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THE BIGGER PICTURE The limits of miniaturization of semiconductor technology motivate the search for
alternative hardware to further increase computational power. Quantum computing offers one such alter-
native paradigm. Qubits offer more degrees of freedom than classical bits, and quantum algorithms can
yield speedups over classical approaches. The number of qubits on available quantum processing units
has increased significantly in recent years and promises to continue to do so in the future. Systems biology,
in particular the modeling of gene-regulatory networks, can benefit from these advances while retaining the
simplicity of logical rules. We showcase here a proof-of-principle implementation using a biologically moti-
vated network and highlight dynamic analyses that make use of properties such as reversibility and the ex-
istence of superposition states in quantum computing.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The dynamics of cellular mechanisms can be investigated through the analysis of networks. One of the
simplest but most popular modeling strategies involves logic-based models. However, these models still
face exponential growth in simulation complexity compared with a linear increase in nodes. We transfer
this modeling approach to quantum computing and use the upcoming technique in the field to simulate
the resulting networks. Leveraging logic modeling in quantum computing has many benefits, including
complexity reduction and quantum algorithms for systems biology tasks. To showcase the applicability of
our approach to systems biology tasks, we implemented a model of mammalian cortical development.
Here, we applied a quantum algorithm to estimate the tendency of the model to reach particular stable con-
ditions and further revert dynamics. Results from two actual quantum processing units and a noisy simulator
are presented, and current technical challenges are discussed.
INTRODUCTION

Many methods exist for modeling biological processes in sys-

tems biology, with model descriptions of various complexities

and scales.1,2 These range from differential equations3 to Petri

nets.4 However, Boolean networks (BNs) offer a straightforward

modeling approach.5,6 An advantage of BNs is that they can be

constructed without the need for explicitly specifying kinetic pa-
This is an open access article und
rameters, as these are often not available for all relevant interac-

tions but still capture the main dynamics of the system.2 Conse-

quently, BNs can be scaled up to include a larger number of

components than other models.

In a BN with n components, every component has its activity

represented by a time-dependent binary variable, xiðtÞ˛ f0;1g.
A component may represent various entities spanning from

genes, proteins, or mRNAs to entire processes such as cell
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death or metastasis. Each component has a regulatory function

or rule of the form fiðx0;.; xn� 1Þ associated with it, which de-

scribes its regulation. These functions connect components via

the Boolean operators AND (^), OR (n), and NOT (:). The state

of the system at time t is then given by a binary vector of length

n as xðtÞ : = ðx0ðtÞ;.;xn� 1ðtÞÞ.
For biologically motivated BN models, the required regulatory

rules can be either constructed by extensive literature search7,8

or inferred directly from, e.g., gene expression data.9–12 To incor-

porate dynamics, there exist multiple update mechanisms for

BNs. For instance, with synchronous updates, the rules of all n

components are evaluated simultaneously, yielding their values

at the next point in time. In contrast, asynchronous models

randomly update one component at a time.

The dynamics of a BNcan be represented by its state transition

graph (STG).6 This is a directed graph ofN = 2n nodes,with every

nodecorresponding toa state—that is, aBooleanvector of length

n—and every edge indicating a state transition. In synchronous

BNs, the systemwill eventually enter into a recurring cycle of sta-

ble states called an attractor, given the finite size of the STG.

These can be single states (called fixed-point attractors) or mul-

tiple states (called cyclic or complex attractors). For BNs

modeling biological processes, such attractors represent the

system’s long-term behavior and may be interpreted as pheno-

types.13,14 The set of states that fall into the same attractor is

referred to as that attractor’s basin and can indicate the fre-

quency of a phenotype. Attractor states of BNs have been shown

to accurately capture biological phenotypes and their response

to perturbations inmodels of various sizes and complexities.7,8,15

It is also possible to perturb components by fixing their state to

either 0 or 1, regardless of the output of their regulatory func-

tions. Such perturbations correspond to biological knockout

(KO) or overexpression (OE) experiments.

Previous studies have extended BN models, for example, by

including a continuous spectrum of activity using fuzzy logic16

or by the introduction of intermediate increasing and decreasing

states.17 In a similar vein, we describe a modeling approach that

aims to extend Boolean models by making use of the possibil-

ities offered by quantum computing.

The fundamental unit of quantum computing is the qubit. In

contrast to its classical counterpart, the bit, it can also assume

superpositions of the orthogonal basis states, j0D and j1D.
Consequently, a qubit’s general state jjD is denoted by a two-

dimensional state vector jjD = aj0D+ bj1D with amplitudes a; b˛
C such that the state is normalized, i.e., jaj2 + jbj2 = 1. Once a

measurement of the qubit with respect to the chosen basis is per-

formed, its state irreversibly collapses to either of the two basis

states. The probability ofmeasuring j0D or j1D is givenby the square
amplitudes jaj2 and jbj2, respectively. Thus, while the amplitudes

associated with statesmay be complex numbers, the probabilities

of measuring a particular outcome remain real-valued.

Choosing the parameters a = cosðq =2Þ and b = ei4 sinðq =2Þ,
the state jjD can be expressed in spherical coordinates as jjD =
jjðq;4ÞD with q˛ ½0;p� and 4˛ ½0;2pÞ. A common visualization of

a qubit’s state is shown in Figure 1E, where the state is repre-

sented by a vector on the surface of a Bloch sphere. When iden-

tifying the classical states 0 and 1 with the basis states j0D and
j1D, the corresponding points on the Bloch sphere are the poles
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on the z axis, whereas the points on the equator are equally

weighted superpositions of the basis states. The angle q can

be tuned to yield a superposition of the basis states with arbi-

trarily chosen weights.

The same principles apply to entangled multi-qubit systems.

For n = 2 qubits, for example, quantum states can be superpo-

sitions of up to four basis states, i.e.,

jjD = aj00D+ bj01D+gj10D+ dj11D with a;b;g; d˛C and

jaj2 + jbj2 + jgj2 + jdj2 = 1. In this manner, the dimension of the

computational space in which the quantum state lives, called

the Hilbert space, grows exponentially. The basis states of a su-

perposition can then be identified with the corresponding bit-

strings denoting the expression of genes or lack thereof at

some time point t in a BN.

The required Boolean logic can be implemented in quantum

circuits, i.e., sequences of gates applied to a register of qubits.

Gates can be applied to single qubits, such as the Hadamard

gate, or multi-qubit gates, like a controlled-NOT (CX), which

create entanglements between qubits. Relevant gates are listed

in section 1 of the supplemental information. All presented quan-

tumcircuits are reversible. This property is equivalent to their uni-

tarity, a necessary constraint on gate operations.20

One of the most prominent algorithms in quantum computing

is Grover’s search algorithm.21 The goal of this algorithm is to

search for amarked itemu (or set ofM items) among an unsorted

set of N elements. By exploiting quantum properties through a

procedure called amplitude amplification,22 Grover’s algorithm

has a complexity ofOð
ffiffiffiffiffiffiffiffiffiffiffi
N=M

p
Þ,20 providing a quadratic improve-

ment over a classical search. In the course of our investigation

we will also utilize this procedure.

Quantum computing may mark a new era of computation po-

wer. We aim to investigate the opportunities for systems biology

approaches using this paradigm. While quantum computing has

already found applications in other areas of biology,23–27 we aim

to evaluate the possibilities for using quantum computing for

BNs as dynamic models of biological systems. Recent work by

Qi et al. has demonstrated how Boolean time series can be

generated by periodic quantum measurements resulting from a

continuous Lindblad master equation based on an interaction

graph.28,29 In contrast, we focus on the analysis of biological net-

works with known and fixed update rules, tailoring quantum al-

gorithms to extend the analysis of STGs.

Thus, our work aims to transfer the classical modeling

approach to quantum BNs (QBNs), showcasing how quantum

hardware and algorithms are suitable for solving problems in

the analysis of BN dynamics, while retaining the simplicity of

Boolean logic.

In this work, our analysis will focus on an n = 5-component

BN modeling mammalian cortical area development, as pre-

sented by Giacomantonio and Goodhill.18,19 The comparison

of this analysis to the known outcomes from classical BNs

aims to be a proof of principle that quantum computing can

be applied to problems of this kind. Figure 1 highlights the

components included in this model as well as the role of their

expression gradients in the specification of the anterior-poste-

rior axis of the mammalian cortex. The network is represented

by a set of Boolean functions, which are then translated into a

quantum circuit.
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Figure 1. Workflow for the implementation of a quantum Boolean network

(A) Expression gradients along the anterior-posterior (A-P) axis in the mammalian cortical area development network as described by Giacomantonio and

Goodhill.18,19

(B) Activating (pointed arrows) and inhibitory (bar-headed arrows) interactions between relevant components.

(C) Boolean functions specifying how to obtain the expression value of a component at the next time step in a Boolean network model.

(D) Two single state attractors representing the stable states of the Boolean network. These states correspond to biological phenotypes.

(E) States of a single qubit can be represented on the Bloch sphere. In addition to the classical binary states, this allows for the creation of superposition states.

Quantum gates such as the X or H gate correspond to rotations of the qubit’s state on the Bloch sphere.

(F) Creation of a quantum circuit from a series of quantum gates. This circuit performs a state transition on a uniform superposition of all 2n states of the same

network and measures its output.
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RESULTS

The extension toward QBNs requires the implementation and

analysis of quantum circuits generated from a set of classical

Boolean regulatory functions.

While Franco et al.30 have investigated random BNs using

quantum Boolean functions with asynchronous updating, our

work focuses on the relevance of quantum computing for the

analysis and interpretation of biological networksand their attrac-

tors. As a proof of principle, we demonstrate dynamic analyses

on small models, which show a scale-free topology typical of

gene-regulatory networks.31 Our analysis is specifically focused

on attractor states, their surrounding states in the STG, and their

basin sizes. While there are algorithms to screen for attractors in

larger BNs,17,32,33 the exponential growth of the number of nodes

in the STG prohibits its complete exploration as well as the iden-

tification of basins of attraction. This is a constraint for different

kinds of analyses in biomedical research, such as screening for

therapeutic targets and their impact. Since the dimension of the

Hilbert space of a multi-qubit system likewise grows exponen-

tially, the 2n possible states of a BN can be encoded in the basis

states of n qubits. Consequently, the exponential growth of

complexity is reduced to a linearly growing demand for the num-
ber of qubits. First, we demonstrate how a uniform superposition

state converges to a superposition of attractor states. This is fol-

lowed by simulations showing how convergence differs when

making use of parameterized rotation gates to continuously

tune the initial activity of network components. We further show

how perturbations with superposition states affect dynamics.

In addition, two existing quantum algorithms are applied to

biologically motivated networks. Specifically, Grover’s search

algorithm21 is adapted to identify predecessors of a marked

state up to any arbitrary number of previous time points. Simi-

larly, a quantum counting algorithm34 is used to directly estimate

the total number of these predecessors.

Last,we runexperimentson tworeal quantumprocessingunits,

one based on trapped ions and one based on superconducting

qubits, to compare the impacts of differences in noise, transpila-

tion, and qubit connectivity on a quantum state transition.

Generation of circuits for multiple state transitions
As a first step, a text file specifying the regulatory rules of a

network as it is used in the R package BoolNet35 is parsed into

a quantum circuit performing a single state transition, as shown

in Figures 1C and 1F. For a network of n components, this circuit

will have 2n qubits. The first n qubits serve as inputs on which the
Patterns 4, 100705, March 10, 2023 3
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quantum gates act. The second set of n qubits yields the

measurable output of the system. Notably, the circuit structure

also leads to an inherent parallelization in the evaluation of the

Boolean functions.

In a preliminary step, a layer of Hadamard gates is composed

onto the first n input qubits. This initialization serves to create a

uniform superposition state jJHDn of all N = 2n basis states:

jJHDn = H5nj0Dn =
1ffiffiffiffiffi
2n

p
X2n � 1

i = 0

jjiDn; (Equation 1)

with jjiDn indicating the n-qubit state whose bitstring representa-

tion corresponds to the integer i.

That is, the system starts in a superposition state of maximal

uncertainty and performs N classical state transitions simulta-

neously, with any measurement collapsing the wave function to

yield one particular successor state. The probabilities for a given

output are determined by the structure of the network’s STG.

For the sake of simplicity, in the following, all state transitions

are assumed to be synchronous. However, it is also possible to

conduct asynchronous transitions by shifting the order of applied

gates and consideringwhether their inputs should come from the

first or second register of qubits in a transition circuit. An example

of this is shown in section 2 of the supplemental information.

The implemented scheme for conducting T repeated state

transitions uses a single large circuit of ðT + 1Þn qubits, with

each transition having a separate register of qubits. See also

section 3 of the supplemental information. The average transient

time to attractors in scale-free networks such as biological sys-

tems increases linearly.31,36,37 This increase results in a demand

for qubits scaling as Oðn2Þ if one desires to capture trajectories

along the entire transient time.

For a single transition, the shifts in the probabilities of states

can be summarized as follows. Assuming that every state i has

some probability weight wt
i associated with it at time t, the tran-

sition operation bT shifts and sums up these weights in the output

of each node in the STG. That is, the probabilities for measuring a

given state in the output register t + 1 will change from having

only the default bitstring of zeros (i.e., jj0D = j000.0D) as a

possible outcome, as described by Equation 2:

jj0Dt + 1Cj0j/
X
i;j˛S

dsuccðjÞ;i

���wt
j

���2jjiDt + 1Cjij: (Equation 2)

Here, S denotes the set of all states, dsuccðjÞ;i is the Kronecker

delta, and succðjÞ is the integer representation of the successor

state of the bitstring corresponding to the integer j. For example,

in a 3-qubit system, the basis state jj7Dwould correspond to the

bitstring 111.

Convergence of a uniform superposition state to
attractors
Attractor screening is an essential part of the analysis of BNs.We

perform state transitions on superposition states to enable a

quantum-specific search of attractors. These circuits will also

be used as building blocks for the implementation of quantum al-

gorithms. Assuming the absence of noise, and since all nodes in

the STG have exactly one successor state in a synchronous up-

date scheme, this weight shift is deterministic. Thus, after the
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first transition, all Garden of Eden (GoE) states,38 i.e., states

that have no incoming edges in the STG, will no longer be

possible results of a measurement of the final n-qubit register.

In this manner, every transition reduces the number of possible

outcomes until only attractor states remain. To evaluate our

QBN-based attractor search, we applied it to the described

example of the mammalian cortical area development

network.18 The results of this simulation were then compared

with the known attractors using the classical approach. In a

classical simulation, this network possesses two single state at-

tractors, 10010 and 01101, partitioning the STG into two basins

making up 87.5% and 12.5% of the nodes, respectively.

Figure 2A shows the complete 32-node STG of this network

givensynchronousupdates,witharrowsofagivencolor indicating

simultaneous probability shifts occurring at a quantum state

transition. A barplot visualizes the increase and decrease in the

probabilities for measuring any state after some fixed number of

transitions T starting from a uniform state jJHDn. To account for

the stochastic nature of measurement, a large number of 10,000

measurements have been simulated for each value of T. After

T = 4 transitions, only the two attractors remain. These were ob-

tained with probabilities of 87:0±0:3% and 13:0± 0:3%, which

nearly match the classical simulation. Errors were calculated as

specified in Equation 6 in the experimental procedures.

Identification of components determining long-term
behavior
In classical BNs, components affecting the resulting set of at-

tractors need to be searched by fixation of each component to

0 and 1. Quantum hardware is a natural fit for this kind of analysis

since it allows one to determine this information without addi-

tional simulation effort. To do so, we adapted the circuits used

in the previous section. Instead of initialization with a layer of Ha-

damard gates, it is also possible to use parameterized RyðqÞ
gates, thus biasing the expression of genes in the initial state.

This yields the same attractor states as in the unbiased network;

however, the probabilities of these states will be shifted. It is

therefore possible to bias components toward being inactive

(q˛ ½0;p=2Þ) or active (q ˛ ðp =2;p�) on a continuous spectrum.

A choice of q = p=2 will yield the same results as the use of a

Hadamard gate, giving the unbiased basin sizes as found in a

classical BN. In contrast, the edge cases of q˛ f0;pg will yield

the basin sizes obtained when sampling only those states of

the STG where the given component is off (or on).

The inset of Figure 2B shows how the attractor distribution is

affected by biasing single components in the network. Ten thou-

sand measurements were simulated for every component and

every value of q. Notably, only somecomponents affect the distri-

bution, while it remains unchanged for others, regardless of bias.

A similar analysis was performed for the cell-cycle network of

Fauré et al.,15 containing n = 10 components, using a different

state transition circuit. Results are shown in section 4 of the sup-

plemental information.

Effect of perturbations using superposition states
A typical setting for BNs is the evaluation of perturbation exper-

iments such as knockout mutations. For QBNs, we developed

an approach to perform perturbations using superposition

states. Instead of updating perturbed components, the qubits
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Figure 2. Dynamic simulation of a quantum Boolean network

(A) State transition graph of the mammalian cortical area development network.18 The color coding indicates weight shifts that occur simultaneously in the T-th

transition of a quantum circuit, starting from a uniform superposition state.

(B) After T = 4 transitions, only the two single state attractors remain as possible outcomes of a measurement with their probabilities corresponding to their basin

sizes. The use of tunable RyðqÞ gates instead of H gates in the initialization may change these probabilities for some components. The dashed red line in the inset

indicates the basin size of the 10010 attractor in the classical Boolean network. For every component, biasedRyðqÞ gates were used for initialization while keeping

an unbiased H-gate initialization for all other components. This reveals the components whose activity has an impact on the basin size. See also Figure S4.
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carrying their state at the initial time t are reused at every tran-

sition. This can be done for multiple components at the same

time. For P components to be perturbed, the resulting attractor

distribution of this simulation resulted in the union set of attrac-

tor states from all 2P combinations of overexpressions and

knockouts of these P components. As an example, in our

model of cortical area development,18 we perturbed P = 2

components: Pax6 was perturbed with a bias toward overex-

pression using an Ryðq = 3p =4Þ gate in the initialization of the

circuit, while Coup-tfi was biased toward knockout using an

Ryðq = p =4Þ gate.
These two components were chosen because every one of the

four possible double perturbations leads to at least one attractor

that is unique to that particular perturbation and does not occur

in the other three. Section 5 of the supplemental information lists

the resulting attractors and their probabilities.

Since it is possible for a specific attractor to appear as the

result of multiple perturbations, this method can be used to

more directly screen the total set of attractors resulting from 2P

classical simulations.

Identifying predecessors of marked states using
Grover’s algorithm
Quantum circuits not only allow one to re-create experiments

with the classical BN setting. On top of that, the QBNmodel pro-

vides access to a separate class of quantum algorithms. Since

attractors correspond to phenotypes, it is biologically interesting

to investigate sets of predecessor states that may be initial con-

ditions leading to a given attractor. This can be achieved using

Grover’s algorithm, exploring the STG from the attractor out-

ward, and thus giving a special focus to the states closest to
the system’s phenotype. The number of transitions performed

in this inverted direction will be denoted as Tinv.

Grover’s algorithm21 is a quantum algorithm that searches for

a marked element in an unstructured database of sizeN, offering

a quadratic improvement in complexity relative to classical ap-

proaches. The general procedure behind this algorithm is known

as amplitude amplification.22

We apply this algorithm to BNs, using an attractor or other

state of interest as the marked element. A uniform superposition

state is used as the initial search state, in which the amplitude of

the solution states will be amplified.

The black box oracle operation in Grover’s algorithm is imple-

mented via Boolean state transitions. The phase difference

resulting from the marking of an attractor is carried back to pre-

vious registers via uncomputing. Thus, predecessor states can

be amplified. The circuit for performing this task is shown in sec-

tion 6 of the supplemental information.

For all searches, 10,000 measurements were simulated for

Grover circuits based on transitions in the network of Giacoman-

tonio and Goodhill.18

There is an optimal number Gopt of iterations of the Grover

operatorG to perform, which leads to a high amplitude of the so-

lution state.39 This number depends on the number of solutions

M, that is, the number of marked elements, and the size of the

state space N as:

Gopt =

$
p

4

ffiffiffiffiffi
N

M

r %
: (Equation 3)

In an exemplary search for the immediate predecessors of

the attractor 01101 with G = 1 iteration of the Grover operator,
Patterns 4, 100705, March 10, 2023 5



Figure 3. Use of quantum counting circuit to establish the numberM of predecessor states of a desired state of interest at some number of

inverted transitions Tinv

A quantum counting circuit has been run to establish the number of predecessor (Tinv = 1) and pre-predecessor (Tinv = 2) states of the attractor 01101 in the

mammalian cortical area development network.18 This yielded results close to the values ofM = 2 andM = 4, respectively, which are expected from a classical

simulation of the STG. The dashed vertical lines indicate themeans of the corresponding probability distributions. In general, the accuracy of these resultsmay be

improved using more iterations of the Grover operator and their associated readout qubits r.
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a total of 47:41%±0:5% of measurements yielded either the

attractor itself or its predecessor 01001 (96:12%±0:2%

using Gopt
Tinv = 1;01101

= 3), even though these states make up only

6.25%of the state space.When searching for all Tinv = 2 pre-pre-

decessor states, the four states in the basin of the 01101 attractor

(12.5% of the total state space) were obtained with a cumulative

probability of 77:68%±0:4% (94:60%±0:2% when using

Gopt
Tinv = 2;01101

= 2). Since the marked attractor is a single state at-

tractor, all solutions are equally amplified in thecaseofmultiple so-

lutions. In the general case of cyclic attractors, amplification may

depend on which state in the cycle was marked.

In particular, when the marked state is a GoE state, there is no

solution that yields this state as a successor. Consequently,

there is no amplitude amplification taking place, and the circuit

will return the same uniform superposition that was given as

an input.

Since the presence of Boolean functions imposes structure on

this search problem, the actual complexity of the search will

depend on the specific network in question. For example, if the

network includes inputs, meaning components that are them-

selves unregulated or regulated only by themselves, then the

state of these components necessarily remains fixed once set.

To account for this, the initial search state can be set to any arbi-

trary distribution, e.g., having input components set to j0D or j1D
instead of using a superposition via a Hadamard gate.40 This

will change the structure of the search space and can be used

to include prior available knowledge about predecessor states.

If the number of solutionsM is unknown, a quadratic speedup

can still be achieved by applying a generalized version of

Grover’s algorithm, which adaptively increases the number of

Grover iterations.39
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Estimating the number of predecessor states using
quantum counting

Quantum counting34 is an algorithm that relies on amplitude

amplification to estimate the number of solutions M.

It uses a version of the Grover operator in combination with

an additional register of r control qubits serving as readouts.

Any measured outcome of this register corresponds to a partic-

ular integer value for the estimation of M. Figure 3 shows the

results of a quantum counting circuit being measured 1,000

times each for different sizes r of the readout register. The cir-

cuit itself as well as the calculation of M from the measured

outcomes is shown in section 7 of the supplemental informa-

tion. Referring to the STG of the cortical area development

network shown in Figure 2A, this allowed for the identification

of the basin size of M=N = 4=32 for the 01101 single state at-

tractor by using a circuit to perform Tinv = 2 inverted state tran-

sitions as part of the Grover operator. Likewise, the two imme-

diate Tinv = 1 predecessors of this attractor could be identified.

Since the marked state was a single state attractor, a counting

circuit for Tinv steps will also include all solutions for

f1;.;Tinv � 1g steps.

To quantify the growth in the number of predecessors in

biological networks, we investigated a set of 28 published net-

works (these are listed in section 8 of the supplemental infor-

mation). For each network, the full transition table for all 2n

states was generated to calculate the ratio M=N starting from

any attractor state. For a single inverted transition Tinv = 1, a

median value of M=N = 0:003 (IQR = 0.023) was found across

all attractors of all networks. Moreover, there was a Pearson

correlation of �0.714 between the average M=N for immediate

predecessors in a given network and network size. This



Figure 4. Comparison of measurement distributions of a noiseless simulator with a noisy mock backend and two real quantum process-
ing units

Barplot showing the probabilities of measuring any given state after a single quantum state transition starting from a uniform superposition in the mammalian

cortical area development network. Shown are a noiseless simulator, a noisy simulator emulating properties of the IBMQ Toronto processor, a trapped ion-based

processor from IonQ, and the real superconductor-based IBMQ Toronto processor.
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indicates that larger networks may fall into the regime of small

M=N values in which the advantages of quantum search algo-

rithms are most notable over classical approaches.
Impact of noise on a simulator and a real quantum
processing unit
Real quantum computers are exposed to various kinds of noise.

These include decoherence and thermal relaxation as well as

gate and measurement errors.

Furthermore, to adapt to a specific processor, a quantum cir-

cuit has to be transpiled. That is, the sequence of quantum oper-

ations defined by the algorithm needs to be translated into a

sequence of quantum gates that are natively available on the

hardware. In particular, it is often not possible to implement

2-qubit gates on any arbitrary pair of qubits. The set of all

possible connections in a system is specified by an undirected

graph, called its coupling map. To apply 2-qubit gates on a

pair of qubits that are not directly connected, it is necessary to

swap connected qubits until the two target qubits are con-

nected. This increases the circuit’s depth.

To evaluate whether current quantum computers are suitable

substitutions for classical BN analysis, we measured how the

setup is influenced by noise and error rates in current state-of-

the-art quantum processing units. We performed a single state

transition starting from a uniform superposition as shown in the

circuit of Figure 1F on a noiseless as well as a noisy simulator.

For this, we chose the ‘‘FakeToronto’’ mock backend offered

by Qiskit. This backend mimics the constraints of the real

27-qubit Falcon r4 IBMQ Toronto processor.

The coupling map of this processor contains a total of 28 con-

nections, leading to a connectivity of 28
ð1=2Þ,27,26 = 7.98%.

Experiments were also run on the real IBMQ Toronto proces-

sor, adding schemes for dynamical decoupling41 as well as
readout error mitigation.42 In addition, we transpiled the same

transition circuit to fit the set of gates available on the 11-qubit

trapped ion processor of IonQ43 and ran experiments on this de-

vice using Amazon Braket’s cloud service. This system has a

completely connected coupling map.

The maximal number of gates that must be executed in

sequence inside a circuit is the circuit’s depth. Transpilation to

the IBMQ Toronto backend resulted in a circuit with a depth of

261. In contrast, transpilation for the IonQ processor yielded a

circuit depth of 140.

Figure 4 shows the distributions of measured states for these

experiments.

Aclassical simulationshows thatafter this singlestate transition,

7 of 32 states should remain as possible measurements, the most

probable one being the state 00000 with a weight of 43.75%.

In all four cases, a total of 1,000 measurements were

performed.

The similarity of theprobability distributions inFigure 4wasquan-

tifiedusinganormalizedfidelitymeasure FnormedðPideal; PoutputÞbe-
tween an ideal probability distribution and the actual obtained

output44asdescribed inEquation5 in theexperimentalprocedures.

Taking the noiseless simulator to yield the ideal distribution,

the resulting fidelities are listed in Table 1.

Notably, the real IBMQ Toronto processor achieved a worse

fidelity with respect to the distribution of the noiseless simulator

than its mock backend equivalent. A potential cause for this was

pointed out in a recent benchmarking study by Lubinski et al.44

The authors state that due to the various and complex sources

of errors, qubit-specific metrics (i.e., measures such as decoher-

ence times or gate error rates as used by the noise model of the

mock backend) are not sufficiently predictive for performance.

Another potential cause of this drop in performance relative to

the mock backend may be the time that has passed since the

last calibration of the device.
Patterns 4, 100705, March 10, 2023 7



Table 1. Normalized Hellinger fidelities

IonQ

IBMQ Toronto

(mitigated)

IBMQ Toronto

(unmitigated)

Fake

Toronto

0.405 0.196 0.114 0.250

Results comparing a noiseless simulator (ideal) with a noisy simulator as

well as with two real quantum processing units (output) for a single tran-

sition in the cortical area development network.18
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DISCUSSION

In this study, we have explored possible ways to extend the

simulation of biological BNs to quantum computers. Molecular

biologymay benefit from quantumBNs for the following reasons.

First, the growth of dynamic state spaces is matched by the

growth of the corresponding quantum systems’ Hilbert space.

The exponential speed at which the state spaces of BNs grow

poses a challenge to their exhaustive simulation using classical

processors. However, the dimension of the Hilbert space of a

multi-qubit system likewise grows exponentially. Thus, quantum

processors may be a more suitable hardware for exploring high-

dimensional spaces requiring a linear increase in the number of

qubits, although in general it may be necessary to perform an

exponential number of measurements to achieve the desired

information.

Second, we have an extension of the classical binary by intro-

ducing superposition states that can be both 0 and 1. While the

resulting outcomes themselves remain binary once measured,

their amplitudes in the superposition can take on continuous

values. The modeler may tune these to modify the expression

of nodes of interest based on prior knowledge or for hypothesis

testing. This tuning results in an alteration of the probabilities of

the attractor landscape. Thus, we can retain the simplicity of

Boolean logic without integrating kinetic parameters. For

example, components representing processes like cell death,

e.g., in a cancer network, may be biased to 0 in an initial state.

This does not perturb the network, but leads to the exploration

of a particular subspace, where any cell death is a consequence

of dynamic state transitions. Thus, specific interactions can

effectively be assigned more or less importance in a manner

that is naturally implemented on quantum hardware. The biasing

of initial states may further be applied in the case of networks

that had their rules inferred from expression data.9,10,12 In this

case, the expression counts could be rescaled toward the (0,1)

interval and used to obtain a more realistic weighting of basins.

Third, perturbations with superposition states of P compo-

nents can return the union set of attractors resulting from 2P clas-

sical simulations, allowing for a simpler and more direct

screening of phenotypes due to the potential overlap of resulting

attractors between perturbations.

Furthermore, we might exploit a complexity advantage due to

quantum algorithms. By reformulating the dynamics of a BN as a

search problem, one can use quantum subroutines such as the

amplitude amplification in Grover’s algorithm. This may provide

advantages relative to classical approaches, especially when

the ratio of solutions to the size of the state spaceM= N is small.

We have shown indications that this ratio may decrease in the

search for immediate predecessors of an attractor as network

size increases.Moreover, recent research has yielded alternative
8 Patterns 4, 100705, March 10, 2023
schemes for the quantum algorithms used,45,46 which may

further decrease the depth of the resulting circuits.

Last, there is the possibility of the inversion of dynamics. The

combination of superposition states and the reversibility of quan-

tum circuits allows the implementation of quantum algorithms

that can backtrace the STG. This is challenging to analyze on

classical hardware since it does not inherently possess the

reversibility property that is characteristic of quantum circuits.

Biologically, this can identify the number and kind of initial states

that lead to a given outcome. For example, suppose the final at-

tractor shows a pathological activation pattern of some compo-

nent. In that case, one can use these inverted transitions to trace

back to where this activation first occurred and to ultimately

reconstruct related molecular mechanisms. Attractor states

correspond to the long-term behavior of a biological system,

while states far away from them are more transient. Thus, the

inversion of the direction of dynamicsmade possible by quantum

algorithms can be applied tomore efficiently explore the immedi-

ate surroundings of an attractor and search for patterns in these

states. It might also be possible to use a similar circuit to identify

predecessors of any state where a particular component is on or

off, which would not require previous knowledge of attractors.

Regarding the choice of hardware, many different implemen-

tations for quantum processors are currently being investigated.

A recent benchmarking study by Lubinski et al.44 gives an over-

view comparing various state-of-the-art processors.

While there is no hardware that can be considered clearly su-

perior among these technologies, certain approaches have

shown advantages over others in specific areas. For example,

it has been demonstrated that trapped ions have the potential

to achieve coherence times much longer than those in

competing systems.47 Furthermore, in principle, any component

in a BN can be regulated by any other. Therefore, a complete

coupling map is a highly desirable property for the implementa-

tion of QBNs. Moreover, an upcoming next-generation system

by IonQ claims an order of magnitude reduction in gate errors

relative to the one used in this work.48

Finally, on future quantum hardware one may be able to use

quantum error correction, which allows one to reduce or even

fully remove the effects of noise on the qubits by encoding a

logical qubit in multiple physical qubits.49

It may be possible to further optimize the construction of the

state transition circuits for the case of more extensive networks,

whichmay includemore complex Boolean functionswith a larger

number of regulating components. Here, it may be helpful to add

ancillary helper qubits to store the results of subfunctions that

occur across multiple rules, leading to broader but shorter cir-

cuits. For a general procedure for robust quantum computing,

Rieffel and Polak50 outlined how a circuit can be made more

robust even at the cost of increased size.

One may further improve the algorithms used in this work for

future research. For example, modified algorithms such as

fixed-point amplitude amplification51,52 allow for target states

to be reached exactly, reducing the number of measurements

required to obtain the entire solution set. Furthermore, it is to

be noted that amplitude amplification is a subroutine that can

yield quantum speedup for problems other than unstructured

search. One particular problem where this is the case is Boolean

satisfiability (SAT), as a quantum algorithm could further improve
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the complexity of Schöning’s algorithm.53,54 While classical heu-

ristics are currently still more scalable than quantum search, it is

thus possible that these heuristics may themselves benefit from

a quantum implementation. Regarding BNs, this is especially

interesting concerning the SAT-based attractor search algorithm

of Dubrova and Teslenko32 used in BoolNet.35

Other methods generating Boolean dynamics based on quan-

tum measurements such as those of Qi et al.28,29 may also be

applicable in a biological context. For example, one may run a

reconstruction algorithm on the time series resulting from the

jumps between states along a Markov chain12 to derive sets of

Boolean functions fitting these dynamics. Alternatively, interaction

graphs from databases such as STRING-DB55 might be given as

input to obtain the matrix of probabilities describing the Markov

chain. Then, a second run on amodified graph inwhich key edges

havebeen removedorputative interactionsaddedyieldsa second

matrix. One could then compare these matrices regarding the

probabilities for states to jump intoadesiredattractororsubspace.

To conclude, we have shown that the analysis of biologically

motivated BNs could be a suitable application for the growing

possibilities offered by quantum computing. The proposed

QBN approach is able to capture the behavior of classical BNs

with synchronous or asynchronous update schemes while offer-

ing further possibilities through the use of quantum algorithms.

While Moore’s law is reaching its end due to the limits of mini-

aturization,56 the number of qubits in IBM’s quantum processing

units (QPUs) has increased exponentially in recent years. Starting

with 5 qubits in 2016, currently available systems have reached

127 qubits. So far, everymilestone in the IBMdevelopment road-

map has been achieved, and future releases are planned for de-

vices including up to 4,158 qubits in 2025.

Given existing processors, the immediate predecessors of at-

tractors may be analyzed for networks up to n = 63, requiring

2n+ 1 qubits. The entire basin may be amplified up to n = 11

assuming a transient time equal to n.36

However, such circuits will require active error correction to

yield useful results. A well-known approach able to correct sin-

gle-qubit errors is Shor’s 9-qubit encoding.57 This would reduce

the possible analyses down to n = 7 for immediate predecessors

and n = 3 for full basins.

On a future 4,158-qubit processor, the same circuits could be

implemented for n = 2;078 and n = 230 in uncorrected circuits

and n = 64 and n = 21 for a 9-qubit encoding. Again, this high-

lights the trade-off between using additional qubits to analyze

longer trajectories and implementing necessary error correction.

In addition to more sophisticated error mitigation and active

correction, a reduction of multi-qubit cross talk errors will be

required to analyze networks of these sizes given the large num-

ber of entangled qubits.
EXPERIMENTAL PROCEDURES
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The lead contact for this work is Hans A. Kestler (hans.kestler@uni-ulm.de).

Materials availability

There are no physical materials associated with this study.

Data and code availability

The code for performing the analyses shown in this work is available at https://

github.com/sysbio-bioinf/QuantumBooleanNetworks (https://doi.org/10.528
1/zenodo.7560006). This includes transpilation and simulation seeds in all

scripts for generating the resulting visualizations. The general structure of

the circuits is also given in the supplemental information.

Method details

Simulationswere performed usingQiskit v.0.36.258 and Python v.3.9. All states

are denoted in the 0-indexed little-endian format used by Qiskit. For example,

the 3-qubit state given by jq0D = j1D; jq1D = j0D; jq2D = j0D is written as j001D.
Generation of circuits

Boolean functions are parsed into circuits using the ClassicalFunction

compiler available in Qiskit. The Boolean rule of each component is synthe-

sized into a separate circuit with n inputs and 1 output. These circuits are

then composed to yield a circuit that updates all components either synchro-

nously or asynchronously.

Network selection

The networks used for the calculation of the ratioM=N after a given number of

inverted state transitions were extracted from https://cellcollective.org/59 as

well as from PubMed by using the search term ‘‘Boolean network model’’ (sta-

tus 24.05.2017).

For the calculation of the reduction speed in possible measurement states

after some number of transitions, we analyzed the transition tables of the net-

works using the BoolNet R-package.35 Since exhaustive attractor searches

are limited to at most n = 29 components in this package, only networks

that did not exceed this limit were analyzed.

We further excluded networks for which analyses of the full transition table

could not be conducted in under 24 h of computation time.

Networks were also not considered if their dynamics could be reduced to a

set of input components. Last, the PoweRlaw R-package60 was used to check

for scale-free degree distributions, retaining networks with p values above a

threshold of p = 0.1 as described by Clauset et al.61

In total, this set of networks has an average of 15:5±5:4 components, with

an average of 38:6± 17:1 interactions.

Section 8 of the supplemental information lists further details regarding

these networks.

Quantification of noise

Repeatedmeasurements of quantumcircuits will yield discrete probability distri-

butions over all 2n possible states of aQBN. The similarity between two suchdis-

tributions, I andO, e.g., one from an ideal noiseless simulator and one as output

from a noisy quantum processing unit, is quantified using the fidelity FsðI;OÞ:

FsðI;OÞ =

 X
s˛S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pIðsÞpOðsÞ

p !2

; (Equation 4)

as given in the benchmarking study of Lubinski et al.,44 with S denoting the set

of all possible states.

This measure is then normalized to FnormedðI;OÞ as defined by Lubinski

et al.44 so that comparisons to a uniform probability distribution U over the

set of states S will be mapped to a value of 0:

FnormedðI;OÞ =
FsðI;OÞ � FsðI;UÞ

1 � FsðI;UÞ
: (Equation 5)

For simulations inwhich a number ofmeasurementsm have been performed

to obtain a probability p of a given outcome such as an attractor state, the error

is calculated as:

ε =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p,ð1 � pÞ

m

r
: (Equation 6)

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2023.100705.
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