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The quantum approximate optimization algorithm (QAOA) is suggested as a promising application
on early quantum computers. Here a quantum-inspired classical algorithm, the mean-field approximate
optimization algorithm (mean-field AOA), is developed by replacement of the quantum evolution of the
QAOA with classical spin dynamics through the mean-field approximation. Because of the alternating
structure of the QAOA, this classical dynamics can be found exactly for any number of QAOA layers.
We benchmark its performance against the QAOA on the Sherrington-Kirkpatrick model and the partition
problem, and find that the mean-field AOA outperforms the QAOA in both cases for most instances. Our
algorithm can thus serve as a tool to delineate optimization problems that can be solved classically from
those that cannot, i.e., we believe that it will help to identify instances where a true quantum advantage
can be expected from the QAOA. To quantify quantum fluctuations around the mean-field trajectories,
we solve an effective scattering problem in time, which is characterized by a spectrum of time-dependent
Lyapunov exponents. These provide an indicator for the hardness of a given optimization problem relative
to the mean-field AOA.
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I. INTRODUCTION

A large class of NP-hard optimization problems admits a
formulation as an Ising model, such that the optimum cor-
responds to the ground state, while the hardness is related
to the spin-glass phase of the Ising Hamiltonian [1]. A
potentially powerful strategy to find this desired ground
state is adiabatic quantum computation (AQC) [2–7]. Here,
a spin system is initialized in the unique and easily accessi-
ble ground state of a driver Hamiltonian ĤD and afterwards
is transferred adiabatically to the desired Ising problem
Hamiltonian ĤP. The adiabatic theorem then guarantees
that the spin system remains in its instantaneous ground
state throughout the entire time evolution, and in particular
at the final time when reaching the problem Hamiltonian.
To keep the evolution truly adiabatic, however, the sweep
velocity has to be carefully chosen as a function of the
minimal gap between the instantaneous ground and first
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excited states. Unfortunately, this minimal gap becomes
exponentially small for typical hard instances, forcing
the evolution time to become exponentially large [8–11].
Inspired by AQC, the quantum approximate optimization
algorithm (QAOA) for solving combinatorial problems of
this type was suggested as a diabatic alternative [12]: the
time evolution of a linear annealing schedule is discretized
with use of the standard Suzuki-Trotter decomposition,
such that it becomes an alternating sequence of parame-
terized unitary gates of some given length p , applied to the
initial state. Note that for noisy intermediate-scale quan-
tum devices, the number of layers p is naturally limited
[13]. Hence, instead of use of the linear annealing schedule
for some large p as in AQC, the parameters of the uni-
taries are optimized in a closed loop such that the energy
expectation value of the problem Hamiltonian becomes
minimal at the end of the circuit. Because of the heuris-
tic nature of the QAOA, its actual computational power
remains unclear to date. In particular, the question arises
for which kind of problems a quantum advantage rela-
tive to classical optimization algorithms can be expected
[14–18].

In this work, we present a classical algorithm inspired by
the QAOA, called the “mean-field approximate optimiza-
tion algorithm” (mean-field AOA). The new algorithm
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replaces the quantum evolution of the QAOA by classical
spin dynamics. Within the standard Trotterization scheme
of the QAOA [19], this dynamics can be found exactly for
any number of layers p .

The algorithm can serve as an additional tool to delin-
eate optimization problems that can be solved classically
from those that cannot, i.e., we believe that it will help to
identify instances where a true quantum advantage can be
expected from the QAOA. Also, for instances where the
mean-field AOA delivers a good solution, one can expect
that such an advantage is not forthcoming.

By introducing a path-integral representation based on
spin-coherent states [20], we prove that for p � 1 the
mean-field AOA emerges as an approximation to the
QAOA that is applicable for a large number of spins N and
a large average degree of the underlying problem graphs.
Performance tests of the mean-field AOA on two bench-
mark problems—the Sherrington-Kirkpatrick (SK) model
and the nondeterministic polynomial time (NP)—suggest
that it delivers an approximate optimum with accuracy of
order 1/N δ in polynomial time and thus outperforms the
QAOA on average (here δ > 0 is a problem-specific expo-
nent that is equal to 1/4 and 0.95 for the SK model and the
NP problem, respectively).

To quantify quantum fluctuations around the mean-field
spin trajectories, we solve an effective scattering problem
in time. It describes the propagation of collective “param-
agnon” modes above the instantaneous ground state of the
adiabatic Hamiltonian, and is characterized by a spectrum
of positive Lyapunov exponents. The largest Lyapunov
exponent shows a number of maxima, which are pinned
to level crossings or minimal gaps in the lowest part
of the Hamiltonian spectrum. The case where all Lya-
punov exponents are relatively small indicates an “easy”
instance, where the optimum can be found classically,
i.e., without quantum algorithms being invoked. For hard
instances, there occur some large maxima in the spectrum,
and the mean-field AOA typically fails to deliver the exact
solution.

It is known from studies of the SK and related Hop-
field models that the first occurrence of the minigap in the
course of the adiabatic protocol is related to the ergodic-to-
MBL (many-body localization) transition in the spectrum
of the corresponding quantum adiabatic Hamiltonian [21–
24]. Therefore, as a by-product, our fluctuation analysis
enables one to approximately locate the instance-specific
critical points of these transitions, essentially without
the need for an expensive exact diagonalization, which
becomes out of reach for large system sizes.

This article is organized as follows. In Sec. II, we
begin by introducing the mean-field AOA, followed by an
illustration of its performance for the SK model and the
partition problem. In Sec. III, we discuss the spin-coherent-
state path integral, the saddle point of which corresponds
to our classical algorithm. We also study the Gaussian

quantum fluctuations around the classical path, character-
ized by the spectrum of Lyapunov exponents. Finally, in
Sec. IV, we discuss possible future directions. Note that an
implementation of the numerical code used in this paper,
alongside our research data, is available online [25]. A cor-
responding software package in JULIA [26] has also been
implemented [27].

II. MEAN-FIELD APPROXIMATE
OPTIMIZATION ALGORITHM

Throughout this article, we adopt the following form of
the problem and driving Hamiltonians:

ĤP = −
N∑

i=1

[
hi +

∑

j>i

Jij σ̂
z
j

]
σ̂ z

i , (1a)

ĤD = −
N∑

i=1

�iσ̂
x
i , �i > 0. (1b)

The positivity of all constants �i guarantees that the N -
qubit state

|ψ0〉 = |+〉X1 ⊗ |+〉X2 ⊗ · · · ⊗ |+〉XN (2)

is the ground state of ĤD. For the standard QAOA,
one usually sets �i = 1, such that this driving frequency
becomes a natural choice as thé frequency unit and inverse
timescale, which we adopt unless otherwise stated. Note
also that ĤP with positive couplings Jij > 0 and vanishing
local fields hi → 0 describes the ferromagnetic state of the
Ising model. Our choice of numerical factors and signs is
in correspondence to Ref. [1].

Inspired by the alternating application of ĤD and ĤP in
the standard QAOA, we derive the mean-field equations
of motion for two separate cases in the following: (i) only
the driving Hamiltonian ĤD is active; (ii) only the problem
Hamiltonian ĤP is active.

In the mean-field approximation, the total Hamiltonian
then becomes

H(t) = −γ (t)
N∑

i=1

[
hi +

∑

j>i

Jij nz
j (t)

]
nz

i (t)

− β(t)
N∑

i=1

�inx
i (t), (3)

where β(t) and γ (t) are piecewise-constant functions of
time, and we assume Jii = 0 without loss of generality. The
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classical spin vectors are defined as

ni(t) =
(
nx

i (t), ny
i (t), nz

i (t)
)T

= (
Tr

[
ρ̂σ̂ x

i (t)
]

, Tr
[
ρ̂σ̂

y
i (t)

]
, Tr

[
ρ̂σ̂ z

i (t)
])T , (4)

where the system density matrix factorizes in the mean-
field approximation,

ρ̂ =
N⊗

i=1

ρ̂(i). (5)

Further details on this approximation are provided in
Appendix A. We also introduce the effective magnetization

mi(t) = hi +
N∑

j=1

Jij nz
j (t). (6)

The dynamics of the system then amounts to a precession
of each spin in an effective magnetic field, i.e.,

∂tni(t) = ni(t)× Bi(t), (7)

where Bi(t) = 2β(t)�iêx + 2γ (t)mi(t)êz. This leads to

ṅy
i (t) = 2�inz

i (t), ṅz
i (t) = −2�in

y
i (t), (8)

and nx
i (t) = nx

i (0) during the time intervals with β(t) ≡ 1
and γ (t) ≡ 0, corresponding to case (i), while we have

ṅx
i (t) = 2mi(t)n

y
i , ṅy

i (t) = −2mi(t)nx
i (t) (9)

and nz
i (t) = nz

i (0) in the complementary case (ii), where
γ (t) ≡ 1 and β(t) ≡ 0. The norm of all spin vectors is
conserved under this unitary evolution, |ni(t)|2 = 1.

Solving the above differential equations for the typi-
cal piecewise-constant Hamiltonian governing the QAOA,
one obtains after p iterations

ni(p) =
p∏

k=1

V̂D
i (k)V̂

P
i (k)ni(0). (10)

In Eq. (10), the two unitary 3× 3 matrices are defined as

V̂D
i (k) =

⎛

⎝
1 0 0
0 cos(2�iβk) sin(2�iβk)

0 − sin(2�iβk) cos(2�iβk)

⎞

⎠ (11)

and

V̂P
i (k) =

⎛

⎝
cos(2mi(tk−1)γk) sin(2mi(tk−1)γk) 0
− sin(2mi(tk−1)γk) cos(2mi(tk−1)γk) 0

0 0 1

⎞

⎠ ,

(12)

where tk = kτ . For the parameters βk and γk, which are
conjugate to ĤD and ĤP, respectively, it is sufficient to

take linear functions inspired by the adiabatic quantum
algorithm [28]. For k = 1, . . . , p , we then have

γk = τk/p , βk = τ (1− (k − 1)/p) , (13)

where τ is the time step, which should be adjusted so
that the spin dynamics remains regular. Unless otherwise
stated, for our algorithm we often resort to using p ∼ 104

and τ ∼ 1/2.

A. Algorithm

The analytical expressions obtained for the time evolu-
tion of the classical spin vector for each of the N qubits
under the mean-field approximation are be used to cre-
ate a quantum-inspired classical algorithm that we call the
“mean-field AOA.” To apply the algorithm, the following
steps have to be completed [29]:

1. Initialize the N classical spin vectors in the state

ni(0) = (1, 0, 0)T for all i. (14)

This is analogous to the uniform superposition of all
computational input states used in the QAOA (other
initial states are also possible).

2. Apply a mean-field evolution sequence of length
p ∈ N to ni(0) such that

ni(p) =
p∏

k=1

V̂D
i (k)V̂

P
i (k)ni(0), (15)

where V̂D
i (k) and V̂P

i (k) are given in Eqs. (11) and
(12), respectively. Observe that V̂P

i (k) depends on
ni(k − 1). The schedule for the parameters βk and
γk is given in Eq. (13).

3. Compute the cost function

HP[p , τ ] = −
N∑

i=1

[
hi +

∑

j>i

Jij nz
j (p)

]
nz

i (p). (16)

4. Adjust the number of steps p ∈ N and the step size
τ to minimize the cost function.

5. Repeat steps 2–4 until a convergence threshold is
reached.

6. Round the z components of the spin vectors ni(p) to
obtain the resulting bit string

σ ∗ =
(
sign(nz

1), . . . , sign(nz
N )

)
. (17)

Note that our formulation of the mean-field AOA deliber-
ately does not include an optimization of the cost function
over the parameters βk and γk. As we show in Sec. II B, the
advantage of our classical algorithm is that it is not limited
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to a small number of steps p , which allows us to perform
adiabatically slow evolution with the annealing schedule
defined in Eq. (13).

Regarding the fourth step of our algorithm, we point out
that the returned solution bit strings σ ∗ are very robust
with respect to changes in τ and p , i.e., the final mag-
netic orientation of each spin is largely determined by
the structure of the classical phase space. In practice,
it suffices to start with a relatively large step size τ =
1/2 and, for example, p = 103. Subsequently, τ can be
decreased, if necessary, while p should be increased until a
set of smooth trajectories is reached and the final solution
remains unaltered.

We close this subsection with two important comments.
First, the algorithm outlined is polynomial in time and
scales as O(pN 2). Namely, for a given step k = 1, . . . , p ,
see Eq. (15), and for every spin i = 1, . . . , N , one needs
to perform the sum for the magnetization mi(tk) in Eq.
(6), which leads to an additional factor of N . Second, the
dynamics of spins described by the system of nonlinear
differential equation (7) is in general chaotic for random
optimization problems. Our algorithm explores a small
fraction of the phase space with energy H(t) that lies close
to the edge of the spectrum of the adiabatic Hamiltonian
H(s) = (1− s)HD + sHP. The classical dynamics in this
region happens to be regular provided a small enough step
size τ < τc is chosen, where τc marks the transition point
to the chaotic regime. We have found the critical τc to be of
order unity for both the SK model and the partition prob-
lem, as analyzed below in more detail. Contrary to this, if
one starts from an excited state, e.g., by flipping at least
one of the spins in the initial state to (−1, 0, 0)T, then the
subsequent dynamics shows chaotic behavior for any step
size τ .

B. Performance

The performance of the algorithm outlined above is now
tested by our comparing its results with those of the stan-
dard QAOA. As an introductory problem, in Sec. II B 1 we
investigate the SK model [30,31] well known from dis-
ordered systems and spin glasses. Subsequently, in Sec.
II B 2, we analyze the partition problem, i.e., the problem
of partitioning a set of positive integers into two subsets
such that their respective sums are as close to equal as pos-
sible. In both cases, we provide numerical evidence that
the large-N scaling of the mean-field AOA consistently
outperforms that of the QAOA for finite p .

1. Sherrington-Kirkpatrick model

The SK model was first introduced in the context of
spin glasses, but can also be understood more broadly as
an optimization problem where N coupled spins are to be
distributed into two subgroups according to the sign of
their coupling [31]. In our convention, the goal is then to

minimize the (classical) cost function

ĤP = − 1√
N

∑

i<j≤N

Jij σ̂
z
i σ̂

z
j , (18)

where the couplings Jij are independent and identically
distributed standard Gaussian variables, i.e., with zero
mean

〈
Jij

〉 = 0 and variance
〈
J 2

ij

〉
= J 2. Note that in the

limit N →∞, mean-field theory becomes exact for this
model [30].

To remove the degeneracy caused by the Z2 symme-
try of Eq. (18), we fix the “final” spin to be in the state
σ̂ z

N |0〉N = |0〉N . This leads to an equivalent cost function
in the form of Eq. (1a) with random local magnetic fields

hi = JiN , i = 1, . . .N − 1. (19)

In the thermodynamic limit, the SK model is also known
[34] to have the ground-state energy E0 that on average
converges to

εP = lim
N→∞

〈E0/N 〉J = −0.763 · · · . (20)

This theoretical value can be used to test the performance
of both the mean-field algorithm and the QAOA, the latter
having been performed recently in Ref. [32]. There it was
found that the QAOA can surpass certain classical algo-
rithms such as spectral relaxation [35] and semidefinite
programming [36] in the limit N →∞ at finite p = 12.
The energy benchmark from these classical algorithms is
limN→∞ 〈E0/N 〉J ≈ −2/π . A classical algorithm capable
of returning a result within an arbitrary distance from the
optimum is given in Ref. [37]. Note also that the optimal
variational parameters of the QAOA are found to be inde-
pendent of the particular instance of the SK model [32],
i.e., one global schedule of parameters works best for all
random instances.

In Fig. 1 we show our results for the approximate
solution

E∗ = 〈ĤP〉|σ∗ (21)

as a function of the number of spins N . The ensemble aver-
age is taken over 104 random instances of the SK model.
The scaling of 〈E∗/N 〉 with N demonstrates that our
algorithm outperforms both zero-temperature annealing
(dashed line at approximately εP − 0.71) and the QAOA
at p = 12 (see Ref. [32], which shows that the latter beats
the quoted value of−2/π ). The scaling exponent is also in
decent agreement with the results of previous very detailed
numerical investigations of the SK model [33].

Instead of computation of averages over the ensemble
of 104 instances, the distribution of the (exact) solutions
for the particular case of N = 20 is shown in Fig. 2. The
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10−2

10−1

〈E
∗〉/

N
−

ε P
N−ω ω = 0.61

101 102

N

10−2

10−1

s/
N

N−ωs ωs = 0.68

FIG. 1. Scaling of the energy E∗ resulting from our algorithm
with the system size, as estimated for 104 random instances
of the SK model. εP = −0.763 is the Parisi value. The dashed
line shows the lowest energy achievable with zero-temperature
annealing, quoted as −0.71 in Ref. [32]. The value ω = 0.61 is
to be compared with the value ω = 2/3 from Ref. [33]. In the
lower panel, we show the estimated standard deviation with cor-
responding scaling. The parameters of the schedule in Eq. (13)
are chosen throughout as τ = 1/2 and p = 103. The data point at
the far right corresponds to N = 200.

mean-field algorithm performs very well as seen by com-
parison with the exact results. The solutions returned by
the mean-field AOA follow the Gumbel distribution for the
mth smallest element with m = 6 [33], which is defined as

gm(x) = w exp
[

m
x − u
v
− m exp

(
x − u
v

)]
, (22)

where u and v are parameters defining the mean value
and variance, while w is a normalization constant. We find
that the outcomes of our algorithm follow this distribution
irrespective of the value of N .

In Fig. 3, we plot the success probability distribution of
the classical algorithm, P(ε∗), to deliver an approximate
optimum at the relative distance ε∗ := (E∗ − E0)/ |〈E0〉|
from the instance-specific true minimum E0 (note the loga-
rithmic scale for P). We then define the corresponding tail
distribution

Pf (ε∗ > ε) =
∫ ∞

ε

dε∗P(ε∗), (23)

where ε > 0 is an arbitrary threshold. As exemplified in
Fig. 4 for three different values of N , we find the failure
probability to approximately follow the exponential law

Pf (ε) ∼ exp
(
−2π
√

Nε
)

, (24)

which describes the statistics of rare events where our
algorithm converges to high excited levels far from the

−6 −4 −2 0 2 4
(E − 〈E〉) /s

100

101

102

103

104

P
(E

)

Gumbel
Mean field
Exact

FIG. 2. Comparison of the distribution of the exact ground
state and the result of our algorithm for 104 random instances
of the SK model with N = 20. The estimated standard deviation
is again by s. The dashed red line shows the Gumbel distribution
[Eq. (22)] for the mth smallest value as used in Ref. [33]. Up to
normalization, we use the same parameters as in Ref. [33], i.e.,
m = 6, location u = 0.2, and scale v = 2.35.

ground state E0. For large values of N , one may then pick
the threshold to be ε = N−1/4 � 1 such that Pf becomes
exponentially small. We then arrive at the following main
conclusion of this section: With a probability of at least
1− O(exp (−2πN 1/4)) over possible realizations of the
SK Hamiltonian, the mean-field AOA delivers an approx-
imate optimum E∗ with a relative accuracy bounded by
N−1/4 from above.

In other words, in the limit N →∞, we find that
the algorithm converges to the approximate solution E∗,
which has an accuracy of at least ε∗ = N−1/4 almost with
certainty. Since this analysis requires knowledge of the
computationally expensive exact solutions E0, we have
restricted it to the range N = 5–20.

2. Number partitioning

The partition problem for a set of natural numbers
S = {a1, . . . , aN } ⊂ N consists in finding two subsets S1 ∪
S2 = S such that the difference of the sums over the two
subsets S1 and S2 is as small as possible. It belongs to the
class of NP-complete problems [38]. The cost function can
be written as

C(S) =
N∑

i=1

aiσ̂
z
i . (25)

A so-called perfect partition occurs when C(S) =(∑
ai∈S ai

)
mod 2. For bounded problems, the elements

ai ∈ S satisfy 1 ≤ ai ≤ 2M for some M ∈ N.
We focus on the case M > N , for which the large-N

minimal cost is expected to scale as
√

N2M−N [38]. In the
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0.00 0.05 0.10 0.15 0.20
ε∗ = (E∗ − E0) /|〈E0〉|

101

102

103

104
P

(ε
∗)

FIG. 3. Probability distribution of the minima returned by the
mean-field AOA for 104 random instances of the SK model at
N = 20. Note that the blue squares in Fig. 4 show the result of
integrating the tail of this distribution from a given threshold ε to
infinity.

thermodynamic limit (where both M and N go to infin-
ity at some fixed ratio), the partition problem is known to
have a phase transition at M = N . Numerically, almost all
instances then cross over from having a perfect partition
to having none. Note that neither our algorithm nor finite-
p QAOA simulations are able to resolve this satisfiability
threshold.

The cost function C(S) can be transformed to an Ising
Hamiltonian by taking its square, i.e.,

ĤP = C2(S) =
N∑

i=1

a2
i −

∑

i<j≤N

Jij σ̂
z
i σ̂

z
j , (26)

where we have introduced the couplings Jij = −2aiaj . As
before, we fix the “final” spin to be in the state σ̂ z

N |0〉N =
|0〉N . To simplify the comparison of the mean-field AOA

0.0 0.1 0.2 0.3 0.4√
Nε

10−2

10−1

P
f
(ε

∗
>

ε)

e−2π
√

Nε

N = 10
N = 15
N = 20

FIG. 4. Scaling of the tail probability Pf in Eq. (23). The rela-
tion ln Pf ∼ −2π

√
Nε is found to hold approximately for all

N ∈ N in the verified range 5–20. For the SK model, the mean-
field AOA thus returns an approximate local minimum that is
algebraically close to the global one with almost unit probability.

and the QAOA, instead of natural numbers ai ∈ N, we
now take ai to be uniformly distributed in the unit inter-
val [0, 1]. This is equivalent to a bounded problem with
large M where the ai are rescaled by 2M . Note that for
double precision on a standard computer, one should thus
effectively have M = 52. It then follows that the induced
distribution of couplings Jij is logarithmic,

P(Jij ) = 1
2

ln
(
− 2

Jij

)
, −2 < Jij < 0. (27)

In contrast to the SK model, there are nonvanishing corre-
lations between Jik and Jil for l �= k. A higher-dimensional
generalization of the Hamiltonian (26), where the random
couplings Jij factorize, is known as the Mattis glass (see,
e.g., Ref. [41]).

For the present problem, we complement the algorithm
outlined in Sec. II A with the following strategy: given
the solution string σ ∗, try whether flipping any two
spins (nz

i , nz
j ), i = 1, . . . , N − 1, i < j ≤ N − 1, produces

a lower energy. Here we have already taken advantage of
the Z2 symmetry of the problem. Therefore, this strategy
produces an additional cost of (N − 1)(N − 2)/2, which
leaves the asymptotic scaling of our algorithm unaltered.
We find that the string following from the mean-field AOA
is usually such that this strategy produces an improved
solution. Note that we do not find a similar improvement
for the SK model discussed in Sec. II B 1.

We now analyze the distribution of the approximate
costs over 104 realizations. The variable of interest is
c = √E∗ since the square root of the energy here corre-
sponds to the value of the cost function C(S). From the
above-mentioned scaling proportional to 2−N of the mini-
mal cost of the partition problem, it also follows that it is
possible to assume E0 = 0 as the true minimum. Including
the postevolution strategy of flipping two spins, we thus
find an exponential distribution

P(c) = (Nω/A) exp (−cNω/A), (28)

where e A = 3.1 and ω = 1.9 as given in Fig. 5. The first
moment of this distribution, plotted in the upper panel in
Fig. 5, is

〈√
E∗

〉 = AN−ω. This can now be compared with
the results following from the QAOA, shown in Fig. 6 for
different numbers of layers. Compared with its mean-field
counterpart, if p is finite, the QAOA shows a much worse
scaling Nω′ , with a positive scaling exponent ω′ ≈ 1/3.

In close analogy to the analysis done for the SK
model, one can estimate the accuracy of our new classical
algorithm for the partition problem. The failure probabil-
ity Pf (c) to find the optimum above the threshold c is
exponential, cf. Eq. (24),

Pf (c) =
∫ +∞

c
dc′P(c′) = exp (−cNω/A). (29)
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FIG. 5. Averaging over 104 random realizations, we find the
approximate cost

√
E∗ of the partition problem (as obtained from

the mean-field AOA) follows an exponential distribution. In the
upper panel, we plot the first moment of this distribution as a
function of the system size N and extract the parameters ω and
A. The lower panel shows the corresponding distribution. The
parameters of the schedule in Eq. (13) are now τ = 1/4 and p =
104.

By picking c = N−δ � 1 with δ = ω/2, we arrive at the
following conservative estimate: With a probability of at
least 1− exp (−N δ/A) over possible realizations of ran-
dom sets S in the partition problem, the mean-field AOA
delivers an approximate optimum c ≤ N−δ , where the
exponent δ = 0.95.

4 6 8 10 12 14 16 18 20
N

10−1

100

〈√ E
〉

p = 3 p = 5 p = 7

FIG. 6. Average of the cost function over 102 random real-
izations calculated from the energy expectation value of the
simulated QAOA for each realization [26,39,40]. The solid lines
show a fit to Nω′ , where in this case ω′ ≈ 0.31± 0.01.

In passing, we note that the heuristic classical algorithm
due to Karmarkar and Karp [42,43] performs slightly bet-
ter—it finds an optimum with an accuracy of N−� ln N ,
where � is a numerical constant of order unity.

To summarize, we have found that the mean-field AOA
is capable of identifying optimization problems for which
the QAOA should not be expected to yield quantum advan-
tage. Also, at least for the optimization problems inves-
tigated here, our results suggest that larger values of N
typically make a random instance easier to address within
the mean-field approach. In other words, in the interest-
ing quantum regime (i.e., for system sizes that cannot be
simulated), the solution of these optimization problems is
unlikely (on average) to acquire an advantage from quan-
tum fluctuations. On one hand, it is known that this does
not hold for all cases, i.e., there are problems for which
the minimal gap is suppressed exponentially in N ; on the
other hand, one can ask into which category among these
two options most of the real-world problems are likely to
fall.

III. PATH-INTEGRAL APPROACH

In this section, we go one step beyond the mean-field
approximation by studying the Gaussian quantum fluc-
tuations around mean-field spin trajectories. The motiva-
tion behind this analysis is the hope to delineate “easy”
instances from “hard” instances by looking at the spec-
trum of the fluctuations, thus setting the stage for further
exploration of possible quantum advantages.

Path integrals are a well-known tool for describing
(quantum) fluctuations around a classical or mean-field
trajectory. To derive the path integral for spin degrees of
freedom, we use spin-coherent states [20], as they facili-
tate the systematic expansion around the mean field. We
limit our analysis to the Gaussian case. This enables us
to study the spectrum of “paramagnons” as well as the
Lyapunov exponents of the corresponding (one-particle)
Green’s functions.

Even though the mean-field AOA allows very large p
and thus potentially nearly adiabatic evolution, we expect
there to exist “hard” instances for which the gap becomes
(exponentially) small, which in turn is likely to render even
very slow evolution ultimately nonadiabatic. Our goal in
this section is to provide a tool for telling these instances
apart from the “easy” ones.

A. Spin-coherent-state path integral

To simplify the discussion, in this section we adopt the
standard Hamiltonian of AQC, i.e.,

Ĥ(s) = (1− s)ĤD + sĤP, (30)

where now s = t/T and ĤD and ĤP are defined in Eq. (1).
The total time T of the adiabatic protocol is very long (T→
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∞), and the initial ground state is given, as before, by Eq.
(2). For the system of N qubits (classical spins), the spin-
coherent state is defined as the Kronecker product

|g〉 = |g1〉 ⊗ |g2〉 ⊗ · · · ⊗ |gN 〉, (31)

where the coset element gi ∈ SU(2)/U(1) describes the
Bloch sphere of the ith qubit. The density matrix of the
many-qubit system evolves as

ρ̂(t) = Û(t)|g0〉〈g0|Û†(t),

Û(t) = T̂ exp
(
−i

∫ t

0
ds Ĥ(s)

)
, (32)

where T̂ denotes time ordering and |g0〉 is the spin-
coherent-state representation of the initial state |ψ0〉
defined in Eq. (2). Details on our definition of spin-
coherent states are provided in Appendix B 1.

We now formulate the system evolution via a path inte-
gral. In terms of the density matrix, this would require the
Schwinger-Keldysh formalism [44–46]. Instead, to sim-
plify the discussion, we focus on transition amplitudes
A(T) = 〈gf |Û(T)|g0〉, where 〈gf | is the final spin-coherent
state. This will prove sufficient for our purposes in the
present work. Going over to the path-integral representa-
tion in a standard manner [44], we split the total evolution
U(T) into p � 1 steps, with τ = T/p being the duration
of a single Trotter step, and then use the spin-coherent-
state resolution of the identity p times. Upon taking the
continuum limit, one arrives at

A(T) =
∫ gf

g0

Dg exp {−(SI + SH )}

=
∫ gf

g0

Dg exp
{

i
∫ T

0
dt〈g|[i∂t − Ĥ(t)]|g〉

}
, (33)

where Dg is a functional integration measure over all spins
and time slices, and is constructed following either Eq.
(B4) or Eq. (B13).

The first term of the action in Eq. (33), SI , is the Berry
phase, for which we provide several representations in
Appendix B 3. When expressed in terms of the Bloch vec-
tors ni(t) (see Appendix B 4), the Hamiltonian part of the
action becomes

SH = −is
N∑

i=1

∫ T

0
dt

[
hi +

∑

j>i

Jij nz
j (t)

]
nz

i (t)

− i(1− s)
N∑

i=1

∫ T

0
dt �inx

i (t). (34)

An interesting remark is in order here: the classical Larmor
equations can be derived by imposing the SU(2)-like Pois-
son bracket on the Bloch vectors. Namely, let us consider

the Hamiltonian part of the action,

SH = i
∫ T

0
dtH(n, s), (35)

where H is expressed solely through the Bloch vectors of
individual spins, see Eq. (34), and let us define a Poisson
bracket as

1
2

{
nαi , nβj

}
= δij εαβγ nγi . (36)

Then the Larmor equations of motion follow from the
Hamiltonian principle:

∂tnαi =
{
nαi , H(n, s)

}
, (37)

where the Greek indices run through x,y, and z. The role
of the Berry phase SI is therefore to generate the Poisson
bracket (36) when the variational principle is applied to the
full action, δS = δSI + δSH . The saddle-point trajectories
of the action thus obey the equations of motion (7) with
β ≡ (1− s) and γ ≡ s.

B. Fluctuations around the mean field

In this subsection, we derive the action of Gaussian fluc-
tuations around the mean-field trajectories. We then use it
to estimate how the fluctuations grow in time, and show
that the latter can be used as an effective tool to differenti-
ate between “hard” and “easy” instances of an optimization
problem. Finally, we demonstrate this in some detail for the
SK model.

1. The action of Gaussian fluctuations

How can spin quantum fluctuations be parameterized
from a geometrical perspective in the most efficient way?
To answer this question, as detailed in Appendix B 2, we
use the stereographic projection [Eq. (B9)] of each spin’s
Bloch sphere onto the complex plane, thus introducing
complex coordinates (zi(t), z̄i(t)), which in turn generate
the coset elements ĝi(t) for each spin via

ĝi = 1
(1+ |z|2)1/2

(
1 −z̄i
zi 1

)
. (38)

We assume that the saddle-point trajectories ni(t) of all
spins are known to us by virtue of Eq. (10).

Quantum fluctuations in the path integral are due to tra-
jectories ĝ′i(t) that are close to ĝi(t). We hence introduce a
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shifted coset element as

ĝ′i σ̂
z(ĝ′i)

−1 = ĝig̃iσ̂
z(ĝig̃i)

−1, (39)

where g̃i is close to the north pole,

g̃i = 1
(1+ |ηi|2)1/2

(
1 −η̄i
ηi 1

)
, |ηi| � 1. (40)

Pictorially, the trajectory ĝ′i is thus displaced from ĝi
similarly as ηi is displaced from the north pole. Mathemati-
cally, Eq. (39) means that ĝ′i ∼ ĝig̃i, where the equivalence
is understood in the sense of the coset structure, i.e.,
up to right multiplication by any ĥ commuting with σ̂ z

(if ĝ1 ∼ ĝ2, then ĝ1 = ĝ2ĥ with ĥσ̂ z = σ̂ zĥ). The coordi-
nates (ηi, η̄i) are used in the following to parameterize the
Gaussian fluctuations around the mean-field solutions.

Assume further that ĝ′i is expressed via complex coor-
dinates (z′i, z̄′i). Comparison of Eq. (39) with Eq. (38) then
gives

z′i =
zi + ηi

1− z̄iηi
, z̄′i =

z̄i + η̄i

1− ziη̄i
. (41)

These identities establish the complex coordinates of the
shifted trajectories in terms of the coordinates of the orig-
inal ones, while the fluctuations are parameterized by ηi.
When the latter are small, one expands

z′i = zi + δzi = zi + (1+ |zi|2)(ηi + z̄iη
2
i )+O(η3

i ). (42)

The relation between δzi and ηi is hence nonlinear, the
rationale behind this being that the path-integral measure
is preserved, provided one goes from integration over z′i to
integration over ηi at a fixed saddle-point trajectory. Fur-
thermore, we note that in the Gaussian regime (|ηi| � 1),
the new measure in the variables ηi becomes flat, i.e.,

∫
dz′idz̄′i

[
1+ ∣∣z′i

∣∣2
]−2
−→

∫
dηidη̄i. (43)

To discuss the fluctuation, we introduce the action S in a
complex representation as

S = SI + SH

= 1
2

∑

i

∫ T

0
dt

żiz̄i − zi ˙̄zi

1+ |zi|2 + i
∫ T

0
dt H(z, z̄), (44)

where H(z, z̄) is the complex representation of the Hamil-
tonian from Eq. (34), which can be calculated by use of Eq.
(B8). As shown in Ref. [20], the classical path, which fol-
lows from extremization of the action, obeys the following

Hamiltonian equations:

żi = −i
(
1+ |zi|2

)2 ∂H
∂ z̄i

, ˙̄zi = i
(
1+ |zi|2

)2 ∂H
∂zi

, (45)

which is an equivalent representation of the mean-field
equation (7). To derive the action of the Gaussian fluctua-
tions S[η, η̄] around this classical path, one parameterizes
the variations δzi in terms of the ηi as derived above in Eq.
(42). The calculations detailed in Appendix B 6 yield the
following result:

S[η, η̄] = i
2

∫ T

0
dt (η̄ η)

[−i∂t + A B
B† i∂t + Ā

] (
η

η̄

)
,

(46)

where the matrices A(t) and B(t) are time dependent
through their dependence on the classical path, and η

and η̄ are N -dimensional spinors constructed from ηi
and η̄i, respectively. An important comment is in order
here: when analyzing the dynamics of the fluctuations,
we found that it is crucial to parameterize the mean-field
trajectories such that the final mean-field AOA solutions
(σ∗)i = sign(nz

i (T)) are stereographically projected onto
the origin of the complex plane. In other words, the
poles pi of the Bloch sphere from which to perform the
projection for each spin trajectory are defined as pi :=
(0, 0,−sign(nz

i (T)). Under this convention, after again sub-
stituting “Cartesian” coordinates on the sphere, we find for
the above matrices the following components:

Aii = 2(1− s)�inx
i

1+ (σ∗)inz
i
+ 2s(σ∗)imi, Bii = 0, (47)

where again s = t/T and the self-consistent magnetization
mi was defined in Eq. (6). With the shorthand notation
n±i = (σ∗)in

x
i ± iny

i , one finds for the off-diagonal compo-
nents that

Aij = −sJij n+i n−j , Bij = −sJij n+i n+j , (48)

such that A = A† is Hermitian and B = BT is symmetric.
Hence, the effective Hamiltonian becomes

Ĥ(t) =
(

A(t) B(t)
B†(t) Ā(t)

)
, τ̂3 =

(
1

−1
)

, (49)

where we have also introduced the matrix τ̂3 acting on the
spinor space of (η̄, η)T defining the block decomposition
of Ĥ.

The instantaneous spectrum of “paramagnons,” ωμ(s),
μ = 0, . . . , 2N − 1, at given time s = t/T can be then
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found via the (positive) eigenvalues of the operator τ̂3Ĥ;
namely,

det
[
ωμ(s)− τ̂3Ĥ(s)

]
= 0. (50)

The smallest eigenvalue, ω0(s), may serve as an indicator
of the gap between the ground state and the first excited
state of the many-body Hamiltonian Ĥ(s) = (1− s)ĤD +
sĤP.

2. The dynamics of quantum fluctuations

The magnon spectrum [Eq. (50)] can determine the sta-
bility of only the instantaneous ground state and thus fails
in the nonadiabatic regime. The latter is, however, pre-
cisely the point of interest when the mean-field AOA does
not perform well. To address this issue, we resort to the
equation of motion for the Green’s function, which we
define as

G(t, t′) := −i
〈
η(t) ⊗ η†(t′)

〉
, (51)

where ηT = (η, η̄) is the 2N -component spinor and the
average is done with respect to the Gaussian action
equation (46). The equation of motion for the Green
function can be written in two complementary forms,

[
iτ̂3
−→
∂t − Ĥ(t)

]
G(t, t′) = 1δ(t− t′), (52)

G(t, t′)
[
−iτ̂3
←−
∂t′ − Ĥ(t′)

]
= 1δ(t− t′). (53)

To specify G(t, t′) uniquely, the system of these differ-
ential equations needs to be supplemented with appro-
priate boundary conditions at t = 0 and t = T. The latter
have to be treated carefully since we are dealing with
first-order rather than second-order differential operators.
As discussed in Ref. [20], the boundary conditions for
the fluctuations assume the form ηi(0) = η̄i(T) = 0, while
η̄i(+0) and ηi(T − 0) are unbounded independent integra-
tion variables. Expressed in vector form, they translate
into

(1+ τ̂3)η(0) = 0, η†(T)(1+ τ̂3) = 0, (54)

and, when applied to the Green’s function, they become

(1+ τ̂3)G(0, t′) = 0, G(t, T)(1+ τ̂3) = 0, (55)

where t′ > 0 and t < T.
With these preliminaries at hand, we are now in position

to write down a formal solution to Eqs. (52) and (53). To

this end, note that the Green’s function is discontinuous at
equal times t = t′, with the jump

iτ̂3(G(t+ 0, t)− G(t− 0, t)) = 1. (56)

Hence, for t′ → t, we can write

G(t, t′) = g(t, t′)− i
2
τ̂3 sgn(t− t′), (57)

where g(t, t′) is the continuous part of the Green’s function.
This ansatz enables us to introduce the correlator g(t) at
coinciding time points defined by the relation

g(t) = 2i lim
t′→t

g(t, t′)τ̂3. (58)

One can prove that this correlator fulfills the normaliza-
tion constraint, g2(t) = 1, and satisfies the much simpler
differential equation

i∂tg(t) =
[
L̂(t), g(t)

]
, L̂(t) := τ̂3Ĥ(t). (59)

To derive the above result, one subtracts Eqs. (52) from Eq.
(53) and takes the equal-time limit t′ → t. This is a first-
order differential equation, which as before requires some
boundary conditions. The latter can be inherited from the
ones stated in Eq. (55). By setting t′ = +0 and t = T − 0,
one reduces them to

(1+ τ̂3) (g(0)− 1) = 0,

(g(T)− 1) (1+ τ̂3) = 0. (60)

It is worth mentioning here that if the time t is replaced
by a spatial coordinate x, then Eq. (59) turns into the
quasiclassical Eilenberger equation in the theory of super-
conductivity [47]. Specifically, N plays the role of the
number of transport channels in a quasi-one-dimensional
geometry, which is relevant for studies of the Josephson
effect across superconducting weak links or pointlike junc-
tions, while the two-component structure of the spinor η =
(η, η̄)T is analogous to the decomposition of an electron
wave function into left-traveling and right-traveling wave
packets with momenta lying close to the Fermi surface. In
this picture, the matrices A and B describe, respectively,
forward and backward interchannel scattering due to dis-
order. Besides, the boundary conditions [Eq. (60)] exactly
match the ones imposed on the Green’s function within the
quasiclassical framework [48,49].

With these remarks in mind, we proceed by solving Eq.
(59) using the scattering formalism of Ref. [50]. For that,
we introduce a time-dependent scattering matrix M (t) that
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by definition satisfies the equation

i∂tM (t) = L̂(t)M (t), M (0) = 1, (61)

which is formally solved by the time-ordered exponential

M (t) = T̂e−i
∫ t

0 dτ L̂(τ ). (62)

In our numerical implementation of the algorithm, one can
effectively find M (t) by means of Trotterization,

M (tk) =
k∏

j=1

e−iL̂(tj )τ , tk = kτ , (63)

with τ = T/p and p � 1 as before. Now Eq. (59) is solved
by

g(t) = M (t)g(0)M (t)−1, (64)

and the transfer matrix in its canonical form [50] can be
shown to be diagonalizable as

M (t)M (t)†=Udiag
(
e−2λ(t), e2λ(t)) U†, (65)

where U is a unitary matrix and

λ(t) = (λ0(t), . . . , λN−1(t))T (66)

are the set of positive Lyapunov exponents we look for. We
also note that M obeys the “flux-conservation condition”

M (t)†τ̂3M (t) = τ̂3, (67)

which stems from the Hermiticity of the underlying Hamil-
tonian.

With the transfer matrix at hand, one can write g(T) =
M (T)g(0)M−1(T) and further use this relation together
with boundary conditions (60) to find the unknown g(0)
and g(T). The general solution is rather involved; see Refs.
[48,49] for more details. However, for many instances of
the SK model that we study below, the Lyapunov expo-
nents satisfy λl(0) = λl(T) = 0 for all l, which is the
hallmark of reflectionless scattering (for more details, see
Appendix C). Under this condition, the above set of equa-
tions is solved by g(0) = g(T) = τ̂3, which we adopt in
what follows.

We are now in a position to estimate the quantum fluctu-
ations above the mean-field solution. The simplest quantity

to assess is [51]

N∑

i=1

〈|ηi(t)|2〉 = 1
2

Trg(t)τ̂3 = 1
2
Tr

(
M (t)g(0)M−1(t)τ̂3

)
.

(68)

On substituting g(0) = τ̂3 and with the use of Eq. (67), one
finds

N∑

i=1

〈|ηi(t)|2〉 = 1
2

Tr M (t)M †(t) =
N−1∑

l=0

cosh 2λl(t). (69)

At this point, we rely on empirical evidence suggesting that
when quantum fluctuations grow in time (see Figs. 7 and
8), the sum above is dominated by the maximal Lyapunov
exponent λ0(t), which is supported by our numerical analy-
sis. Furthermore, in a disordered system with strong graph
connectivity, all correlations are expected to be site inde-
pendent when considered by order of magnitude, allowing
us to estimate

〈|ηi(t)|2〉 ∼ 1
N

e2λ0(t). (70)

As one can see, the mean-field approximation works well
provided λ0(t) � 1

2 . In this regime, fluctuations are sup-
pressed by a factor of 1/N , the latter parameter thus effec-
tively playing the role of � in our semiclassical approxima-
tion to the QAOA. However, the mean-field AOA entirely
breaks down if at a certain time t∗ quantum fluctuation
become sizable, i.e., 〈|ηi(t∗)|2〉 ∼ 1. This happens when
the largest Lyapunov exponent

λ0(t∗) ∼ ln
√

N . (71)

We now investigate the properties of the Lyapunov expo-
nents λ for several instances of the SK model. As shown
in Fig. 7 for N = 11, it is indeed possible to differenti-
ate between “easy” and “hard” instances on the basis of
these exponents. For the former case (left panels in Fig.
7), the mean-field AOA is found to return the exact ground
state, while the λ remain small. Even here, however, the
shrinking of the gap is accompanied by an increase of the
Lyapunov exponents. For the “hard” instance (right panels
in Fig. 7), the mean-field AOA wrongly returns the sec-
ond excited state as a solution. In this case, both the first
crossing of the exact levels and the closing of the gap are
accompanied by a sharp increase in the Lyapunov expo-
nents. The estimate from Eq. (71) shows that both maxima
of the largest Lyapunov exponent for this instance are just
slightly below threshold and thus the spin system finds
itself in a regime of strong quantum fluctuations.

Before we discuss our simulations for larger system
sizes (Fig. 8), the following comments are in order. The
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FIG. 7. Exact eigenspectrum (upper panels) versus the Lya-
punov exponents (lower panels) for two concrete instances of
the SK model at N = 11. For the “easy” instance (left panels),
the schedule parameters are τ = 1/2 and p = 2× 103; for the
“hard” instance (right panels), we have instead τ = 1/2 and p =
5× 103. The dashed lines in the upper panels show the energy
E∗ returned by the mean-field AOA. The threshold in Eq. (71)
is evaluated to λ0(t∗) ∼ 1.2. Only the three largest Lyapunov
exponents are shown.

first minigap in the exact spectrum of the adiabatic Hamil-
tonian Ĥ(s) (in the case of the SK model it is located at
s∗ � 0.5 as seen from Fig. 7) is the hallmark of the ergodic-
to-MBL quantum phase transition between a delocalized
paramagnet and a localized spin-glass phase [24]. This gap
is believed to have only a polynomial scaling with respect
to the system size, 1/Nα , where α > 0 is a critical expo-
nent [52]. For larger random instances, it is understood
that subsequent small-gap bottlenecks appear deep in the
MBL phase close to the end of the adiabatic algorithm
[11]. As opposed to the first minigap, they are exponen-
tially small in N for NP-hard combinatorial optimization
problems. For the Hopfield model, which is a close ana-
logue of the SK model, such (stretched) exponential laws
in N were also conjectured in Ref. [21].

The appearance of the third sharp peak in the largest
Lyapunov exponent λ0(s) (see Fig. 8) is a semiclassical
counterpart of the above scenario related to the fact that
ω0(s0)may become exponentially small in N at some point
s = s0, indicating the presence of a “hard” instance. The
adiabaticity condition of the mean-field AOA in this case
is broken provided that the run time, T = pτ , is not suf-
ficiently long, T < 2π/ω0(s0). Under this condition, λ0(s)
develops time-dependent oscillations at s > s0, which can
be removed by choosing a larger T to restore adiabaticity.
However, the peak as such remains present and a notice-
able improvement of the approximate optimum E∗ is not
guaranteed. The sharp extrema in λ0(s) become progres-
sively larger for “hard” instances as N increases, although,
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FIG. 8. Exact eigenspectrum (upper-left panel) versus the Lya-
punov exponents (lower-left and right panels) for two concrete
instances of the SK model at N = 18 and N = 33. For N =
18 (left panels), the schedule parameters are τ = 0.5 and p =
2× 104; for N = 33 (right panel), we have instead τ = 0.4 and
p = 2× 104. The dashed line in the upper-left panel shows the
energy E∗ returned by the mean-field AOA, while the oscillatory
black line in the lower-left panel shows the maximum exponent
for τ = 0.5 and p = 5× 103.

as we have found, the logarithmic threshold [Eq. (71)]
grows accordingly and is never violated.

The left panels in Fig. 8 illustrate the outlined story for
N = 18 in concrete terms. In agreement with the sharp
spike of the largest Lyapunov exponent toward the end, the
mean-field AOA does not return the correct ground state.
The main feature of Fig. 8 is, however, the characteris-
tic oscillations of the largest eigenvalue for p = 5× 103

(black line in the background). As highlighted by the
smooth (red) line in the foreground, these oscillations dis-
appear for a very large value of p (2× 104). We stress
that these oscillations do not accompany the transition of
the system to a chaotic regime. However, in this case the
algorithm returns a poor approximate optimum described
by the rare-event statistics [Eq. (24)]. In the case of an even
larger system size, N = 33, we find that such oscillations
persist even at very large values of p .

C. Adiabaticity condition

We close this section by analyzing the complexity of
our classical algorithm for large N . First, note that at
times s > s∗, i.e., above the critical point of the ergodic-
to-MBL phase transition in the Hamiltonian H(s) of the
quantum spin system, the mobility edge in its many-body
spectrum emerges [23,53]. The states below the mobil-
ity edge are many-body localized, while those above are
ergodic, which can be diagnosed via their level-spacing
statistics [54]. For times s approaching the critical point
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from above, s→ s∗ + 0+, the mobility edge merges with
the instantaneous ground state E0(s∗). We can then invoke
the classical-to-quantum correspondence [55] to identify
the ergodic part of the quantum spectrum with the classi-
cal chaotic regime of the mean-field spin Hamiltonian (3),
and analogously for the complementary MBL part and the
classical regular regime.

These considerations place a certain restriction on the
adiabaticity condition of the mean-field AOA. Specifically,
the run time T should be long enough, T � 2π/ω0(s∗),
where ω0(s) is the smallest eigenvalue in the paramagnon
spectrum; see Eq. (50). Although it does not happen in the
SK model for N of order 102 that we have studied here,
the violation of this adiabaticity condition may trigger the
crossover of the classical spin dynamics into the chaotic
regime at s > s∗, accompanied by a sharp increase of the
largest Lyapunov exponent λ0(s) that is incompatible with
the bound (71) justifying the semiclassical approximation.
Assuming that at s→ s∗ the minigap in the paramagnon
spectrum behaves as ω0(s∗) ∼ 1/Nα , with α being a crit-
ical exponent associated with the ergodic-to-MBL phase
transition, we conclude that at fixed τ the number of steps
p should scale at least as approximately Nα . Referring to
our previous estimate from Sec. II A, we then arrive at the
polynomial complexity of the mean-field AOA, O(pN 2) =
O(N 2+α). The main conclusion here is that since our clas-
sical algorithm delivers only an approximate optimum of
the NP-hard problem (for exact statements, see Secs. II B 1
and II B 2), its run time does not scale exponentially in N .

IV. DISCUSSION AND OUTLOOK

In this work, we presented a quantum-inspired classical
algorithm. When applied to the alternating layers of prob-
lem and driver Hamiltonians characteristic of the QAOA,
the mean-field approximation yields closed, classical equa-
tions of motion that can be solved exactly for any number
of layers p and system sizes N . Therefore, in contrast to its
quantum analogue, the mean-field AOA is not limited to
very small values of p , making it convenient to mimic an
annealinglike schedule instead of optimizing the parame-
ters over the expectation value, as would be the case in the
standard QAOA.

A comparison of the mean-field AOA and the QAOA
revealed that the new algorithm can indeed serve as a use-
ful tool to identify optimization problems for which the
application of the QAOA could still prove advantageous.
That is, for any given problem, if the mean-field AOA does
a satisfactory job in finding approximate solutions, little
stands to be gained by switching to the full QAOA. A pos-
sible strategy for assessing this is to compare the approxi-
mate results returned by the two algorithms on exemplary
(small) problem instances both among themselves and with
available problem-specific classical solvers.

One possible criticism of our results for the SK model
is that the mean-field approximation can be expected to
perform well given the “self-averaging” properties of the
coupling matrix. However, it is not obvious that it should
perform better than the QAOA. Furthermore, as mentioned
in Sec. II B 1, the SK model was used only recently [32] to
demonstrate that the QAOA can outperform other classical
algorithms at p = 12 for large N . As demonstrated in Fig.
1, the mean-field AOA in turn surpasses this benchmark.

Our second benchmark, the partition problem of Sec.
II B 2, is known to be NP complete [38]. While it was not
in line with the purpose of this work to compare the per-
formance of the new algorithm against the performance
of other classical algorithms specific to this problem, we
showed that the mean-field AOA, supplemented by a spin-
flip strategy, gives rise to a well-defined exponential distri-
bution for its output. This scaling works so precisely that
one could envision finding an analytical confirmation in
future work. The QAOA, in comparison, performs worse
on average than the mean-field AOA, even when the addi-
tional spin flips are not performed. Given the way the
QAOA needs to be implemented on actual hardware, we
also do not expect the spin-flip strategy to improve on the
typical bit strings returned upon measurement.

In the final part of the paper, Sec. III, we went beyond
the mean-field approximation and studied the Gaussian
quantum fluctuations via a spin-coherent-state path inte-
gral. We found very promising results that seem to open up
a number of perspectives for follow-up work. Most impor-
tantly, we believe the fluctuation analysis can have a useful
impact on the schedule design of annealing problems.

Finally, it could be interesting to pursue the mean-field
AOA as a novel optimization algorithm in its own right,
e.g., by investigating in some detail its performance on
the Hopfield model, or by adapting so-called shortcuts to
adiabaticity to the mean-field framework [24].
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APPENDIX A: QAOA VERSUS MEAN-FIELD AOA

Here we provide further details on the relationship
between our algorithm and the standard QAOA. In the
latter, one starts from the initial state

|ψ0〉 = |+〉X1 ⊗ |+〉X2 ⊗ · · · ⊗ |+〉XN , (A1)
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where |±〉Xi is the X basis of the ith qubit. After the QAOA
evolution, the quantum system ends up in the final state,
which one decomposes in the Z basis as

|ψf 〉 =
∑

σi=±
a(σ )|σ1〉Z1 ⊗ · · · ⊗ |σN 〉ZN (A2)

with complex amplitudes a(σ ) = a(σ1, . . . , σN ). The sum
runs over all of the 2N possible bit strings. The amplitudes
then yield the probabilities

Q(σ ) = |a(σ )|2,
∑

σ

Q(σ ) = 1, (A3)

to measure the system in the respective state.
In the mean-field AOA, one instead deals with classical

spin vectors

n(i)(t) = (
nx

i (t), ny
i (t), nz

i (t)
)T . (A4)

They are normalized to unity,
∣∣n(i)(p)

∣∣2 = 1, for all i =
1, . . . , N and at any time slice p of the algorithm. As men-
tioned in the main text, the initial condition is n(i)(0) =
(1, 0, 0)T. The approximate probabilities P(σ ) follow
straightforwardly from these vectors. Under the mean-field
approximation, these probablities are factorizable, i.e.,

P(σ ) =
N∏

i=1

P(i)(σi), P(i)(±) := 1
2

(
1± nz

i (p)
)

, (A5)

where again
∑

σ P(σ ) = 1. Of course, this factorization
generally does not hold for the probabilities Q(σ ) extracted
from the full quantum approach.

In more detail, in the mean-field framework the ith qubit
possesses a density matrix

ρ̂(i) = 1
2

(
1+ nz

i nx
i − iny

i
nx

i + iny
i 1− nz

i

)
, (A6)

such that, e.g., for an average x component of the spin one
has

nx
i = Tr

[
ρ̂(i)σ̂ x

i

] = 〈σ̂ x
i 〉, (A7)

where it should be understood that the brackets do not sig-
nify averaging over problem instances, as in the main text,
but the proper quantum average. Similar expressions are
valid for the y and z components of the spins. The full den-
sity matrix of the system in the mean-field approximation
also factorizes,

ρ̂ ≡ ρ̂(1) ⊗ · · · ⊗ ρ̂(N ). (A8)

With this ansatz, any spin-spin correlation function over
different sites factorizes into a product of averages, i.e., its

irreducible part is, by definition, missing under the mean-
field approximation. This gives rise to another way of
expressing this approximation; namely,

〈ÔiÔj 〉 ≡ 〈Ôi〉〈Ôj 〉 (A9)

for operators Ôi = σ̂ αi , with α = x, y, z, where the brackets
again denote the quantum average.

APPENDIX B: SPIN PATH INTEGRAL

1. Spin-coherent states

The construction of the spin path integral starts from
the introduction of the basis of coherent states. Let the
states |0〉 and |1〉 form the computational basis where the
Pauli matrices σ̂ α , α = x, y, z, are defined in the conven-
tional way. Then an arbitrary spin-coherent state |g̃〉 can
be obtained from |0〉 by a unitary rotation

|g̃〉 = g̃|0〉, g̃ = e−iφσ̂ z/2e−iθσ̂ y/2e−iψσ̂ z/2, (B1)

with the group element g̃ ∈ SU(2) parameterized in terms
of three Euler angles. Note that the role of the angle ψ
is merely an extra phase factor, i.e., one can always write
|g̃〉 = |g〉e−iψ/2, where

|g〉 = ĝ|0〉, ĝ = e−iφσ̂ z/2e−iθσ̂ y/2, (B2)

and now g is taken from the coset space isomorphic to
the two-sphere, ĝ ∈ SU(2)/U(1) � S2. The state |g〉 is the
spin-coherent state. In spherical coordinates (θ ,φ) it takes
the form

|g〉 = |0〉 cos
θ

2
e−iφ/2 + |1〉 sin

θ

2
eiφ/2. (B3)

The collection of these states forms an overcomplete basis,
which can be seen from the resolution of the identity,

∫

S2

μ(g)|g〉〈g| =
∑

s=0,1

|s〉〈s|, μ(g) = 1
2π

sin θdθdφ.

(B4)

Here, by definition, the bra state is

〈g| = 〈0|ĝ†. (B5)

Given the state |g〉, we define the associated density matrix
as

ρ̂ = |g〉〈g| ≡ 1
2
(1+ q̂), q̂ := ĝσ̂ zĝ−1. (B6)

The matrix q̂ satisfies q̂2 = 1, which in turn implies the
purity of the density matrix, ρ̂2 = ρ̂, i.e., it is a projector.
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In spherical coordinates, with use of Eq. (B2), the q̂ matrix
becomes

q̂ =
(

cos θ e−iφ sin θ
eiφ sin θ − cos θ

)

≡
(

nz nx − iny

nx + iny −nz

)
≡

∑

α=x,y,z

nασ̂ α , (B7)

where n = (nx, ny , nz)T ∈ S2 is the unit vector defining the
Bloch sphere.

2. Stereographic projection

The choice of spherical coordinates to parameterize g is
not unique. One can equivalently define it using complex
coordinates z ∈ C, which we widely use to introduce the
quantum fluctuations around the mean-field trajectories in
the spin path integral. To this end we define the stereo-
graphic projection P : C→ S2, z �→ (nx, ny , nz)T from the
complex plane to the sphere via

nx ± iny = 2z
1+ |z|2 , nz = ±

(
1− |z|2)

1+ |z|2 . (B8)

The inverse mapping (from the sphere S2 onto C) reads

z = nx ± iny

1± nz ≡
{

eiφ tan θ
2 ,

e−iφ cot θ2 .
(B9)

Under this mapping, the north pole (0, 0, 1) [south pole
(0, 0,−1)] is projected onto the origin of C, the south pole
(north pole) goes to infinity, and the equator becomes the
unit circle |z| = 1. In complex coordinates, one defines the
matrices ĝ and q̂ in the following way:

ĝ = 1
(1+ |z|2)1/2

(
1 −z̄
z 1

)
,

q̂ = ĝσ̂ zĝ−1 = 1
1+ |z|2

(
1− |z|2 2z̄

2z −1+ |z|2
)

(B10)

when the north pole goes to the origin, and

ĝ = 1
(1+ |z|2)1/2

(
1 z
−z̄ 1

)
,

q̂ = −ĝσ̂ zĝ−1 = 1
1+ |z|2

(−1+ |z|2 2z
2z̄ 1− |z|2

)
(B11)

for the opposite case. The q̂ matrix here agrees with Eq.
(B7) under the stereographic projection [Eq. (B8)]. On the
other hand, the functional form of ĝ is different from the
original definition [Eq. (B2)]. The rule is that one consid-
ers any two matrices ĝ and ĝ′ related by ĝ′ = ĝe−iψσ̂ z/2

to define the same element of the coset space. With this

remark, both definitions, Eqs. (B2) and (38), are equivalent
since they correspond to the same density and q̂ matrices.

The coherent state related to the above ĝ matrix is
defined in the same fashion as before,

|g〉 = ĝ|0〉 ≡ exp (zσ̂−/2)|0〉
(1+ |z|2)1/2 =

|0〉 + z|1〉
(1+ |z|2)1/2 . (B12)

This agrees with the definition of the normalized coher-
ent states in Ref. [20]. For completeness, we note that the
resolution of the identity takes the form

∫

C

μ(g)|g〉〈g| =
∑

s=0,1

|s〉〈s|, μ(g) = 2
π

dxdy
(1+ |z|2)2

(B13)

in complex coordinates z = x + iy.

3. Berry phase

To expand the Berry-phase term SI of Eq. (33) into coor-
dinate representations, we use|0〉〈0| = (1+ σ̂ z)/2 together
with the definition of spin-coherent states to obtain

SI =
∫ T

0
dt 〈g|∂t|g〉 =

∑

i

∫ T

0
dt 〈0|ĝ−1

i (∂tĝi)|0〉

= 1
2

∑

i

∫ T

0
dt Tr

[
(1+ σ̂ z)ĝ−1

i ∂tĝi
]

= 1
2

N∑

i=1

∫ T

0
dt Tr

[
σ̂ zĝ−1

i ∂tĝi
]

. (B14)

The first term of the expression in the second line is a
boundary term that is evaluated to zero,

∫ T

0
tr(ĝ−1

i ∂tĝi)dt =
∫ T

0
dt

d
dt

ln det ĝi = 0, (B15)

since by the definition of unitary groups, we have det gi =
1. The Berry phase written in the invariant form [Eq.
(B14)] is a convenient starting point to derive specific
coordinate representations. Using the explicit expressions
for g in either spherical or complex coordinates, one finds

SI = 1
2

∑

i

∫ T

0
dt

żiz̄i − zi ˙̄zi

1+ |zi|2 = −i
∑

i

∫ T

0
dt φ̇i cos θi.

(B16)

4. Hamiltonian

To show how SH emerges, we start from the driving
Hamiltonian. We use the density matrix ρ̂ = |g〉〈g| defined

030335-15



ADITI MISRA-SPIELDENNER et al. PRX QUANTUM 4, 030335 (2023)

in Eq. (B6) to get

〈g|ĤD(t)|g〉 = −1
2

∑

i

�iTr(σ̂ xq̂i) = −
∑

i

�inx
i .

The projection nx
i (t) can be now expressed in terms of

either spherical angles [Eq. (B7)] or complex coordinates
zi [Eq. (B8)], depending on the choice of parameterization
of the Bloch sphere. Similarly, for the Ising Hamiltonian,
one finds

〈g|ĤP(t)|g〉 = −
∑

i<j

Jij Tr(σ̂ zρ̂(i))Tr(σ̂ zρ̂(j ))

= −1
4

∑

i<j

Jij Tr(σ̂ zq̂i)Tr(σ̂ zq̂j )

= −
∑

i<j

Jij nz
i n

z
j . (B17)

The linear combination of the two above pieces finally
gives the action SH .

5. Mean-field equations as a saddle point

Here we use the least-action principle to derive the
mean-field equations from the action S = SI + SH . One
possible way is to accomplish this directly by using some
coordinate system—say, the complex coordinates from the
stereographic projection. It is, however, instructive to also
derive the equations of motion in a coordinate-free manner.

To simplify the discussion, we consider a single spin
rotating in the arbitrary magnetic field B = (Bx, By , Bz)T.
This problem is described by an action S with

SH = − i
4

∫ T

0
dtTr

[
Bασ̂ α q̂

] = − i
2

∫ T

0
dt B · n. (B18)

Again, q̂ is the traceless part of the density matrix for each
spin; see Eq. (B7). Consider first the variation of the Berry
phase, SI , given by Eq. (B14). Let δĝ be a variation of ĝ.
Since

(
δĝ

)
ĝ−1 + ĝδĝ−1 = 0, we find

δĝ−1 = −ĝ−1δĝĝ−1. (B19)

A similar relation holds for ∂tg−1. Equipped with these
relations, we find for the variation of the Berry phase

δSI = −1
2

∫
dtTr(ĝ−1∂tq̂δĝ). (B20)

Since δg is an arbitrary unitary matrix, we find

ĝ
δSI

δĝ
= −1

2
∂tq̂. (B21)

To get the variation of SH , one has to proceed along the
same lines. The result is

δSH = − i
4

∫
dt BαTr

[
ĝ−1[q̂, σ̂ α]δĝ

]
, (B22)

which yields

ĝ
δSH

δĝ
= − i

4
[q̂, Bασ̂ α]. (B23)

Thus, the saddle-point equations of motion are

i∂tq̂ = 1
2

[q̂, Bασ̂ α]. (B24)

Expanding q̂ = nασ̂ α and using the commutation relations
[σ̂ α , σ̂ β] = 2iεαβγ σ̂ γ , we find the saddle-point equations
can be rephrased as

∂tn = n× B, (B25)

which is the Larmor precession of a spin in the magnetic
field B.

The generalization to a multispin problem is now trivial.
Each spin is rotating in the effective magnetic field

Bi = 2(1− s)�iêx + 2smiêz, (B26)

where mi was defined in Eq. (6), and the equations of
motion remain the same as above, ∂tni = ni × Bi.

For completeness, we now also give the derivation of
the complex-coordinate representation of the saddle-point
equations, Eq. (45). As shown in the main text, the starting
point is the action in the form of Eq. (44). If we ignore
boundary terms, the variation of SI then becomes

δSI =
∑

i

∫
dt

żiδz̄i − ˙̄ziδzi
(
1+ |zi|2

)2 . (B27)

Together with the variation of the Hamiltonian part, one
thus recovers Eq. (45).

6. Derivation of the action for fluctuations

To obtain Eq. (46), one should again start from Eq. (44)
and substitute zi → zi + δzi with the variation δzi given
by Eq. (42). On expanding the expression in ηi, the lin-
ear terms will vanish, provided the saddle-point equation
(45) is satisfied. Expansion to second order in the ηi pro-
duces the Gaussian action of fluctuations [Eq. (46)], where
the diagonal elements of the matrices A and B are the same
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as found in Ref. [20],

Aii = 1
2
∂

∂ z̄i
(1+ |zi|2)2 ∂H

∂zi
+ (zi ↔ z̄i),

Bii = ∂

∂ z̄i
(1+ |zi|2)2 ∂H

∂ z̄i
, (B28)

while we find similar expressions for the off-diagonal
elements,

Aij = (1+ |zi|2)(1+ |zj |2) ∂
2H

∂ z̄i∂zj
,

Bij = (1+ |zi|2)(1+ |zj |2) ∂
2H

∂ z̄i∂ z̄j
. (B29)

From these, one can see that A is Hermitian and B is
symmetric. For the specific Hamiltonian (34), the above
general expressions for the matrix elements then reduce to
Eqs. (47) and (48).

Below we comment on some technical details used to
derive the above expressions. We start from the Berry-
phase contribution, which produces the time-derivative
term in the action [Eq. (46)]. To simplify the discussion,
we assume that the final bit string has sign(nz

i (T)) = 1 for
all i. Substituting ĝ′i = ĝig̃ie−iψσ̂ z

into the Berry term [Eq.
(B14)], one finds that the action is split into three terms,

SI = 1
2

∑

i

∫ T

0

(
Tr

(
σ̂ zeiψσ̂ z

∂te−iψσ̂ z
)

+ Tr
(
σ̂ zg̃−1

i ∂tg̃i
)+ Tr

(
q̃ig−1∂tg

))
, (B30)

where we have defined q̃i = g̃iσ̂
zg̃−1

i . The first term is
evaluated to the boundary contribution

−i
∑

i

∫ T

0
dt ∂tψ = −i

∑

i

[ψ(T)− ψ(0)], (B31)

which is zero since the fluctuations are absent at the bound-
aries, ηi(0) = ηi(T) = 0. To obtain the contribution to the
fluctuation action, one has to go to second order in the ηi.
Then the second term in Eq. (B30) is again the Berry phase
[Eq. (B16)], yet now evaluated for g̃i, which to this order
becomes

Tr(σ̂ zg̃−1
i ∂tg̃i) = η̄i∂tηi − ηi∂tη̄i. (B32)

Written in matrix form, it reproduces the time-derivative
term in the action [Eq. (46)]. To simplify the final term of
the action [Eq. (B30)], we note that q̃i is of the same form
as the q̂ matrix [Eq. (B10)], with z replaced by ηi. When

the latter are small, we find

q̃i =
(

1− 2|ηi|2 2η̄i
2ηi −1+ 2|ηi|2

)
+ O(η3

i ), (B33)

which in turn generates the following second-order contri-
bution to the action [Eq. (B30)]:

S(2)I =
∑

i

∫ T

0
dt |ηi|2 (zi ˙̄zi − żiz̄i)

1+ |zi|2

= i
∑

i

∫ T

0
dt |ηi|2(1+ |zi|2)

(
z̄i
∂H
∂ z̄i
+ zi

∂H
∂zi

)
,

(B34)

where have also used the equations of motion [Eq. (45)].
The variation of the Hamiltonian part of the action, SH in

Eq. (44), is straightforward. On taking into account that to
linear order δzi = (1+ |zi|2)ηi, one arrives at Eqs. (B28)
and (B29). The difference in the analytical expressions
for the diagonal and off-diagonal elements stems from Eq.
(B34), which contributes only to the diagonal entries.

APPENDIX C: TRANSFER MATRIX

Here we summarize some basic facts regarding the
transfer-matrix technique that was used in Appendix B 6.
At each time t, the transfer matrix M (t) can be written in
its canonical form [50],

M =
(

U′

U†

) (
cosh λ sinh λ

sinh λ cosh λ

) (
V

V′†

)
. (C1)

Here λ = diag(λ1, λ2, . . . , λN ) is the set of so-called pos-
itive Lyapunov exponents, while U, U′, V, V′ ∈ U(N ) are
unitary matrices. The time dependence of these quantities
is suppressed for brevity. Physically, the role of the uni-
taries is to rotate an initial basis of incoming and outgoing
scattering states into a preferred basis, where the scattering
occurs pairwise among right and left eigenmodes, which
in turn are characterized by the corresponding Lyapunov
exponents λl. The block structure of the decomposition
[Eq. (C1)] matches the block form of the matrix τ̂3, see Eq.
(49), such that the law of “flux conservation” [Eq. (67)]
holds.

At time t = 0 scattering is absent, and thus M (0) =
0. A special situation discussed in the main text is the
so-called reflectionless potential, when all λl(T) = 0. In
this case, the transfer matrix M (T) is block diagonal,
such that

[
M 0(T), τ̂3

] = 0. For the problem at hand, such
reflectionless scattering potentials are realized by the effec-
tive Hamiltonian of paramagnons [Eq. (49)] whenever the
classical spin trajectories converge to the final bit string
σ ∗ exactly, i.e., one has nx,y

i (T) = 0 for each spin (up
to numerical precision). We are not aware of a simple
explanation of this remarkable fact.
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The time dependence of the Green’s function under such
conditions is simplified to g(t) = M (t)τ̂3M−1(t). Indeed,
since in this case the matrices M (T) and τ̂3 commute at t =
T, the evolution brings g(T) back to τ̂3, and the initial and
final values of g(t) are both in accord with the boundary
condition [Eq. (60)] for the spin path integral.
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