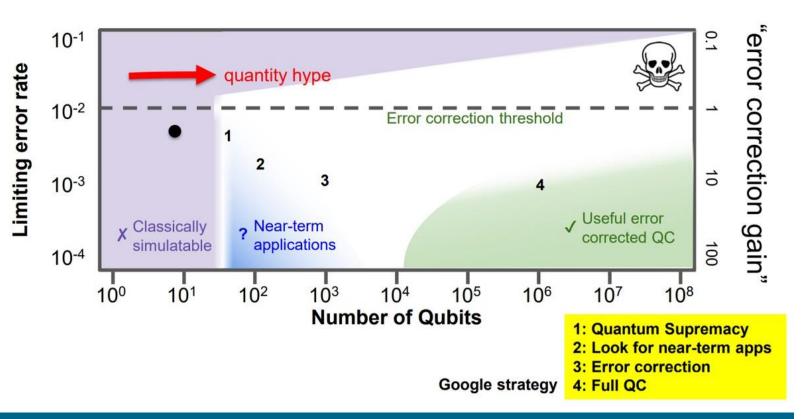
## **ALQU: A DLR-QCI PROJECT**

ALgorithms for QUantum computer development using hardware-software-codesign



Project leader: Dr. Peter K. Schuhmacher, Institute for Software Technology (SC), 14.04.2023



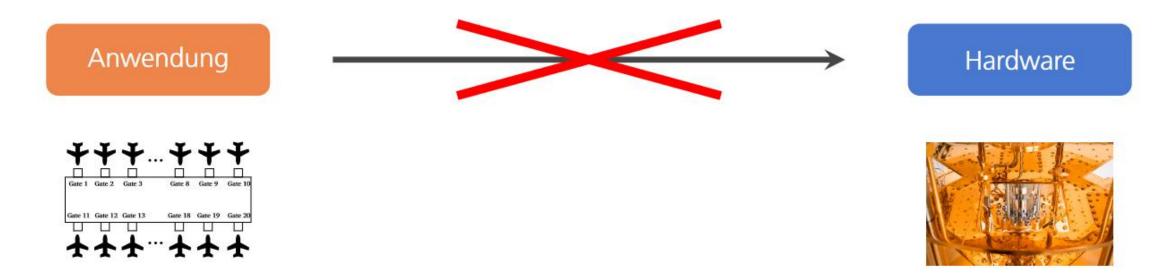

## Background: State of Development of Quantum Computers



#### **Quantum Error Correction (QEC)**

- Universal quantum computers are intrisically error-prone. To run killer apps like Shor's algorithm, we therefore need QEC.
- QEC relys on redundancy. Hence, it requires a significant overhead on reliable qubits and gates.

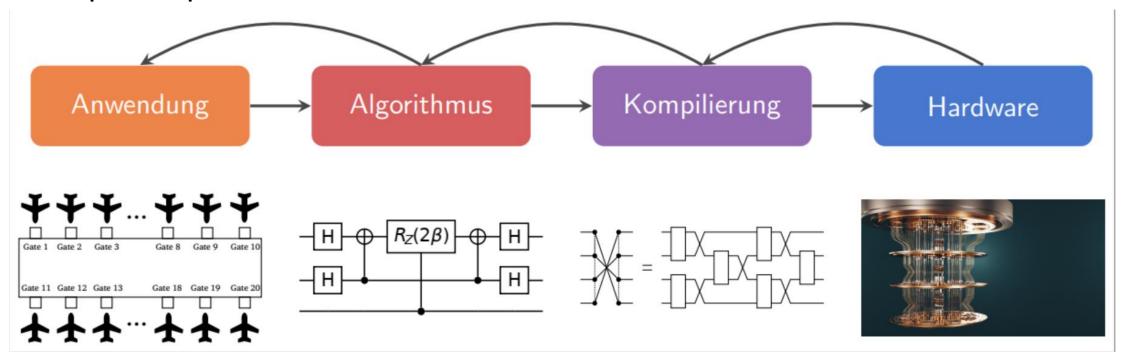



# If we want to achieve any quantum advantage within the near future, then we need to exploit the power of NISQ devices.

Dr. Peter K. Schuhmacher, Institute for Software Technology (SC), 14.04.2023 Figure: John Martinis, Google. (taken from https://medium.com/@quantum\_wa/quantum\_computing-near-and-far-term-opportunities-f8ffa83cc0c9)

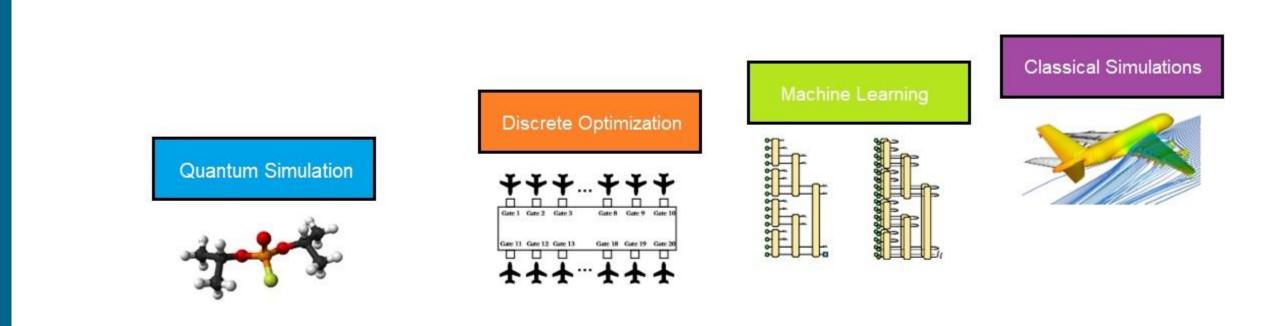
## Noisy Intermediate Scale Quantum Devices (NISQ)




- State-of-the-art quantum computers are rather small, noisy and have limited connectivity.
- Within the next years, we will be restricted to quantum computers without QEC.
- However, is it still possible to achieve quantum advantage?



### Hardware-Software-Codesign


To persue the goal of quantum advantage, we should...

- ... keep the hardware development in mind and
- ... consider the error-prone and limited hardware within the software development process.



## What are promising applications for NISQ devices?\*







#### time in units of how much QEC is needed

\*my own estimation without engagement

Dr. Peter K. Schuhmacher, Institute for Software Technology (SC), 14.04.2023

## **ALQU: Work Packages**



#### HAP 1: Hardware focused

- Device aware compilation
- Control- and readout-algorithms

#### HAP 2: Application focused

- Industrial scheduling problems
- Quantum simulation

#### HAP 3: Software development

- Demonstrator
- Integration and test environment

| HAP 1:<br>Fehlerbewusste Kompi-<br>lierung und Ansteuerung<br>von Quantencomputern | HAP 2:<br>Anwendungsorientierte<br>Algorithmenentwick-<br>lung im Hardware-<br>Software-Codesign | HAP 3:<br>Demonstrator / Integration<br>und Testumgebung |
|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| AP 1.1:                                                                            | AP 2.1:                                                                                          | AP 3.1:                                                  |
| Algorithmen für fehler-                                                            | Quantenalgorithmen für                                                                           | Integration und                                          |
| bewusste Kompilierung                                                              | industr. Planungsprobleme                                                                        | Testumgebung                                             |
| AP 1.2:                                                                            | AP 2.2:                                                                                          | AP 3.2:                                                  |
| Ansteuerungs- und Ausle-                                                           | Quantenalgorithmen für                                                                           | Demonstrator und ex-                                     |
| sealgorithmen f. Hardware                                                          | industr. Quantensimulation                                                                       | perimentelle Studien                                     |
| AP 1.3:<br>Benchmarking<br>und Software                                            | AP 2.3:<br>Quantenvorteil für<br>fehlerbehaftete HW                                              |                                                          |

## **Industrial Contributions**



| Industrial quantum software<br>developer (IS) | Industrial end-user from the domain logistics / transport (IL)                                          | Industrial end-user from the domain material science (IM)                                     |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Supports the quantum compiler development     | Delivers relevant use-cases<br>from the domain of logistics and<br>transport<br>(Discrete Optimization) | Delivers relevant use-cases<br>from the domain of material<br>science<br>(Quantum Simulation) |

Industrial hardware manufacturer for ion trap quantum computers (IH)

### No quantum computers is no quantum computing!