., size, absorptivity, composition) at high accuracy but at a local  

scale. The latter drawback has been complemented to some degree by space-borne  

instruments, which provide long-term columnar and vertically resolved dust  

observations at a global level. Nevertheless, in contrast to ground-based  

measurements, the primary reliable information is limited, consisting of dust load in  

optical terms, the identification of mineral particles relying on their depolarization signal  

and optical properties related to dust absorptivity. Therefore, the optimum approach  

towards a better characterization of the dust burden and, subsequently, an improved  

assessment of the related Impacts, requires synergistic actions.   

Dedicated campaigns are of great value for developing new methodologies in  

particular for multi-platform and multi-sensor synergistic approaches and for getting  

better insight of dust related processes thanks to the extended observational  

capabilities typically deployed on purposes for specific and focused experiential  

campaigns (Formenti et al., 2019; Weinzierl et al., 2017).   

Here, we report an overview of the current status of coordinated and long-term dust- 

derived observational products considering remote-sensing products (from ground- 

based networks or satellite platforms), as well as, in-situ near-surface and aircraft  

measurements covering the region of Europe, Northern African and the Middle East.  

Long-term and coordinated measurements are indeed recognized as key for example  

for model validation and development (e.g., Prospero and Bracero, 2013; Richter and  

Gill, 2018).  

We expand the scope of previous reviews, focused on specific techniques and/or  

platforms for deriving dust information (e.g., Mahowald et al., 2007; Basart et al., 2009;  

Mona et al., 2012; Rodríguez et al., 2012; Amiridis et al., 2015; Gkikas et al., 2016), by  

providing a more comprehensive and extended overview, centered on Europe,  
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Northern African and the Middle East of the current state of observational dust-derived 

capabilities (at regular basis and at regional scale) focusing on key dust variables for 

user interests like size-resolved mass concentration, physicochemical properties, and 

deposition. The data availability review presented here is based on the information 

collected by the following catalogs:  

● the collaborative dust products catalog developed in the framework  of the 

European COST Action inDust and available through the WMO Barcelona Dust 

Regional Center (i.e., the WMO SDS-WAS Regional Center for Northern Africa, 

the Middle East, and Europe). 

● the overview of satellite aerosol data products (not specific for dust products) of 

the WMO Global Atmosphere Watch (GAW) Program at the World Data Center 

for Remote Sensing of the Atmosphere,  

● the observation metadata collection developed within the European Gap 

Analysis for Integrated Atmospheric ECV CLImate Monitoring (GAIA-CLIM) 

project. 

In addition to these observations, the ones performed by the European Facility for 

Airborne Research (EUFAR, Formenti and Wendisch, 2008) and the In-service 

Aircraft for a Global Observing System (IAGOS, Petzold et al., 2016) are to be 

considered as relevant for dust particle observations, providing aerosol data from 

research campaigns and systematic data collected during in-service flight, 

respectively. 
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3.1 In-situ measurements   

A detailed description of methods and techniques mainly used for the in-situ near- 

surface dust characterization is provided by Rodríguez et al. (2012) and WMO (2016)  

includes the WMO-GAW measurement procedures, guidelines, and recommendations  

for aerosol measurements, and in particular, for mineral dust. Here, only a brief  

description is provided, while the strengths and weaknesses of each available dust  

measurement are shown in Table 2, together with the main networks and programs  

that provide these data.   

To date, PM10 and/or PM2.5 mass concentrations are the most widely used  

observations to estimate the dust contribution at ground level on a routine basis. These  

measurements are mostly provided by air quality networks (see Figure 3a) using  

automatic instruments (such as Beta Attenuation Gauges, Tapered Element Oscillating  

Microbalances, TEOM, or Optical Particle Sizers, OPS). To obtain a rough estimation  

of the net contribution of dust, the application of ad-hoc developed methodologies is  

required (see, for example, Gama et al., 2020; Escudero et al., 2007; Barnaba et al.,  

2022). More robust estimation can be obtained by its chemical composition analysis  

from particle sampling collection and off-line laboratory analyses by techniques such  

as X-ray fluorescence (XRF), Inductively Coupled Plasma-Optical Emission  

Spectrometry (ICP-OES), or Ion Chromatography (IC). Recently XRF systems working  

in real time become available (e.g. Furger et al., 2020). The determination of the  

mineralogical composition is typically derived from X-Ray diffraction of dust aerosol or  

deposition samples (Marsden et al., 2019; Lequyet al., 2018; Nowak et al., 2018;  

Engelbrecht et al., 2017; Formenti et al., 2011; Klaver et al., 2011; Formenti et al.,  

2008; Caquineau et al., 1998), and energy dispersive scanning and transmission  

electron microscopy of individual dust particles along with statistical cluster (e.g., Ueda  

et al., 2020; Rodriguez-Navarro et al., 2018; Kandler et al., 2011, 2009; Chou et al.,  

2008). Both techniques sample mostly the particle surface, which may include coatings  

of other species. A compilation of measurements of dust mineralogical composition  

since the 1960s can be found in Perlwitz et al. (2015a). Automatic online analyzers  

have also been used for short-term (~weeks) campaigns, but these still need  

technological improvements to be able to provide standardized real-time data on a  

long-term basis (Furger et al., 2017; Dall’Osto et al., 2004). In addition to the mass  
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concentration and the chemical composition parameters described above, optical  

properties and size distribution (see, for example, Figure 2) are also measured by in  

situ measurements. The determination of the former generally involves absorption  

photometers and nephelometers (see references in Rodríguez et al., 2012). The latter  

requires using at least two instruments: a Differential Mobility Particle Sizer (DMPS)  

and an Aerodynamic/optical Particle Sizer (APS/OPS, Sunnu et al., 2008). Recently, a  

Polarization Optical Particle Counter (POPC) which measures the size and shape  

(depolarization ratio) of single particles, has also been used for studying the mixing  

states (external and internal mixing) of dust and air pollution aerosols (Pan et al., 2017;  

Wang et al., 2017).       

(c)  

(b)  
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(a)  

Figure 3. Geographical coverage of the networks of interest for mineral dust observations: in-situ  
near surface (a), photometer (b) and lidar (c) networks and networks (bottom).  
The inset reports operational corresponding networks for lidar and near surface observations, while  
MAN available datasets are reported in the photometer inset as expansion on the sea for the  
photometer networks present instead on the land.  
The locations of the stations and datasets are collected from the GAIA CLIM observation metadata  
collection (http://150.145.73.221/Cesium/Apps/GaiaClim/) or from network web sites when not  
available in the GAIA CLIM collection.    

  

An alternative way to Infer surface dust concentrations is based on the use of horizontal  

visibility (inversely proportional to the surface aerosol extinction) data obtained from  

meteorological reports (Meteorological Terminal AirReport, METAR, and Synoptic  

Observation, SYNOP) and empirical equations that relate these data to PM dust  

concentrations (e.g., Camino et al., 2015). Climatologies based on human-observer  

reports of dust storms in SYNOPs are discussed in several studies (e.g., Mahowald et  

al., 2010; Cowie et al., 2014; Klose et al., 2010; O’Loingsigh et al., 2010), along with  

several issues related to the recording and archiving of SYNOP dust codes  

(O’Loingsigh et al., 2010), the effects of changes in the interpretation and recording  

protocols of dust events through time (O’Loingsigh et al., 2014), the difference in the  

reporting of dust events between METAR and SYNOP observers (O’Loingsigh et al.,  

2017) as well as some difficulties in the classification of dust events (e.g., Dagsson- 

Waldhauserova et al., 2013, 2014).  

Measurements of dust deposition fluxes have been obtained directly by weighting the  

deposited mass on filters or indirectly from aluminum deposition measurements (e.g.,  

Guieu et al., 2002; Anderson et al., 2016; Laurent et al., 2015; Stuut et al., 2022) or by  

measuring atmospheric aerosol concentrations and assuming the dust dry deposition  
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velocity and scavenging ratio (e.g., Le Bolloch et al., 1996). Although there have been  

many studies that characterize the physical and chemical composition of deposited  

dust, only a few of them have dealt with synthesizing these observations (e.g.,  

Lawrence and Neff, 2009). These quantities have been measured in Europe and the  

Mediterranean basin (e.g., Vincent et al., 2016; Pey et al., 2020; Castillo et al., 2017)  

as well as Northern Africa (e.g., McTainsh, 1980; Audoux et al., 2022) during the last  

50 years. Dust deposition measurements (both dry and wet) have been systematically  

provided in western Mediterranean basin (CARAGA, Laurent et al., 2015), North- 

Eastern Spain (DONAIRE; Pey et al., 2020) and the Sahel (INDAAF, Marticorena et  

al., 2017). Another source of deposition information is the one obtained from paleo  

records (e.g., McGee et al., 2013) from ice cores, marine sediments, loess-paleosol  

sequences, lake sediments, and peat bogs as the global compilation of temporally  

resolved records of dust mass accumulation rates and particle grain size distributions  

(that help to establish that the data considered represent changes in dust deposition)  

considered in the Dust Indicators and Records from Terrestrial and mArine  

Palaeoenvironments (DIRTMAP, Albani et al., 2015) dataset. Such information as dust  

deposition in ice cores, can provide long term information on the concentrations of  

atmospheric dust as well as on the strengths of the dust sources and their changes on  

long temporal scales (e.g., Kutuzov et al., 2019; Varga et al., 2020). The lack of an  

international standard for deposition sampling (including size resolved deposition) is a  

limiting factor for the achievement of a harmonized dataset of dust deposition flux.  

Therefore, more efforts are required for a better understanding of the spatial and  

temporal variability of dust deposition.   

Finally, the investigation of the role of dust in ice nucleation mechanisms and the  

quantification of the giant coarse dust particles in the atmosphere are cutting-edge  

topics. For example, aircraft measurements of ice-nucleating particles (INPs) along  

with chamber laboratory observations (Boose et al., 2016; Boose et al., 2019; Cziczo  

et al., 2013) are essential for a better explanation of the nucleation processes and for  

developing INP parameterizations in the prediction of ice and mixed-phase clouds.  

Data availability is mainly limited to field experiments. An overview of INPs is provided  

in Kanji et al. (2017), whereas a review of the history of their measurements is reported  

in Cziczo et al. (2017). Chamber experiments showed how mineralogy, milling and  

temperature are key factors in determining the IN properties of dust particles.  
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Importance of organics and crystal water content was also showed (Boose et al., 2016;  

Boose et al., 2019).  

As for giant dust particles (diameter > 20 μm), they have been observed during long- 

range transport (van der Does et al., 2018) but the explanation of mechanisms behind  

their presence at large distances from the source is still unclear. More measurements  

are needed for improving our knowledge and for understanding their specific impacts  

for example on radiation budget, and ice nuclei and grain: specific inlet systems for  

giant particle samples are needed (Wendisch et al., 2004).  

Brought to you by DLR | Unauthenticated | Downloaded 11/30/23 04:31 PM UTC



25
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0005.1.

24
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0005.1.

 

Ta
bl

e 
2 

St
re

ng
th

s 
an

d 
w

ea
kn

es
se

s 
re

la
te

d 
to

 d
us

t m
ea

su
re

m
en

ts
 a

va
ila

bl
e 

at
 g

ro
un

d 
le

ve
l. 

Th
e 

ta
bl

e 
al

so
 re

po
rts

 in
 a

lp
ha

be
tic

 o
rd

er
 

 

th
e 

m
ai

n 
sc

ie
nt

ifi
c 

ne
tw

or
ks

/p
ro

gr
am

m
es

 p
ro

vi
di

ng
 e

ac
h 

of
 th

e 
ty

pe
s 

of
 d

us
t m

ea
su

re
m

en
t. 

Le
ge

nd
: O

 =
 o

pe
ra

tio
na

l, 
, R

 =
 re

se
ar

ch
, 

 

Y 
= 

ye
s,

 N
 =

 N
o,

 S
 =

 s
om

e,
 R

R
 =

 re
gi

st
ra

tio
n 

re
qu

ire
d.

  
 

 
 

 
 

Pa
ra

m
et

er
 

C
on

ce
pt

 
St

re
ng

th
s 

 
W

ea
kn

es
se

s 
N

et
w

or
k/

 

Pr
og

ra
m

m
e 

Pr
od

uc
t 

Ty
pe

 

[O
, R

] 

O
pe

n 

ac
ce

ss
 

[Y
, N

, 

R
R

] 

PM
 b

ul
k 

co
nc

en
tra

tio
ns

 D
us

t c
on

tri
bu

tio
n 

to
 th

e 
co

lle
ct

ed
 

PM
 c

an
 b

e 

es
tim

at
ed

 

co
ns

id
er

in
g 

th
at

 

du
st

 p
ar

tic
le

s 
ar

e 

bi
g 

pa
rti

cl
es

 a
nd

 

- h
ig

h 
sp

at
ia

l 

de
ns

ity
 in

 

de
ve

lo
pe

d 

co
un

tri
es

 

- s
ta

nd
ar

di
ze

d 

m
ea

su
re

m
en

t 

- n
ot

 a
bl

e 
to

 

di
re

ct
ly

 

di
st

in
gu

is
h 

du
st

 

fro
m

 o
th

er
 

ae
ro

so
l t

yp
es

 

- d
iff

er
en

t 

in
st

ru
m

en
ts

, 

● 
AC

TR
IS

 in
 s

itu
 

O
 

Y 

● 
EM

EP
 

O
 

Y 

● 
ES

R
L 

 
R

 
Y 

● 
G

AW
-W

D
C

A 
O

 
Y 

Brought to you by DLR | Unauthenticated | Downloaded 11/30/23 04:31 PM UTC



25
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0005.1.

 

th
at

 in
tru

si
on

s 
ar

e 

an
om

al
ie

s 
in

 th
e 

PM
 re

co
rd

s 

w
ith

in
 a

ir 
qu

al
ity

 

ne
tw

or
ks

 

m
ea

su
re

m
en

t 

te
ch

ni
qu

es
 a

nd
 

du
st

 c
on

tri
bu

tio
n 

ca
lc

ul
at

io
n 

m
et

ho
do

lo
gi

es
 

- f
ul

l-s
iz

e 
ra

ng
e 

of
 d

us
t n

ot
 

al
w

ay
s 

en
co

m
pa

ss
ed

 b
y 

th
e 

PM
 m

et
ric

s 
 

- l
ow

 s
pa

tia
l 

de
ns

ity
 in

 

de
ve

lo
pi

ng
 

co
un

tri
es

 

● 
IN

D
AA

F 
R

 
R

R
 

● 
EA

N
ET

 
O

 
N

 

● 
EI

O
N

ET
 

O
 

Y 

● 
EP

A 

 

O
 

Y 

● 
IM

PR
O

VE
 

● 
SP

AR
TA

N
 

O
 

O
 

Y Y 

PM
 c

he
m

ic
al

 

co
m

po
si

tio
n 

Pr
es

en
ce

 o
f 

m
in

er
al

 e
le

m
en

ts
 

in
 P

M
 s

am
pl

es
 

al
lo

w
s 

th
e 

du
st

 

- v
er

y 
re

lia
bl

e 

es
tim

at
es

 o
f 

du
st

 c
om

po
ne

nt
 - v

er
y 

ex
pe

ns
iv

e 

an
d 

la
bo

rio
us

 

- d
iff

ic
ul

t t
o 

ap
pl

y 

ro
ut

in
el

y 

● 
AC

TR
IS

 in
 s

itu
 

O
 

Y 

● 
EM

EP
 

O
 

Y 

● 
G

AW
-W

D
C

A 
O

 
Y 

Brought to you by DLR | Unauthenticated | Downloaded 11/30/23 04:31 PM UTC



27
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0005.1.

26
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0005.1.

 

co
nt

rib
ut

io
n 

es
tim

at
io

n 

- l
im

ite
d 

av
ai

la
bi

lit
y,

 

m
os

tly
 li

m
ite

d 
to

 

sh
or

t-t
er

m
 

ca
m

pa
ig

ns
 

● 
EA

N
ET

 
O

 
Y 

● 
EI

O
N

ET
 

O
 

Y 

● 
EP

A 

● 
IM

PR
O

VE
 

O
 

O
 

N
 

R
R

 

 
 

 

 
 

 

Vi
si

bi
lit

y 
Vi

si
bi

lit
y 

in
 

ab
se

nc
e 

of
 c

lo
ud

s 

an
d 

pr
ec

ip
ita

tio
n 

is
 

re
la

te
d 

to
 a

er
os

ol
 

- g
oo

d 
sp

at
ia

l 

an
d 

te
m

po
ra

l 

co
ve

ra
ge

 

- v
is

ib
ilit

y 

re
du

ct
io

n 
du

e 
to

 

th
e 

pr
es

en
ce

 o
f 

hy
dr

om
et

eo
rs

 

(fo
g,

 ra
in

, e
tc

.) 

- s
ite

 d
ep

en
de

nt
 

re
la

tio
ns

hi
ps

 

● 
N

O
AA

 IS
D

 

● 
IM

PR
O

VE
 

O
 

O
 

Y N
 

Brought to you by DLR | Unauthenticated | Downloaded 11/30/23 04:31 PM UTC



27
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0005.1.

 

D
us

t d
ep

os
iti

on
 fl

ux
es

 
D

ep
os

iti
on

 o
n 

fil
te

rs
 o

r 

co
nc

en
tra

tio
n 

at
 

su
rfa

ce
 in

 d
us

t 

so
ur

ce
 re

gi
on

 c
an

 

be
 s

im
pl

y 

re
ga

rd
ed

 a
s 

du
st

  

 - 
he

av
y 

m
ea

su
re

m
en

t 

lo
ad

 

- d
at

a 

he
te

ro
ge

ne
ity

 

lim
ite

d 
da

ta
 

av
ai

la
bi

lit
y 

 

 

● 
C

AR
AG

A 
R

 
Y 

● 
EM

EP
 

O
 

Y 

● 
IN

D
AA

F 
R

 
R

R
 

● 
EA

N
ET

 
O

 
Y 

 
 

 

D
us

t p
hy

si
ca

l 

pr
op

er
tie

s 

Ab
so

rp
tio

n 

ph
ot

om
et

er
s,

 

ne
ph

el
om

et
er

s,
 

AP
S 

an
d 

O
PC

 

in
st

ru
m

en
ts

 

de
riv

ed
 s

iz
e 

di
st

rib
ut

io
n 

- s
ta

nd
ar

di
ze

d 

m
ea

su
re

m
en

t 

te
ch

ni
qu

es
 

- d
is

tin
ct

iv
e 

du
st

 

op
tic

al
 

pr
op

er
tie

s 

- v
ar

ia
bl

e 
sp

at
ia

l 

de
ns

ity
  

● 
G

AW
-W

D
C

A 
O

 
Y 

 

Brought to you by DLR | Unauthenticated | Downloaded 11/30/23 04:31 PM UTC



29
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0005.1.

28
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0005.1.

 

3.2 Remote sensing  

3.2.1 Ground-based networks  

Remote sensing ground-based networks (Table 3) are based on passive and active  

remote sensing instruments like photometers and lidars. Photometers are passive  

sensors that automatically measure the attenuation of the direct solar spectral  

irradiance due to the aerosols from the top of the atmosphere to the photometer at  

different wavelengths and provide columnar multi-wavelength aerosol optical depth  

(AOD) and related (aerosol size linked) Ångström exponent (AE) through retrieval  

algorithms. (e.g., WMO, 2016). Recently, daytime condition limitation is overcome by  

an innovative instrument and algorithm for night-time AOD measurements (Barreto et  

al., 2019; 2017). Dust aerosol optical depth (DOD) can be estimated mainly through  

three approaches: 1) based on the AE value (Basart et al., 2009; Todd et al., 2007;  

Wang et al., 2004; Dubovik et al., 2002); 2) based on the AOD coarse mode fraction  

estimated through inversion algorithms (O’Neill et al., 2003); 3) using advanced  

products obtained by sophisticated algorithms like the Generalized Retrieval of Aerosol  

and Surface Properties (GRASP) (Dubovik et al., 2014). All three approaches include  

uncertainties when calculating DOD. While GRASP is a very innovative research  

methodology and therefore not yet fully characterized in terms of uncertainty, the first  

approach has the advantage of being applicable for all possible stations because of  

the AE availability and the low related uncertainties, especially in high AOD regions  

(as the ones strongly affected by mineral dust). On the contrary, the AE thresholds  

may filter out some dust intrusions for regions where dust intrusions are sporadic, and  

other aerosol types are predominant (Cuevas et al., 2015; Di Tomaso et al., 2021). In  

these regions, the second (coarse mode fraction) approach is the most suitable. In this  

case, a source of uncertainty is related to the assumption that all coarse mode particles  

are mineral dust aerosols: other coarse particles like fresh smoke, sea salt, volcanic  

ash can be present mixed or not with mineral dust aerosol and therefore contribute to  

the coarse mode and erroneously be attributed to DOD. Apart from sparse  

measurements available worldwide, three main networks provide data to estimate  

DOD (see Figure 3b): the Aerosol Robotic NETwork (AERONET, Holben et al., 1998;  

Giles et al., 2019), the Skynet (Takamura and Nakajima, 2004, Nakajima et al., 2020),  

and the GAW Precision Filter Radiometer (GAW-PFR) network (Kazadzis et al.,  
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2018a). A comprehensive comparison between reference instruments for these three  

networks showed low AOD differences, demonstrating a promising framework to  

achieve homogeneity, compatibility, and harmonization among the different spectral  

AOD networks (Cuevas et al., 2019; Kazadzis et al., 2018b). Alternatively, AOD and  

AE can be also estimated in the near infrared (NIR) and short-wave infrared (SWIR)  

spectral regions from ground-based Fourier Transform Infrared (FTIR) solar  

spectrometry (Barreto et al., 2020) which operates within two international networks  

for atmospheric composition monitoring: NDACC (Network for the Detection of  

Atmospheric Composition Change, De Mazière et al., 2018) and TCCON (Total  

Carbon Column Observing Network, Wunch et al., 2011). More recently, these high- 

resolution FTIR observations have been extended by COCCON (cOllaborative Carbon  

Column Observing Network, Frey et al., 2019), which is a research infrastructure of  

portable, compact, and low-resolution FTIRs set up as a supplement to TCCON. The  

Maritime Aerosol Network (MAN), the marine component of AERONET, complements  

these networks on the land (Smirnov et al., 2009). There are other networks not  

specifically designed for aerosol measurements, which may provide aerosol and DOD  

as secondary products like the Australian aerosol network (Bureau of Meteorology  

Radiation Network and CSIRO/AeroSpan, Mitchell et al., 2017), the National Oceanic  

and Atmospheric Administration Earth System Research Laboratory’s (NOAA ESRL)  

Surface Radiation Network (SURFRAD, Augustine et al., 2000), the European Brewer  

Network EUBREWNET, López-Solano et al., 2018), and the PANDONIA Global  

Network.   

The lidar technique has the unique capability of providing information on the particle  

vertical distribution. A detailed review of lidar capabilities for mineral dust investigation  

is reported in Mona et al. (2012). There are different techniques for investigating  

aerosol properties using lidar: from the easiest and widely distributed simple, automatic  

elastic backscatter lidar (e.g., Welton et al., 2001) to the complex and advanced multi- 

wavelength Raman lidar and High Spectral Resolution Lidar (HSRL). A key element  

for the investigation of mineral dust is the retrieval of the particle depolarization ratio  

profiles that can be achieved by adding specific detection channel(s) (e.g., Sugimoto  

et al., 2003). After an accurate calibration of a depolarization lidar system  

(Freudenthaler et al., 2009), the particle linear depolarization ratio (providing  

information on the particle shape) allows the discrimination of mineral dust within an  
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atmospheric volume and the consequent derivation of the pure-dust backscatter  

coefficient profile (Ansmann et al., 2012; Marenco and Hogan, 2011) and, in case of  

Raman/HSRL lidar systems, the dust extinction coefficient profile (Shimizu et al., 2017;  

Tesche et al., 2009; Yumimoto et al., 2008) and DOD by the integration of the dust  

extinction profile. Microphysical properties such as the refractive index and size  

distribution can be retrieved by the multi-wavelength Raman and HSRL lidar dataset  

using sophisticated algorithms to provide higher-level profile products (e.g., Müller et  

al., 2019).   

Ceilometers (elastic backscatter lidars with very low Signal to Noise Ratio and different  

instrumental characteristics in wavelength, laser energy, and resolution) are 24h/7d  

instruments designed for cloud height determination but can be used with certain  

limitations for aerosol investigation (Wiegner et al., 2014). Backscatter profiles and  

other higher-level products can be obtained by combining ceilometers and elastic lidars  

with sun/sky photometers (Berjón et al., 2019; Románet al., 2018; Cazorla et al., 2017;  

Titos et al. 2019) or with aerosol models (Dionisi et al. 2018). The depolarization  

capability became recently available for ceilometers and is expected to further enhance  

the added value of ceilometer measurements, but more research is currently needed  

to characterize depolarization measurements from ceilometers.   

Dust mass concentration can be estimated after the evaluation of dust backscatter  

profiles: the uncertainty is 30-60% for Raman measurements but reaches up to 100%  

in the case of very large particles (>15μm) and can be even larger for elastic  

backscatter systems (Ansmann et al., 2012). Indeed, the combination of advanced  

lidar and photometer observations is found to be highly valuable and meets the need  

for vertically resolved information on the mass concentration of suspended particles  

and their fine and coarse components (see example in Figure 2). Furthermore, the  

Generalized Aerosol Retrieval from Radiometer and Lidar Combined data (GARRLiC,  

Lopatin et al., 2013) and Lidar-Radiometer Inversion Code (LIRIC, Chaikovsky et al.,  

2016) algorithms allow the estimation of fine and coarse mode volume concentrations,  

which are very useful for distinguishing mineral dust layers in the column (Tsekeri et  

al., 2017). In addition, a multi-wavelength Raman/depolarization system with the  

addition of a detection channel for Raman return signals from silicon dioxide (used as  

a tracer of mineral dust) allowed the derivation of mineral dust concentrations in East  

Asian dust plumes (Tatarov et al., 2011; Müller et al., 2010; Tatarov and Sugimoto,  
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2005). There are several aerosol lidar networks (Figure 3c) providing coordinated  

standardized observations at a regional level: the European Aerosol Research Lidar  

Network/Aerosol, Clouds, and Trace gases Research InfraStructure  

(ACTRIS/EARLINET; Pappalardo et al., 2014, www.earlinet.org); the Asian Dust  

Network (AD-Net, Shimizu et al., 2017; Murayama et al., 2001, https://www- 

lidar.nies.go.jp/AD-Net/); the Latin America Lidar Network (LALINET, Antuña-Marrero  

et al., 2017; http://lalinet.org/index.php); and the global NASA Micropulse Lidar  

Network (MPL-Net, Welton et al., 2001; https://mplnet.gsfc.nasa.gov/). For what  

concerns dust-related products, the dust partitioning method is incorporated in the real- 

time AD-Net data analysis system, and the dust extinction coefficient is included in the  

standard data product (Shimizu et al., 2017). Some prototypes of dust products are  

currently under investigation in terms of uncertainty and provided in research mode  

within ACTRIS/EARLINET. Additionally, the feasibility of providing an  

ACTRIS/EARLINET lidar-derived product for mitigating aviation risks in the case of  

mineral dust and volcanic ash intrusions has been recently proved (Hirtl et al., 2019;  

Papagiannopoulos et al., 2020).   

As complementary to more advanced lidars, there is a large number of ceilometers  

distributed worldwide potentially providing valuable information about aerosol vertical  

layering (Figure 3c). Aerosol profile information is being provided in NRT by an  

increasing number of ceilometers of the E-PROFILE operational network of the  

European Meteorological Services Network (EUMETNET; Illingworth et al., 2019).  

Harmonization and coordination among these regional networks are fostered by the  

GAW Aerosol LIdar Observation Network (GALION) promoted by the WMO (GAW,  

2007). Further, GALION cooperating networks are the National Oceanic and  

Atmospheric Administration (NOAA) Cooperative Science Center for Earth System  

Sciences and Remote Sensing Technologies (CESSRST, also known as CREST,  

https://noaacrest.umbc.edu/crest-lidar-network/ ) Lidar network, and the Network for  

the Detection of Atmospheric Composition Change (NDACC).  
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3.2.2 Satellite-derived products  

Satellite-derived aerosol products have always played a key role in describing the  

horizontal and vertical distribution of dust plumes. Such information has been acquired,  

for long-term periods and at a global scale, either by passive or active sensors,  

providing columnar and vertically resolved aerosol retrievals, respectively. For  

example, MODIS (Moderate Resolution Imaging Spectroradiometer; Levy et al., 2013)  

aerosol observations, available since 2000, have been fundamental for aerosol studies  

and mineral dust investigation (e.g., Boucher et al., 2013; Logothetis et al., 2021). On  

the other hand, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite  

Observation; Winker et al., 2009), relying on active remote sensing techniques, depicts  

the vertical structure of dust layers worldwide since 2006 (Winker et al., 2013; Marinou  

et al., 2017), through the provision of highly accurate backscatter and depolarization  

retrievals.   

Many operational products are available nowadays from Low Earth Orbiting (LEO) and  

geostationary (GEO) satellites, which, if harmonized, can fill the observational gaps of  

the individual sensors thus extending the spatial coverage of dust observations.  

Indeed, combining the once or twice daily higher information content observations from  

LEO satellites (currently providing better spectral and/or spatial resolution than GEO  

satellites) with the high frequency lower information content of the GEO satellites would  

be of high added value for desert dust research. Table 4 lists the sensors providing  

dust-related products that are widely used for dust investigation. Through the  

intercomparison of satellite dust aerosol products, it has been revealed that they often  

agree well in their dominant large-scale patterns, but not quantitatively or in detail. This  

is mainly due to differences in (i) information content and technical constraints of  

instruments, (ii) satellite overpass time, (iii) frequency sampling, (iv) algorithms for  

aerosol classification, and (v) cloud masking. Significant improvements and evaluation  

of the different algorithms for aerosol investigation through satellite measurements  

have been realized, for example, in the framework of the ESA Aerosol_cci project (e.g.,  

Kylling et al., 2018; Sogacheva et al., 2020; Popp et al., 2020).  
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A critical aspect that must be clarified is that identifying dust from space is not  

straightforward, especially away from the sources, since the mineral particles are  

mixed with other aerosol species, and it is difficult to discriminate. Important  

advancements have been achieved to retrieve quantitative information on desert dust  

from satellite observations, using features of the mineral particles such as the coarse  

dimension (threshold on AE; e.g., MODIS); non-sphericity (impact on the phase  

function and polarization; e.g., Cloud-Aerosol Lidar with Orthogonal Polarization,  

CALIOP, or measurements at different angles; e.g., the Along Track Scanning  

Radiometers, ATSR; the Multi-angle Imaging SpectroRadiometer, MISR; and the  

Polarization and Directionality of the Earth’s Reflectances, POLDER); UV/visible  

aerosol absorbing index (AAI, e.g. from the Ozone Monitoring Instrument, OMI, Torres  

et al., 2007; 2013; or the TROPOspheric Monitoring Instrument, TROPOMI), allowing  

to separate absorbing (volcanic ash, mineral dust and biomass burning) from non- 

absorbing aerosols (e.g. de Graaf et al., 2005); or specific spectral signature of desert  

dust in the thermal infrared (e.g., Infrared Atmospheric Sounding Interferometer, IASI;  

and Spinning Enhanced Visible and Infrared Imager, SEVIRI). Examples of the  

application of the aforementioned techniques are reviewed hereunder.   

The observational capabilities of MODIS and VIIRS (Visible Infrared Imaging  

Radiometer Suite) have been recently combined with novel retrieval algorithms for dust  

detection over oceans (Zhou et al. 2020a), in which the non-sphericity of the probed  

mineral particles (Zhou et al., 2020b) is taken into account. This is also done in the  

new PARASOL retrieval utilizing the GRASP algorithm (Dubovik et al. 2014).   

A second example is the unprecedented high-spatial resolution (3.5x7 km²) information  

on aerosol plumes (see Figure 2) UV AAI, along with height, obtained from TROPOMI  

onboard Sentinel 5P. It extends the temporal availability (nearly 40 years) of the  

corresponding measurements acquired from the TOMS (Total Ozone Mapping  

Spectrometer) and OMI instruments since the 80s and 2004, respectively. Positive AAI  

observations are associated with the presence of absorbing particles (dust or biomass  

burning) (Herman et al., 1997), and they have been utilized either for the identification  

of global dust sources (e.g., Prospero et al., 2002) or for monitoring dust activity (e.g.,  

Gassó et al., 2019).   
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A third example is the exploitation of the specific sensitivity of Thermal Infrared (TIR)  

radiances (as measured, for example, by IASI onboard the Metop satellite series,  

SEVIRI onboard the Meteosat Second Generation satellites, Geostationary  

Operational Environmental Satellite, GOES; Himawari, Geostationary Ocean Color  

Imager, GOCI) to mineral aerosols (dust and volcanic ash) through vibrational  

resonance peaks of silicates (Ackerman et al., 1997), making their observations  

specific in nature. Qualitative dust products have been obtained from the Infrared  

bands of SEVIRI, GOES, HIMAWARI in the form of a dust index or a dust Red Green  

Blue (RGB) product (e.g., www.eumetsat.int, Schepanski et al., 2007) covering most  

of Africa and Europe since 2002. Taking advantage of the high spectral resolution of  

IASI TIR observations, global long-term (since 2007) daily dust distributions have been  

obtained with four different algorithms (Callewaert et al., 2019; Capelle et al., 2018;  

Clarisse et al., 2019; Klüser et al., 2015). However, the TIR observations are sensitive  

only to coarse mode dust aerosols. In addition, if the DOD is needed at visible  

wavelengths (for example to compare with other instruments) a spectral dependence  

conversion is needed to convert the TIR coarse mode DOD to visible coarse mode  

DOD. The TIR instruments also provide observations at night, relying only on Earth’s  

thermal emissions. In addition to the dust optical depth, two operational IASI algorithms  

provide a mean altitude of the aerosols (Callewaert et al., 2019; Capelle et al., 2018),  

and one algorithm retrieves vertical profiles with up to 2 degrees of freedom  

(Callewaert et al., 2019). Both SEVIRI and IASI dust products have been used to  

analyse dust sources (e.g., Schepanski et al, 2007; Vandenbussche et al., 2020;  

Chédin et al, 2020), for dust identification and dust plumes’ movements (e.g., Banks  

et al., 2013) and climatological studies (e.g., Banks and Brindley, 2013; Banks et al.,  

2017). Finally, IASI high resolution spectra can also be used to derive information on  

the mineralogical composition of dust (e.g., Klüser et al, 2012; Alalam et al., 2022).    

The example of recent work on satellite dust-specific products is the Lidar climatology  

of Vertical Aerosol Structure for space-based lidar simulation studies (LIVAS) study of  

the European Space Agency (ESA), using CALIOP 532 nm backscatter and  

depolarization products in synergy with the ground-based typical values of mineral  

particle depolarization and lidar ratios (i.e., the extinction-to-backscatter ratio) derived  

from EARLINET (Amiridis et al., 2013, 2015). LIVAS delivers pure dust optical depth  

and extinction profiles useful for describing the 3D transport of dust over Europe  
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(Marinou et al., 2017), the 3D structure of dust over Southeast Asia (Proestakis et al., 

2018) and dust ice-nucleating particle concentrations (Marinou et al., 2019). A similar 

approach can be followed for deriving pure-dust products from the NASA Cloud-

Aerosol Transport System (CATS) mission (Yorks et al., 2014) onboard the 

International Space Station (ISS), which operates at 1064 nm. Vertical profiles of 

aerosol extinction and backscatter are also provided by the ongoing Aeolus mission 

(Kanitz et al., 2019; Straume et al., 2019) and are expected from the forthcoming Earth 

Cloud, Aerosol and Radiation Explorer (EarthCARE; Illingworth et al., 2015) mission of 

the European Space Agency (ESA), at 355 nm, and furthermore from the Atmosphere 

Observing System of NASA at 532 nm. These missions will substantially upgrade the 

altitude-resolved observational capabilities in the troposphere and stratosphere. In 

contrast to CALIOP, the High Spectral Resolution Lidar (HSRL) Atmospheric Laser 

Doppler Instrument (ALADIN) and the ATMospheric LIDar (ATLID) instruments on 

board Aeolus and EarthCARE, respectively, will acquire vertical profiles of aerosol 

optical properties without requiring a priori assumption of the lidar ratio. However, in 

the case of ALADIN (Flamant et al., 2007), degradation of its performance for the 

backscatter (underestimation) and lidar ratio (overestimation) is expected when non-

spherical mineral particles are recorded due to the misdetection of the cross-

component of the return lidar signals (Gkikas et al., 2013). 

Beyond the measurement techniques applied for dust retrievals from space, multi-

sensor and/or multi-parameter approaches have been suggested for identifying dust 

presence and contribution to total AOD. A promising approach for deriving DOD from 

columnar AOD has been demonstrated through the synergistic implementation of 

spaceborne retrievals and reanalyses/model outputs. Gkikas et al. (2021; 2022) 

developed a global fine resolution (0.1° x 0.1°) dataset (MIDAS), over the period 2003 

– 2017, via the combination of MODIS-Aqua AOD and MERRA-2 dust fraction. A 

similar methodology was applied by Ridley et al. (2016), who adjusted the bias-

corrected coarse resolution AOD, derived by multiple satellite platforms, to DOD by 

utilizing the dust contribution to the total load, in optical terms, simulated by four state-

of-the-science global models, over 2004–2008. Recently, Voss and Evan (2020) 

provided a long-term record of DOD relying on MODIS (2001-2018) and AVHRR 

(Advanced Very High-Resolution Radiometer; 1981-2018) AOD retrievals, AERONET 

fine mode fraction, and MERRA-2 wind fields. Synergistic use of different sensors 
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offers the possibility for accurate dust identification as recently demonstrated by the  

combined use of lidar and infrared imaging radiometer onboard CALIPSO (Zheng et  

al., 2022).  

It is important to mention that some follow-up sensors will continue those dust-related  

observations. In some cases, the successor instruments are already in orbit such as  

SUOMI (VIIRS; Visible Infrared Imaging Radiometer Suite) replacing MODIS and the  

Sea and Land Surface Temperature Radiometer (SLSTR) for the Advanced Along- 

Track Scanning Radiometer (AATSR), while in other cases they are scheduled within  

the next few year, such as the Multi-viewing Multi-channel Multi-polarization Imaging  

(3MI) for POLDER, Infrared Atmospheric Sounding Interferometer, New Generation  

(IASI-NG) for IASI, the InfraRed Sounder (IRS) for SEVIRI in the Meteosat Third  

Generation (MTG) series and the EarthCARE for CALIOP and CATS. Potential new  

insight will be offer by the NASA PACE (Plankton, Aerosol, Cloud, ocean Ecosystem)  

mission planned for launch in 2024 (Werdell et al., 2019). Through polarimetric  

observations, PACE will provide, among other variables, aerosol fine fraction and  

therefore also an indication of the presence of dust which combined with ocean  

products, will reveal how dust might fuel phytoplankton and algae growth at the ocean  

surface. The recent launch of the EMIT mission (Green, 2022) will bring more  

information on the mineralogical composition of dust over the sources, while the  

Atmosphere Observing System (AOS) of NASA (Vane et al., 2022) is expected to  

provide more advances on dust retrievals from forthcoming multi-sensor synergies.   

4. THE WAY FORWARD: GAPS AND RECOMMENDATIONS  

The current maturity of the observational and forecasting systems for monitoring and  

forecasting sand and dust storms allows for a better identification and assessment of  

dust-related impacts on socio-economic sectors and, consequently, allows for the  

definition of the user’s needs. This is a fundamental step for the design and creation  

of services that can support reducing the negative impacts of dust occurrences and  

enhancing the positive ones. The improved observational capability opens new  

frontiers and poses new scientific questions, increasing the level of request and need  

for observational capabilities. Nonetheless, there are still gaps in the observational  

system and room for improvements, as described hereafter.  
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Scarcity of observations  

Satellite measurements described above provide global information on dust plumes,  

but they require more precise ground-based instruments for their validation under all  

possible conditions and as a reference for harmonizing datasets from different  

sensors/satellites. Additionally, satellites do not provide all the dust parameters of  

interest, making ground-based remote sensing and near-surface measurements  

essential. Figure 3 shows a very good coverage in coordinated measurements in the  

Northern Hemisphere, yet a limited number of available ground-based observations  

close to the main mineral dust source regions. Few observations are also available for  

the high latitude dust sources, contributing at least 5 % of the global dust budget  

(Bullard et al., 2016; Meinander et al., 2022). In this respect, it must be here underlined  

that the reported geographical coverage can suffer from missing information. This,  

however, underlines that in the case of available measurements, there is still a gap in  

their advertisements and a need to strengthen the link between the different regions. 

   

The lack of ground-based measurements in dust-source areas, as well as the lower  

reliability of dust satellite products over the typically bright source areas, introduces  

limitations from several points of view: for improving understanding of the processes  

of dust generation and its injection into the troposphere, for the initialization of dust  

models, then for the model assimilation and evaluation, and finally for the analysis of  

dust impacts in the most affected dust regions. Additionally, these areas are crucial for  

satellite validation because of an often-complex vertical distribution and high temporal  

and spatial variations. For example, AOD datasets from FTIR could be, as well, a  

valuable validation system for satellite sensors incorporating IR spectral bands, as IASI  

on board the EUMETSAT/Metop platforms, or the Operational Land Imager (OLI)  

aboard Landsat-8, and VIIRS aboard Suomi NPP. In addition, some recent works have  

demonstrated the potentiality of low-cost radiometers (Almansa et al., 2017, 2020) and  

all-sky cameras. All-sky cameras can retrieve AOD by applying GRASP (Román et al.,  

2017; Antuña-Sánchez et al., 2021, Román et al., 2022; Antuña-Sánchez et al., 2022).  

The main advantage these all-sky camera retrievals offer compared to photometers is  

to select alternative sky points when clouds contaminate the standard sky points from  

hybrid or almucantar scans of sunphotometers.  Ground-based aerosol measurement  

networks worldwide are generally motivated for the purposes of air quality and health  
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and specific adverse PM effects on human populations. Therefore, PM measurements  

are generally collected where the people are in cities, and not in dust source areas  

which are almost all far removed. There is also a lack of coordinated deposition  

measurements. Distributed instrumental deployments such as those of the CARAGA  

(Collecteur Automatique de Retombées Atmosphériques insolubles à Grande  

Autonomie) deposition collector (Laurent et al., 2015; Vincent et al., 2016) should be  

widely applied to improve the availability of total (dry and wet) atmospheric deposition  

of insoluble dust in remote source areas. At international level, common measurement  

protocols for deposition must be established to have comparable databases and to  

better constrain deposition budgets.  

Specific and reliable measurements of deposition and simultaneously of aerosol/cloud  

vertical resolved profiles supporting new products such as the aerosol-cloud  

coincidences based on dust model reanalysis could be of interest in areas like North  

Africa, where the solar energy production potential is very high due to infrequent  

cloudiness and high insulation, and dust is a serious mitigating factor, would also  

facilitate the management of solar power plants, including the planning of new facilities.  

This observational gap is hard to fill, especially in North Africa, due to challenging  

political and socio-economic conditions, as well as, in more general terms, due to the  

extreme environmental and operational conditions (high temperatures, access to  

electricity). Specific instrumental adaptations and approaches for reducing expensive  

maintenance and operation costs are needed.  

A potential solution for filling this observational gap is the development of Lower-Cost  

Medium Precision (LCMP) instruments , as the zenith looking narrow-band radiometer  

(Almansa et al., 2017; 2020), with no  mobile parts, specifically designed to measure  

desert dust, and land low-cost sensors operated by national weather services or even  

transportable on unmanned vehicles or drones (e.g., Morys et al., 2001; Guirado et al.,  

2014; http://www.calitoo.fr, Pikridas et al., 2019; Kezoudi et al., 2021). These  

instruments could benefit from more advanced instrumentation for testing, validation,  

and quality assessment (Giordano et al., 2021). Otherwise, the support of research  

infrastructure, networks, and international initiatives, such as ACTRIS and WMO SDS- 

WAS, will be key for developing those activities. A global coverage can be provided at  

a certain level of confidence only through integrating satellite global measurements  

with models through reanalysis procedures: although reanalyses cannot be considered  
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a replacement for long-term observations, they provide no-gap datasets covering the  

whole globe at an increasingly higher spatial resolution. Examples of such reanalyses,  

including dust estimates, are the Copernicus Atmosphere Monitoring Service (CAMS)  

Interim Reanalysis (Inness et al., 2019, Flemming et al., 2017) and the Modern-Era  

Retrospective Analysis for Research and Applications, version 2 (MERRA-2) (Gelaro  

et al., 2017; Randles et al., 2017).  

Hidden small-scale, short, and intense dust storms  

There are several meteorological mechanisms involved in the occurrence of sand and  

dust storms, each with its own diurnal and seasonal features, occurring at a wide range  

of spatiotemporal scales (i.e., synoptic, mesoscale, and microscale) that may control  

strong winds and cause dust storms (Knippertz and Stuut, 2014). Overall, global and  

synoptic-scale sand and dust storms are well tracked by satellites and models.  

Meanwhile, our knowledge about the occurrence and contribution to the global aerosol  

budget of smaller-scale phenomena, such as dust devils and haboobs is limited (e.g.,  

Jemmett‐Smith et al., 2015; Marsham and Ryder, 2021). Haboobs are often caused  

by an atmospheric gravity or density current, such as thunderstorm outflow, but can  

also occur as a result of strong synoptic gradient winds, such as following a dryline or  

dry frontal passage. A haboob may transport huge quantities of sand or dust, which  

move as a dense wall that can reach a height of 1,000 meters (about 3,300 feet) and  

more, has a lifetime of several hours, and can cause important damage (e.g., Vukovic  

et al., 2014; Rooney et al., 2017; Vukovic et al., 2021). Local, short, and intense  

convective dust storm development, movement, and shape are difficult to be estimated  

using satellite data because of the presence of clouds in these systems, creating a gap  

in the nowcasting (e.g., Dempsey, 2014; Vukovic et al., 2021) and hazard management  

for such cases, but also, because the dust clouds are generally carried within the  

boundary layer or otherwise very close to the ground where satellite dust detection is  

typically difficult. Additionally, only geostationary satellites with high-temporal  

resolution (as MSG, < 15min) can be considered for nowcasting. Radars with dual- 

polarization technology have the ability to characterize these events by combining  

reflectivity, Doppler velocity, and co-polar correlation coefficient (i.e., the correlation  

between reflected horizontal and vertical polarized signals from each scatterer in a  

volume sample). Some urgent issues for improving information acquired in the dust  

forecast models have been identified. Haboob’s forecast quality depends on the  
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explicitly resolving of the convection (Vukovic et al., 2014; Gasch et al., 2017; Vukovic  

et al., 2021) which is highly dependent (i.e., spatial resolutions of a few km) on the  

model resolution and the dust source definition (Vukovic et al., 2014; Vukovic et al.,  

2021). On one hand, some efforts have been made for the development of more simple  

parameterizations of haboobs for models with parameterized convection, based on the  

downdraft mass flux of convection schemes (see Pantillon et al., 2016). On the other  

hand, the sensitivity of forecast quality of such severe dust events to surface data  

proves that dust sources need regular updates using high-resolution (< 5km)  

observations (e.g., Normalized Difference Vegetation Index, NDVI, or Enhanced  

Vegetation Index, EVI, as well as land cover and soil moisture data observed by  

satellites). There is a need to identify specific dust source types such as alluvial  

sources that have been identified as particularly active, in addition to dry lake beds  

(e.g., Feuerstein and Schepanski, 2019). Dried lakes and glaciogenic sediments that  

may increase because of changing climate conditions can provide small-scale dust  

sources that must be identified. Such identifications have so far been frequently  

obtained by visual identification of dust plumes in satellite images of desert surfaces.  

It has been estimated that anthropogenic playa sources (i.e., the exposed beds of  

shrinking water bodies) contribute 85% of global anthropogenic dust emissions (Zucca  

et al., 2021). Land degradation and desertification processes play an important role on  

dust emission from playa sources which is frequently triggered or increased by human  

activities such as unsustainable land and water use upstream, reduced vegetation  

cover on and around playas, and mechanical disturbance of the playa surfaces. The  

problem of appropriate high-resolution specification of dust sources has been  

recognized by UNCCD as a major problem in the management of hazardous  

conditions. In this context, UNCCD promoted the development of a global high- 

resolution dust source database, the Sand and Dust Storms Source Base-map, as a  

part of the work considered in the Sand and Dust Storm toolkit coordinated by UNCCD  

(UNCCD, 2022). Another critical local phenomenon is the formation of nocturnal low- 

level jets related to the reduced surface friction during stable nighttime conditions–- a  

process typically underestimated by models because of a poor boundary-layer  

description (Fiedler et al. 2013). This may be improved by increasing the number of  

meteorological observations but also requires model development, specifically  

concentrating on arid areas. International actions are needed to improve both dust  

aerosol and meteorological networks, possibly with low-cost sensors, and to develop  
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specific strategies for maintaining continuity of observations in remote or extreme  

environments.  

Missed physicochemical dust properties   

Improving the description of the chemical composition is urgent for various  

applications, including climate and weather modeling. The availability of more size- 

resolved measurements of dust chemical composition, particularly close to the source  

regions, would be beneficial for understanding and better quantifying the dust impact.  

The degree of abrasion and melting that an aircraft suffers is a function of exposure  

time, dust mineralogical composition, and its concentration. Each mineral has its own  

physicochemical characteristic regarding hardness (Clarkson and Simpson, 2017) and  

melting points (Wood et al., 2017). Feldspars and quartz (Atkinson et al., 2013,  

Harrison et al., 2019; Ilic at al., 2022) are efficient ice nuclei. The increase of ice nuclei  

due to the presence of dust has direct implications for solar energy (i.e., cirrus  

formation) and aviation (i.e., icing). The mineralogy can help to advance our  

understanding of the role of dust in health (WHO, 2021) and agriculture (e.g., Stefanski  

et al., 2009; Zia-Khan et al., 2014). Focusing on current activities on mineralogical  

modeling at regional and global scales, it is also important to mention the need for  

detailed and high-resolution (< 1km) global databases of soil physicochemical  

properties and textures, which are commonly used in soil classification systems such  

as those reported by the UN Food and Agricultural Organisation (FAO) Digital Soil Map  

of the World (DSMW, FAO-UNESCO, 1974; Batjes, 1997) or the Harmonised World  

Soil Dataset (HWSD; Nachtergaele et al., 2009) both at a spatial resolution of ~10km  

at mid-latitudes. Here it is worth mentioning that combining both versions of DSMW  

(from 1974 and 1997), there are a total of 211 different soil units with potential  

mineralogical content. Soil map composition from Claquin et al. (1999), Nickovic et al,  

2012) and Journet et al. (2014) represents the initial efforts to represent the mineralogy  

by mode. These works identify 8 and 12 minerals relevant for various dust impacts  

(e.g., to climate, marine productivity, cloud formation), in the clay and silt fractions of  

the soil. The accuracy of model representations of the mineral dust composition linked  

to soil mineralogy is expected to be drastically improved by novel hyperspectral  

imaging spectroscopy over the coming decade thanks to the NASA EMIT (Green,  

2022) and the German EnMAP (Chabrillat et al., 2022) missions. The resulting  

spectroscopically derived mineral composition will be used to update the dust source  
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region initialization of models (Green et al., 2018) and will enhance the current efforts  

of the atmospheric research community to better represent and understand dust  

mineralogy (Perlwitz et al., 2015b; Scanza et al., 2015; Pérez García-Pando et al.,  

2016, Pérez García-Pando et al., 2019). A recent paper (Go et al., 2022) showed the  

possibility to use the EPIC (Earth Polychromatic Imaging Camera) measurements as  

tool for retrieving hematite and goethite concentrations in pre-identify dust plumes,  

providing important information about dust composition.  

Other initiatives such as the European Research Council (ERC) projects FRAGMENT  

(FRontiers in dust mineralogical coMposition and its Effects upon climate, Pérez  

García-Pando et al., 2019) will provide complimentary ground- and laboratory-based  

observations and analyses of soil- and airborne dust composition needed to develop  

the parametrizations of the soil-to-aerosol transfer functions.   

Dust size distribution is also key for understanding the effects of dust (e.g. Kok et al.,  

2017). Mineral dust has a wide dimensional range from ultrafine (Fratini et al., 2007)  

to giant particles (Ryder et al. 2019). Typically, attention is focused on the coarse mode  

of mineral dust because it is the most abundant, however ultra-fine fraction even if  

smaller as aerosol load is an important fraction because of its potential impacts on the  

health: smaller the particles deeper they penetrate inside the human body. The  

presence of giant particles is typically neglected in the study of mineral dust plumes,  

but recent studies suggest that these particles should be considered (van der Does et  

al., 2018; Varga et al., 2021). Giant particles are commonly found over the  

Mediterranean (D >40 μm in the 2.5-4 km altitude range and >80 μm below), over the  

Atlantic (>75 μm in the Saharan aerosol layer) (Ryder et al., 2019; Marenco et al.,  

2018; Renard et al., 2018; Betzer et al., 1988), in the Caribbean (20-30 µm particles)  

(Weinzierl et al., 2017), and in the Arctic (up to 90 µm Saharan quartz particles) (Varga  

et al., 2021). These large particles may be of high importance because they can act as  

Giant Cloud Condensation Nuclei (GCCN) and Ice Nuclei (IN), determining the  

concentration of the initial cloud droplets, the clouds’ albedo and lifetime, and the  

precipitation formation, especially through warm rain processes (Koren et al., 2012;  

Feingold et al., 1999; Eagan et al., 1974). In a recent study, Ryder et al. (2019) showed  

that omitting giant particles leads to a significant underestimation of short- and  

longwave extinction over the Sahara. However, the main remote sensing instruments  

used nowadays in measuring aerosols (i.e., lidars and photometers) cannot retrieve  
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aerosol microphysical properties for particles larger than a few microns (Müller et al.,  

2012), while cloud radars seem to be able to detect giant particles also at a large  

distance from the source (Marenco et al., 2018; Ryder et al., 2018; Madonna et al.,  

2013; 2010). First simulation studies show that cloud radar can detect mineral particles  

with a minimum effective radius of about 50 µm and number concentrations larger than  

0.1-1.0 cm−3 (Madonna et al., 2013), while smaller particles down to a few microns can  

be detected in the presence of higher number concentration in the 20 to 130 cm−3  

range (Guma-Claramunt, 2016). Further investigations on this topic are needed, but it  

is clear that a synergistic use of photometer, aerosol lidar, and cloud radar could open  

new opportunities to measure and study the presence of dust in the whole relevant  

dimensional range.   

Additional ground-based and airborne in-situ measurements of the size dust spectrum  

(from ultrafine to large giant particles) are needed. For in situ ground-based and  

airborne measurements of giant particles, specific inlet systems should be used, and  

the detection of the whole dimensional range has to be obtained by integrating different  

methods (Wendischet al., 2004). Ultimately, a better description of the dust  

physicochemical properties will deal with a better characterization of some key  

parameters used for monitoring sand and dust storms, such as visibility, AOD, or  

extinction provided by models or remote-sensing retrievals.   

What are the users looking for?  

The several impacts of dust have led to a growing interest from various stakeholders– 

- such as air quality managers, health professionals, solar energy plant operators,  

aviation, and policy makers–- for dust products tailored to their specific needs. The  

undertaken actions through inDust (Nemuc et al., 2021) for better connecting  

researchers and user communities allowed for a first identification of needs and  

requirements per socio-economic sector. There is a clear and general interest to have  

regionally- and time-resolved chemical characterization of mineral dust to improve our  

understanding on the identification of dust impacts on ecosystems, as well as, on  

agriculture, fishing, and tourism (skiing and beach activities). More specific requests  

from sectors more advanced in the assessment of the dust impacts are:   

● For health, the first is a lack of monitoring in many countries of the world and  

inadequate monitoring in rural areas or outside of major cities in many countries;  
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second is the lack of standardized dust-related measurements (including size  

distribution and chemical composition) to perform assessment studies that can  

contribute to understand the different relationships between dust and health  

impacts (i.e., differences in composition of tropical vs. high-latitude deserts, or  

the enhancement of some atmospheric chemical reactions that can increase  

the pollution levels).   

● For air quality management, one of the current main difficulties is related to  

the methodologies applicable for quantifying the mineral dust contribution to the  

total PM10/PM2.5 and PM1 concentrations observed, typically based on back- 

trajectories analyses, forecast, and satellite image analysis and gravimetric  

measurements (Querol et al., 2019; Barnaba et al., 2022). There are some  

heterogeneities and/or difficulties in applying such methodologies, particularly  

in near-real-time (NRT) scales. Moreover, a relevant concentration of mineral  

dust particles larger than 10 microns in size can be observed (Reynolds et al.,  

2016). Even if less severe respect to smaller particle one, >10microns particles  

could have an impact on human being wellness, which investigation can require  

to go further respect to standard air quality measurements of PM10 and PM2.5  

(Reynolds et al., 2016).Particular attention should be paid when the PM is  

measured with instruments based on different methods (i.e., gravimetric and  

equivalent methods) and take into account the influence that the wind speed  

could have on the measurements even when using the same type of instrument,  

especially in conditions of high wind speed (Sharrattand Pi, 2018). Novel XRF  

spectrometers providing chemical composition of PM in different size classes  

(Furger et al., 2020) could be relevant for improving source apportionment, but  

are still research systems available in few labs.   

Alerts based on the magnitude of dust events (based on monitoring and  

modeling results) could help local authorities to manage the effects related to  

such events, for example, by reducing anthropogenic emissions on critical days.  

A good example is the Dust Warning Advisory System provided by the WMO  

Barcelona Dust Regional Center developed in the framework of the WMO  

CREWS project. Finally, a better understanding of the role of dust in  

atmospheric chemistry can deal with the improvement of air quality forecasting  

systems.    
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● For transportation, visibility is widely used because it is directly connected with  

safety protocols. Accurate forecast of dust-visibility requires a better  

understanding of the role of optical properties and size distribution (particularly  

the contribution of giant particles at sources). In particular, for aircraft  

maintenance, four-dimensional (4-D) concentration, chemical and size-resolved  

atmospheric dust properties are demanded to advance the understanding of  

dust impacts on the engines. Furthermore, for safety and cleaning management  

of the infrastructures (i.e., airports, roads, and railroads) estimates on the dust  

deposition are required. In this framework, PM and dust deposition routinely  

measurements at airports could support the management of the visibility-related  

risks at airport and improve the assessment of the visibility and dust deposition  

forecast.  

● For solar energy, meanwhile more accurate solar irradiance forecasts  

(including the direct and indirect effect of the presence of dust) are being  

considered by different European providers (as Copernicus), soiling information  

is still far from being available for the final user in a solar plant. Current soiling  

information is scattered in solar plants around the world and there are no  

standards for their measurement. Therefore, the available soiling  

measurements are highly dependent on the technology (e.g., Solar  

Concentrated or Photovoltaic) used in the measurement point (i.e., solar plant).  

To overcome this limitation, it would be desirable to incorporate simultaneous  

deposition, surface concentration and soiling measurements in solar plants.  

5. TO BRING THINGS TOGETHER  

In recent years, developments in Earth Observation, fostered by coordinated  

international initiatives and programs such as WMO SDS-WAS, led to great advances  

in the observational capabilities of mineral dust particles. Wide collected information  

opens new possibilities for facing the increasing request of tools for improving  

management and resilience of dust related impacts, more and more relevant because  

of climate change. This paper aims to be a milestone in matching available information  

and knowledge demand, providing an overview of current dust observations and taking  

into consideration first collected user needs.   

Here, we seek to provide an overview of the state-of-the-art of operational and  
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distributed observations in Northern Africa, the Middle East and Europe. Potential  

developments are underlined and highlighted in view of the user needs currently  

identified thanks to the inDust international initiative. Observational gaps are identified  

in terms of coverage but also of specific information like additional data about  

deposition (wet and dry), visibility, dust vertically resolved information, dust chemical  

composition, and giant particle presence.   

First, the most relevant source regions are scarcely equipped with instrumentations for  

dust monitoring. The situation could be improved through the support of international  

initiatives like WMO SDS-WAS and UN coalition, and the use of low-cost sensors for  

key information acquisition (deposition, visibility, and meteorological parameters).  

Research infrastructure, networks, and international initiatives should support such  

activities, providing a platform for checking and validating low-cost sensors. The latter  

is crucial for improving the models in terms of accuracy and uncertainty evaluation in  

the vertical dimension. Additionally, satellite observations are currently providing  

aerosol descriptions with better and higher spatio-temporal resolution.  

Research products and synergistic approaches are paving the way for addressing  

observational gaps in terms of specific information (e.g., giant particles). In addition to  

these relevant aspects, there are 3 main topics which are crucial for the dust  

observation and impact quantification and management: the dust speciation, data  

availability, and data traceability. These needs are transversal to many user  

communities and call for international cooperation and synergy.   

For dust model evaluation purposes to the aim of planning action for air quality  

management, it is fundamental to have observations of dust-only quantities. The  

review of the existing observations underlines that many new products give the  

possibility of investigating the presence of mineral dust, but there is currently the need  

to harmonize the aerosol classification or, whenever this is not possible, to identify  

translating rules among the wide range of existing classifications. Comparison of typing  

algorithms is not trivial even when the same kind of observations are used (Voudouri  

et al., 2019), but such a harmonization process would lead to the integration of the  

existing dust-only datasets in a coherent and consistent global dataset describing the  

mineral dust 4D distribution on a global scale. Some initiatives are currently facing this  

issue, like the International Satellite Aerosol Science Network (AEROSAT). In this  
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context, mineral dust has been considered the first category for facing the typing  

harmonization process.   

NRT and open access availability of data is a common requirement for model  

assimilation and verification (which is in NRT) and any kind of warning/short-term  

impact sector, calling for more operational dust-only products from space and ground- 

based platforms. Dust-related observations are not under any protocols of NRT data  

exchange under WMO or other UN agencies that would ensure the reliability and  

efficiency of the operational system. Whilst the timeliness of observations is not a strict  

requirement for reanalysis and evaluation of the forecast models, spatially/temporally  

distributed observations, uncertainty characterization of the observations, and  

homogeneity of the datasets are essential (Benedetti et al., 2018). It is important that  

observations used in reanalysis and evaluation are well calibrated and accurate and  

that long time series are provided whenever possible (e.g., Cuevas et al., 2019).   

Traceability, quality assurance and quality control of the data are strictly needed.  

Metrological approaches can help to improve data quality for in-situ and remote  

sensing techniques, in evaluating sensor characteristics, calibration and measurement  

uncertainties, and defining data quality and target uncertainties. Full traceability of the  

data, uncertainty characterization, and harmonization of the data availability in terms  

of policies, procedures, and interoperability are fundamental for advancing the  

atmospheric dust field. This can be supported through programs like the WMO-GAW  

initiative in terms of observational procedures and by the Research Data Alliance,  

concerning data FAIRness (i.e., Findable, Accessible, Interoperable, and Reusable  

data).  

In synthesis, this paper clearly shows that the development of observational  

techniques improved the knowledge of mineral dust particles, their global distribution,  

and their properties. The improved observational capability opened new frontiers and  

scientific questions to be addressed, increasing the level of requests and needs in  

terms of observational capabilities. Only international cooperation and synergy can  

foster the achievement of these objectives of a global, interconnected topic such as  

atmospheric dust.  
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