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Motivation: Quantum Approximate Optimization Algorithm

Goal: Find ground state of

𝐻𝑃 = σ𝑖=1
𝑁 ℎ𝑖 +σ𝑗>𝑖 𝐽𝑖𝑗𝜎𝑗

𝑧 𝜎𝑖
𝑧 .

Adiabatic Quantum Computation (AQC):

▪ Initialize qubits in the ground state of 𝐻𝐷= σ𝑖=1
𝑁 𝜎𝑖

𝑥

▪ Evolve the system adiabatically to 𝐻𝑃 and measure the output.

Problem: Tiny gaps enforce (exponentially) small sweep velocities!

Diabatic Alternative: QAOA:

▪ Discretize the time evolution of a linear AQC schedule by the standard 
Suzuki-Trotter decomposition, such that it becomes an alternating sequence 
of parameterized unitary gates of some given length p, applied to + ⊗𝑁.

▪ Optimize the unitary‘s parameters in a closed loop to minimize the energy.

Problem: The adiabatic theorem does not hold. And what about quantum
advantage?
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Mean-Field AOA: Derivation

In the mean-field approximation, the total Hamiltonian becomes

H 𝑡 = −𝛾 𝑡 σ𝑖=1
𝑁 ℎ𝑖 + σ𝑗>𝑖 𝐽𝑖𝑗𝑛𝑗

𝑧 𝑡 𝑛𝑖
𝑧 𝑡 − 𝛽 𝑡 σ𝑖=1

𝑁 𝑛𝑖
𝑥 𝑡 ,

where 𝛽 𝑡 and 𝛾 𝑡 are piecwise constant functions of time, and the classical spin
vectors

𝒏𝑖 𝑡 = 𝑛𝑖
𝑥 𝑡 , 𝑛𝑖

𝑦
𝑡 , 𝑛𝑖

𝑧 𝑡
𝑇
.

The dynamics can be found exactly:

𝒏𝑖 𝑡 = ς𝑘=1
𝑝

𝑉𝑖
𝐷(𝑘) 𝑉𝑖

𝑃(𝑘) 𝒏𝑖 0 ,

𝑉𝑖
𝐷 𝑘 =

1 0 0
0 cos(2𝛽𝑘) sin(2𝛽𝑘)

0 −sin(2𝛽𝑘) cos(2𝛽𝑘)
, 

𝑉𝑖
𝑃 𝑘 =

cos 2𝑚𝑖(𝑡𝑘−1 𝛾𝑘) sin 2𝑚𝑖(𝑡𝑘−1 𝛾𝑘) 0

−sin 2𝑚𝑖(𝑡𝑘−1 𝛾𝑘) cos 2𝑚𝑖(𝑡𝑘−1 𝛾𝑘) 0
0 0 1
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Mean-Field AOA: Algorithm

1. Initialization:  𝒏𝑖 0 = 1,0,0 𝑇 ∀𝑖

2. Apply a mean-field evolution sequence of length p

𝒏𝑖 0 = ς𝑘=1
𝑝

𝑉𝑖
𝐷 𝑘 𝑉𝑖

𝑃(𝑘) 𝒏𝑖 0 .

Observe that 𝑉𝑖
𝑃(𝑘) depends on 𝒏𝑖 𝑘 − 1 .

3. Compute the cost function

𝐻𝑃[𝑝, 𝜏]=- σ𝑖=1
𝑁 ℎ𝑖 + σ𝑗>𝑖 𝐽𝑖𝑗𝑛𝑗

𝑧 𝑝 𝑛𝑖
𝑧 𝑝

where 𝜏 is the step size such that 𝛾𝑘 = 𝜏𝑘/𝑝 and 𝛽𝑘 = 𝜏 1 −
𝑘−1

𝑝
.

4. Adjust the number of steps p and the step size 𝜏 to minimize 𝐻𝑃[𝑝, 𝜏].

5. Repeat steps 2 to 4 until a convergence threshold is reached.

6. Round the z-components of the spin vektors 𝒏𝑖 𝑝 to obtain the result

𝜎∗ = (sign(𝑛1
𝑧), … , sign (𝑛𝑁

𝑧 )).



Performance Benchmark: Sherrington-Kirkpatrick

Scaling of the energy 𝐸∗ resulting

from mean-field AOA with 𝑁

5

Tail distribution

𝑃𝑓 𝜖∗ > 𝜖 ~ exp(−2𝜋 𝑁𝜖)

Comparison of the resulting to the

exact distribution with 𝑁 = 20

With a probability of at least 1 − 𝑂(𝑒−2𝜋
4
𝑁) over possible realizations of the SK Hamiltonian, 

the mean-field AOA delivers an approximate optimum 𝐸∗ with a relative accuracy bounded by
4
𝑁 from above.

Dr. Peter K. Schuhmacher, Institute for Software Technology, German Aerospace Center (DLR), March 10, 2023

Model: 𝐻𝑃 = −
1

𝑁
σ𝑖<𝑗≤𝑁 𝐽𝑖𝑗𝜎𝑖

𝑧𝜎𝑗
𝑧, with ⟨𝐽𝑖𝑗⟩ = 0, 𝐽𝑖𝑗

2 = 𝐽2; Parisi 1979: 𝜖𝑃 = lim
𝑁→∞

𝐸0

𝑁 𝐽
= −0.763…



Performance: Number Partitioning

▪ 𝐶(𝑆) = σ𝑎𝑖∈𝑆
𝑎𝑖𝜎𝑖

𝑧

▪ 𝐻𝑃 = σ𝑖=1
𝑁 𝑎𝑖

2 − σ𝑖<𝑗≤𝑁 𝐽𝑖𝑗𝜎𝑖
𝑧𝜎𝑗

𝑧

▪ 𝑃 𝐸∗ =
𝑁𝜔

𝐴
exp − 𝐸∗

𝑁𝜔

𝐴

▪ 𝑃𝑓 𝑐 = exp −𝑐
𝑁𝜔

𝐴

With a probability of at least 1 − 𝑂(𝑒−𝑁
𝛿/𝐴) over possible realizations of random sets in the partition 

problem, the mean-field AOA delivers an approximate optimum 𝑐 ≤ 𝑁−𝛿 ,where the exponent 𝛿 =
0.95.
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Beyond Mean-Field: Lyaponov Exponents

7
Dr. Peter K. Schuhmacher, Institute for Software Technology, German Aerospace Center (DLR), March 10, 2023

To quantify quantum fluctuations around the mean-field spin trajectories, we solve an effective scattering problem in time. It describes 
the propagation of collective ‘paramagnon’ modes above the instantaneous ground state of the adiabatic Hamiltonian, and is 
characterized by a spectrum of positive Lyapunov exponents. The largest Lyapunov exponent shows a number of maxima, which are 
pinned to level crossings or minimal gaps in the lowest part of the Hamiltonian spectrum. The case where all Lyapunov exponents are 
relatively small indicates an ‘easy’ instance, where the optimum can be found classically, i.e. without invoking quantum algorithms. For
hard instances, there occur some large maxima in the spectrum, and the mean-field AOA typically fails to deliver the exact solution.


