Germany-Korea Conference, Seoul, 31th October – 1st November 2023 Hydrogen utilization session

A project example

LIQUID HYDROGEN SYSTEM FOR AVIATION – DESIGN AND SIMULATIONS

Dr.-Ing. Daniela Lindner, Dr.-Ing. Jan Haemisch, Eric Wollenhaupt

German Aerospace Center (DLR)

Institute of Space Propulsion, Department of Applied Hydrogen Technologies

Overview

Part 1: Project Overview

Part 2: Design

- Integration of LH₂ Tank and LH₂ Supply System
- Arrangement view

Part 3: Simulations

- Overview Ecosim Pro
- Aircraft Tank Model
- Szenario 1 Simple Tank Cycle
- Szenario 2 Dynamic Fuel Cell Demand

Part 4: Outlook

PROJECT OVERVIEW

Picture Source: DLR

Hydrogen Aviation Lab

Ground demonstrator for usage of liquid hydrogen in a common airplane (A320)

Partner

Goals

- Demonstration of handling of an LH₂ system on board and at ground
- Operation of on-board systems with LH₂ as energy source and a fuel cell

Scope of DLR Lampoldshausen

- Design und Erection of the complete H₂ system on board until fuel cell interface
- simulation of system behavior for various scenarios (fueling, taxiing, flight)
- Optimization regarding to
 - safety
 - efficiency
 - Boil-off

#MakeChangeFly

DESIGN

Arrangement view

Ecosim Pro

Overview

- Dynamic simulation tool developed by European Space Agency (ESA)
- Applications are
 - Space propulsion (ESPSS)
 - Environmental Control and Life Support Systems (ECLSS)
 - Gas turbines
 - Aircraft systems
 - Cryogenics (CERN)
 - Power plants

Aircraft Tank Model

Szenario 1 – Simple Tank Cycle

Modelling of a complete tank cycle

- Fueling phase with decreasing mass flow
- Standing time
- Withdrawal phase with increasing mass flow

Result

- Condensation of GH₂ while standing time
 - \rightarrow LH₂ level increases

Szenario 2 – Dynamic Fuel Cell Demand

Dynamic mass flow sequence

 Implement dynamic mass flow sequence at interface to FC with still 300K and 4 bar

Szenario 2 – Dynamic Fuel Cell Demand

Dynamic mass flow sequence

 Implement dynamic mass flow sequence at interface to FC with still 300K and 4 bar

Results

 Mass flow regulation reacts very fast, PID can be optimized

Szenario 2 – Dynamic Fuel Cell Demand

Dynamic mass flow sequence

 Implement dynamic mass flow sequence at interface to FC with still 300K and 4 bar

Results

- Mass flow regulation reacts very fast, PID can be optimized
- Used Evaporator reacts very slow
 - Critical temperature peaks
 - Optimization of PID regulator necessary

OUTLOOK

Outlook

2023

Finalization of procurement

2024

- Pre-cooling of refurbished LH₂ storage at DLR Lampoldshausen
- Assemby of complete LH₂ system inside the airplane
- Commissioning and testing
- Validation and expansion of numerical simulations

Thank you for our attention!

<u>Contacts</u>

Dr.-Ing. Daniela Lindner

Head of Department for Applied Hydrogen TechnologiesPhone: +49 6298 / 28 - 758E-Mail: Daniela.Lindner@dlr.de

Dr.-Ing. Jan Haemisch Project Manager in Dept. for Applied H2 Technologies Phone: +49 6298 / 28 - 557 E-Mail: Jan.Haemisch@dlr.de