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Abstract

Frustration is an emotion that occurs when goal-directed behavior is hindered.
This frequently happens in transportation, for example in driving. Problematically,
frustration can lead to risky driving behavior when a human driver is in charge
of the vehicle. Furthermore, frustration may hinder the acceptance of innovative
automated vehicles. The option to automatically recognize negative emotions,
such as frustration, of vehicle users with so-called affect-aware systems has gained
increasing attention within the last few years. These systems enable to adapt
vehicle functions, such as the human-machine interface, in real-time depending
on the current traveler state and corresponding needs. However, the automated
recognition of emotion requires high-quality data sets to train algorithms on. These
are insufficiently present in the affective computing community so far. Furthermore,
a wide variety of measures for affect recognition exist, but methods to compare
different modalities for measures of frustration are lacking. Previous research found
that emotional expressions in the face and body form promising indicators for
user frustration. Previous studies have investigated expressions of frustration in
the context of driving and mobility but have neglected interindividual differences.
Furthermore, knowledge of possible causes of frustration is needed to successfully
mitigate frustration, which are yet unknown. To properly design frustration-aware
systems and to develop methods to capture frustration, it is, therefore, necessary to
1) provide a training dataset, 2) find a method to compare different modalities of
frustration recognition, 3) improve recognition of frustration by facial expressions
and 4) investigate causes of frustration in driving. This dissertation did so and
thereby enabled a more reliable recognition of frustration in driving. This could
make manual driving safer and contribute to the development of affect-aware
systems, which also have the potential to facilitate the acceptance of automated
driving systems. In total, this dissertation presents three studies published in
four papers. Paper 1 of this dissertation presents high-quality and continuously
frustration-labeled expression data that we provide for the research community.
It contains a thorough description of the data and a benchmark algorithm that
automatically recognizes frustration in video data. Paper 2 found that in addition to
previously described frustration-typical expressions, individual-typical expressions
of frustration exist. Paper 3 presents a latent variable model that can evaluate which
measurements for frustration are necessary. Finally, paper 4 investigated causes
and coping strategies for frustration in driving through a diary study and a focus
group study. The overall goal of this dissertation is to contribute to the underlying
research necessary to develop frustration-aware assistance systems. Based on the
findings of the three studies, this dissertation helps to expand our knowledge of



how to measure in-vehicle frustration. The discussion highlights this dissertation’s
contributions for such a development, but also points out limitations of the current
studies. Ethical aspects of automated emotion recognition are discussed.
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Zusammenfassung

Frustration ist eine Emotion, die auftritt, wenn ein zielgerichtetes Verhalten behindert wird.
Dies geschieht häufig im Verkehr, zum Beispiel beim Autofahren. Problematisch ist, dass
Frustration zu riskantem Fahrverhalten führen kann, wenn ein menschlicher Fahrer das Fahrzeug
lenkt. Außerdem kann Frustration die Akzeptanz innovativer automatisierter Fahrzeuge
behindern. Die Möglichkeit, negative Emotionen, wie z.B. Frustration, von Fahrzeugnutzern
mit sogenannten affektbewussten Systemen automatisch zu erkennen, hat in den letzten Jahren
zunehmend an Aufmerksamkeit gewonnen. Diese Systeme ermöglichen es, Fahrzeugfunktionen,
wie z.B. die Mensch-Maschine-Schnittstelle, in Echtzeit an den aktuellen Zustand des Fahrers
und die entsprechenden Bedürfnisse anzupassen. Die automatische Erkennung von Emotionen
erfordert jedoch qualitativ hochwertige Datensätze, auf denen Algorithmen trainiert werden
können. Diese sind in der Affective-Computing-Community bisher nur unzureichend vorhanden.
Darüber hinaus gibt es eine Vielzahl von Messungen für die Erkennung von Emotionen,
aber es fehlt an Methoden zum Vergleich verschiedener Modalitäten für die Messung von
Frustration. Vorherige Forschungen haben ergeben, dass emotionale Ausdrücke im Gesicht
und im Körper vielversprechende Indikatoren für die Frustration von Benutzern sind. Frühere
Studien haben Frustrationsausdrücke im Zusammenhang mit dem Autofahren und der
Mobilität untersucht, dabei aber interindividuelle Unterschiede vernachlässigt. Darüber
hinaus sind Kenntnisse über mögliche Frustrationsursachen erforderlich, um Frustration
erfolgreich zu mindern, die bisher noch unbekannt sind. Um frustrationsbewusste Systeme zu
entwerfen und Methoden zur Erfassung von Frustration zu entwickeln, ist es daher notwendig,
1) einen Trainingsdatensatz bereitzustellen, 2) eine Methode zu finden, um verschiedene
Modalitäten der Frustrationserkennung zu vergleichen, 3) die Erkennung von Frustration
durch Gesichtsausdrücke zu verbessern und 4) die Ursachen von Frustration beim Fahren zu
untersuchen. Diese Dissertation hat dies getan und damit eine zuverlässigere Erkennung von
Frustration beim Autofahren ermöglicht. Dies könnte das manuelle Fahren sicherer machen
und zur Entwicklung von affektbewussten Systemen beitragen, die auch das Potenzial haben,
die Akzeptanz von automatisierten Fahrsystemen zu erleichtern.

Insgesamt werden in dieser Dissertation drei Studien vorgestellt, die in vier Beiträgen
veröffentlicht wurden. Paper 1 dieser Dissertation präsentiert qualitativ hochwertige und
kontinuierlich mit Frustrationsmarkern versehene Expressionsdaten, die wir der Forschungsge-
meinschaft zur Verfügung stellen. Er enthält eine ausführliche Beschreibung der Daten und
einen Benchmark-Algorithmus, der automatisch Frustration in Videodaten erkennt. In Beitrag
2 wurde festgestellt, dass es neben den zuvor beschriebenen frustrationstypischen Ausdrücken
auch individualtypische Ausdrücke von Frustration gibt. In Beitrag 3 wird ein latentes Variablen-
modell vorgestellt, mit dem bewertet werden kann, welche Messungen für Frustration notwendig



sind. In Beitrag 4 schließlich wurden Ursachen und Bewältigungsstrategien für Frustration
beim Autofahren anhand einer Tagebuchstudie und einer Fokusgruppenstudie untersucht.
Das übergeordnete Ziel dieser Dissertation ist es, einen Beitrag zur Grundlagenforschung zu
leisten, die für die Entwicklung frustrationsbewusster Assistenzsysteme notwendig ist. Auf der
Grundlage der Ergebnisse der drei Studien trägt diese Dissertation dazu bei, unser Wissen
über die Messung von Frustration im Fahrzeug zu erweitern. In der Diskussion werden die
Beiträge dieser Dissertation für eine solche Entwicklung hervorgehoben, aber auch die Grenzen
der aktuellen Studien aufgezeigt. Ethische Aspekte der automatischen Emotionserkennung
werden diskutiert.
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1
Introduction

1.1 Frustration in Transportation

Frustration occurs when goal-directed behavior is blocked (Lazarus, 1991). Mehrabian and
Russell (1974) proposed to describe emotions in a space of the dimensions of valence, arousal
and dominance. The third dimension, dominance, helps to distinguish between emotions like
anger and fear, which are both associated with high arousal and a negative valence. Fear, on the
contrary, is accompanied by a feeling of withdrawal (low dominance) and anger is accompanied
by a feeling of approach (high dominance) (Demaree et al., 2005). Frustration is defined
by negative valence, high arousal, and low dominance (Reuderink, Mühl, and Poel, 2013).
Persistent frustration leads to the experience of anger and aggressive behavior (Berkowitz,
1989; Myounghoon Jeon, 2015; Shinar, 1998), causes experienced stress (Myounghoon Jeon
and Zhang, 2013), and negatively influences the acceptance of human-machine systems (Picard
and Klein, 2002).

In driving, negative emotions, such as frustration, negatively affect cognitive skills required
for the driving task (Myounghoon Jeon, 2015; Lee, 2010). They have been shown to impact
driver performance as measured by lane excursions and lateral control of the car (G. M.
Hancock, P. A. Hancock, and Janelle, 2012). Mesken et al. (2007) have found that participants
who report being angry are more likely to exceed the speed limit than participants who did
not. Myounghoon Jeon (2016) finds that participants who experience negatively valenced
emotions like anger or sadness make more driving errors than in a neutral valenced drive.
Generally, anger has been shown to be related to aggressive driving (Nesbit, J. C. Conger,
and A. J. Conger, 2007; Precht, Keinath, and Krems, 2017)). Frustration is thought to be a
precursor-emotion for anger (Berkowitz, 1989). It is, therefore, a suitable emotion to mitigate
in order to prevent anger in-time. Many potential sources of frustration exist in modern
transportation, where most participants need to reach their destinations as quickly as possible.
These frustrators include, for example, traffic jams on the highway caused by congestion,
accidents, or construction sites; red traffic lights during urban rush hour; or slow tractors
driving ahead on rural roads. These numerous triggers of frustration and the link between

1



1. Introduction

frustration and aggressive behavior (Berkowitz, 1989), such as speeding or risky overtaking
maneuvers, suggest that frustration contributes to the number of aggression-related accidents,
some of which are fatal. Furthermore, it is speculated that people often compensate poorly for
the momentary impairments of cognitive functions caused by negative emotions, as they are
unaware of the corresponding effects, which is in contrast to impairments caused by distractions
(e.g., mobile phone) (Myounghoon Jeon, 2012). In conclusion, frustration is a negative emotion
that has been linked to various negative effects in driving.

These harmful impacts of frustration on driving and traffic are expected to be remedied
by the development of automated cars, which is designed to optimize traffic flow in general.
SAE defines six levels of automated driving, in which the human’s role as traveler changes
from driver to passenger. In levels zero to two, the human driver is fully responsible for the
car’s behavior. This changes from level three onward, where the automated driving system is
responsible for the driving task while the ‘automated driving features are engaged’1. The fact
that humans no longer have to steer themselves in automated traffic means that, firstly, they
can no longer exhibit aggressive driving patterns. This is because the automated vehicle will
relieve the driver from unpleasant tasks and, moreover, will only give back control if the driver
is ready to drive (Braunagel, Rosenstiel, and Kasneci, 2017). Secondly, they can use their time
in the car sensibly so that the loss of time due to blocking traffic is no longer so significant.
Steck et al. (2018) showed that the value of travel time savings can be reduced by 31% by
automated driving vehicles. They also showed that automated driving is perceived 10% less
negative than manual driving (Steck et al., 2018). However, the road to fully autonomous
driving still seems a long way off, so the promise of perfectly functioning, "frustration-free"
traffic will still be several years to decades away. Thus, humans will still have to take the wheel
and be needed as (part-time) drivers in certain situations. Additionally, because autonomous
vehicles are highly technical systems that are difficult for the common user to understand,
it is difficult for engineers and designers to create them in an understandable way. As a
result, when interacting with autonomous vehicles, especially the first generation, users will
probably become frustrated often. In these cases, frustration can translate into a negative
user experience (cf. (Picard and Klein, 2002), which can negatively affect the evaluation and
acceptance of automated vehicles. Traveler’s acceptance is highly relevant in transportation,
especially for a shift towards innovative and sustainable mobility solutions.

In summary, frustration experienced during driving negatively impacts the overall safety of
driving, as well as the user experience and thus acceptance of automated vehicles. Reducing
frustration is, therefore, highly desirable. Frustration-inducing factors come in many forms,
differ from person to person (Ceaparu, 2004), are not always predictable and therefore cannot
be avoided by design. Because of this, an increasing amount of literature has been written
in recent years about how to recognize frustration. For example, Zepf, Dittrich, et al. (2019)
presented a support vector machine that recognizes moments of frustration in driving. In a
next step, they used this classification to initiate frustration mitigation by either ambient light
or a driving assistant (Zepf, Dittrich, et al., 2019). They found a trend for a more positive
user experience when the frustration detection was active and triggered the voice assistant,
than when it was triggered at random. In conclusion, frustration is highly relevant in manual

1https://www.sae.org/news/2021/06/sae-revises-levels-of-driving-automation

2



1.1 Frustration in Transportation

and automated driving research. Its reduction is of interest to make manual driving safer and
future mobility concepts like automated driving attractive to use. One option to achieve this
could be the development of frustration-aware assistance systems, which can recognize and
mitigate frustration in real-time.

1.1.1 Frustration-Aware Assistance Systems

One idea to reduce frustration in cars is to design emotion- or, more specifically, frustration-
aware assistance systems (Bruce, 1993; Harris and Nass, 2011; Krüger et al., 2021; McDuff
and Czerwinski, 2018; Oehl et al., 2019; Picard and Klein, 2002; Stephan, 2015) that can
detect a traveler’s current level of frustration, derive the traveler’s current needs and offer
specific assistance. Driver assistance systems in general are defined as technological systems
that assist the human driver (Kukkala et al., 2018). Examples already implemented nowadays
are lane keep assistant or the parking assistant. Already Bruce (1993) suggested to develop
systems that could help robots to understand human faces and their expressions to improve
communication. Klein, Moon, and Picard (1999) were the first to propose a computer that
reacts to a user’s frustration through a text display. Their results showed that frustration
levels as measured by subsequent game interaction time are significantly lower in the condition
with the affective text display compared to the control conditions.

After detection of frustration, the frustration-aware assistance system aims at either
reducing the traveler’s level of frustration and bringing him or her to a different target state
(e.g. relaxation, pleasure, or high attention) or mitigating the negative consequences of
frustration by providing support. Braun, Pfleging, and Alt (2018) have shown that drivers
would like to use a system to help them mitigate negative emotions. The following user story
gives an exemplary interaction between a human and a frustration-aware assistance system
(see Figure 1.1).

Peter is on his way to a work appointment with external project partners. He just picked
up the rental car and starts driving towards the highway. He starts the car’s navigation system
to put in the address. Instead, the radio starts playing very loudly. He quickly turns down the
volume and tries to find the button to change from radio to navigation system. After a few
tries of different buttons, he finally sees a map, but it shows an entirely wrong destination.
He also cannot find the usual input bar for the address. Outside, the entry to the highway’s
different directions is getting closer and closer, and Peter starts to become very frustrated and
hectic. . . Suddenly, a friendly voice asks Peter: ‘hey, I can see you are trying to enter an
address. You can either just tell me where you want to go or use the drop-sign in the lower
right corner to type it in.’ Peter is surprised but answers with the address he’d like to go to.
The navigation system shows on which highway to turn just in time, and Peter can relaxedly
continue his journey.

An interaction between a traveler in a context and a frustration-aware assistance system is
necessary for such a system. Figure 1.2 shows an overview of how such a system would work. The
traveler has long-term attributes such as age and gender and short-term attributes like changes
in physiology or expressions. The traveler exists in a time- and location-dependent context
but is also influenced by upcoming appointments in the calendar, the use of technical artifacts
like a cell phone or navigation system, or surrounding traffic. The traveler’s attributes can be

3



1. Introduction

Peter is on his way, when suddenly …

But it is to the wrong destination

Next, the Navigation shows a path

Berliner Straße 33 
in Braunschweig

Okay! We‘re
going to Berliner 

Straße 33 in 
Braunschweig

Thank you!

Where do 
you want

to go?

Figure 1.1: User story of Peter, trying to interact with his rental car.

captured by a camera, Electrocardiogram (ECG), skin conductance, or Electroencephalogram
(EEG). Smartphone data (in the case of the calendar), Global Positioning System (GPS) data
(e.g. traffic and weather), and camera data (for the use of technical artifacts) can capture the
context’s attributes. The system can use captured traveler attributes to recognize changes
typical for frustration. Concomitantly, the captured context attributes can be utilized to detect
situations that typically cause frustration. By this, a decision rule that combines the input from
the traveler and context frustration detection can recognize moments of traveler frustration.
A mitigation strategy suitable for the situation can then be initialized and executed. This
process, in turn, leads to a change in context and traveler state.
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Figure 1.2: Overview of how a Frustration-Aware Assistance System would work.
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1. Introduction

1.1.1.1 Context and Traveler

The traveler exists in a context that is, among others, influenced by factors like upcoming
plans, an interaction of the traveler with different technical agents like the car-human interface,
and factors outside the vehicle, like traffic situation or weather. Braun, Pfleging, and Alt (2018)
find that negative emotions are mostly triggered by traffic-related incidents. Positive emotions
mainly occur due to pleasant surroundings, music, ride enjoyment, and personal interaction
(Braun, Pfleging, and Alt, 2018). Generally, the traveler has long-term attributes like age
and gender and short-term attributes connected to the current traveler state. Regarding a
Frustration-Aware Assistance System (FAAS), the traveler state of interest is the emotional
traveler state. According to Scherer and Moors (2019), facial, vocal, and gestural expressions
and physiological processes accompany the emotion process. These user states are important
for the frustration-aware assistance system because sensors placed in the vehicle can measure
them.

1.1.2 Frustration-Aware Assistance System

1.1.2.1 Data Sources and Estimation - Traveler

Data that is captured from the traveler or the context, respectively, are the basis of the
FAAS. Regarding the traveler, sensors assess video data (by a camera), peripheral physiology
data (by ECG and skin conductance measurement), and brain activity data (by EEG or
Functional near-infrared spectroscopy (fNIRS)), for example. From this data, relevant features
are extracted. These can be, for example, action units following Ekman and Friesen (1978) for
facial expressions, heart rate, and skin conductance peaks for peripheral physiology and alpha-
band activity for an EEG measurement. Wearable devices can provide these measurements
(Schmidt et al., 2019). Next, a classifier can categorize these extracted features into ‘no
frustration’ and ‘frustration.’

Based on labeled data, a frustration estimator can classify whether frustration is present.
Previous work aiming to classify frustration used video (Grafsgaard et al., 2013; Hoque and
Picard, 2011; K. Ihme, A. Unni, et al., 2018; K. Ihme, Dömeland, et al., 2018; Malta et al.,
2010; McCuaig, Pearlstein, and Judd, 2010; Sidney et al., 2005), physiological (Belle et al.,
2010), speech (Song, Mallol-Ragolta, et al., 2021) and neurophysiological (Fan et al., 2018;
K. Ihme, A. Unni, et al., 2018) data, also in multimodal settings (Zepf, Hernandez, et al.,
2020). Many of the studies that tried to find relevant indicators for frustration focused on
frustration-typical facial expressions (Grafsgaard et al., 2013; Hoque and Picard, 2011; Kapoor,
Burleson, and Picard, 2007), also in in-car settings (K. Ihme, A. Unni, et al., 2018; K. Ihme,
Dömeland, et al., 2018). These expressions are most often described by the Facial Action
Coding System (Ekman and Friesen, 1978), which describes facial muscle movements based
on the activation of 27 different facial muscle groups. For example, Grafsgaard et al. (2013)
found that Brow Lowerer, Brow Raiser and Dimpler correlate positively with frustration
experienced during learning. Hoque and Picard (2011) found that participants often smiled
when they were frustrated. K. Ihme, A. Unni, et al. (2018) frustrated participants in a driving
simulator setting and describe that participants moved muscles in the mouth region (Chin
Raiser, Lip Pucker, Lip Pressor) significantly more often in the frustrating than non-frustrating
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1.1 Frustration in Transportation

drives. In summary, muscle activations of Brow Lowerer, Dimpler, Brow Raiser, Smile, Chin
Raiser, Lip Pucker and Lip Pressor are often shown in frustration. While not studied for
frustration yet, bodily expressions can also be relevant indicators of emotion (Kleinsmith and
Bianchi-Berthouze, 2012; Noroozi et al., 2018; Wallbott, 1998).

The basis for further improving such a frustration expression classifier is data that includes
objective measurements obtained by sensors, and a subjective rating, which is used as ‘ground
truth’ for subjectively experienced frustration. Song, Z. Yang, et al. (2019) published a video
and audio dataset that recorded students while playing a frustrating game. They performed a
binary classification into frustration and no frustration and achieved a classification accuracy
of 60.3%. Similar to most previous work, their work is based on video data, as its advantage
is its feasibility and non-invasiveness. Li et al. (2021) presented a dataset of drivers’ anger,
happiness, and neutral facial expressions with video stimuli. Ong et al. (2021) published a
multimodal dataset that contained subjectively annotated unscripted life stories. To the best
of our knowledge, no video-based dataset exists so far that

1. contains naturally occurring frustration of

2. a driver

3. that has continuous subjective frustration labels.

Therefore, the first contribution of this dissertation is such a dataset (see Figure 1.2, green
box) with a thorough description of the data. It will be published so that developers of
affect-aware systems, i.e. the affective computing community, can profit from it.

For example, facial expressions represent a low-cost and non-invasive method to assess driver
frustration. To further improve in-vehicle frustration recognition, it is helpful to understand
the occurrence of non-coincidental variance in frustration expression. Facial expressions are
considered an individual trait that differs across the user’s culture (Ekman, Friesen, et al.,
1987) or gender (Chaplin, 2015). Wilms, Lanwehr, and Kastenmüller (2021) describe that an
individual effect and a situation effect determine a construct’s realization. In their research,
they find that the individual effect and the situation effect account almost equally for variance
found in emotion regulation. Cohn et al. (2002) conducted two studies that showed that it is
possible to recognize individuals solely based on their facial expressions in response to emotional
stimuli. This recognition worked in two different contexts and over long-time intervals (12 and
4 months, respectively). One context was that participants watched a film alone, and the other
was a clinical interview. Gross (2008) describes that individuals differ in levels of emotion
experience, behavioral responses, physiological responses, and subsequent emotion regulation.
Differences on all these levels can lead to differences between individuals in expressing emotion.
Barr, Kahn, and Schneider (2008) developed a taxonomy of individual differences in the
expression of emotions and found two higher-order factors, emotional constraint, and emotional
expression. Accordingly, . Sangineto et al. (2014) built a personalized classifier to account for
individual differences in the expression of emotion. However, they take a black box approach,
not considering the nature of differences between individuals. Also, the data contains videos
in which the difference between individuals is not only the person but also the situation
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1. Introduction

in which the person is, as situations differ per individuum. It is, therefore, impossible to
differentiate between variance caused by individual or by situational differences. Kosch et al.
(2020) investigated if detecting facial expressions via computer vision is feasible for mobile
in-the-wild studies. They find that a re-calibration of the individual facial expressions on a
per-user basis increases the correctness of emotions detected through facial expressions by
33%.

It is established that relevant individual differences in the expression of emotion exist, but
the precise nature of differences has not yet been researched for frustration or in-vehicle.
This information could relevantly improve in-vehicle recognition of frustration. Therefore,
I argue that a descriptive approach that aims to study individual explanation of variance
in the expression of frustration is essential for building generalizable FAAS. Here, I see
the second contribution of this dissertation (see Figure 1.2, blue box).

Another possible source for assessing frustration is neurophysiological data (Fan et al.,
2018; K. Ihme, A. Unni, et al., 2018; Reuderink, Mühl, and Poel, 2013). This data may be
used in the future by unintrusive EEG systems that can, for example, be built-in into glasses.
A frequently used method for inferring frustration from EEG is the calculation of the frontal
Alpha Asymmetry Index (AAI) (Smith et al., 2017). The AAI is based on the difference in
the activation measured at frontal electrodes, most commonly F3 and F4, thereby comparing
activity over the left and right hemispheres of the brain (Smith et al., 2017). Numerous studies
have used the AAI as an indicator for emotion-related state and trait measures, analyzing
mood inductions, alterations, and dispositional mood (e.g. (Palmiero and Piccardi, 2017;
Smith et al., 2017)). Regarding the recognition of emotion by EEG data, Reuderink, Mühl,
and Poel (2013) and Schuster (2014) describe that relative left frontal alpha band activation
(negative AAI values when AAI = F4 - F3/F3 + F4) characterizes low dominance. Huang
et al. (2012) also showed that negative valence is characterized by relative left frontal alpha
band activation (negative AAI values). According to these results, negative AAI values would
characterize frustration as an emotion with low valence and low dominance. The AAI is,
therefore, an additional modality that can give information on experienced frustration as
measured by the body’s physiological changes.

The component process model of emotion (Scherer, 2009) states that emotion consists
of an event’s appraisal and a subsequent appropriate expressive and physiological response.
Accordingly, previous studies have measured subjective as well as expressive and physiological
data to learn what patterns look like for various subjectively rated emotions. However, as
both the subjective appraisal and the expressive and physiological response are part of the
emotion, it is more accurate to estimate the actually experienced emotion in a model that uses
both subjective, expressive, and physiological data as estimation variables. This estimation
is possible using a latent variable model described in Ben-Akiva et al. (2002). Such latent
variable models have previously been used to combine driving simulator and physiological
data to model how stress changes car-following behavior (Paschalidis, Choudhury, and Hess,
2019) and how a driver’s cognitive effort impacts route choice decisions (Agrawal and Peeta,
2021). A methodological upside that this latent variable model brings is that this ‘complete’
model of emotion (that includes subjective and objective data) enables a comparison between
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1.1 Frustration in Transportation

the complete full model and models that use fewer variables. Therefore, this method can
evaluate which measured variables are needed to get an estimation close to the full model.
This knowledge is crucial for a FAAS, as only a system that achieves a good classification
without the continuous measurement of subjective ground truth data is feasible in an applied
setting.

Such latent variable models have not previously been used to assess a situation’s
frustrativeness based on multimodal data. They offer a great way to estimate experienced
frustration by subjective and objective measures. Therefore, I propose this as a suitable
method for evaluating future measurements of frustration. The development of this
method is the third contribution of this dissertation (see Figure 1.2, blue box).

1.1.2.2 Data Sources and Estimation - Context

Next, the FAAS needs to recognize the cause of the traveler’s frustration. For this, one
needs background knowledge of the range of possible frustrators. The following step needs to
recognize which of the possible frustrators is present. Regarding the recognition of emotions
based on context data, Bethge, Kosch, et al. (2021) used contextual cell phone data like vehicle
speed, weather, road types, and traffic flow to differentiate between ‘anger’,’disgust’,’happiness’,
‘neutral,’ and ‘surprise’ and can improve classification performance up to 38%. Also Malta
et al. (2010) report that their frustration recognition algorithm improves when considering
contextual data. Zepf, Dittrich, et al. (2019) present emotional triggers while driving and find
traffic and driving task, vehicle and equipment, human-computer interface and navigation,
and environment as the main types of emotional triggers. M. Jeon and Walker (2011) find 33
emotion-inducing contexts that can be categorized into driving-irrelevant in-vehicle contexts,
driving relevant in-vehicle contexts, and driving irrelevant out-of-vehicle contexts. Liu et al.
(2021) present a model that uses the vehicle’s front-view camera and Controller Area Network
(CANBUS) data. They can differentiate between six emotions with an accuracy of 71%. Bořil,
Boyraz, and Hansen (2012) recognize stress by speech and CANBUS data, and Karaduman
et al. (2013) differentiate aggression and calmness purely by CANBUS data. In summary, the
first attempts to categorize several context data sources into emotion source categories have
been made.

No studies have researched what common frustrators during driving are. This knowledge
could form an essential indicator on which a FAAS could base successful frustration
mitigation. A first step for recognizing causes of in-vehicle frustration is knowing which
possible causes exist on the road. The answer to this is the fourth contribution of this
dissertation (see Figure 1.2, red box).

1.1.2.3 Mitigation Strategy and Intervention Execution

When the FAAS determines that 1) frustration is present, 2) what the causes of frustration
is, and 3) what the suitable mitigation strategy is, the FAAS can prompt a mitigation
strategy that can, for example, by voice, interact with the traveler. This interaction leads
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to the mitigation of frustration and therefore changes the traveler’s state. This mitigation is
realized by initiating intervention methods, like the presentation of information, via visual or
auditory human-machine interfaces. Previous studies have found these intervention methods
to be effective in increasing user acceptance (Grippenkoven et al., 2018; Herrenkind et al.,
2019; Keller et al., 2019; Millonig and Fröhlich, 2018). For example, Löcken, Ihme, and
Unni (2017) collected several ideas for mitigation strategies for frustration and proposed an
ambient light that changes from white to blue depending on the frustration level. Nass et al.
(2005) frustrated participants and subsequently helped reappraise the situation with a voice
assistant. Positive reappraisal was successful and mitigated frustration and improved driving
performance. A follow-up study found that matching the voice assistant’s tone to the driver’s
state increased driving performance (Harris and Nass, 2011). Braun, Schubert, et al. (2019)
compared ‘Ambient Light,’ ‘Visual Notification,’ ‘Voice Assistant,’ and ‘Empathic Assistant’
in a simulator study with 60 participants, inducing anger and sadness in two different groups.
The intervention method ‘ambient light’ consisted of a LED strip that changed its color to
purple-blue light in the anger group and green-yellow in the sadness group. ‘Visual notification’
showed an angry face when anger was detected and a sad face when sadness was detected.
‘Voice Assistant’ was a voice sample that said, ‘I detect that you are distracted. Would you
like to listen to some radio to concentrate better?’. The Empathic Assistant was similar to the
Voice Assistant but empathized with the participant by saying, ‘Hey, are you alright? I can
understand that you are a bit angry, sometimes I feel the same way. How about some music to
take your mind off things?’. They found that the empathic voice assistant was most effective
in reducing negative emotions. Zepf, Hernandez, et al. (2020) detected drivers’ frustration
through facial expressions and heart rate and mitigated frustration with ambient light and a
voice assistant. Research on mitigation methods is still ongoing, and the path to a natural and
universally working frustration mitigation is still a long way off. However, mitigation is only
possible if frustration was accurately recognized in a first step. Therefore, this dissertation
focuses on contributing to the successful recognition of frustration and finding common causes
of in-vehicle frustration, and does not contribute to investigating different mitigation methods.

1.1.3 Structure of this dissertation

This dissertation presents four original research papers that answer two main research questions.
These research questions are:

1. How can we improve the classification of frustration?

2. What contexts lead to in-vehicle frustration?

Accordingly, the dissertation is structured as follows: After this introduction, Chapter
2 entails the work done on the research question (1) as published by papers 1-3. Paper 1
presents a dataset of 43 participants who experienced frustration in driving-related situations
in a simulator (Bosch, Corbí, et al., 2022). The data set contains a continuous subjective
ground truth label, hand-annotated face and body expressions, facial landmark coordinates,
and demographic data. In addition, a descriptive analysis and description of the data’s
characteristics are provided with a Graph Convolution Network-based model to recognize
frustration. This work is valuable for researchers of the affective computing community because
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it provides realistic and natural data with an in-depth description of its characteristics and
a benchmark model for automated frustration recognition. This is part of the data used for
the analyses conducted in papers 2 and 3. Paper 2 examined the possibility of improving
the recognition of frustration by considering individual differences (Bosch, Kaethner, et al.,
n.d.). For this, I used the driving simulator study data from study 1, and, additionally,
the real car study data from study 2. An analysis of participants’ facial expressions during
frustrating driving situations confirms previously reported expressions of frustration (Brow
Lowerer, Dimpler, Brow Raiser, Smile, and Lip Press). In addition, the results also hint toward
high variance between and low variance within participants for all other expressions, suggesting
the existence of individual-typical expressions of frustration. Hence, future frustration-aware
systems could benefit from considering these individual differences by using a universally trained
algorithm that is customized to each individual. Paper 3 presents a latent variable model
that estimates frustration in two different contexts by continuous subjective frustration rating,
facial expressions, and frontal alpha asymmetry in the EEG (Bosch, Klosterkamp, et al., 2022).
We then compare this full model to models with fewer measurement variables to evaluate which
ones can be left out. Our results show that expression frequency and subjective frustration
contribute to the experienced frustration model. This paper presents a proof of concept for
using a latent variable model to evaluate collected measures to estimate an experienced emotion.
This method can inform researchers which measurements are most informative in different
circumstances. Additionally, the method shows how well purely objective measurements (the
only feasible measurements in most applied settings) perform compared to a model including
subjective ratings. The third chapter presents the paper concerning research question 2. Paper
4 employs a combination of diary study and user focus groups to shed light on the causes of
why humans become frustrated during driving (Bosch, K. Ihme, et al., 2020). In addition, we
asked the participants of the focus groups for their usual coping methods with frustrating
situations. We revealed that the main causes of driving frustration are traffic, in-car reasons,
self-inflicted causes, and weather. Coping strategies drivers use in everyday life include cursing,
distraction by media, and thinking about something else. This knowledge will help design a
frustration-aware system that monitors the driver’s environment according to the spectrum of
frustration causes in the research presented here. Finally, I will discuss the meaning these four
contributions have for developing FAAS in specific and transportation research in general.
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Frustration Recognition Using Spatio Temporal
Data: A Novel Dataset and GCN Model
to Recognize In-Vehicle Frustration

Esther Bosch*, Raquel Le Houcq Corbı́*, Klas Ihme, Stefan Hörmann, Meike Jipp, and David Käthner

Abstract—Frustration is an unpleasant emotion that is highly prevalent in several target applications of affective computing, such as
human-machine interaction, learning, (online) customer interaction and gaming. To redeem this issue, one idea is to recognize
frustration in order to offer help or mitigation in real-time, e.g. by a personal assistant. The recognition of frustration is not limited to
these applied contexts, but can also inform emotion research in general. In this paper, we present a dataset of 43 participants who
experienced frustration in driving-related situations in a simulator. The data set contains a continuous subjective ground truth label,
hand annotated face and body expressions, facial landmark coordinates of both the frontal camera and the camera that was placed
above the tablet, and the participants’ age and sex information. A descriptive analysis and description of the data’s characteristics are
provided together with a Graph Convolution Network based model to recognize frustration. Allowing for a tolerance of 10%, the model
could correctly identify frustration with a similarity of 79.4% and a variance of 7.7%. This work is valuable for researchers of the
affective computing community because it provides realistic and natural data with an in-depth description of its characteristics as well
as a benchmark model for automated frustration recognition. Our FRUST-dataset is publicly available under: tbd.

Index Terms—Frustration Recognition, Naturalistic Dataset, Graph Convolution Network, Affect-Aware Systems.

✦

1 INTRODUCTION

F RUSTRATION is an emotion that occurs when goal
achievement is blocked [1] in a variety of contexts. The

circumplex model of affect characterizes frustration to be of
negative valence, high arousal and low dominance [2] by
Russell [3]. Frustration can lead to diminished motivation
to learn among students [4], dissatisfied customers in inter-
action with human or artificial customer service personnel
[5], diminished player engagement in gaming [6], decreased
performance and mental health of employees [7], and a de-
creased acceptance of (new) technical systems due to failed
user interaction [8], [9]. To counteract negative effects of
frustration, affect-aware systems that recognize frustration
in real-time and react accordingly have been proposed. A
growing body of literature explores how to recognize and
mitigate frustration in various contexts [10].

Traffic is one context in which frustration occurs. Drivers
experience frustration frequently [11] and supposedly even
in automated driving modes [12]. In manual driving, frus-
tration plays a critical role regarding road safety. Aggressive
driving maneuvers [13], [14] and distracted driving [15]
often result from the experience of frustration. Moreover,
unpleasant emotions like frustration diminish cognitive
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skills important for safe driving [15]. As the driving task
shifts from human to machine, the effects of frustration
change from safety- to acceptance-critical. Both during de-
velopment and deployment of automated driving systems,
uncertainty and subsequent frustration of users caused by
system glitches and sub-optimal technical functionality are
to be expected. This could impede the acceptance of auto-
mated vehicles, which are one building block for the change
towards modern, innovative and sustainable mobility so-
lutions. Here, an affect-aware system that offers solutions,
gives information or initiates dialogues could alleviate or
even prevent the occurrence of frustration [16], [17] and thus
aid the formation of acceptance towards automated systems.

The first required step for building frustration-aware
systems is a robust frustration recognition. Previous work
that aimed to recognize frustration has used video [18],
[19], physiological [20], speech [21] and neurophysiologi-
cal [2], [10] data, also in combination [17]. For successful
recognition, it is crucial to train algorithms on high-quality,
realistic data which are barely available as of now. Song et
al. [22] published a video- and audio-dataset that recorded
students while playing a frustrating game. They performed
a binary classification into frustration and no frustration
and achieved a classification accuracy of 60.3%. Like most
previous studies, their work is based on video data because
of its advantage regarding feasibility and non-invasiveness.
Macary et al. [23] published a dataset of continuously
frustration-annotated call-center conversations. Li et al. [24]
present a dataset of driver’s facial expressions that induced
anger and happiness and is annotated after every drive
(see their introduction for an overview of more emotion
expression datasets). The work of Li et al. [25] is similar,
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TABLE 1
Comparison to other publicly available datasets

Dataset Emotions Stimulus Input Data Labels

MGFD [22] Frustration Video game-play Audio& Video Static & discrete frustration levels
AlloSat [23] Frustration Call center recordings Audio Static valence score

DEFE [24]
Neutral, happiness,

anger, valence,
arousal, dominance

Driving Scenarios Video Static & discrete emotion model
Dimensional valence arousal model

PPB-Emo [25]
Anger, sadness,

fear, disgust, neutral,
surprise, happiness

Driving scenarios Video Static & discrete emotion model
Dimensional valence arousal model

FRUST (Ours) Frustration Driving scenarios Video Continuous frustration rating

but induced all six basic emotions. However, to the best of
our knowledge, no public dataset exists so far that fulfill all
of the following criteria: it contains 1) manually annotated
expression and automatically annotated landmark data of
2) naturally occurring frustration and 3) has continuous
subjective frustration labels 4) recorded in a driving setting
(see Table 1). In summary, the main contributions of the
following work are:

• The introduction of a novel and continuously la-
beled dataset containing frustrating driving sce-
narios, called Frustration Recognition Using Spatio
Temporal Data (FRUST).

• A thorough description of our FRUST dataset.
• A discussion of challenges that need to be considered

when working with the specific dataset and subjec-
tively labelled emotion data in general.

• A state-of-the-art Graph Convolutional Network
(GCN) to automatically recognize frustration levels
as benchmark.

Emotion recognition is a complex problem. Therefore, it
is necessary to address it from different perspectives. Previ-
ous work on emotion recognition has attempted to solve this
challenge on the basis of hand-annotated expressions and
classical statistical analysis in the earlier days and evolved
towards automated recognition of expressions and classifi-
cation by machine learning in recent years. Both approaches
have respective advantages by providing different insights
into the underlying data; while classical statistical analysis
gives insight into which expressions are important, machine
learning approaches are more feasible in an automated
setting. For both approaches, it is crucial to work with
data that was acquired in a credible setting and in which
a continuous subjective rating is acquired. We provide a
high-quality dataset that is feasible for both approaches and
thereby opens up a possibility to investigate their relation-
ship. We include a descriptive statistical analysis of hand-
annotated expressions and a machine learning model based
on automated recognized facial landmarks in this work. Our
dataset includes the following variables: 1) a continuous
subjective frustration rating; 2) a questionnaire rating of 24
emotions after each drive; 3) hand-annotated expressions;
and 4) automatically recognized facial landmarks.

2 FRUST DATASET

The collection of this dataset is also described in [26].

Fig. 1. Experimental Setup-Up.

2.1 Data Collection
2.1.1 Participants
Fifty participants were recruited through the institute’s
participant pool. Of these, 7 participants were excluded
from data analyses due to motion sickness (2 cases), faulty
logging (1 case), a condition of facial myoclonus (1 case)
and partly missing frustration rating data (3 cases). Of the
N = 43 participants included in the analyses 13 were female
and 30 male. Participants age ranged from 20 to 59 years
(M = 31.8, SD = 12.2). Participants were informed about
all data recordings, potential risks of driving in simulators
(e.g., the experience of simulator sickness) and the dura-
tion of the experiment. Participants could take a break or
abort their participation at any time. All participants gave
written informed consent to take part in the study. As
reimbursement for their time, the participants received 5 €
per commenced half hour. After the study, the true goal
of the experiment (evoking frustration) was revealed and
the necessity to conceal this goal with a cover story was
explained. The collected data were processed according to
European General Data Protection Regulations.

2.1.2 Experimental Set-Up
The data set was recorded in a 360-degree full-view driving
simulator [27]. The participants sat in a vehicle mock-up and
could use a conventional interface with throttle, brake pedal,
steering wheel, and indicators to drive the mock-up car in
the driving simulation (Virtual Test Drive, Vires Simulation-
stechnologie, Bad Aibling, Germany). On a tablet (Microsoft
Surface Pro 7, 12.3’) mounted to the car’s center console, a
user interface (UI) was shown (required for the frustration
induction, see subsubsection 2.1.3). The setup is shown in
Figure 1. During all drives, one frontal camera and one
mounted above the tablet filmed the participant’s face and
body. In the automated condition, the latter was employed
to record the face of a participant who was oriented towards
the UI. Another camera facing forward, mounted between
the driver and co-driver seats, captured the entire scene.
All three cameras were Axis M1065-L network cameras that
recorded at a resolution of 1280 x 800 pixels.

2.1.3 Stimuli
We collected data in two different driving modes (manual
vs. automated). In the manual driving mode, participants
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were told to assume they were supposed to meet friends at
a movie theater. The driving track consisted of a rural road
in the first half and an urban road in the second half. The
participants were informed that the average travel time to
the movie theater was less than ten minutes. They were told
that if they arrived at their location on time, they would
receive a 2 € prize. The time remaining for punctual arrival
at the movie theater was displayed on a clearly visible clock.
In the baseline condition (’Baseline Manual’), participants
drove five minutes and the setting featured low traffic
density ensuring that participants reached the movie theater
in the allotted time. In the frustration conditions (’Manual
Frustration-inducing condition 1’ and ’Manual Frustration-
inducing condition 2’), a phone call simulated a group of
friends already waiting at the movie theater, reminding the
participant that they had the entry tickets for everyone. Slow
lead vehicles and red lights obstructed the way during the
following drive. Throughout the journey, the clearly visible
clock displayed a time that was 30 seconds shorter than the
time it took to drive the route. Between the two frustration
conditions, we varied the car types and the track that was
driven to disguise the fact that the same driving scenario
was driven twice, with one track taking seven minutes and
the other ten. Frustrating incidents were the same in both
driving scenarios and took the same amount of time. In
earlier investigations, tasks comparable to the ones used
in this study have been demonstrated to successfully elicit
frustration [10], [18].

In the automated driving mode, participants completed
a task (joining an online conference or changing the destina-
tion) on the in-car UI shown on the tablet. Meanwhile, the
car drove fully automated on a highway. The participants
were told that if they completed their work successfully,
they would get a reward of 2 €. Before the start of the
experiment, all participants read the same story in all three
automated drives. They were asked to imagine to drive
to a business meeting in an autonomous car. In each of
the modes, participants experienced one baseline drive and
two frustration-induction drives. In the baseline condition
(’Baseline Automated’) the participants were requested to
browse a web page in the baseline condition, which was
a simple task. They were then instructed to push a single
button that appeared in various locations of the UI. They
were assured not to be under any time constraints and
asked to interact with the UI as relaxed as possible. The
drive took three minutes. In the frustration condition (’Au-
tomated Frustration-inducing condition 1’ and ’Automated
Frustration-inducing condition 2’), the participants received
a scripted call from their ’boss’ in the frustration condition,
telling them that they were urgently required for another,
more important meeting and that they needed to turn
around quickly to be on time. Following that, the partic-
ipants had to adjust the navigation system’s destination.
This was difficult to do in seven minutes due to vague
button names, imprecise iconography, and confusing click-
paths. In the second automation scenario, a ’boss’ called
and urged the participant to join an online meeting with
clients as soon as possible. Again, the UI was so difficult to
comprehend that it was challenging to achieve the purpose
of participating in the online conference. The drive took

seven minutes.

2.1.4 Measures - Subjective Frustration Rating as Manipu-
lation Check
In order to acquire a time-resolved assessment of frustration,
a continuous subjective assessment was collected when a
participant had completed all drives. The participants as-
sessed their frustration using a joystick on a scale of 0 to
100 percent while watching the videos that were recorded
during all drives of the whole scene (the participant’s face
was not visible). When not touched, the joystick could
only go in one direction and immediately returned to zero.
The participants received a visual feedback of their current
rating next to the video. They were instructed to move
the joystick according to their level of frustration in the
circumstances depicted in the video. This allowed for the
collection of a continuous frustration rating for each drive
and each participant.

After each drive, an emotion questionnaire was com-
pleted. First, participants completed a questionnaire that
included four distraction questions on gaze behavior that
were in accordance with the cover story. Afterwards, the
participants rated to what extend certain emotional words
described their current subjective emotional state on a 5-
point scale from ’not at all’ to ’extremely’. The question-
naire was based on the Positive and Negative Affect Scale
(PANAS [28]). From the original PANAS items, the follow-
ing emotion words were used: active, afraid, alert, ashamed,
attentive, determined, distressed, enthusiastic, excited, in-
spired, interested, jittery, nervous, proud, scared and up-
set. Additionally, the following emotion words were used:
angry, frustrated, insecure, relaxed, sad and surprised. The
emotions besides frustration were queried to record emo-
tions that were possibly co-triggered, unintentionally, by
the experiment. The dimensional scales of valence, arousal
and dominance were also assessed on a 5-point scale from
from negative to positive, excited to calm and influenced to
independent, respectively.

2.1.5 Measures - Data Annotation
We include an annotation of human observers as well as
automated recognition of participants’ facial and bodily
expressions in our FRUST dataset. On the one hand, it has
been found that humans outperform automated detection
of affective expressions [29]. On the other hand, only an
automated recognition of expressions is feasible in applied
settings. We therefore used the commercially available soft-
ware Affectiva [30] for detection of facial landmarks and ac-
tion units. Figure 2 shows the landmarks that are labeled by
Affectiva. Kulke et al. [31] found that Affectiva’s results are
comparable to Electromyographic (EMG) results, a common
method to recognize facial muscle activity. In comparison to
EMG, recognition by Affectiva is less intrusive and therefore
more feasible in applied contexts like a vehicle. All data was
sampled with a frequency of 20 Hz. Not all frames were
successfully detected by Affectiva. The detection rate varies
between videos. However, we included all videos in our
dataset for reasons of completeness.

The term ’expression’ is used throughout the text to refer
to facial motions that involve numerous face components
(e.g., an expression of joy). The action units specified in
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Fig. 2. Landmarks as annotated by Affectiva [30].

TABLE 2
Expressive units that were annotated by hand.

Lower Face

Blow Cheeks, Cheek Puffer, Chin Raiser, Dimpler, as-
symetric Dimpler, Jaw Drop, Laugh, Lip Corner De-
pressor, Lip Funneler, Lip Press, Lip Puckerer, Lip
Stretcher, Pout, assymetric Pout, Smile, Smirk, Tongue
Out, Upper Lip Raiser, Lip Corner Puller, assymet-
ric LipCornerPuller, LipTightener, assymetric LipTight-
ener, Lower Lip Depressor, Mouth Stretch, Nose Wrin-
kler

Upper face Brow Lowerer, Brow Raiser, Roll Eyes, Squint, Upper
Lid Raiser, Eyes Closed

Head Head Back, Head Shake, Head Tilt, Head Wiggle, Chin
Back, Head Forward, Swallow Hard, Move Jaw

Body Deep Breath, Hands To Air, Hands To Face, Shrug,
Straighten Up

the facial action coding system [32] were expanded to
incorporate head, torso, and hand motions, as they have
been proven to be important emotional expressors as well
[33], [34]. We employ the term expressive unit for these
annotated facial and bodily expressions. Expressive units
were manually annotated over the whole length of all six
drives for all drives and participants by two independent
raters. A third rater then decided on all occasions when the
rater 1 and rater 2 disagreed. Table 2 lists the categories
that were annotated. All annotated terms (see Table 2) refer
to expressive units. The annotation was carried out with
the help of the program ELAN [35]. Analysis of the hand-
annotated expressive units was done by means of expres-
sion frequency as measured by how often an expressive unit
was shown within one minute. The automated annotation
of 34 facial landmarks was done with the Affectiva module
from iMotions [30]. The automated annotation of 25 body
landmarks was done with OpenPose [36].

2.1.6 Procedure

On arrival, participants filled out an informed consent form
as well as a data privacy declaration. The researcher told the
cover story that the study was analyzing changes in gaze
behavior between manual and automated driving modes.
This was done to hide the true purpose of frustration
induction and allow spontaneous emotion emergence. To
lessen the impact of unfamiliarity, all participants practiced
manual and automated driving modes before the start of the
experiment until they were comfortable with the simulator
and the driving conditions. Following the six drives, the
participants were told of the study’s true purpose. Then,
they provided a continuous post-hoc frustration rating for
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Fig. 3. Subjective frustration ratings. Left: emotion scale rating; right:
continuous post-hoc rating.

each of the six drives. The entire process took 2 hours on
average.

2.1.7 Experimental Design
Each participant experienced six drives in a 2 (driving mode:
3 automated vs. 3 manual drives) x 2 (frustration induction:
2 frustration vs. 1 baseline drive) within-subject design in a
driving simulator. Three of the drives were driven in manual
driving mode and three in automated driving mode. Both
driving modes had one baseline drive and two frustration-
inducing drives each. The drives’ order for each participant
was determined by a balanced Latin square design.

2.2 Descriptive Statistics

Frustration induction was successful as indicated by both
subjective ratings. Figure 3 shows the continuous frustra-
tion rating (left) and the emotion-scale rating of frustration
after each drive (right), both per condition. The Spearman
correlation between the continuous frustration rating and
the emotion-scale rating is 0.59. This is a high correlation
according to Cohen [37]. A Friedman’s ANOVA revealed
that both frustration ratings – emotion scale rating and
continuous rating – varied significantly between conditions,
χ2(5) = 122.07, p < .001 (emotion scale rating) and
χ2(5) = 116.63, p < .001 (continuous rating, see Figure 4).
Holm-corrected post hoc tests revealed that per driving
mode, both subjective ratings were higher in the frustrating
drives than in the baseline drives, but not different within
baseline and frustration drives. In summary, we assume that
frustration was induced successfully in both, the automated
and manual driving modes.

The two raters agreed on annotations in 55% of all cases
and gave a similar rating in 10% of the cases (e.g. Lip suck
and Lip press). In 35% of the cases only one of the two
raters provided an annotation. Therefore, in the 45% that
the two annotations were different, the third rater decided
for one of the two annotations. In total, 4583 instances of
facial or bodily expressive units were annotated. Figure 5
shows an exemplary drive with the continuous frustration
rating (top), annotated expressive unit (middle) and the
Affectiva-value of Action Unit four (Brow Lowerer, bot-
tom). Figure 6 shows the frequencies with which expressive
units occurred in different drives over all participants. It is
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Fig. 4. Subjective frustration ratings of four exemplary participants’ au-
tomated drives.

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8

R
at

in
g

Subjective Frustration Rating

BrowLowerer
ChinBack

DeepBreath
Dimpler

HeadTilt
HeadWiggle

JawDrop
StraightenUp

0 2 4 6 8

E
xp

re
ss

io
n 

na
m

e

Hand−Annotated Expressions

0

25

50

75

100

0 2 4 6 8
Time(min)

D
im

pl
er

 (
%

)

Affectiva−value for Dimpler
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visible that the hand-annotated expressions of Brow Low-
erer, Brow Raiser, Deep Breath, Dimpler, Hands to Face,
Jaw Drop, Lip Press, Smile and Tongue Out occur most
often. These include previously described frustration-typical
facial expressions [18], [19], [38]. There was a small, but
significant correlation between expression frequency and
frustration ratings (ρ = 0.004, p > .05). The same was
true when only including previously described [18], [19],
[38] expressions of frustration (Brow Lowerer, Brow Raiser,
Dimpler, Lip Press and Smile) (ρ = 0.08, p < .05). Ex-
pression frequency was significantly higher in frustration-
inducing than in baseline drives with a small effect size
((WMann-Whitney) = 373000, p < .001, r̂rankbiserial = 0.23), but
this effect did not persist when only including previ-
ously described expressions of frustration ((WMann-Whitney) =
36371.0, p > .05, r̂rankbiserial = 0.07). Expression frequency was
significantly different between participants with close to no
effect (χ2

Kruskal Wallis(40) = 119.61, p < .001, ϵ̂2ordinal = 0.06),
and was significantly different in pairwise tests only in 6 out
of 780 possible pairwise tests (pHolm-corrected < .05).

SwallowHard TongueOut UpperLidRaiser UpperLipRaiser

Smirk Squint StraightenUp SuckCheeks

PoutAssym RollEyes Shrug Smile

MouthStretch MoveJaw NoseWrinkler Pout

LipStretcher LipTightener LipTightenerAssym LowerLipDepressor

LipCornerPullerAssym LipFunneler LipPress LipPuckerer

JawDrop Laugh LipCornerDepressor LipCornerPuller

HeadForward HeadShake HeadTilt HeadWiggle

EyesClosed HandsToAir HandsToFace HeadBack

ChinRaiser DeepBreath Dimpler DimplerAssym

BrowLowerer BrowRaiser CheekPuffer ChinBack
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Fig. 6. Expression frequency per expression, split by drive.

3 FRUSTRATION RECOGNITION MODEL

In this section, we present our Graph Convolutional Net-
work (GCN) model to detect frustration levels using the
introduced FRUST dataset. The model was trained with a
graph representation of the face using the extracted land-
marks.

3.1 Landmark-based Emotion Recognition
Landmark-based emotion recognition methods traditionally
use deep neural networks or SVM to directly process the
landmark position [39], [40]. Kim et al. [41] combined a
Convolutional Neural Network with a LSTM layer for an
emotion classification. The rise in popularity of Graph Neu-
ral Networks (GNNs) in image classification [42] and action
recognition [43] has also inspired the use of GNNs for affect
detection.

The advantage of GNN models is that they can de-
pict hidden patterns from non-euclidean data structures.
A skeleton-based emotion recognition GCN was developed
by [44], which classifies emotions from the walking gait
of a person. Rao et al. recognized facial expressions with
GNNs, using facial landmarks as input to eliminate redun-
dant information from the dataset [45]. In comparison to
Rao et al. this work also considers temporal dependencies,
which is highly relevant in dynamic processes like emotion
emergence [46].

3.1.1 Graph-Based Models for Spatio-Temporal Tasks
The beginning stages of GNNs are marked by the Recur-
rent Graph Neural Networks, which were first applied by
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Sperduti et al. in 1997 [47]. Here, information is repeatedly
passed between nodes for the network to learn node repre-
sentations. However, these models are computationally very
expensive. Simultaneously, Convolutional Neural Networks
(CNNs) were developing very fast and with it also the
interest to simulate its methods to graph based models. This
brought two streams of Graph Convolutional Networks:
spectral-based and spatial-based approaches. The spectral-
based approaches are based on graph signal processing
theories and were first presented in 2013 by Bruna et al. [48].
The more efficient spatial-based GCNs were first studied in
2009 by Micheli et al. [49]. These convolutions rely on the
graph’s topology. Although unnoticed until recently, they
are one of the main methods used to learn from graph-
structured data. GCNs are very popular today and several
frameworks have developed from them.

One example are Spatio-Temporal Graph Convolutional
Networks (ST-GCNs), which were first presented by Yan et
al. [43]. ST-GCNs aim to compute the dynamic structures
and inputs of graphs by performing convolutions over
neighboring nodes for spatial and temporal dependencies
[43]. They have proven to be effective for a wide range
of tasks where spatial and temporal dependencies play an
important role, such as action recognition [43] or traffic
forecasting [50]. One limitation of ST-GCNs is the high com-
putational cost caused by the high number of parameters
processed. Also, they are susceptible to vanishing gradients,
therefore limiting the amount of stacked layers that can be
used. Song et al. [51] addressed this problem by including
residual links between layers aiming to reduce the difficulty
of model training and decreasing computational cost. By
this, the ResGCN architecture was introduced [51]. The ar-
chitecture already showed promising results when recogniz-
ing walking patterns from skeleton data [52]. Deeper GCNs
were then enabled by Li et al. [53], who transferred the
concepts of residual connections and dilated convolutions
to GCNs.

Song et al. [54] first introduced a multi-stream GCN to
solve the problem of noisy skeletons and occlusion. This was
later enhanced to reduce computational costs with a three-
branch architecture [51]. The architecture depicted joints,
velocity and bone features. These features were processed
first in separate input branches and then merged into a main
stream to reduce the computational cost. The promising
results shown by the ResGCN architecture combined with
the reduced computational cost inspired the use of a multi-
branch ResGCN architecture in the following work.

3.1.2 Graph Convolutional Network

The most elementary building block of GCNs are the graph
representations of the data. Graphs are a set of nodes V
connected with the respective edgesE and can be described
as G = (V ,E). In a GCN model, each node contains a
set of features X conveying information. This information is
exchanged between nodes using the message passing algo-
rithm during training until a stable equilibrium is reached,
which can be mathematically described as follows:

X
(l+1)
t = σ

(
D̃− 1

2 ÃD̃− 1
2X

(l)
t Θ(l)

)
, (1)
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Fig. 7. Overview of the networks pipeline.

where σ(·) is an activation function and D̃ is the di-
agonal degree matrix of Ã. Ã = A + I denotes the graph
structure with added self-connections. The advantage of em-
ploying facial landmarks to obtain a graph representation
of the face is that the information is concentrated in the
important parts of the face contributing to an expression,
such as eyes, eye-brows or lips, while eliminating redundant
information from the background. The advancements in
skeleton-based recognition with the use of GNNs [55] have
also shown that landmark representations are more robust
against background and illumination changes.

3.2 Network Overview

We built a GCN that learns facial features from a set of
landmarks. Our network is composed of three main mod-
ules depicted in Figure 7. The first module builds a facial
graph using the x and y coordinates from the dataset.
Similar to [51], our model uses three feature vectors pro-
viding information about the facial landmarks, velocity and
edges. Thereupon, our next module calculates the necessary
features for further analysis. Sequences of the extracted
information are then fed to the network using a sliding
window approach with adaptable window and stride size.
The network is a combination of ResGCN layers adapted
from [51]. The output of the network is a frustration rating
for each sequence of data.

3.3 Pre-Processing

The 20Hz video recordings were first processed with the
Affectiva module from iMotions [30] to extract 34 facial
landmarks for each frame. The facial landmarks wi are the
x and y-coordinates of the key-points in the face. The key-
points are then represented as the nodes V = {vti | t =
1, 2, . . . , T, i = 1, 2, . . . , N} with T being the number of
frames and N the number of nodes. Note that v is the
feature of the node and does not exactly correspond to w
as we consider multiple features based on w.

Our model uses three input graphs with three different
node features X(vti) containing the following groups of
features: 1) node position, 2) motion velocity and 3) edge
features. Each group of features is then processed in a sepa-
rate network branch as depicted in Figure 10. All processing
steps to obtain the former group of features were adapted
to our problem from [51].

Following the notation of Song et al., the first set
of features are formed by the original 2D-coordinates
wi = (xi, yi) and the relative coordinates ri. If the orig-
inal coordinate feature set of a sequence is denoted as
D = {d ∈ RC×T×N}, with C, T, N , being the number
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of coordinates, frames and nodes. Since we consider 2D-
coordinates, C = 2. The relative coordinate feature set R =
{ri | i = 1, 2, . . . , N} is calculated as ri = d[:, :, i]−d[:, :, c],
c represents the most central node, which in our case is the
nasal bone (c.f. Figure 8). These two sets are concatenated to
a single sequence, obtaining a 4D feature vector that serves
as an input to the first branch. The goal of including relative
coordinates as input features is to consider changes in head
position independent of participants.

Apart form the landmark location, the movement of the
landmarks over time also carries important information.
Consequently, the second group of features examines the
movement velocity between frames. For this, we consider
the relative change in landmark position in the consecutive
frame F and two consecutive frames M, concatenating
these two sets to obtain a 4D feature vector for each
node. The two sets of motion velocities F = {ft | t =
1, 2, . . . , T − 2} and M = {mt | t = 1, 2, . . . , T − 2} were
calculated the following way: ft = d[:, t+1, :]−d[:, t, :] and
mt = d[:, t+ 2, :]− d[:, t, :].

Lastly, to get a complete representation of the facial
structure the edge information encoding the lengths L and
angles A of the edges is calculated. The length set L = {li |
i = 1, 2, . . . , N} is determined by li = d[:, :, i] − d[:, :, iadj],
where iadj denotes the adjacent nodes. The adjacent nodes
were assigned so that every edge was taken into account
except the edges connecting the eyebrows and the eyes, the
nasal bone and the side of the nose, and the two lip corners.
The angle set A = {ai | i = 1, 2, . . . , N} between node and
adjacent node was calculated with the previously calculated
length for the 2D coordinates:

aiw = arccos


 li,w√

l2i,x + l2i,y


 (2)

In our method, we used 27 nodes from the 34 extracted
facial landmarks. Five landmarks describing face contour
and two landmarks separating the lips were discarded due
to their low reliability. However, the number of nodes can
be easily changed in our network. In order to account for
spatial and temporal dependencies in our graph G similar
to [43] two subsets of edges E were used. The edges first
follow the spatial configuration shown in Figure 8, where
each node connects to the adjacent nodes EF = {vtivtiadj

}.
Additionally, to model the temporal dependency, the nodes
were connected to the same node of the consecutive frame
ET = {vtiv(t+1)i}.

Each frame was labeled with a frustration rating. In
order to obtain a smooth rating without abrupt changes
we applied a Butterworth low-pass filter with a cut-off
frequency of 0.005. An excerpt of the results obtained after
filtering is illustrated in Figure 9. Additionally, all node
features X were standardized to range between -1 and 1.
This allowed an equal weighting of their representation
enhancing the learning process of the network.

Fig. 8. Facial graph construction. Nodes are represented in green, while
the central node is shown in red and edges connecting the nodes are
illustrated in blue.
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Fig. 9. Frustration rating S before and after applying the low-pass filter.

3.4 Architecture

3.4.1 Fast&Slow Model

Each group of features is processed in a separate feature
branch to reduce computational costs. The outputs of the
branches are then concatenated and processed in a main
model stream (Figure 10) following the general outline of
the ResGCN network proposed by [51] with the adequate
changes to fit our problem. Each branch starts with a batch
normalization of the input data followed by one basic
ResGCN module and two bottleneck modules. By applying
a batch normalization at the beginning of the layer the
input is standardized, which stabilizes and accelerates the
learning process [56]. The main stream is composed of
four bottleneck layers and one fully connected layer. The
network is concluded with one Sigmoid layer to obtain a
scalar Ŝ ∈ (0, 1), which describes the probability of frustra-
tion. The pipeline can be seen in Figure 10. The strength
of ResGCNs modules is that the combination of spatio-
temporal blocks [50] and bottleneck structures decreases the
difficulty of model training by reducing the computational
costs in parameter tuning and model inference [51].

Additionally, we enhanced our model by combining the
information provided from high and low frequency data
with a two pathway network Figure 11 similar to [57].
Both channels process the data separately in the ResGCN
network. Before the fully connected layer, both 256 long
feature vectors are concatenated. The fused information is
passed trough three linear layers and then trough a Sigmoid
layer to jointly predict the frustration rating Ŝ. The channels
take high frequency and low frequency data respectively.
This allows for the high frequency channel to focus on fast
movements and micro expressions, while the low frequency
channel extracts the semantics of the data [57].
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Fig. 10. Layer structure of one of the channels of the Fast&Slow network
adapted from [51] .

Fig. 11. Combination of a high frequency and low frequency channel
adapted from [57] .

3.4.2 LSTM Model

To compare our proposed network with an well-known
baseline model, we employed an LSTM network with two
stacked LSTM cells. The landmark, velocity and edge fea-
tures are concatenated into one feature vector X and used
as input to the LSTM model. The exact network structure
can be seen in Fig. 12.

The two LSTM cells are followed by two ReLU and fully
connected layer combinations and are finally processed by
a Sigmoid layer that outputs the frustration rating Ŝ.
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Fig. 12. LSTM layer structure adapted from [58]

TABLE 3
Parameters of the Sliding Window

Model Frequency [Hz] Window [seconds] Stride [seconds]

Fast&SLow 20&5 7 2
LSTM 20 5 2.5

3.5 Training Details
Due to the non-comparable nature of facial landmarks in
manual drives (head oriented towards windshield) and
automated drives (head oriented towards UI), our net-
work was trained using only manual drives. Consequently,
each participant had three recordings, of which one was
a baseline recording without induced frustration and two
recordings correspond to different scenarios with induced
frustration. The training parameters were set equal for both
the Fast&Slow and LSTM network. Participants were di-
vided into 24 for training, 4 for testing and 3 for validation,
which results in ≈ 590k, ≈ 92k and ≈ 72k frames for
training, validation and testing. A 5-fold cross-validation
was performed for an optimal analysis, with 200 epochs of
training. The validation dataset served as an early stopping
criteria to avoid overfitting. Equal cross-validation splits
were used for all analyzed models to facilitate the com-
parison between them. The used optimizer was the Adam
optimizer, while the optimal learning rate was tested and set
to 10−3. The batch size was set to 64. The proposed problem
is a binary classification between the states ”frustrated”
and ”not frustrated” with a continuous prediction label,
hence Binary Cross-Entropy was chosen as the loss function.
As the data was inserted into the network with a sliding
window approach, further parameters that were optimized
were the window and stride size. The optimal parameter
setting found can be seen in Table 3.

Even though we included all participants in the data for
completeness we decided to exclude all model recordings
with a landmark detection rate from Affectiva lower than
80% from the study. Participants were completely removed
from the analysis if they had more than one discarded
recording, which was the case for six participants. Addi-
tionally, further six participants had to be excluded: one
participant only had recordings of the automated driving
condition, one participant had a very imbalanced frustration
rating and four recordings had an inaccurate landmark
detection as assessed by manual inspection of all videos.
This resulted in 31 participants to train and test the model.

3.6 Evaluation Metrics
In the following we describe the evaluation metrics we
chose in order to consider the subjectivity of the continuous
frustration rating. During the cross-validation the optimal
epoch was selected calculating the mean absolute error
between the network prediction Ŝi and the ground truth
Si frustration rating, for the total number of frames n per
subject:

MAE =
1

n

n∑

i=1

|Ŝi − Si|. (3)

The average MAE for each epoch was then computed. For
the evaluation of the results using the test dataset, two main
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approaches were used. First, the cumulative prediction dif-
ference conveying the similarity between the predicted and
real rating was computed. This was calculated according
to Equation 5, taking the difference between predicted Ŝ
and ground truth rating S at frame k, then calculating the
percentage of similarity over various allowed margins m of
difference. In order to interpret the results using this metric,
the network was also evaluated using randomly assigned la-
bels and compared to the obtained results. The advantage of
using the cumulative prediction difference over other met-
rics is that this metric gives a more interpretable measure by
giving information about the margin between the predicted
and real rating. A frustration rating and especially the exact
level of frustration is very subjective. Therefore, a metric that
indicates the accuracy of the frustration pattern instead of
the exact frustration level is needed to evaluate this model.
In addition to the cumulative prediction difference the Root
Mean Square Error (RMSE) was calculated.

C(m) =
{
k |

∣∣Ŝk − Sk

∣∣ ≤ m ∀k ∈ {1, . . . , n}
}

(4)

F (m) =
|C(m)|

n
(5)

Thereupon, the area under the curve of the cumulative
prediction difference was calculated using the trapezoidal
rule, which gives an overall value of the performance of the
model. In the following, this area will be referred to as Mar-
gin Area (MA) to avoid confusion with the Area Under the
Curve usually calculated in classification problems. To also
consider time shifts, we also conducted a visual inspection
of the predicted and ground truth rating over time.

3.7 Model Results

Figure 13 presents the mean and standard variation of the
cumulative prediction difference F (m) of all five cross-
validation folds. Table 4 shows the tabular quantification
of the cumulative prediction differences. The Fast&Slow
network provides the best results with a similarity of 79.4%
with a variance of 7.7% allowing a margin of 0.1. In com-
parison, the LSTM network achieved a similarity of 69.3%
with a variance of 8.6%. The high variance between folds is
caused by the relatively small dataset available for training.
Additionally, the networks have an RMSE of 0.10 for the
Fast&Slow model and and 0.14 for the LSTM model. Best
results were achieved with a comparably high window size
of 7 seconds for the Fast&Slow and 5 seconds for the LSTM
(Table 3). This underlines our finding that frustration is an
emotion that evolves over a long period of time, hence, the
network needs a large number of frames to attain the nec-
essary information. Figure 15 illustrates some example plots
of the predicted and ground truth ratings for the videos of
different participants. The plots illustrate slight time shifts
between the predicted and ground truth ratings. Addition-
ally, poorly detected landmarks cause poor detection rates
at specific time points. In order to carry out an in-depth
analysis of the model performance, an ablation study on the
input graphs was conducted. The model was trained once
with the x- and y coordinates, once with the coordinates
and the velocities of the input graphs, and finally with the

Fig. 13. Cumulative prediction differences comparing the Fast&Slow and
LSTM network. The Figures also show the evaluation of the Fast&Slow
network when using random (Rdm) labels. The curves show the average
and the range of the five cross-validation folds.

Fig. 14. Cumulative prediction differences comparing the Fast&Slow
network including all three network branches, the joints and velocity
branches together, and the joints and edge branches together. The
curves show the average of the five cross-validation folds.

coordinates and the edge information. Figure 14 compares
the results when using different network branches.

TABLE 4
Tabular description of the percentages of similarity reached with

different marginal values for the Fast&Slow and LSTM network. ’MA’
describes the margin area.

Network 0.1 0.2 0.3 0.4 0.5 MA

Fast&Slow 79.4±7.7 90.1±3.8 94.4±2.3 97.2±1.4 98.8±1.1 42.4±2.2
LSTM 69.3±8.6 81.8±7.3 89.0±4.4 94.1±2.9 97.1±2.2 39.1±2.6

4 DISCUSSION & CONCLUSION

Datasets in which emotions occur naturally, are recorded
under realistic circumstances and provide a subjective rating
that can be used as one ’ground truth’ label are crucial in
order to develop well-working affect-aware systems. Such
data are still rarely publicly available, and, to the best
of our knowledge, not at all available for the emotion of
frustration. As this emotion is so far less investigated than
the six basic emotions despite its relevance in applications of
affective computing, the FRUST dataset attempts to provide
such a dataset. Previous work on emotion recognition has
worked with either classical statistical or machine learning
methods. Because both approaches have advantages, we
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Fig. 15. Comparison of predicted and ground truth rating for Fast&Slow
and LSTM network. The graphs represent the predictions from example
videos taken from the test dataset.

provide both in this manuscript and their underlying data
in the FRUST dataset. Even though it only contains data of
43 participants, the FRUST dataset has several advantages
in comparison to freely accessible videos of acted or real-
life situations on social media or elsewhere online. First,
the context of data collection ensured that emotions in
the dataset occurred naturally and were not acted. Sec-
ond, the emotion-evoking situation is the same between
participants following a standardized manner that allows
a comparison of reactions between participants. Third, our
dataset provides a continuous subjective frustration rating
as valuable ’ground truth’, which is not available in freely
online accessible videos (e.g., on Youtube). The provided
hand-annotations of expressions save researchers working
with the dataset the tedious work these hand-annotations
naturally bring with them. We also provide demographic
information, which might be useful in finding sex- or age-
typical patterns in expression of frustration. However, it
needs to be mentioned that the dataset is likely skewed to-
wards the local population, as all participants were German
citizens.

In our study, frustration slowly built up over time, as
shown by our dataset’s subjective frustration ratings. The
less likely it becomes to reach the aim of meeting friends at
the cinema on time or join the online conference on time,
the more frustrated participants became. When working

with this dataset, therefore, it is important to consider this
temporal feature.

A challenge common to any measure of subjective emo-
tion data is the subjectivity of the frustration rating [59].
It was apparent that participants differed in the way they
rated. Some participants rated spikes of frustration with
long time of no frustration; others gave a continuous block
of high frustration rating. We cannot know whether these
variations are caused by the differences in how participants
felt or by their interpretation of the task to rate their frustra-
tion. Also, absolute values of frustration ratings are difficult
to compare, as 50% frustration might mean a different
frustration intensity for different participants. Depending
on how much a researcher decides to trust the participant’s
ability of providing comparable frustration intensity ratings,
future users of this dataset may therefore decide to apply
a z-transform to the subjective frustration rating. It is also
a possibility that participants were frustrated but did not
rate it as such, either because they were unaware of it
or because they wanted to hide it from the experimenter
[60]. Furthermore, the frustration rating might lag behind,
as participants had to realize that something happened in
the video before they could rate their frustration of that
moment.

The hand-annotated expressions that have been shown
most frequently include the previously described expres-
sions of frustration of Brow Lowerer, Brow Raiser, Dimpler,
Lip Press and Smile [18], [19], [38]. The results regarding
expression frequency and subjective frustration indicate that
expression frequency only should not be used in order to
classify frustration.

The presented dataset was evaluated by our multi-
pathway GCN architecture. In order to test the effective-
ness of our model we conducted experiments with our
suggested double pathway model and a LSTM model. Our
model is based on the construction of a graph representing
the facial structures at each frame. The model then learns
spatial dependencies from edge connections between nodes
and temporal dependencies from the connections between
frames, while residual links allow the reduction of the com-
putational cost. The architecture of the model builds upon
three input branches containing facial landmarks, velocity
and edge information that are later merged to form one
main stream of information. All features are inferred from
the facial landmarks and inserted in a graph format. Further
enhancement of the model was obtained by combining high
and low frequency data. The results show a promising
automatic and frame-wise detection of frustration ratings
with a similarity of 79.4±7.7% when allowing a prediction
difference of 0.1. The example plots shown also give a sense
of the accuracy of the detection pattern. Despite the limited
amount of data and the subjective labels, it can be clearly
seen that GCNs are able to predict complex frustration pat-
terns with acceptable errors. To the best of our knowledge
no publicly available dataset exists that can be interpreted
with our model. Table 1, provides an overview of similar
datasets. However, no emotion dataset exists with a continu-
ous rating that could serve as an input to our spatiotemporal
model. The DEFE [24] dataset provides similar input data,
however, it recognizes six different emotions. Therefore, we
provide a first baseline model for the automatic detection of
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frustration levels. For future work the information given by
the body gestures of the participants could be included. Lit-
erature has shown that body expressions convey important
affective information [61] and Narayanan et al. [44] already
used skeleton sequences to successfully infer the emotional
state from peoples’ gait.

The FRUST dataset will be made publicly available after
publication of this paper. By this, researchers can work
with the collected data and use the presented model as
benchmark. In summary, we show that it is possible to
recognize a person’s frustration in naturalistic data by direct
and automated learning of coordinate data.
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A B S T R A C T   

Negative emotions like frustration can lead to risky driving behavior in manual driving and may 
hinder the acceptance of innovative automated vehicles. The option to automatically recognize 
such negative emotions of vehicle users with so called affect-aware systems has gained increasing 
attention within the last few years. This offers the possibility to adapt vehicle functions, such as 
the human–machine interface, in real-time. Emotional expressions in face and body form po-
tential indicators for user frustration. Previous studies have investigated expressions of frustration 
in the context of driving and mobility, but have neglected situational and interindividual dif-
ferences. In this paper, we examined the possibility to improve the recognition of frustration by 
considering individual differences. For this, a driving simulator study with 50 participants and a 
real-world driving study with 23 participants were conducted. An analysis of participants’ facial 
expressions during frustrating driving situations confirms previously reported expressions of 
frustration (Brow Lowerer, Dimpler, Brow Raiser, Smile and Lip Press). In addition, the results 
also hint towards high variance between and low variance within participants for all other ex-
pressions, suggesting the existence of individual-typical expressions of frustration. Hence, future 
frustration-aware systems could benefit from considering these individual differences by using a 
universally trained algorithm that is then customized towards each individual.   

1. Introduction 

1.1. In-vehicle frustration 

Frustration is a negative emotional state that occurs when goal-directed behavior is blocked (Lazarus, 1991). Persistent frustration 
fosters the experience of anger as well as aggressive behavior (Berkowitz, 1989; Jeon, 2015; Shinar, 1998) and can lead to experienced 
stress (Jeon & Zhang, 2013). By that, it can negatively influence the acceptance of human–machine systems (Picard & Klein, 2002). In 
addition, negative emotions, such as frustration, negatively affect cognitive skills used in driving (Jeon, 2015; Lee, 2010). In a system 
at capacity such as modern transportation, where most participants - especially car, bus, and truck drivers - want or need to reach their 
destinations as quickly as possible, many potential sources of frustration exist (Bosch et al., 2020). These include, for example, traffic 
jams on the highway caused by congestion, accidents, or construction sites; red traffic lights during urban rush hour; or slow tractors 
driving ahead on rural roads. Frustration can lead to aggressive behavior (Berkowitz, 1989), also on the road, and by that lead to 
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accidents (Ma et al., 2018). The development of automated vehicles, which is intended to optimize traffic flow overall, promises to 
remedy this situation. However, autonomous vehicles are highly technical and thus complex systems for the normal user. The vehicles’ 
intuitive design is challenging for engineers and designers. Therefore, users will likely experience frustration at many points when 
interacting with autonomous vehicles. Here, frustration can translate into a negative user experience (cf. Picard & Klein, 2002), which 
can negatively affect the evaluation and acceptance of automated vehicles. However, for a shift towards innovative and sustainable 
mobility solutions, travelers’ acceptance of these new concepts is highly relevant. In summary, frustration experienced during driving 
has a negative impact on the overall safety of driving (Berkowitz, 1989; Jeon, 2015; Lee, 2010), as well as the user experience (Picard & 
Klein, 2002) and thus acceptance (Venkatesh et al., 2003) of automated vehicles. Reducing frustration is therefore highly desirable. 

1.2. Frustration-Aware assistance systems 

Triggers for frustration are manifold (Bosch et al., 2020; Lawrence, 2006), vary between individuals (Ferreri & Mayhorn, 2022), 
and cannot always be predicted and therefore solved by design. For this reason, research towards automated recognition (Belle et al., 
2010; Grafsgaard et al., 2013; Hoque & Picard, 2011) and subsequent mitigation (Oehl et al., 2019; Zepf et al., 2019) of frustration in 
human–machine interaction has increased within the last few years. One way to reduce frustration in cars would be to design 
frustration-aware assistance systems (Bruce, 1993; Krüger et al., 2021; Oehl et al., 2019; Picard & Klein, 2002; Stephan, 2015) that can 
detect ‘pain points’ by the current level of frustration of the driver (or other vehicle occupants), derive the driver’s current needs from 
this and offer specific assistance based on this. This assistance then aims at either reducing the driver’s level of frustration and bringing 
him or her to a different target state (e.g. relaxation, pleasure, or high attention) or at mitigating the negative consequences of 
frustration by providing support. This can be done by the initiation of intervention methods, like a voice assistant or ambient light 
(Braun et al., 2019; Krüger et al., 2021; Zepf et al., 2019). For example, the use of an empathic voice assistant that, on detection of 
anger, says ‘Hey, are you alright? I can understand that you are a bit angry, sometimes I feel the same way. How about some music to 
take your mind off things?’, has been shown to reduce negative emotions (Braun et al., 2019). Nass et al. (2005) examined a voice 
assistant and found that if the voice assistant’s emotion matched the participant’s emotions, fewer accidents happened and drivers paid 
more attention to the road. Harris and Nass (2011) conducted a driving simulator study in which frustration was induced and a voice 
assistant that reappraised the situation by saying that the other driver’s actions were not intended offensively resulted in higher driving 
performance and less negative emotions. Further studies have found intervention methods like these to be effective for the increase of 
user acceptance (Grippenkoven et al., 2018; Herrenkind et al., 2019; Keller et al., 2019; Millonig & Fröhlich, 2018). Accordingly, 
recent research has tried to find relevant indicators for frustration that may be used as features for automated frustration recognition in 
frustration-aware systems. Many of these studies focused on frustration-typical facial expressions (Grafsgaard et al., 2013; Hoque & 
Picard, 2011; Kapoor et al., 2007), also in in-car settings (Ihme, Unni, et al., 2018; Lee, 2010; Malta et al., 2010), and have found Brow 
Lowerer, Dimpler, Brow Raiser, Smile and Lip Press to be often shown in frustration. While not studied for frustration yet, it has been 
found that bodily expressions can be relevant indicators of emotion, too (Kleinsmith & Bianchi-Berthouze, 2012; Noroozi et al., 2018; 
Wallbott, 1998). 

1.3. Individual differences in expression of emotion 

To further improve in-vehicle frustration recognition, it is helpful to understand the occurrence of non-coincidental variance in 
frustration expression. Cohn et al. (2002) conducted two studies showing that it is possible to recognize individuals solely based on 
their facial expressions in response to emotional stimuli. This worked in two different contexts and over long-time intervals (12 and 4 
months, respectively). One context was that participants watched a film alone and the other was a clinical interview. Gross (2008) 
describes that individuals differ on levels of emotion experience, behavioral responses, physiological responses and subsequent 
emotion regulation. Differences on all of these levels can lead to differences between individuals in expression of emotion. Barr et al. 
(2008) developed a taxonomy of individual differences in expression of emotions and found the two higher-order factors of emotional 
constraint and emotional expression. The corresponding first-order factors consisted of affect intensity, ambivalence about expression, 
disclosure of Negative emotion, disclosure of emotion, disclosure of Lack of affect, expression of Positive emotion, and Secret Keeping 
(Barr et al., 2008). Accordingly, Sangineto et al. (2014) built a personalized linear Support Vector Machine classifier to account for 
individual differences in expression of emotion. However, they take a black box approach, not considering the nature of differences 
between individuals. Also, the data used contain videos recorded in varying contexts. It is therefore impossible to differentiate among 
variance caused by individual or by situational differences. We argue that a descriptive approach that aims to study individual 
explanation of variance is an important basis to build generalizable systems. Here, we see the contribution of this paper. 

1.4. Aim of the current work 

In summary, we aim to study the variance of expression of emotion in the applied context of in-vehicle frustration detection. Since a 
fine-tuning towards individuals would be feasible in the car, we study the expression of frustration in different individuals. Knowledge 
of the extent of this variance might be helpful to adapt future endeavors of (personalized) in-vehicle emotion recognition accordingly. 
The research question we aim to answer is ‘Is it possible to recognize a person from one drive to the next based on their facial ex-
pressions?’ A simulator study with 50 participants and a real-world driving study with 23 participants were conducted to answer this. 
The studies capture two different driving-related situations to ensure that our findings are generalizable over different driving-related 
contexts. According to Bosch et. Al. (2020), two situations that regularly cause frustration during driving are traffic and frustrating 
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interactions with a human–machine interface (HMI). Accordingly, we chose these two as frustration inducing contexts. To include one 
context that is relevant nowadays and one that is more relevant in the future, the frustration induction by traffic was done in manual 
driving and the frustration induction by HMI in an automated driving context. In both studies, frustration was induced by blocking 
driving-related goals in different driving situations. Camera recordings captured the participant’s face and body throughout the whole 
journey. Among other questions, a subjective frustration rating of the participants was collected after each drive. 

2. Study 1 – Driving simulator study 

2.1. Methods 

2.1.1. Summary 
Study 1 was conducted in the high-fidelity driving simulator of the German Aerospace Center in Brunswick, Germany (Fischer et al., 

2014) with 50 participants. Frustration was induced in two different contexts to foster the generalizability of our findings. Every 
participant experienced frustrating and baseline drives in both contexts. Subjective frustration ratings were collected after each drive 
on a 5-point-scale and after all drives as a continuous (i.e., highly time-resolved) rating after all drives as manipulation check. During 
all drives, cameras captured the participant’s face and body in order to assess participants’ expressions. Videos of the participants’ face 
and body were annotated manually for facial and bodily expressions. For the data analysis, we identified the individual in one drive 
based on their expression behavior in another. 

2.1.2. Participants 
Fifty participants recruited through the institute’s participant pool took part in the study. Previous studies with similar scope and 

settings had comparable sample sizes (Hoque & Picard, 2011; Ihme, Unni, et al., 2018; Zhang et al., 2021). In total, nine participants 
were excluded from data analyses. Two of these nine participants became motion sick. For three participants simulator driving data 
were not saved, one had a condition of facial myoclonus and for three the frustration-rating data were partly missing. The n = 41 
participants included in the analyses were aged 20 to 59 years (y) (M = 31.75 y, SD = 12.18 y, 13 female, 30 male). As reimbursement 
for their time, the participants received 5 € per commenced half hour for their participation. 

2.1.3. Materials 

2.1.3.1. Set-Up. The experiment was conducted in a driving simulator virtual reality lab with 360◦ full view (Fischer et al., 2014). The 
participants sat in a realistic vehicle mock-up and controlled the mock-up car in the driving simulation (Virtual Test Drive, Vires 
Simulationstechnologie, Bad Aibling, Germany) via a standard interface with throttle, brake pedal, steering wheel and indicators. A 
user interface (UI) was displayed on a tablet (Microsoft Surface Pro 7, 12.3′) that was attached over the centre console of the car 
(needed for the frustration induction, see below). During all drives, the participant’s face and body were recorded at 15 frames per 
second with one frontal camera and one that was placed above the screen displaying the UI. The latter was used to record the face when 
a participant oriented towards the UI in the automated condition. Another camera recorded the whole scene and was attached between 
the driver and the co-driver seat. All three cameras were network cameras from Axis, model M1065-L, recorded with a resolution of 
1280 × 800 pixels. 

2.1.3.2. Stimuli. We collected data in the simulator shown in Fig. 2 in two different driving modes (manual vs. automated) to include 
two different driving contexts. The participants read a story to immerse into the setting before all drives. In the manual driving mode, 
the participant read a story that told them they were supposed to meet friends at a cinema. It included the information that the usual 
driving time to the cinema was below ten minutes. They were told they would receive a 2 € reward if they reached their destination in 
time. A large clock in the car indicated the time left for timely arrival at the cinema. Tasks similar to this have successfully induced 
frustration in previous studies (Hoque & Picard, 2011; Ihme, Unni, et al., 2018; Malta et al., 2010). In the automated drives, the 
participants read a story that told them they were driving to a business meeting. Participants then solved a task on the in-car user 
interface displayed on the tablet. The participants, again, were told to receive a 2 € reward upon successful completion of their task. 

2.1.3.2.1. Frustration induction in manual driving mode. Baseline condition (’Baseline-Manual’): The baseline condition consisted of a 
route which took five minutes to drive. In a simulated telephone call presented via loudspeakers, the participants were informed that 
the friends they were supposed to meet were running late. The scenario had minimal traffic and was designed in a way that the 
participants successfully reached the cinema within the given time. 

Frustration conditions (’Frust.-Manual1′ and’Frust.-Manual2′): Frustration is induced when goal-directed behavior is blocked 
(Lazarus, 1991). Rendon-Velez et al., (2016) have found that time pressure increases the feeling of frustration in driving. Therefore, 
both goal-blocking events and time pressure were used in the experimental conditions. A telephone call at the beginning of the drive 
(again presented via loudspeakers) imitated the group of friends that were already waiting at the cinema, reminding the participant 
that they carried the entry tickets for all of them (time pressure). After 1 min of driving, a slow truck turned onto the road at a crossing, 
which lead to 1.3 min of driving behind the slow truck (goal blocking event). Right after the truck left the road at the next intersection, 
another slow vehicle (a car with horse trailer) turned onto the road and lead to another 1 min of slow driving (goal blocking event). 
Oncoming traffic was so dense that overtaking was impossible. Another call imitated the group of friends asking ‘what’s keeping you?’ 
(time pressure). Subsequently, the participants reached an urban area which had three intersections with red lights. They were told to 
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turn left at the third crossing by a voice imitating a navigation system. Five cars were already waiting in front of this third red light. The 
light was then green so shortly that only one person at a time could cross. In addition, the last waiting vehicle (a motorbike) was so slow 
to start driving that it missed a green phase. In total, the participants waited for 2 min in front of the left-turn lights (goal blocking 
event). After crossing the intersection, the cinema was located on the left side and the participants finished the drive. During the whole 
drive, the large clock counted down a time that was 30 s shorter than the track took to drive (time pressure). The task was to reach the 
cinema where friends were waiting in both frustration-inducing conditions. However, we exchanged car types of surrounding cars in 
the simulation and also the exact street course, meaning that the surrounding trees and also the turns in the street differed. We did this 
to deceive the fact that the same experimental condition was driven twice. As a result, one experimental condition took seven minutes 
to drive and the other ten. Frustrating events were the same in both experimental conditions and also took the same time. 

2.1.3.2.2. Frustration induction in automated driving mode. Baseline condition (‘Baseline-Autom.’): In the baseline condition, the 
participants were asked to visit a website, which could be accomplished easily. They were then asked to press the one button that 
appeared in different places of the UI. They were told to have no time pressure and to interact with the UI as natural as possible. 

Frustration conditions (’Frust.-Autom1′ and’Frust.-Autom2′): In the frustration condition, the participants received a call from their 
‘boss’, who told them that they were urgently needed for another, more important meeting and needed to turn around immediately to 
arrive on time. T. 

he participants then had to change the destination of the navigation system. Through ambiguous naming of buttons, unclear icons, 
and unintuitive paths, this was hard to achieve within 7 min. In the second automation condition, a ‘boss’ called and asked the 
participant to very urgently join an online conference with clients. Again, the UI was so difficult to understand that it was hard to reach 
the goal of joining the online conference. 

2.1.3.3. Measures 
2.1.3.3.1. Subjective frustration rating as manipulation check. To assess whether frustration was successfully induced, the partici-

pants rated their frustration in two different manipulation checks. One was an emotion questionnaire was filled in after every drive. It 
first asked four distraction questions about gaze behavior in line with the cover story (see Supplementary Materials for the exact 
questions). Afterwards, the participants rated an emotion scale based on the German version of the positive and negative affect scale 
‘PANAS’ (Krohne et al., 1996). It has a reliability of Raykovs ρ = 0.93 (Breyer & Bluemke, 2016) and is a commonly used method to 
acquire participant’s emotions (see, for example, Barańczuk, 2018; Frison et al., 2019; Zhang et al., 2019). The exact emotions words 
used were ‘active’, ‘distressed’, ‘interested’, ‘excited’, ‘upset’, ‘scared’, ‘inspired’, ‘proud’,’enthusiastic’, ‘ashamed’, 
‘alert’,’nervous’,’determined’,’attentive’,’jittery’,’afraid’ (from the original PANAS) and ‘insecure’, ‘frustrated’, ‘angry’, ‘sad’, ‘sur-
prised’,’relaxed’ (our own addition) were rated on a 5-point scale from ‘not at all’ to ‘extremely’. We decided to acquire this broad 
emotion spectrum to capture emotions that were possibly co-triggered, unintentionally, besides frustration. The dimensional scales of 
valence, arousal and dominance were also rated on a 5-point scale from negative to positive, excited to calm and influenced to in-
dependent, respectively. 

The second manipulation check was obtained after all drives as additional subjective rating. For this, the participants watched the 
videos that were recorded during all drives of the whole scene (the participant’s face was not visible; see Fig. 1) and rated their 
frustration with a joystick on a level from 0 to 100%. This rating was given continuously, i.e. the participant always held the joystick in 
the position that corresponded to their frustration level as experienced in the situation shown in the video. The joystick was moveable 
only in one direction and automatically returned to zero-position when not touched. The participants saw a visual feedback of their 
current rating, which was presented next to the video. They were asked to move the joystick according to the frustration level that they 

Fig. 1. Screenshot of an exemplary video on which participants based their continuous frustration rating.  
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felt in the situation shown in the presented video. By this, a continuous frustration rating for each drive and each participant was 
collected. We decided for this continuous measure in addition to the common method of questionnaires to receive a subjective rating 
not only once per drive, but for every timepoint during the drive. 

2.1.3.3.2. Facial expression annotation and preprocessing. Three annotators manually annotated expressive units using the video 
recordings of all drives. The annotation was performed using the software ELAN (Wittenburg et al., 2006). More precisely, the an-
notators first came to accordance on all annotated expressive units and what they looked like, following Farnsworth (2019). Then, two 
annotators watched all videos of all participants in the software ELAN independently, where it is possible to add words under the video 
for freely selectable time windows. When an annotator discovered any deviation in facial expression from neutral, they added an 
annotation according to the previously chosen expressive unit names. In a second step, the third rater decided on all instances where 
the two ratings differed and chose one of the two annotations by an own judgement. For example, if annotator 1 annotated ‘Smile’ for a 
timepoint, and annotator 2 ‘Smirk’, then annotator 3 checked the video at that timepoint and decided for either the ‘Smile’ or ‘Smirk’ 
as annotation. Annotations included the expressive units that were defined in the facial action coding system (Ekman, & Rosenberg, 
1997), but were broadened to include head, body, and hand movements, as these have been shown to be relevant expressors of 
emotion, too (Kleinsmith & Bianchi-Berthouze, 2012; Noroozi et al., 2018; Wallbott, 1998). The categories that were annotated are 
shown in Table 1. Throughout the whole paper, the term ‘expression’ refers to facial movements in which several facial components are 
activated (e.g. an expression of joy). We use the term expressive unit as alternative to, but following the word ‘action unit’ (Ekman & 
Friesen, 1976), as we include head, body and hand movements. All words that were annotated (see Table 1) describe expressive units. 

Expressive unit frequency was calculated by counting the absolute occurrence of expressive units in a first step and then divided by 
the length of the drive. For example, if ‘Tongue Out’ was shown 24 times and the drive was 8.62 min long, the expression frequency for 
‘Tongue Out’ in this drive is 24/8.62 min = 2.78. Therefore, all occurrence frequencies are presented in occurrence per minute. 

2.1.4. Procedure 
Participants arrived and filled in an informed consent and a data privacy statement. Before the start of the study, the participants 

were informed about the video recording, potential risks of driving in simulators (e.g., the experience of simulator sickness) according 
to the simulator safety concept and the rough duration of the experiment. The participants were informed that they could take a break 
or abort their participation at any time. All participants provided written informed consent to take part in the study and the video 
recording. The participants were told the cover story that the study investigated differences in gaze behavior between manual and 
automated driving modes. This was done to conceal the true aim of frustration induction and enable natural emergence of emotions. To 
reduce effects that came from unfamiliarity, all participants experienced the manual and automated driving scenarios before the start 
of the experiment until they said to be adapted to the simulator and the respective driving condition. This took five minutes on average. 
After the six drives, the participants were informed about the true goal of the experiment (evoking frustration) and the necessity to 
conceal this goal with a cover story. They then gave the continuous frustration rating for all six drives. The whole procedure took 2 h on 
average. The collected data was handled and saved in line with the European General Data Protection Regulation. 

Fig. 2. Driving simulator with participant. Left. The manual driving mode; Right: the automated driving mode with interaction with the 
user interface. 

Table 1 
Naming of the expressive units that were annotated.  

Lower 
Face 

Blow Cheeks, Cheek Puffer, Chin Raiser, Dimpler, Asymmetric Dimpler, Jaw Drop, Laugh, Lip Corner Depressor, Lip Funneler, Lip Press, Lip 
Puckerer, Lip Stretcher, Pout, Asymmetric Pout, Smile, Smirk, Tongue Out, Upper Lip Raiser, Lip Corner Puller, Asymmetric LipCornerPuller, 
LipTightener, Asymmetric LipTightener, Lower Lip Depressor, Mouth Stretch, Nose Wrinkler 

Upper face Brow Lowerer, Brow Raiser, Roll Eyes, Squint, Upper Lid Raiser, Eyes Closed 
Head Head Back, Head Shake, Head Tilt, Head Wiggle, Chin Back, Head Forward, Swallow Hard, Move Jaw 
Body Deep Breath, Hands To Air, Hands To Face, Shrug, Straighten Up  

E. Bosch et al.                                                                                                                                                                                                          



Transportation Research Part F: Psychology and Behaviour 94 (2023) 436–452

441

2.1.5. Experimental design 
In a 2 (driving mode: automated vs. manual) × 2 (frustration induction: frustration vs. baseline) within-subject design, each 

participant experienced six drives in total. Three of these were driven by the participants themselves (manual driving mode, see Fig. 2 
A) and in three the car drove automatically (automated driving mode, see Fig. 2 B). Both driving modes consisted of one baseline drive 
and two frustration-inducing experimental drives each. The order of the drives was balanced by a balanced Latin square design for all 
participants, which means that every condition was driven in every position, and also the order of the drives was balanced (see for 
example Kim & Stein, 2009). 

2.1.6. Data analyses 

2.1.6.1. Manipulation check analysis. A Spearman’s rank correlation coefficient of the continuous subjective frustration rating with the 
emotion scale rating was calculated because the data was not normally distributed. We tested whether frustration induction was 
successful by comparing all conditions’ frustration ratings against one another by a Friedman’s test, as the assumptions for a repeated 
measures ANOVA were not fulfilled. Kendall’s W was used for measuring effect size. The conditions were ‘Baseline-Autom.’,’Baseline- 
Manual’,’Frust-Autom1′,’Frust-Autom2′,’Frust.-Manual1′ and’Frust.-Manual2′. The detailed plots included in the Supplementary 
Materials were plotted using the package ‘ggstatsplot’ (Patil, 2021). 

2.1.6.2. Expression frequency analysis. In a first step, we created a plot that shows the expression frequency over all participants, per 
condition. We tested all conditions’ expression frequencies against one another by a Friedman’s test, as the assumptions for a repeated 
measures ANOVA were not fulfilled. Kendall’s W was used for measuring effect size. We also created a bubble plot displaying all 
expression frequencies of all participants, colored by frustrating vs. non-frustrating drives. For the following analysis, we excluded the 
expressive units that are expected to be shown by all participants, as they are already known to be universally shown in frustration. 
These excluded expressions were ‘Dimpler’, ‘Brow Lowerer’, ‘Brow Raiser’, ‘Smile’, ‘Lip Press’ (Hoque & Picard, 2011; Ihme, 
Dömeland, et al., 2018; Ihme, Unni, et al., 2018; Sidney et al., 2005). If individuals are more similar to themselves than to others, it 
should be possible to recognize them by learning from one drive to another using non-universal expressive units. This was realized 
using a nearest neighbour approach using expressive unit frequencies from one drive to classify the individual in another. A similar 
approach has been taken by Cohn et al. (2002). For this, the Euclidean distances between all participants and all drives were calculated 
from vectors containing frequencies of all expressive units. More precisely, this means that a Euclidean space is created, in which each 
dimension corresponds to the expression frequency of one expressive unit. Each drive is one point in this Euclidean space. The distance 
between these points is calculated. The smaller the distance, the more similar the expressions that were shown in the two drives. A 
cumulative curve of the ranks (1st closest neighbour, 2nd closest neighbour, etc. in Euclidean space) in which the participant was 
successfully identified displayed how well this identification of individuals worked. 

Fig. 3. Frustration ratings per condition over all participants. Left: The emotion scale frustration rating given after each drive. Right. Continuous 
frustration rating. The continuous frustration rating was averaged over each drive. Significance was tested by a Friedman’s test. The lines with three 
asterisks above indicate significant differences between conditions of p < 0.001. In the automated (autom.) drives, participants drove in an 
automated vehicle and their task was to interact with the in-vehicle user interface. In Autom1 they were asked to change the navigation destination, 
in Autom2 to join an online conference, and in Baseline-Autom to make a search engine search, all on the user interface. The task was to meet friends 
at a cinema by manual driving in the ‘Manual’ conditions. Manual 1, 2 and baseline differed only by surrounding car types and the exact street 
course that were changed. 
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2.2. Results 

2.2.1. Manipulation check 
Frustration induction was successful as indicated by both subjective frustration ratings. Fig. 3 shows the emotion-scale rating of 

frustration after each drive (left) and the continuous frustration rating (right), both per condition. The emotion scale ratings of all other 
emotion words can be found in Fig. 12 in the Supplementary Materials. The Spearman’s rank correlation coefficient of emotion scale 
rating per drive and mean continuous frustration rating per drive was 0.59, which is a high correlation according to Cohen (1988). The 
Friedman’s test revealed that the frustration ratings – whether emotion scale or continuous – were significantly different between 
conditions, χ2(5) = 122.07, p <.001, W = 0.41 (emotion scale rating) and χ2(5) = 116.63, p <.001, W = 0.47 (continuous rating, see 
Fig. 3). Both are small effects according to Cohen (1988). Holm-corrected post hoc tests revealed that per driving mode, both subjective 
ratings were higher in the frustrating drives than in the baseline drives, but not different within baseline and frustration drives. The 
exact results are presented in Fig. 14 of the Supplementary Materials. Mean and median values can be found in Table 2. In summary, we 
assume that frustration was induced successfully in both the automated and manual driving modes. The emotions that seem to co-occur 
with frustration as rated with the 22 other emotion scale items (see Fig. 12 in the Supplementary Materials) were ‘angry’, ‘upset’ and 
‘ashamed’. 

2.2.2. Expression frequency 
Of all annotations, the two raters had the same annotation in 55% of the time, 10% were similar (e.g. Lip Suck and Lip Press), and 

35% were identified by only one of the two raters. Therefore, in the 45% that the two annotations were different, the third rater 
decided for one of the two annotations. With a chance probability of 1/45 = 0.023 for an annotated expression, this results in a Cohen’s 
kappa of 0.55, which corresponds to a moderate inter-rater agreement (Landis & Koch, 1977). 

Fig. 4 shows the expressive unit frequencies of every condition over all participants. Expressive unit frequencies are significantly 
different between conditions (χ2 (5) = 54.35, p <.001, W = 0.29, npairs = 38). This is a small effect according to Cohen (1988). 
Significant holm-adjusted pairwise Durbin-Conover tests are shown in Fig. 4. Fig. 5 shows the expressive unit frequencies of each 
participant, split by frustrating (red) and non-frustrating drives (blue). It becomes apparent that some expressive units have been 
shown by nearly all participants (Brow Lowerer, Brow Raiser, Deep Breath, Dimpler, Hands to Face, Jaw Drop, Lip Press and Smile) and 
others are only shown by a few of the participants. 

2.2.2.1. Identification of individuals. If participants were individually typical in expressing frustration, their expressions should be 
more similar to themselves than to other participants in different drives. Therefore, individuals were identified in one drive based on 
their expressive unit frequencies in another drive by using a nearest neighbor approach,. This worked best within the same situations: 
the uppermost line of Fig. 6 shows that 37.5% of participants could be correctly identified with rank 1 (i.e., as their closest neighbor) 
from drive ‘Frust.-Manual1′ to drive ‘Frust.-Manual2′. When including rank two (cases, in which the participants were either their 
closest or second-closest neighbor), already 45% of participants were correctly classified. The second-upper line of Fig. 6 shows that 
participants are their first-closest neighbor in 25% of cases from drive ‘Frust.-Autom1′ to ‘Frust.-Autom2′ and their first or second- 
closest neighbor in 30% of cases. When trying to identify individuals across situations, recognition rate in the first-closest neighbor 
drops to values between 7.5 and 15%. Chance level is 1/41 = 2.4%. 

2.3. Summary 

Study 1 was conducted in a driving simulator and measured expressive units shown in baseline and frustration-inducing drives. The 
subjective measures confirmed that frustration was induced as planned. individuals can be correctly classified clearly above chance 
level from their expressive unit frequencies in one drive to another. These results support the option of individual-specific expressive 
units of frustration. 

Table 2 
Frustration ratings of emotion scale and continuous frustration rating in Study 1. The scale ranged from 1 to 5 in the Emotion Scale Rating with no 
anchor and from 0 to 1 in the Continuous Rating with an anchor at 0.   

Condition Mean Median Standard Deviation 

Emotion Scale Rating Baseline-Autom. 
Baseline-Manual 
Frust.-Autom1 
Frust.-Autom2 
Frust.-Manual1 
Frust.-Manual2 

1.13 
1.15 
2.91 
2.67 
1.96 
2.22 

1 
1 
3 
3 
1 
2 

0.41 
0.36 
1.17 
1.14 
1.15 
1.28 

Continuous Rating Baseline-Autom. 
Baseline-Manual 
Frust.-Autom1 
Frust.-Autom2 
Frust.-Manual1 
Frust.-Manual2 

0.02 
0.01 
0.18 
0.26 
0.11 
0.15 

0.01 
0 
0.14 
0.25 
0.09 
0.1  

0.04 
0.03 
0.16 
0.2 
0.11 
0.14  
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Fig. 4. Expression frequencies per condition. All conditions with lines above are significantly different with a significance level of p <.001 in 
pairwise holm-adjusted Durbin-Conover comparisons (which is not shown in the plot for clarity). In the automated (autom.) drives, participants 
drove in an automated vehicle and their task was to interact with the in-vehicle user interface. In Autom1 they were asked to change the navigation 
destination, in Autom2 to join an online conference, and in Baseline-Autom to make a search engine search, all on the user interface. The task was to 
meet friends at a cinema by manual driving in the ‘Manual’ conditions. Manual 1, 2 and baseline differed only by surrounding car types and the 
exact street course that were changed. 

Fig. 5. Expression Frequency by participant, colors indicating whether the expression occurred in a frustration inducing or baseline drive. Vertical 
‘lines’ of bubbles show the expressions that were shown in nearly all participants. The areas in between show the participant-typical expressions that 
were shown highly frequent in some, but not other participants. 
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3. Study 2 – Real-World driving study 

3.1. Methods 

3.1.1. Summary 
To test whether the results of the simulator study could be replicated in a real-world setting, we repeated a study as close as possible 

to Study 1 in a real car on a test track with 23 participants. As it was not feasible to use the manual driving mode frustration induction 
on the test track, Study 2 only used the automated driving mode. Every participant experienced baseline and frustrating drives which 
were all driven on the same test track. Subjective frustration ratings were collected after each drive on a 5-point-scale and as a 
continuous rating after all drives as manipulation check. The methods for Study 2 were the same as in Study 1, except for the driving 
mode (only automated driving) and that participants were brought to a test track before the start of the study, which took about 20 
min. Also, the participants were different from the ones in Study 1. We include a shortened version of the methods again for clarity. 

3.1.2. Participants 
Twenty-three participants were recruited through the institute’s participant pool. The decision to recruit twenty-three participants 

was based on the tradeoff of measuring as many participants as possible within a feasible time of availability of the research car and the 
test track. One participant had to end the experiment early (for urgent private reasons). The n = 22 participants included in the an-
alyses were aged 21 to 58 y (M = 40.8 y, SD = 10.8 y), of which 5 were female and 17 male. As reimbursement for their time, the 
participants received 5 € per commenced half hour for their participation. 

3.1.3. Materials 

3.1.3.1. Set-Up. The experiment was conducted in a test vehicle of the German Aerospace Centre on a test track shown in Fig. 8 
(comparable to SAE Level 4, SAE International, 2014). The participant sat in the driver seat and did not engage in any driving task. A 
security driver was present at all times on the co-driver seat with access to break and throttle. The car drove with a maximum speed of 
30 km/h on a track of roughly 1.6 km that is shown in Fig. 8. The UI was displayed on a tablet (Microsoft Surface Pro 7, 12.3′) that was 
attached over the centre console of the car. During all drives, the participant’s face and body were recorded at 15 frames per second 
with one frontal camera and one that was placed above the screen displaying the UI. The latter was used to record the face when a 
participant oriented towards the UI in the automated condition. Another camera recorded the whole scene and was attached between 
the driver and the co-driver seat. All three cameras were network cameras from Axis, model M1065-L, recorded with a resolution of 
1280 × 800 pixels. 

3.1.3.2. Stimuli. Frustration was induced through interaction with an in-car UI. The participants were told to receive a 2€ reward upon 
successful completion of their task. The participants read the same story before all three drives. In this story, they were asked to drive 
an automated car to a business meeting. The application used for interaction was exactly the same as in Study 1. 

Baseline condition (‘Baseline’): In the baseline condition, the participants were asked to visit a website, which could be accomplished 

Fig. 6. Identification of individuals based on nearest neighbor in Euclidean space. A rank of 1 means that the vector of expressive units of 
participant 1 in drive ’automated 1′ is closest to themselves, a rank of 2 means that they are second-closest to themselves, etc. When using the vector 
of ‘manual drive 1′ to identify individuals in ‘manual drive 2′ (upper line), 42.5% of participants are already identified in rank 1 (i.e., closest 
to themselves). 
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easily. They were then asked to press the one button that appeared in different places of the UI. They were told to have no time pressure 
and to interact with the UI as natural as possible. 

Frustration condition (‘Frust1′ and’Frust2′): In the frustration condition, the participants received a call from their ‘boss’, who told 
them that they were urgently needed for another, more urgent meeting and needed to turn around immediately to arrive on time. The 
participants then had to change the destination of the navigation system. Through ambiguous naming of buttons, unclear icons, and 
unintuitive paths, this was hard to achieve within 7 min. In the second automation condition, a ‘boss’ called and asked the participant 
to very urgently join an online conference with clients. Again, the UI was so difficult to understand that it was hard to reach the goal of 
joining the online conference. 

3.1.3.3. Measures 
3.1.3.3.1. Subjective frustration rating as manipulation check. An emotion questionnaire was filled in after every drive. In a first step, 

the participants filled in a questionnaire that asked four distraction questions about gaze behavior in line with the cover story. Af-
terwards, the participants rated an emotion scale based on the positive and negative affect scale ‘PANAS’ (Krohne et al., 1996) and the 
dimensional scales of valence, arousal and dominance. This was the same questionnaire as in Study 1. Also, the continuous frustration 
rating was obtained after all drives in the same way as is Study 1. The conditions were ‘Baseline’, ‘Frust1′ and’Frust2′. 

3.1.3.3.2. Facial expression annotation and preprocessing. Three annotators manually annotated expressive units using the video 
recordings of all drives. This was done in exactly the same way as in Study 1 (see Table 1 for annotated expressive units). Also, the 
determination of expressive unit frequency worked as described in Study 1. Again, annotations included the expressive units that were 
defined in the facial action coding system (Ekman, & Rosenberg, 1997), but were broadened to include head, body, and hand 
movements. Expressive unit frequency was calculated by counting the absolute occurrence of expressive units in a first step and then 
divided by the length of the drive. 

3.1.4. Procedure 
Participants arrived and first filled in an informed consent and a data privacy statement. They were then brought to a test track, 

which took about 20 min. Before the start of the study, the participants were informed about the video recording, potential risks of 
driving in an automated vehicle on a test track with safety driver (e.g., the experience of motion sickness) according to the vehicle 
safety concept and the rough duration of the experiment. The participants were informed that they could take a break or abort their 
participation at any time. All participants provided written informed consent to take part in the study and the video recording. The 
participants were told the cover story that the study investigated gaze behavior in automated driving. This was done to conceal the true 
aim of frustration induction and enable natural emergence of emotions. To reduce effects that came from unfamiliarity, all participants 
experienced an automated drive before the start of the experiment until they said to be adapted to the driving. This took five minutes 
on average. After the three drives, the participants were informed about the true goal of the experiment (evoking frustration) and the 
necessity to conceal this goal with a cover story. They then gave a continuous frustration rating for all three drives. The whole pro-
cedure took 2 h on average. The collected data were handled and saved in line with the European General Data Protection Regulation. 

3.1.5. Experimental design 
Each participant experienced three drives in a within-participants design. In all three drives, the car drove in fully automated mode, 

i.e. the participant did not engage in any driving task (see Fig. 7). Both driving modes consisted of one baseline drive and two 
frustration-inducing experimental conditions each. The order of the drives was determined by a balanced Latin square design for all 
participants, which means that every condition was driven in every position, and also the order of the drives was balanced (see for 
example Kim & Stein, 2009). After each drive, participants gave a 5-point frustration rating. After all drives, participants provided a 
continuous frustration rating. Both served the purpose of a frustration induction manipulation check. During all drives, cameras 
captured the participant’s face and body in order to assess participants’ expressions. 

3.1.6. Data analyses 

3.1.6.1. Manipulation check analysis. A Spearman rank correlation coefficient of the continuous subjective frustration rating with the 
emotion scale rating was calculated because the data was not normally distributed. We tested whether frustration induction was 
successful by comparing all conditions’ frustration ratings against one another by a Friedman’s test, as the assumption for a repeated 
measured ANOVA were not fulfilled. Kendall’s W was used for measuring effect size. The conditions were ‘Baseline’, ‘Frust1′ and 

Fig. 7. Test track on which the automated car was driving. The arrow indicates start and end point of the track.  
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‘Frust2′. 

3.1.6.2. Expression frequency analysis. In a first step, we created a plot that shows the expression frequency over all participants, per 
condition. We tested all conditions’ expression frequencies against one another by a Friedman’s test, as the assumptions for a repeated 
measures ANOVA were not fulfilled. Kendall’s W was used for measuring effect size.We also created a bubble plot displaying all 
expression frequencies of all participants, colored by frustrating vs. non-frustrating drives. The recognition of individuals from one 
drive to another was again realized using a nearest neighbor approach using expressive unit frequencies from drive ‘Frust1′ to classify 
the individual in drive ‘Frust2′. For this, the Euclidean distances between all participants and all drives were calculated from vectors 
containing frequencies of all expressive units. A cumulative curve of the ranks in which the participant was successfully identified 
displayed how well this identification of individuals worked. 

3.2. Results 

3.2.1. Manipulation check 
Frustration induction was successful as rated by the continuous rating, but not the emotion scale rating. Fig. 9 shows the emotion- 

scale rating (left) and the continuous frustration rating of frustration after each drive (right), both per condition. The emotion scale 

Fig. 8. Setup in the automated vehicle: the driver was interacting with a user interface while the car was driving fully automated in Study 2.  

Fig. 9. Mean values over all participants of the continuous rating, per condition. The lines with three asterisks above indicate significant differences 
between conditions of p < 0.001. Participants drove in an automated vehicle and their task was to interact with the in-vehicle user interface. In 
Autom1 they were asked to change the navigation destination, in Autom2 to join an online conference, and in Baseline-Autom to make a search 
engine search, all on the user interface. 
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ratings of all other emotion words can be found in Fig. 15 in the Supplementary Materials. The Friedman’s test revealed that the 
emotion scale frustration rating was not significantly and with no effect according to Cohen (1988) different between conditions, χ2(2) 
= 2.33, p =.31, W = 0.04. However, the continuous rating was significantly different between conditions χ2(2) = 20.73, p <.001, W =
0.47 (shown in Fig. 9), which corresponds to a small effect according to Cohen (1988). Post hoc tests were used with Holm correction 
applied (see Fig. 17 in the Supplementary Materials). The continuous frustration rating was significantly higher in both frustration- 
inducing drives than the baseline drive, but not different between the two frustration-inducing drives. Mean and median values 
can be found in Table 3. The results of each condition’s comparison are presented in Fig. 16 of the supplementary materials. The 
emotion scale rating consisted of 23 other emotion words that were captured to check whether we, unintentionally, triggered other 
emotions in the experiment (see 3.1.3.3.1). None of the 23 other emotion words shows a clear pattern between the conditions (see 
Supplementary Materials, Fig. 15). 

3.2.2. Expression frequency 
Of all annotations, the two raters (not the same as in Study 1) had the same annotation in 51.3% of the time, 27.4% were similar (e. 

g. Lip Suck and Lip Press), and 21.4% were rated by only one of the two raters. With a chance probability of 1/45 = 0.023 for an 
annotated expression, this results in a Cohen’s kappa of 0.51, which corresponds to a moderate inter-rater agreement (Landis & Koch, 
1977). 

Fig. 10 shows the expressive unit frequencies of every condition over all participants. Expressive unit frequencies are significantly 
different between conditions (χ2 (2) = 20.82, p <.001, W = 0.47, npairs = 22). Significant Holm-adjusted pairwise Durbin-Conover tests 
are shown in Fig. 10. Fig. 11 shows the expressive unit frequencies of all participants, split by frustration and baseline drives. It be-
comes apparent that some expressive units have been shown by nearly all participants (Brow Lowerer, Brow Raiser, Chin Raiser, Deep 
Breath, Dimler, Jaw Drop, Lip Press and Smile) and others are only shown by a few of the participants. Generally, expression frequency 
seems to be higher in frustration compared to baseline drives. 

3.2.2.1. Identification of individuals. If participants were individually typical in expressing frustration, their expressions should be 
more similar to themselves than to other participants in different drives. Using a nearest neighbor approach, individuals were iden-
tified in one drive based on their expressive unit frequencies in the second. As can be seen in Fig. 11, this worked better for the direction 
of recognizing the individual in drive ‘Frust2′ from information of drive ‘Frust1′: 42.86% of participants were their closest neighbor 
from drive ‘Frust1′ to drive ‘Frust2′, 52.39% were their first or second-closest neighbor. From drive ‘Frust2′ to ‘Frust1′, only 23.81% of 
participants are their closest neighbor, but already 38.1% are their first- or second-closest neighbor. Chance level is 1/21 = 4.8%. 

3.3. Summary 

Study 2 was conducted in a real car on a test track and measured expressive units shown in baseline and frustration-inducing drives. 
The continuous frustration rating as manipulation check confirmed that frustration was induced as intended, whereas the emotion 
scale rating did not reveal any difference between drives. The identity of the individual is correctly classified as closest neighbor in 
already 42.86% (23.81% in the reverse case) of participants, which is clearly above the chance level of 4.8%. This points towards a 
person-typicality of non-universal expressive units. 

4. General discussion 

The purpose of this work was to determine the interindividual variance in expression of in-vehicle frustration. Therefore, we 
conducted a driving simulator study and a real-world driving study that consisted of baseline and frustration-inducing drives. Sub-
jective frustration ratings were obtained and facial and bodily expressive units were annotated for all drives. As a result, evidence for 
individual-typical, expressive units of frustration were found: Within both studies, it was possible to recognize the individual from one 
drive to another by previously shown facial expressions clearly above chance level. We can show that this is true in two different 
driving contexts (automated and manual driving) and is therefore most likely generalizable also to other driving contexts. 

4.1. Frustration induction and expression 

Frustration induction was successful as confirmed by both frustration ratings in the simulator study and by the continuous frus-
tration rating in the real-world driving study. Therefore, we can assume that participants really experienced frustration in the frus-
trating scenarios. The absence of differences among conditions in the emotion scale rating in Study 2 might be explained by the effect 
of novelty of the automated driving experience. We asked participants to rate their level of frustration in the situation as a whole, 
which was the novel and interesting situation of driving a real automated car, while the continuous rating forced participants to 
reconsider the exact situation and moments of frustration within the automated driving experience. In the emotion scale rating of all 22 
rated emotions, positive emotions are generally rated higher than negative emotions in Study 2. This further supports the hypothesis 
that the participants did not differentiate between the generally exciting experience of driving an automated car and the particular 
driving condition. We therefore assume the continuous frustration rating to be a valid indicator of a successful manipulation towards 
frustration and non-frustration. 

Previously described universal expressions of frustration were confirmed in this study, as the expressions that are shown among all 
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Table 3 
Frustration ratings of emotion scale and continuous frustration rating in Study 2. The scale ranged from 1 to 5 in the Emotion Scale Rating with no 
anchor and from 0 to 1 in the Continuous Rating with an anchor at 0.   

condition Mean Median Standard Deviation 

Emotion Scale Rating Baseline 
Frust1 
Frust2 

2.32 
1.82 
2.36  

2.00 
1.50 
2.00  

1.32 
0.96 
1.09  

Continuous Rating Baseline 
Frust1 
Frust2 

0.16 
0.41 
0.52 

0.10 
0.52 
0.59  

0.18 
0.22 
0.26  

Fig. 10. Expression frequencies per condition. *** indicate a significance level of p <.001 in pairwise holm-adjusted Durbin-Conover comparisons.  

Fig. 11. Expression frequency per expression and per participant.  
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participants coincide with the expressions that have previously been described as frustration-typical (see Section 1, Hoque & Picard, 
2011; Ihme, Unni, et al., 2018; Sidney et al., 2005). In addition, we find individual-typical expressions of frustration. This can be 
explained by biological and learning reasons regarding the individual and the specifics of the situation according to Ekman (1992). 
According to Barrett (2017) and Hutchinson & Barrett (2019), each unique instance of emotion is influenced by context, culture and 
previous experiences. Therefore, one would expect expressive units that differ between participants, but are more similar within 
participants, as all these influencing factors are either constant within a participant (culture, previous experience) or kept constant in 
the experiment (context). Scherer et al. (2009) present a model that assumes emotion to be based on several appraisal steps. The major 
checks for these entail a judgement of relevance, implication, coping ability and normative significance for the individual (Scherer, 
2009). Differences in the resulting emotion can be due to differences during these appraisal steps, that result from differences in social 
learning and cultural meaning systems (Scherer, 2009). Furthermore, Scherer explains individual differences in emotional reactions 
through differences in the individual’s evaluation of and role within the situation, depending on their goals, values and coping po-
tential (Scherer, 2009). Similarly, Kaiser and Wehrle (2001) attribute differences in emotion expression to differences in appraisal 
tendencies and coping styles. Overall, the practical meaning of these findings is that for recognition of emotions, universal expressions 
are a good ‘starting point’ that can be refined by learning additional, individual-specific expressions. 

4.2. Limitations and future work 

For future research, it would be interesting to investigate the amount of constancy within an individual over a longitudinal study 
that considers expressive units shown by participants on different days. One limitation of this study is the moderate inter-rater 
agreement of the facial and bodily hand-annotations. However, previous research using hand-annotations in an in-vehicle context 
has similar inter-rater reliabilities (Schömig et al., 2018). As the automated recognition of facial and bodily expressions is still in 
development and far from perfect (see, for example, Dupré et al., 2020), the method of using three annotators is as close as we could get 
to a precise annotation of expressions. Between the drive and the emotion scale questionnaire, participants filled in four short 
distraction questions about gaze behavior. It is a possibility that these questions distracted the participants from their experienced 
emotion and that the reported emotions in the emotion scale rating are therefore slightly different than they would have been right 
after the drive. However, as the four distraction questions were very short, we argue this influence to be minimal. Furthermore, the 
continuous frustration rating was done at the end of all drives, which meant that participants had to remember their frustration level. 
However, the correlation between the continuous rating and the emotion scale rating is quite high. The emotion scale rating was based 
on the PANAS, which is a commonly used method to acquire participant’s emotions (see, for example, Barańczuk, 2018; Frison et al., 
2019; Zhang et al., 2019). It should also be mentioned that this study was focused on frustration and compared it to a baseline 
condition without emotion induction. The results need to be replicated in a study in which other emotions are studied in addition to 
frustration, for example happiness, to test whether other emotions are also characterized by individual-typical expressive units. We 
speculate this to be the case, as it has been shown to be the case in a different context, but otherwise similar study, by Cohn et al. 
(2002). From a theoretical perspective this is also likely, as also for other emotions, previous experience, appraisal steps and previous 
learning experience are constant within a person, but not between persons. 

In summary, our findings can help to improve in-vehicle recognition of frustration by considering individual-typical expressions. A 
successful recognition of frustration enables the system to offer help or information accordingly, and by that mitigate frustration. This 
has been shown to be effective using a voice assistant, ambient light, notifications, or other intervention strategies (Braun et al., 2019; 

Fig. 12. Identification of individuals based on nearest neighbor in euclidean space. A rank of 1 means that the vector of expressive units of 
participant 1 in drive ’frust1′ is closest to themselves, a rank of 2 means that they are second-closest to themselves, etc. When using the vector of 
‘frust1′ to identify individuals in ‘frust2′ (upper line), 42.86% of participants are already identified in rank 1 (i.e., closest to themselves). 
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Zepf et al., 2019). This is meaningful for transportation research, as frustrated drivers are more likely to take risky driving maneuvers 
(Jeon, 2015). A successful frustration mitigation can therefore contribute to safer roads as long as humans are still needed as drivers. In 
the future, the recognition and successful mitigation of frustration is relevant to promote a high ease of use and by that acceptance of 
newly introduced mobility solutions, like for example autonomous vehicles (Xu et al., 2018). Therefore, if frustration is recognized on 
time and help offered, a smooth interaction can be supported and, by this, the acceptance of new mobility solutions can be fostered. 

5. Conclusion 

The findings of this study indicate the relevance and possible individual-typicality of expressive units of frustration in the context of 
emotion recognition for emotion-aware manual and automated vehicles. For in-vehicle recognition of emotion, we therefore suggest to 
train frustration-aware systems on recognizing universal expressive units at first, which can then be refined per user on the user’s 
specific, individual-typical expressive units of frustration. By this, it may be possible to recognize a user’s ‘pain points’ even more 
reliably, which again enables to offer solutions in real-time. By this we hope to achieve less frustration in the vehicle and therefore safer 
roads, and to ameliorate user’s acceptance of new mobility concepts like automated vehicles. 
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Abstract—Within recent years, it has become popular to use
physiological and expression data to ameliorate inter-cognitive
communication between human and machine. One emotion that
is highly relevant for this is frustration, which occurs when a
user’s goal in using a system is failed to be met. This paper
presents a latent variable model that estimates frustration in two
different driving contexts by continuous subjective frustration
rating, facial expressions and frontal alpha asymmetry in the
electroencephalogram. We then compare this full model to models
with less measurement variables to evaluate which measurements
can be left out. Our results show that expression frequency
and subjective frustration make important contributions to the
model of experienced frustration. This paper presents a proof of
concept for using a latent variable model to evaluate collected
measures to estimate an experienced emotion. This method can
inform researchers which measurements are most informative in
different circumstances. Additionally, the method can be used to
evaluate how well purely objective measurements (that are the
only feasible measurements in most applied settings) perform in
comparison to a model including subjective ratings.

I. INTRODUCTION

One goal of Cognitive Information Communication is to
enable an efficient cooperation between artificial and natural
cognitive systems [1]. Frustration is an emotion that is highly
relevant in the mode of inter-cognitive communication (i.e.
between a human and an artificially cognitive system), when 1)
miscommunication can lead to frustration with the interaction
and 2) the artificial system can simulate empathy and by that
improve the cooperation. Generally, frustration occurs when a
goal is failed to be met [2]. It is characterized by low valence,
low dominance and high arousal by the valence arousal domi-
nance model [3], [4], [5]. In contexts in which inter-cognitive
communication occurs, frustration can be mitigated through its
real-time detection and subsequent help that enables success
at the given task. One of these contexts is transportation, in
which different triggers of frustration occur [6] and negative
emotions, such as frustration, negatively affect cognitive skills
used in driving [7]. These numerous triggers of frustration
and the link between frustration and aggressive behavior [8],
such as speeding or risky overtaking maneuvers, suggest that
frustration contributes to the number of aggression-related
accidents, some of which are fatal. In future mobility systems,
where the driver’s skills may not be of importance anymore
due to automated driving systems, a successful and frustration-
free interaction with the human-machine interface becomes
increasingly important [9]. The technology acceptance model

states that usefulness and ease of use are the two most impor-
tant predictors of user technology acceptance [10]. Therefore,
frustration that is experienced when using future transportation
can lead to a diminished acceptance for the system as a whole
and, by that, against a decision to use this transportation
mode. Especially due to the current need for change towards
sustainable transportation modes, it is of interest to motivate
the decision to use specific mobility solutions [11]. One way
to facilitate this is to use in-vehicle frustration recognition and
mitigation integrated into sustainable mobility concepts, like
for example shared mobility.

Previous research has aimed to recognize frustration based
on facial expressions that were captured by cameras. It was
found that Brow Lowerer, Dimpler, Brow Raiser, Smile and
Lip Press are often shown in frustration [12], [13], [14].
Another possible source for the assessment of frustration is
neurophysiological data [15], [16]. A frequently used method
for inferring frustration from electroencephalogram (EEG) is
the calculation of the frontal Alpha Asymmetry Index (AAI)
[17]. The AAI is based on the difference in the activation mea-
sured at frontal electrodes, most commonly F3 and F4, thereby
comparing activity over the left and the right hemisphere of the
brain [17]. Numerous studies have used the AAI as an indicator
for emotion-related state and trait measures, analyzing mood
inductions, alterations, and dispositional mood (e.g. [17], [18]).
Regarding the recognition of emotion by EEG data, [19], [16]
describe that low dominance is characterized by relative left
frontal alpha band activation (negative AAI values when AAI =
F4−F3/F3+F4) and [20] showed that also negative valence
is characterized by relative left frontal alpha band activation
(negative AAI values). According to these results, frustration
as an emotion with low valence and low dominance would be
characterized by negative AAI values.

The component process model of emotion [21] states that
an emotion consists of an event’s appraisal and a subse-
quent appropriate physiological response. Accordingly, previ-
ous studies have measured subjective as well as physiological
data to learn what physiological patterns look like for various
subjectively rated emotions. However, as both the subjective
appraisal as well as the physiological response are part of
the emotion, it is more accurate to estimate the actually
experienced emotion in a model that uses both subjective and
physiological data as estimation variables. This is possible with
the use of a latent variable model as described in [22] and [23].

Latent variable models describe variables that cannot be



observed directly. As explained in [24], the latent variable can
be described by a structural equation: x∗ = h(x;βs) + ϵs,
where h is a (often linear) function, x is a vector of explanatory
variables, βs is a vector of parameters (to be estimated
from data) and ϵs is the (random) error term. Information
about latent variables is obtained from indirect measurements
that are manifestations of the underlying latent variable. The
relationship between a latent variable and measurements is
described by measurement equations with the form  =
m(x∗, y;βm) + ϵm, where  is the reported value, x∗ is the
latent variable, y is a vector of observed explanatory variables,
βm is a vector of Km parameters (to be estimated from data)
and ϵm is the (random) error term.

Latent variable models have previously been used to com-
bine driving simulator and physiological data to model how
stress changes car-following behavior [25] and to model how
a driver’s cognitive effort impacts route choice decisions [26].
However, it is new to use them in the context of assessing
a situation’s frustrativeness based on multimodal data. Such
latent variable models offer a great way to estimate experi-
enced frustration by subjective as well as objective measures.
To evaluate which measures are needed, the comparison to
a full model that considers objective as well as subjective
measurements is proposed in this paper. We will calculate
a full model that uses a subjective frustration rating, facial
expressions and frontal alpha asymmetry in the EEG. We
will then compare the full model with models that each only
contain two of the measurement variables to see if any of
the measurements could be dropped. As context, we use two
reasons for frustration that have been described in [6]: traffic-
related causes and Human-Machine-Interface (HMI)-related
causes for frustration.

II. METHODS

A. Data Collection

1) Experimental Design: Each participant experienced six
drives as described in [27] in a 2 (context: 3 HMI task vs.
3 driving task) x 2 (frustration induction: 2 frustration vs. 1
baseline drive) within-subject design in a driving simulator.
Three of the drives were driven in manual driving mode
(driving task context) and three in automated driving mode
(HMI task context). Both driving modes had one baseline drive
and two frustration-inducing drives each. The drives’ order for
each participant was determined by a balanced Latin square
design.

2) Participants: Fourteen participants were recruited
through the institute’s participant pool. Of these, one par-
ticipant was excluded from data analyses because of a lack
of compatibility of the electrode placement with standard
electrode locations due to a mismatch between head size and
EEG system. Another was excluded post-hoc because the
subjective frustration rating indicated that the induction of
frustration had not been successful, as the subjective frustration
ratings were zero for the whole duration of all drives. Of the
N = 12 participants included in the analyses three were female
and 9 male. Participants’ age ranged from 21 to 59 years
(M= 33.12, SD= 13.96). Participants were informed about
all data recordings, potential risks of driving in simulators
(e.g., the experience of simulator sickness) and the duration

of the experiment. Participants could take a break or abort
their participation at any time. All participants gave written
informed consent to take part in the study. As reimbursement
for their time, the participants received 5 C per commenced
half hour. After the study, the true goal of the experiment
(evoking frustration) was revealed and the necessity to conceal
this goal with a cover story was explained. The collected data
were processed according to European General Data Protection
Regulations.

3) Experimental Set-Up: The data set was recorded in a
360-degree full-view driving simulator [28]. The participants
sat in a vehicle mock-up and could use a conventional interface
with throttle, brake pedal, steering wheel, and indicators to
drive the mock-up car in the driving simulation (Virtual Test
Drive, Vires Simulationstechnologie, Bad Aibling, Germany).
On a tablet (Microsoft Surface Pro 7, 12.3’) mounted to the
car’s center console, a user interface (UI) was shown (required
for the frustration induction).

4) Context: To enable two different task contexts, we
collected data in two different driving modes (manual vs. au-
tomated). In the manual driving mode (’driving task context’),
participants were told to assume they were supposed to meet
friends at a movie theater. The participants were informed that
the average travel time to the movie theater was less than ten
minutes. They were told that, if they arrived at their location
on time, they would receive a 2 C prize. The time remaining
for punctual arrival at the movie theater was displayed on
a clearly visible clock. In the frustration-inducing drives, a
timely reaching of the movie theatre was impeded by two
subsequent slow trucks that could not be overtaken and a long
waiting time at a red light. In the baseline drives, participants
could easily arrive at the movie theatre on time, as there was
little traffic. In earlier investigations, tasks comparable to the
ones used in this study have been demonstrated to successfully
elicit frustration [14], [15], [29]. In the automated driving mode
(’HMI task context’), participants completed a task (joining an
online conference or changing the destination) on the in-car UI
shown on the tablet. Meanwhile, the car drove fully automated
on a highway. The participants were told that if they completed
their work successfully, they would get a reward of 2 C. Before
the start of the experiment, all participants read the same story
in all three automated drives. They were asked to imagine
to drive to a business meeting in an autonomous car. In the
frustration-inducing drives, completing the task on the user
interface was very difficult to do in seven minutes due to vague
button names, imprecise iconography, and confusing click-
paths. In the baseline drive, the user interface was intuitive to
use. Participants were then instructed to push a single button
that appeared in various locations of the UI. They were assured
not to be under any time constraints and asked to interact with
the UI as relaxed as possible. In each of the modes (manual
and automated), participants experienced one baseline drive
and two frustration-induction drives. In the manual driving
mode, we varied the car types and the track between the two
frustration scenarios to disguise the fact that the same driving
scenario was driven twice. Frustrating incidents were the same
in both driving scenarios and took the same amount of time.

5) Procedure: On arrival, participants filled out an in-
formed consent form as well as a data privacy declaration. The
researcher told the cover story that the study was analyzing



changes in gaze behavior between manual and automated
driving modes. This was done to hide the true purpose of
frustration induction and allow spontaneous emotion emer-
gence. To lessen the impact of unfamiliarity, all participants
practiced manual and automated driving modes before the
start of the experiment until they were comfortable with the
simulator and the driving conditions. Following the six drives,
the participants were told of the study’s true purpose. Then,
they provided a continuous post-hoc frustration rating for each
of the six drives. The entire process took 2 hours on average.

B. Measurements

Frontal Alpha Asymmetry: The “CGX quick-30” mobile
EEG system from CGX with a 29-channel layout was utilized
to capture the participants’ brain activity. The channel locations
adhere to the extended international 10-20 layout. Processing
of the EEG data was accomplished by the use of Matlab
2019b. After re-referencing to linked earlobes, two different
filter designs were employed during the processing of the EEG
data, one for the ICA set and the other for the analysis data
set. The high-pass filter cut-off frequency for the ICA set
was specified as 1.25 Hz with a 0.5 Hz transition bandwidth
following [30]. For the analysis data set a 0.3 Hz cut-off
frequency was deployed for the high-pass filter with a 0.2 Hz
transition bandwidth as well as a lowpass filter with a 50 Hz
cut-off frequency and a 10 Hz transition bandwidth following
the filter settings of previous research [16], [19]. For both
sets, a zero-phase Hamming window sinc FIR filter with a
maximal passband deviation of 0.0022 (2 ‰) and a 53 dB
(decibel) stopband attenuation was realized. We removed bad
data from artifacts of individual channels due to for example
the displacement of electrodes or inadequate scalp contact. Bad
channels were removed without the additional removal of bad
data segments. Channels were rejected if they were flat for
more than five seconds, they correlated less than 80 % with
the neighboring channels or the high-frequency noise passed a
threshold of four standard deviations of the channels’ activity.
After the channel rejection, the data was epoched into one-
second segments for further artifact removal processes as well
as for the computation of the channel spectra. Epochs with
a low signal-to-noise ratio were rejected when the channels’
probability of activity or the kurtosis of the data was higher
than the threshold of five standard deviations. In addition, a
delta criterion of ± 250 µV amplitude deviation of the channels
within an epoch was used to exclude noisy data from analysis.
In addition to the rejection of artifacts within epochs or chan-
nels, an ICA was realized to remove artifacts such as muscle
activity, eye movements, and blinks. The manual classification
was performed in unison by two researchers coming into
agreement about the rejection of artifact-laden components.
The resulting rejection matrix was then transferred and applied
to the analysis data set. The analysis was conducted within the
frequency domain of the EEG data, for which a fast Fourier
transformation was used to decompose the EEG data into
frequencies for a fixed window size of one second, for which
length of data points was zero-padded to the next power of two
(512 pts), resulting in a periodogram with a 1 Hz resolution.
The absolute power (in µV 2) of the frequencies was then
approximated using the composite Simpson´s rule. For the
analysis, the absolute power within each frequency was then
divided by the total power of the spectrum (2 - 45 Hz) resulting

in the relative power, which was transformed to a logarithmic
scale (natural logarithm) to achieve a normal distribution for
the resulting measure, following the recommendation of [17].
For the scores of the AAI, the relative spectral power for the
alpha band (8 – 13 Hz) was calculated according to the process
described above. The resulting measure at electrode F3 was
then subtracted from the corresponding measure at F4 within
the same epoch and divided by the overall activity of both
electrodes (F4− F3/F3 + F4).

Subjective Frustration Rating: In order to acquire a time-
resolved indication of frustration, a continuous subjective
assessment was collected when a participant had completed
all drives. The participants assessed their frustration using a
joystick on a scale of 0 to 100 percent while watching the
videos that were recorded during all drives of the whole scene
(the participant’s face was not visible). When not touched,
the joystick could only go in one direction and immediately
returned to zero. The participants received a visual feedback
of their current rating next to the video. They were instructed
to move the joystick according to their level of frustration in
the circumstances depicted in the video. This allowed for the
collection of a continuous frustration rating for each drive and
each participant. For the latent variable model, to match the
EEG data, data points of the subjective frustration rating where
all measurements were available were binned into one second
bins.

Frustration expressions: All facial expressions were anno-
tated by three trained annotators. A majority vote between
these three annotations decided on the final annotation. Facial
expressions previously described as typical for frustration
(Brow Lowerer, Dimpler, Brow Raiser, Smile and Lip Press)
[12], [13], [14] were extracted and their combined expressions
frequency calculated per drive as measured in expression per
minute.

To get an insight into the data and compare differences
between conditions, the complete data used for the latent
variable model was summarized as described in the following
to calculate separate tests. Means were calculated per drive.
Afterwards, the mean of both frustration induction drives was
taken, so that every participant has four values per measure
in total (one for frustration induction, one for baseline, one
for HMI task context and one for driving task context). This
data was checked for normality by Shapiro Wilk test and
subsequently a paired t-test or a Wilcoxon signed rank test
was performed to compare, per measure, differences between
the two frustration conditions and differences between the two
contexts. We decided for testing only main effects for the
purpose of getting an insight into the data and accordingly
adjusted all significance levels by Bonferroni-correction for
multiple tests.

C. Latent Variable Model

Figure 1 describes the relation between the latent variable,
the experimental attributes and the indicators. The latent vari-
able is depicted in an oval, to remark that it is not observed
by the researcher, while attributes and indicators, which are
observed, are depicted in rectangles. The arrows correspond
to causal relations that are accounted for by structural or
measurement equations.
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Fig. 1. Latent variable model between experienced frustration, experimental
condition and measurement variables. Numbers in brackets refer to structural
and measurement equations.

At each timepoint t of the experiment, an individual n
experiences a level of frustration induction fi in a context
cx consisting of a HMI or Driving task. Besides, measures of
alpha asymmetry of the two frontal electrodes (F4−F3/F4+
F3), facial expression frequency Ex and subjective frustration
sf are recorded.

The structural equation 1 relates the latent variable ex-
perienced frustration ef∗, corresponding to the subjectively
experienced frustration, with the attributes of treatment fi
and context cx. The βk are the parameters of interest to
be estimated from data and ϵef is an exogenous error term
representing other factors affecting ef∗.

ef∗
nt = β0+βfifint+βcxcxnt+βfi∗cxfint ∗cxnt+ϵefnt (1)

There are three measurement equations for the latent vari-
able experienced frustration ef∗. The first comes the from
subjective frustration sf that the participants have been asked
to report after all drives. The other measurement equation is
obtained from the measured alpha asymmetry αA of the two
frontal electrodes, F4−F3/F4+F3. The third measurement
equation comes from the per-drive frequency of facial expres-
sions indicative for frustration, Ex.

The measurement equations, in this case are specified as a
linear equation, therefore take the form

sfnt = γsf
0 + γsf

1 ef∗
nt + ϵsf (2)

αAnt = γαA
0 + γαA

1 ef∗
nt + ϵαA (3)

Exnt = γEx
0 + γEx

1 ef∗
nt + ϵEx (4)

where γk is a vector of km parameters (to be estimated
from data) and ϵk is an exogenous (random) error term. All
data was z-transformed before the models were calculated. The
full model as shown in Figure 1 was compared against models
that each only contain two of the three measurement variables.
For this, we calculated the mean standard error per model and
compared them to one another. For calculation of the latent
variable model, due to the z-transformation of the data, γ̂sf

0 ,
γ̂Ex
0 and γ̂αA

0 were set to 0 and ϵsf , ϵEx and ϵαA were set to
1.

TABLE I. PAIRWISE COMPARISONS OF MEASURED VARIABLES.
npairs = 12 FOR ALL MEASUREMENTS.

Mean Median Standard
Deviation

Wilcoxon Signed Rank (V)
or Paired T-Test (t)

Subjective
Rating

Frustration
vs. Baseline

0.17
vs. 0.03

0.12
vs. 0.01

0.15
vs. 0.05

V = 18, p < 0.01,
r = −0.84

Subjective
Rating
HMI

vs. Driving

0.13
vs. 0.07

0.06
vs. 0.02

0.16
vs. 0.09

V = 160, p = 0.08,
r = -0.26

Frustration
Expressions
Frustration
vs. Baseline

1.14
vs. 0.83

0.98
vs. 0.61

0.68
vs. 0.71

V = 82, p < 0.05,
r = -0.33

Frustration
Expressions

HMI
vs. Driving

1.16
vs. 0.87

0.88
vs. 0.85

0.89
vs. 0.48

V = 120, p = 0.1,
r = -0.25

Frontal
AAI

Frustration
vs. Baseline

0.004
vs. 0.002

0.004
vs. 0.002

0.01
vs. 0.02

t(12) = −1.03,
p = 0.31, r = 0.18

Frontal
AAI
HMI

vs. Driving

0.003
vs. 0.003

0.02
vs. 0.006

0.02
vs. 0.02

t(12) = 0.04,
p = 0.97, r = 0.006

III. RESULTS

Figure 2 shows the data for subjective frustration rating,
frustration expressions and frontal AAI by frustration induction
and by context. The pairwise comparisons for all measured
variables are shown in Table I. The subjective frustration rating
is significantly higher in the frustrating drives than the baseline
drives and is higher in the HMI task context than the driving
task context. The frustration expressions were shown more
frequently in frustrating drives than the baseline drives and
were shown more frequently in the HMI task context than the
driving task context. The frontal alpha asymmetry was similar
in the baseline drives and the frustrating drives and very similar
in the HMI task context and the driving task context (see Table
I).

TABLE II. ESTIMATED FULL MODEL.

Estimate Std. error t value Pr(> t)

β̂0 -31.31 13.43 -2.33 0.02

β̂fi 29.76 12.78 2.33 0.02

β̂cx 4.61 2.91 1.58 0.11

β̂fi∗cx 25.73 11.18 2.30 0.02

γ̂sf1 0.02 0.01 2.35 0.02

γ̂αA1 0.00 0.00 0.25 0.80

γ̂Ex1 0.02 0.01 2.35 0.02

The estimation results of the full latent variable model are
shown in Table II. Frustration induction fi had a significant
influence on experienced frustration ef (see β̂fi and β̂cx in
Table II). Also the interaction coefficient β̂fi∗cx is significant.
Due to the z-transformation of the input data, we can interpret
the estimated coefficients as the weights of the respective
indicators. As the coefficients of subjective frustration (γ̂sf

1 )
and expression frequency (γ̂Ex

1 ) are significant and near equal,
this shows that the latent variable has an important and
comparable impact on both measurements. However, the same
cannot be said about the frontal AAI, as γ̂αA

1 is not significant.
These results remain the same when normalizing the model to
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Fig. 2. Measurement Variables by Frustration Induction (A) and Task (B).

TABLE III. COEFFICIENTS AND MEAN STANDARD ERRORS OF THE
LATENT VARIABLE MODELS.

Full Model
(sf , αA, Ex)

Model 2
(αA, sf )

Model 3
(sf , Ex)

Model 4
(αA, Ex)

Frustrating
Tablet Task 28.8 14.8 14 15.9

Baseline
Tablet Task -26.7 -11 -13.1 -18.2

Frustrating
Driving Task -1.56 -2.34 -0.78 1.32

Baseline
Driving Task -31.3 -12.6 -15.3 -21.8

Mean
Standard Error 5.76 2.71 1.74 3.87

expression frequency instead of subjectively rated frustration.
The estimated latent variable results per model can be seen
in Table III. In all models, frustration condition with the HMI
task leads to the highest experienced frustration, frustration
condition with the driving task leads to second-highest experi-
enced frustration, and both baseline conditions lead to lowest
frustration. The full model has the highest mean standard
error (5.76), the model only containing subjective frustration
and expression frequency has the lowest means standard error
(1.74).

IV. DISCUSSION

The aim of this work was to evaluate different contexts’
frustrativeness by a latent variable of experienced emotion
by multimodal data and to compare which measurements are
needed to achieve a model with the lowest standard errors.
Specifically, we estimated how frustrating two different con-
texts were experienced by integrating subjective, EEG and fa-
cial expression data into a latent variable model. The presented
latent variable model approximates experienced frustration
based on subjective as well as objective data, which is chosen
based on the component process model of emotion [21], in

which an experienced emotion consists of an interplay between
subjectively felt and physiologically experienced emotion. We
compared the full model to models with less measurement
variables to test which measurements could be left out to
achieve similar results. In our case, the subjective rating
and the expression frequency both seem to be informative
measurements. This is in line with the significance of the
measurements’ coefficients of the full model. Leaving out the
alpha asymmetry, however, seemed to improve the fit of the
model. Prospectively, this method of model comparisons that
includes objective and subjective data could help researchers to
evaluate which measurements are needed in which situation.
This could differ depending on the exact circumstances: for
example, facial expressions might be shown more often when
other people are around than when a person is alone [31], [32].
Ultimately, the goal in an applied context is a model that only
depends on objective measurement variables, but gives similar
estimation results as a model that also includes subjective
measures, as subjective measures are still the most commonly
used ground truth measure nowadays, but are impractical to
be measured in most applied contexts of emotion recognition.
As the estimated latent variable coefficients are similar in all
models (also the model only including objective data), we can
show that we can approximate the experienced emotion based
on objective data only, with a quality close to that of the model
that contains subjective data.

Of the measurement variables, subjective frustration rating
and expression frequency behaved as expected: the subjective
frustration rating was higher in the frustrating drives with a
large effect size according to [33] and frustration expressions
were shown more frequently in the frustrating drives, also with
a medium effect size. In contrast, the frontal AAI was very
similar in frustrating and baseline drives. This little difference
in frontal AAI could be explained by the fact that all data of the
complete drives were included in the analysis and frontal AAI
is influenced most likely not only by experienced frustration
during that time. For example, [34] find that frontal AAI is
changed by reappraisal processes, which most likely happened
in several moments of the drives.

According to the results of our model, frustration caused
by the unclear user interface was more frustrating than the
frustration caused by the traffic situations in our experi-
ment. These results are in line with results found by [6], in
which participants rated higher frustration for HMI- than for
traffic-related causes. The addition of contextual information
combined with this knowledge of how frustrating a certain
situation typically is experienced might help future endeavors
of recognizing frustration [35].

V. CONCLUSION

This paper presented how latent variable models can be
used to assess which behavioral and psychophysiological mea-
sures are feasible to replace the need for a subjective ground
truth in future real-world applications of frustration recogni-
tion. This can be relevant in order to ensure a successful inter-
cognitive communication between a vehicle and a traveler. On
the long term, when integrated into sustainable (for example
shared) mobility concepts, this improvement could lead to a
more likely decision for sustainable mobility behavior.
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Abstract

Introduction: Designing emotion-aware systems has become a manageable aim through recent developments in
computer vision and machine learning. In the context of driver behaviour, especially negative emotions like
frustration have shifted into the focus of major car manufacturers. Recognition and mitigation of the same could
lead to safer roads in manual and more comfort in automated driving. While frustration recognition and also
general mitigation methods have been previously researched, the knowledge of reasons for frustration is necessary
to offer targeted solutions for frustration mitigation. However, up to the present day, systematic investigations
about reasons for frustration behind the wheel are lacking.

Methods: Therefore, in this work a combination of diary study and user focus groups was employed to shed light
on reasons why humans become frustrated during driving. In addition, participants of the focus groups were asked
for their usual coping methods with frustrating situations.

Results: It was revealed that the main reasons for frustration in driving are related to traffic, in-car reasons, self-
inflicted causes, and weather. Coping strategies that drivers use in everyday life include cursing, distraction by
media and thinking about something else, amongst others. This knowledge will help to design a frustration-aware
system that monitors the driver’s environment according to the spectrum of frustration causes found in the
research presented here.

Keywords: Emotion-aware systems, Frustration, Emotions in driving

1 Introduction
When watching car advertisements, we see empty roads,
happy faces, relaxed people, and children enjoying their
rides. When comparing this to what we experience every
day on the road, reality looks different: We get up too late,
rush to work, and get annoyed about slow vehicles in front
of us while crying children on the back seat take our last
hope of a relaxed start into the day. This is one out of
endless examples that may result in an emotion that can
crucially influence driver’s focus of attention and also well-
being: frustration. Frustration is defined as the emotion that
occurs when a goal is blocked to be reached [5, 15]. It is to
be differentiated from anger, which is directed towards
someone that is responsible for an undesirable event [28].

As stated in the frustration-aggression-hypothesis, frustra-
tion is the emotion that often precedes anger and aggres-
sion (cf. [3, 5, 21]). Previous research clearly shows the
impact that frustration has on driver behaviour and atten-
tion. However, to the best of our knowledge, no study
systematically has investigated frustrating events during
driving and their relative amount of occurrence yet. Hence,
this work aims to shed light on the spectrum of reasons for
which drivers become frustrated, based on subjective re-
ports of the same. In order to study this, the two comple-
mentary methods of a diary study (showing how often
which frustrating situation occurs within a given time) and
focus groups (showing which frustrating events mainly stay
in memory) were employed. In the focus group study, we
additionally investigated user’s daily coping strategies with
frustrating situations on the road.
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2 Previous work
2.1 Frustration during driving
Frustration in driving is critical in manual as well as
automated driving. In manual driving, frustrated drivers
were less aware of potential distractions, their mental state,
and potential dangers in the driving environment [16]. Earl-
ier research has shown that frustrated drivers exhibit more
aggressive driving styles [4, 12, 25]. In automated driving,
frustration might turn out as a central challenge: every user
of modern complex interfaces knows how frustrating it can
be to try to use an interface that does not behave as ex-
pected [14]. Therefore, even during automated driving frus-
tration can occur and may decline acceptance and comfort.
In conclusion, frustration is an emotion that can strongly
affect road safety, user experience and comfort in manual
and automated driving.

2.2 Frustration-aware systems
The concept of designing frustration-aware systems has
emerged due to the above mentioned effects of frustra-
tion on user experience and road safety [18, 22]. The
aim of such a system would be recognition of frustration
and successful mitigation of the same. Three main steps
are necessary to design such a system: 1) recognizing
that a driver or passenger is frustrated, e.g. by means of
physiological measurements or video recordings, 2)
detecting the reason for frustration and 3) offering help
that is tailored towards the specific situation. Several
researchers investigated the first step of recognizing
frustration [1, 11, 19] and the third step of mitigating
frustration (e.g., [6, 13]), but the intermediate step of
detecting its reasons remains elusive [17]. In addition,
knowledge of these environmental factors can crucially
improve the first step of detecting frustration [19]. As a
prerequisite for this step, knowledge of the frustration-
inducing events’ spectrum is required. Therefore, on the
way towards designing frustration aware-systems it is a
necessary step to gain insight into reasons for which
people get frustrated in the vehicle. With increasing
automation accompanied by developments in driver
monitoring, the extent of available sensor technology in
modern vehicles is growing. This is an advantage for
recognizing not only frustration itself, but also reasons
for the same – inside and outside the vehicle. By
understanding the spectrum of reasons for frustration, a
frustration-aware system can be equipped with the
knowledge of which information is relevant to scan in
order to recognize sources of frustration.

2.3 Coping strategies
The last step of designing a frustration-aware system is
to offer help that is specifically tailored towards the
situation at hand. To do so in a user-centred way, inves-
tigation of user’s everyday coping strategies with

frustrating in-car situations is of interest. Various strat-
egies for coping with negative emotions like frustration
have been proposed previously [7, 20]. One example is
Gross [9], who suggests to differentiate coping strategies
into the categories of attentional deployment, response
modulation, cognitive change, situation modification and
situation selection. Situation selection is described as
‘approaching or avoiding certain people, places, or
objects in order to regulate emotions’. This is close to
situation modification, which are ‘active efforts to
directly modify the situation so as to alter its emotion
impact’. Attentional deployment describes the process
of directing attention towards or away from an emo-
tional situation, e.g., looking for distraction. Cognitive
change is defined as changing the cognitive steps ne-
cessary to elicit an emotion. Response modulation
aims to modify the response to an emotion after it is
already fully felt. While coping strategies have been
widely studied, no research so far has investigated
which coping strategies are used in frustrating in-car
situations in everyday life.

2.4 Methods to investigate causes for emotions
Focus groups and diary studies are two common methods
of psychological qualitative analysis [2, 8, 24]. An advan-
tage of diary studies is that participants can report about
their feelings during everyday situations in real-time. Bias
of emotion cause or intensity due to memory is very un-
likely. The benefit of a focus group study is that in-depth
discussion lead to reflection on emotion causes and inten-
sity. In comparison, the diary study is likely to reflect the
amount of day-to-day occurrences of frustration. In con-
trast to that, the focus group study reveals which frustrat-
ing situations stay in memory on the long term. Both
methods have been used previously to investigate emo-
tions on in the road. Underwood et al. [27] used a diary
study in which participants wrote down situations in
which they felt anger over a period of two weeks. The par-
ticipants reported situations after each car journey they
took with help of a microcassette recorder and also rated
their anger on a Likert scale. Huemer et al., [10] used
focus groups to identify anger provoking events in cycling.
They validated these findings by using a diary study. A
common timeframe often used for diary studies is one
week [2, 24]. Similarly, the research presented here has
used a one week - diary study to investigate the spectrum
and frequency of frustrating driving situations, and a focus
group study to identify these situations in-depth and with
a focus on long-term remembered frustrating situations.

3 Diary study
This study set out to explore reasons of frustration by
means of a diary study. By collecting data for one week
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after every car ride, real-life occurring frustrating situa-
tions were captured together with their frequency.

3.1 Methods
Diary data was acquired in February 2019 using paper
questionnaires which were distributed among the authors’
networks. The participants were asked to fill out the
questionnaire at the end of each car drive for seven days
in a row to report their daily frustration experiences
during driving.

3.1.1 Participants
Of 80 questionnaires that were distributed, 51 German-
speaking participants (22 women, three unspecified
gender) returned the questionnaire. The participants’
age range was 20 to 73 years with a mean of 40.9 years
(standard deviation [SD] = 12.5 years). On average, they
drove 17,054 km per year (SD = 11,845 km), and had
their driving license for 24 years (SD = 12.5 years).
Figure 1 shows the distributions of demographic data.

3.1.2 Questionnaire
The German paper questionnaire for the diary study was
custom-designed for the study and had fourteen pages.
The first page contained the declaration of consent. On
page two, the questionnaire’s aim was explained and it
was clarified that situations that cause frustration can
occur before and during the ride. The definition of
frustration was given as ‘emotion that arises through a
goal that is blocked to be reached.’ For each frustrating
situation that occurred to them during the week of data
acquisition, participants were asked to fill in frustration
intensity, a short description of the frustrating situation,
and the importance of the blocked goal. Frustration
intensity and the importance of the blocked goal were
rated on a 5-point Likert-scale (from 1 = ‘not at all’, ‘a
little bit’, ‘somewhat’, ‘very’ to 5 = ‘extremely’).
On page two and three, four examples of how to fill in

the questionnaire were given (for example, ‘I wanted to
check the weather on my smartphone but the browser

crashed all the time’ as very frustrating and a little bit
important goal).
On page four, participants were asked to provide

personal information (age, gender, km/year, year of
driver’s license acquisition).
On pages five to twelve, participants were asked to

report frustrating situations, the level of frustration
intensity and the importance of the goal.
On page 13, it was asked on how many days of the

week they drove and how often they remembered to fill
in the questionnaire.
On the last page, the participants were asked to recall

a maximum of three previous frustrating situations in
driving that they experienced before the diary study.

3.1.3 Data analyses
For data analyses, the paper questionnaires were translit-
erated and three independent raters decided whether or
not the reported situations described the emotion of
frustration according to the definition of the feeling that
arises when a goal is blocked to be reached [28]. The
three raters also decided on categories for reasons for
frustration with an inter-rater-reliability of 99.1%. In
case of disagreement they solved the disagreement by
discussion and agreed on a category together.
Subsequently, the correlation between the importance

of the goal and frustration intensity was calculated. Data
was separated between situations that happened during
the week of data acquisition (pages five to twelve of the
questionnaire) and recalled situations (page 14 of the
questionnaire). In the following, the amount each category
was mentioned was counted, and the mean frustration in-
tensity per category was calculated in R (R Core [26]).

3.2 Results
The participants drove on 6.2 days out of seven on average
and remembered to fill in the questionnaire on 5.9 out of
seven days. 346 situations were described in total, out of
which 88 situations were recalled, i.e., from their previous
driving history. The raters excluded 161 situations because
they described emotions other than frustration. The raters

Fig. 1 Demographic data of participants. a Age distribution, b mileage distribution, c Sex distribution (NA for participants who did not identify
their gender)
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considered 136 out of the 161 situations as ‘anger’. The
other situations were rated as shame (6 situations), fear (3
situations), scare (2 situations), overextension (2 situa-
tions), disgust (1 situation), sadness (1 situation), worry (1
situation). Consequently, 185 frustrating situations were
available for analyses. These situations happened in 128
drives, which results on average in 1.44 situations per
drive. The categories and their respective subcategories for
both the diary study and the focus group study were:

Category Subcategory

Traffic Finding parking
Dense traffic

In-car situations Other passengers/social environment
Human Machine Interface
Technical defects
Events before the start of ride

Weather –

Self-inflicted –

Other –

A Spearman’s correlation between the importance of
the blocked goal and frustration intensity resulted in a
rho of .48, p < .001 (Fig. 2). In this figure, a perfect
correlation would show only large bubbles on the
diagonal line between ‘Frustration Intensity’ and
‘Importance of Goal’. Also, the bigger bubbles on the

right-hand side of the plot indicate that generally more
situations have been rated with a high frustration rating.
The reasons for frustration were categorized into four

categories and eight subcategories. Categories,
subcategories and examples of each can be found in
Table 1, the amount each category was mentioned in
Fig. 3 (situations that occurred during the week of data
acquisition) and Fig. 4 (recalled situations). For
situations that occurred during the week of data
acquisition, most situations were sorted into the
category ‘traffic’ (54.5%), which consisted of the
subcategories dense traffic (31.3%), red lights (9%),
finding parking (7.5%), construction sites (4.5%),
unnecessary traffic rules (1.5%) and unclear traffic
management (0.7%). The category that occurred second-
most was in-car situations (16.4%) which consisted of
the subcategories social environment (6.7%), Human-
Machine-Interface (3%), technical defects (3%), events
before the start of ride (3%) and wrong information
about traffic (0.7%).The third category was weather
(13.4%), which did not have a subcategory. The smallest
category with 9.7% and no subcategories was the self-
inflicted category. Interestingly, the amounts these cat-
egories were mentioned are very similar for the recalled
situations (Fig. 4). The intensity ratings for each subcat-
egory do not show any clear differences between subcat-
egories and are shown in Fig. 5 (situations during the
week of data acquisition) and Fig. 6 (recalled
situations).

Fig. 2 Bubble plot that shows the correlation of importance of goal and frustration intensity. n is the amount of described situations
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4 Focus group study
4.1 Aim
The focus group study was conducted to further
investigate reasons for which drivers become
frustrated. In comparison to a diary study, focus
groups enable discussions between participants, and
make it possible to remind participants to stay with
situations that are suitable according to our
definition of frustration [23]. In addition to finding
out reasons for frustration, the focus groups were
designed to find out methods to cope with
frustrating situations.

4.2 Methods
Seven focus groups consisting of four to six people each
were conducted in July 2019. The participants were
drawn from the Institute’s participant data base.

4.2.1 Participants
In total, 37 participants (14 women) participated. The
mean age was 48.4 years with a range from 19 to 74
years (SD = 20.0 years). The distribution of participants’
demographic data is shown in Fig. 7. They gave their
written informed consent, were native German speakers
and had a valid driver’s license.

Table 1 Frustrating situations sorted by categories and subcategories with examples

Category Subcategory Example

Traffic

Finding parking ‚no free parking spots‘

‚my usual parking spot was taken‘

Dense traffic ‚I had to wait for two red light cycles’

‚standing three hours because of traffic jam’

Red lights ‚I had to wait for 9 min at a closed train gate’

‚many red lights and high traffic density’

Construction sites ‚roadworks and road constriction’

‚long roadworks with speed limits’

Unclear traffic management ‚missing lane change from the center lane to the left lane’

Unnecessary traffic rules ‚many trucks and speed limits for no clear reason’

in-car

Human-Machine-Interface ‚setting up the navigation system was so complicated I had to stop on the right hand side’

‚Android Auto updated, all settings were changed. I had to leave the highway and change back all
settings’

Events before start of ride ‚co-driver complains about driving style’

‚badly cognizable pedestrian because of bad weather conditions’

Social environment ‚argument with my son’

‚car passengers linger at the roadhouse’

Technical defect ‚breakdown of the car, damaged beyond repair’

‚flat tire on the highway’

Wrong information about
traffic

‚Route diversion isn’t displayed in the navigation system’

self-inflicted

‚forgot my chip-card to get into the parking garage’

‚I got caught in a speed trap’

weather conditions

“Having to drive slowly because of snow’

“bad sight because of blinding lights of oncoming vehicles in the snow’

others

‚something clatters in the trunk’

‚only bad music in the radio and everywhere the same music’
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4.2.2 Procedure
Two female moderators lead the focus groups. Each
session started with an explanation of the definition of
frustration, especially in distinction to anger. In the
following, the participants had time to brainstorm
frustrating moments that they had experienced during
driving. The results were collected on a pin board.
Double mentions were kept, too. For each situation, a
rating on the frustration intensity was given on a scale
from one to five by the person who brainstormed the
situation. Subsequently, the participants indicated how
they usually cope with their frustration in the given
moment. Each focus group took about 2 h.

4.2.3 Data analyses
The focus groups’ data (audio recordings and photo
protocols) were transliterated and frustration situations
and coping strategies were categorized (inter-rater-
reliability: 95.9%). For the 19 cases that they disagreed,
a third rater gave a category and the majority vote won.
Frustrating events were categorized into the same
categories and subcategories as for the diary study. Also
coping strategies were categorized into subcategories
and categories. Categories were chosen according to
Gross [9]. In his work, Gross divided emotion
regulation into the categories of situation selection (for
example, avoiding places/people that cause an
emotion), situation modification (i.e., changing the
situation to change the emotion it elicits), attentional
deployment (like distraction), cognitive change (like re-
evaluation of the situation) and response modulation
(e.g. taking a deep breath to calm down). Subsequently,
the amount categories were mentioned was counted

and their mean frustration intensity or helpfulness rat-
ing calculated.

4.3 Results
4.3.1 Frustrating events
In total, 107 frustrating situations and 116 coping
strategies were collected. The category that was
mentioned most often was traffic (63.3%). Other
categories included in-car causes for frustration like
other passengers or the Human-Machine-Interface
(13.1%), self-inflicted causes like starting too late (11.2%)
and weather conditions (e.g., bad sight because of snow
[7.5%]). These four high-level categories were divided
into 13 subcategories (Fig. 8 for amounts and Fig. 9 for
frustration intensity). Examples of situations with their
categories and subcategories can be found in Table 2,
the amount that each category was mentioned in Fig. 8.
The situations that were with more than 5% difference

mentioned more often in the diary study (excluding
recalled situations) were 1) dense traffic (31.3% vs.
16.8%), 2) social environment (6.7% vs. 1.9%), and 3)
weather conditions (13.4% vs. 7.5%). The situations that
were with more than 5% mentioned more often in the
focus group study were slow vehicles (6.5% vs. 0),
unclear traffic management (8.4% vs. 0.7%) and
unnecessary traffic rules (6.5% vs. 1.5%).

4.3.2 Frustration intensity
Descriptive statistics indicate that frustration was
highest for ‘HMI’ and ‘wrong information about
traffic’ and lowest for ‘weather conditions’ and ‘others’
(Fig. 9).

Fig. 3 Amount of frustrating situations that occurred during the week of the diary study. Categories from both the diary study and the focus
group study are shown on the y-axis for comparison
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4.3.3 Coping strategies
Participants described their usual coping strategies with
frustrating situations (Table 3 and Fig. 10) and how
helpful they evaluate them (Fig. 11). According to the
coping strategies proposed by Gross, [9], 35 coping
strategies mentioned were categorized as attentional
deployment, 32 as response modulation, 21 as cognitive
change, 17 as situation modification and 11 as situation
selection. In the subcategories, the strategy mentioned
the most was cursing (18.3%), followed by distraction
by media (17.4%), thinking about something else
(11.3%), prevention strategies (9.6%), thinking
differently about the situation (7.8%), breathing or
relaxing (7%), accepting the situation (6.1%), adapting

one’s own driving style (6.1%), looking for a solution
(5.2%), leaving the situation or taking a break (3.5%),
distraction by others (2.6%), talking to someone about
the situation (2.6%), changing one’s aims (1.7%) and
smoking (0.9%).

5 Discussion
This study was designed to determine the spectrum of
reasons for frustration in driving and possible mitigation
methods for the same. For this, the two methods of a
diary study and a focus group study were employed. In
comparison, the diary study reveals more information
about day-to-day occurrences of frustration. In contrast,

Fig. 5 Frustration intensity sorted by category. Error bars indicate standard error of the mean

Fig. 4 Amount of recalled frustrating situations
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the focus group study explored which reasons for frus-
tration stay in memory on the long term.

5.1 Reasons for frustration
The high correlation between frustration intensity and
importance of the goal supports the definition of
frustration as the emotion that arises when a goal is
blocked to be met [28]. Furthermore, the situations that
lead to frustration during driving were collected and
their frequency counted: traffic (diary: 54.5%, focus
groups: 63.3%), in-car (diary: 16.4%, focus groups:
13.1%), self-inflicted (diary: 9.7%, focus groups: 11.2%),
weather (diary: 13.4%, focus groups: 7.5%) and others
(diary: 6.0%, focus groups: 4.7%). Interestingly, some
differences in the results from the two employed meth-
odological approaches occurred. Especially the
subcategories of dense traffic, social environment and
weather conditions seem to occur more often in day-to-
day-life than they are remembered. Vice versa, situations
that are more often named from memory than they
occur in everyday life are slow vehicles, unclear traffic

management and unnecessary traffic rules. These differ-
ences might be due to the fact that some situations are
frustrating in the moment but less remembered on the
long term. This might have various reasons. For
example, users might show increased acceptance for
frustrating events to which they can relate better or the
reasons of which they understand better. By this,
situations that are frustrating in a situation might be
remembered less on the long term (dense traffic, social
environment and weather conditions). On the other
hand, if reasons are unclear, frustrating situations are
increasingly remembered on the long term (slow
vehicles, unclear traffic management and unnecessary
traffic rules).
Unfortunately, this study could only assess frustrating

situations and coping methods in manual driving. For
automated driving, especially the cases mentioned in the
in-car category would most likely be of interest. Most of
these in-car situations could occur as likely or even
more likely in automated driving. In a study with a
similar goal – finding emotional triggers during a 50 min

Fig. 7 Demographic data of participants. a Age distribution, b Mileage distribution, c Sex distribution (NA for participants who did not identify
their gender)

Fig. 6 Frustration intensity of recalled situations, sorted by category. Error bars indicate standard error of the mean
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car drive - [29] found that traffic, driving task, Human-
Machine-Interface, and navigation most frequently lead
to negative emotions. This is in line with our findings.
To sum up, situations that lead to frustration most
frequently were related to traffic, in-car situations and
self-inflicted causes.

5.2 Coping with frustration
Of Gross' [9] categories, attentional deployment
(distraction, thinking about something else) and response
modulation (cursing, breathing/relaxing) were mentioned
as being used most often. In contrast to this, the
categories of situation selection (prevention strategies)
and situation modification (looking for a solution) were

rated as most helpful. As a concrete example, when asking
participants about their own coping strategies, ‘cursing’
was mentioned the most often and rated as least helpful
on average. A strategy that was rated as very helpful but
only six times mentioned as actually used is ‘look for a
solution’. This is an important gap giving room for
effective intervention.
For a frustration-aware system, this could mean

that after having recognized frustration and its cause,
methods of distraction or a voice assistant helping
with modification of the emotional response are
most interesting to develop. The exact character of
the same is a promising next step for further
research.

Fig. 9 Frustration intensity sorted by subcategories. Error bars indicate standard error of the mean

Fig. 8 Amount that each subcategory was mentioned in the focus groups
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5.3 Implications
The findings of the current research help to determine
what information a frustration-aware assistant needs to
know about the driver’s context. With increasing
availability of sensors in the vehicle, information coming
from these can be used not only for recognition of
frustration, but also its reasons. Based on the current
study, the development of a frustration-aware system
can be enriched by 1) knowledge about where to gather

information regarding causes of driver frustration and 2)
likelihoods of these causes. In combination with the
information of measured frustration level, the system
can offer help or mitigation methods tailored towards
the specific situation.

5.4 Limitations
The generalizability of this study is subject to
limitations. First, the diary study was distributed the

Table 2 Frustrating situations sorted by categories and subcategories with examples

Category Subcategory Example

traffic

Construction sites ‘roadworks’

‘track width of roadworks’

Dense traffic ‘traffic jam due to an accident’

‘slow traffic flow in the rush hour’

Finding parking ‘didn’t find a parking spot’

‘parking in big cities’

Red lights ‘bad traffic light circuit’

‘no green wave on the main street’

Slow vehicles ‘stuck behind a truck on a curvy road’

‘slow car on the road’

Unclear traffic management ‘too many road signs’

‘badly signposted diversion road’

Unnecessary traffic rules ‘unnecessary speed limit’

‘traffic light circuit led to a long latency at night’

in-car

HMI ‘drive in a rental car with a lane departure warning system that
constantly warned me in a roadwork section’

‘infotainment-system hangs while driving’

Social environment ‘co-driver constantly instructs me while driving’

‘co-driver criticizes my driving mode’

Technical defect ‘malfunctions of the car’

‘car didn’t recognize the car key’

Wrong information about traffic ‘obsolete traffic news’

‘suddenly blocked road’

others

‘bad roads (potholes)’

‘too expensive fuel’

self-inflicted

‘got caught in a speed trap’

‘got lost while driving’

weather

‘bad view and difficult driving conditions’

‘too much heat in the car’
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among authors’ networks. This might have led to a
biased group of participants. Second, a diary study
during a longer term than one week might show
different results. It might be interesting to repeat the
study with a larger subject number. Third, data was
acquired only during manual drives. When planning to
use frustration-aware systems in automated driving,
validation of the presented study results is necessary.
Currently, this is a challenging task considering the
spread of automated vehicles. Last, diary studies and
focus groups acquire data by asking participants about

their emotion. The answers can be dependent on factors
other than the primary cause for frustration (for
example, higher frustration if previous events were
frustrating that day). Also, reports on frustration given
in retrospective (after each ride) might differ from
immediate reactions.

6 Conclusion and outlook
The results of this study indicate that reasons for
experiencing frustration in driving are related to traffic
(construction sites, dense traffic, finding parking, red

Table 3 Examples for mentioned coping strategies

Category Subcategory Example

Attentional deployment

Distraction by media ‘turn on music’

‘listen to a podcast’

Think about something else ‘count to ten’

‘try to enjoy the landscape’

Distraction by others ‘distraction through talking to someone’

‘talk to co-driver (to distract myself)’

Response modulation

Curse ‘curse once and call the other an idiot, after that I’m relaxed’

‘yell out of the window’

Breathing/Relaxing ‘massage my earlobes’

‘taking a deep breath’

Smoke ‘smoked a cigarette’

Cognitive change

Think differently about situation ‘I took a step back in thought to get an overview’

‘remind myself that coming home safe is more important than this takeover

Accept situation ‘see the situation more relaxed’

‘I decided to wait’

Talk to someone about situation ‘I talked to my co-driver about the situation’

‘talk about the situation with a friend on the phone’

Change aims ‘communicate that I will be too late’

‘set a new time frame’

Situation modification

Adapt own driving style ‘switch on ACC to 80 (instead of the 100 that is allowed) if streets are crowded’

‘drive slowly’

Look for solution ‘looked for a solution of the problem’

‘ask an expert for help’

Leave situation / take a break ‘look for an alternative route’

‘took a break’

Situation selection

Prevention strategies ‘leave my house on time’

‘avoid places that repeatedly lead to frustration’
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lights, slow vehicles, unclear traffic management,
unnecessary traffic rules), in-car causes (events before the
start of ride, Human-Machine-Interface, social
environment, technical defects, wrong information about
traffic), self-inflicted causes and weather conditions. The
reasons most feasible to target are probably the ones in
the in-car category. By recognition of the frustration’s time
of occurrence combined with tracking the driver’s current
focus of attention (e.g., by eye tracking), the cause for frus-
tration could, e.g., be differentiated between events before
the start of drive (= frustration is recognized right when
the passenger gets into the car) and Human-Machine-
Interface (= frustration occurs while driver interacts with
Human-Machine-Interface). According to the reasons of
frustration, a frustration-aware system could offer help
through the personal assistant or the Human-Machine-

Interface, and algorithms could be trained towards per-
sonal preferences of the user. This help could be inspired
by the coping strategy results: finding a solution is the
most helpful option, but if that is not possible other ways
of mitigating frustration are distraction by others or media
or thinking about something else, amongst others. To
sum up, this study helped to shed light on reasons for
frustration and coping strategies employed by vehicle
users. Further studies are needed to verify the research
presented here, including hypothesis-based experiments
that, e.g., could test for differences between different user
groups (for example by age, driving experience, or cultural
differences). A future questionnaire could additionally ask
participants whether they felt like they were driving differ-
ently due to frustration, e.g., unsafely in terms of speeding
or decreased time headways. Also, the format of a mobile

Fig. 11 Rating of helpfulness of coping strategies. Error bars indicate standard error of the mean

Fig. 10 Coping methods and the amount that they were mentioned
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application could facilitate the conduct of the study with a
larger number of participants or over a longer time period
(e.g. by sending regular reminders). Future research aim-
ing at the design of frustration-aware in-vehicle assistants
could build on the knowledge presented here to improve
the detection of causes for frustration and the design of
optimal coping strategies.

7 Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12544-020-00441-7.
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4
Discussion

Frustration-aware assistance systems hold the potential to make traveling safer and increase
acceptance of new and possibly more sustainable mobility solutions. However, they will
only be helpful if they work in a reliable manner and might change things for the worse if
working poorly. This dissertation presented four original research papers that contribute to
the successful development of such frustration-aware assistance systems by improving the
reliability of frustration recognition. I examined the data collected in Study 1 from three
different perspectives: First, I collected, prepared, and described the data and its characteristics
and challenges when working with the data. Second, I examined and quantified inter-individual
differences in frustration expression. For this, I used not only the data from Study 1, but also
from Study 2. Third, I evaluated the method of using a latent variable model to compare the
influence different measurement modalities have on estimating experienced frustration. Finally,
in Study 3, I examined causes for which drivers become frustrated during driving in a diary
study. In the remainder of this chapter, I will discuss how the presented research contributes to
the advancement of developing FAAS, give an outlook for future directions of the development
of emotionally aware assistance systems. Last, I will discuss ethical implications of FAAS, and
finally discuss a vision of how our current transportation system can be changed for the better
by developing emotionally aware assistance systems.

4.1 Data Sources and Estimators - Traveler

The first part of this dissertation sheds light on how frustration can be measured by answering
research question 1: ‘How can we classify frustration by multimodal measurements?’. For
this, we conducted a driving simulator study with 50 participants (Study 1) and a real-car
driving study with 23 participants (Study 2). We induced frustration with traffic-related and
Human-Machine-Interface (HMI)-related tasks that were difficult to achieve. We measured
facial and bodily expressions, EEG data, ECG data, and skin conductance during all drives.
We collected subjectively experienced frustration by a Likert-scaled questionnaire after every
drive. In addition, participants saw their drives’ video recordings after they were done with the
experiment. Based on this, they gave a continuous frustration rating with a joystick and visual
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feedback of their current rating. We compared expression frequencies during baseline and
frustration-inducing drives and confirmed previously described frustration-typical expressions
(Grafsgaard et al., 2013; Hoque and Picard, 2011; K. Ihme, A. Unni, et al., 2018) of Brow
Lowerer, Dimpler, Brow Raiser, Smile, and Lip Press. In addition, we used the nearest neighbor
approach to recognize participants from one drive to another out of all other participants,
who worked with an accuracy of 37.5% in the simulator study (chance level: 2.4%) and
42.86% in the real-car driving study (chance level: 4.8%). We, therefore, concluded that
participants showed expressions of frustration that were typical per person, which we called
individual-typical expressions. This individual-typical expression of emotion has previously
been described for other emotions (Cohn et al., 2002). These individual-typical expressions
provide a content-related explanation for previous studies on automated emotion recognition
that used black-box approaches more successfully when training towards an individual person
(DMello and Kory, 2015; Kosch et al., 2020). In practice, frustration recognition could work in
a generalized way at first. With a few ‘training’ drives, a FAAS could learn an individual’s
typical expressions and, therefore, improve recognition performance over time.

Furthermore, I modeled experienced frustration according to the component process model
of emotion (Scherer, 2009), which states that an emotion is accompanied by psychological
and behavioral responses. For this, I used a latent variable model (Ben-Akiva et al., 2002).
Such models have previously been used to model how stress changes car-following behavior
(Paschalidis, Choudhury, and Hess, 2019) and to model how a driver’s cognitive effort impacts
route choice decisions (Agrawal and Peeta, 2021). Castro, Guevara, and Jimenez-Molina (2020)
use a latent variable model to predict transportation mode choices based on physiological
and regularly reported subjective data. The latent variable model has the advantage that
it is possible to model a non-measurable latent variable, like experienced frustration, with
several surrogate measurement modalities. Subsequently, it is possible to build a model that
leaves out one measurement modality, respectively, and to compare these against the full
model. This comparison gives information on how important each measurement modality is
for building the full model. By this, I showed that subjective rating and expression frequency
of frustration-typical expressions are informative additions to a latent variable model of
experienced frustration. Frontal alpha asymmetry, as measured by EEG, did not improve
the latent variable model and therefore did not add new information to the measurement of
frustration. A possible explanation for this is that the context of a driving simulator produces
too much noise in the EEG signal to be utilized in such an applied setting. Previous studies
that used more controlled laboratory conditions did find a difference in AAI in frustration
vs. non-frustration (Reuderink, Mühl, and Poel, 2013). Therefore, EEG measurements are
informative for researchers that test new human-machine interfaces in experimental laboratory
studies. For the development of applied systems like a FAAS, this means that the use of
expressions as an indicator of frustration is more informative than the measurement of AAI.
In addition, measurement by a camera is less intrusive for the user. Future FAAS can use
these insights to get in-situ sensing capabilities by using camera data from a smartphone
attached to the windshield (Bethge, Kosch, et al., 2021). This way, the FAAS could be
easily integrated into everyday navigation apps. Generally, Paper 3 shows that latent variable
models are suitable for evaluating which measurement methods are needed in which context.

68



4.1 Data Sources and Estimators - Traveler

If a measurement (e.g., EEG) shows significant coefficients in the full model containing all
measurements, the latent variable (i.e., the experienced frustration) has an essential impact on
the measurement and is, therefore, useful in estimating the latent variable in future scenarios.
On the other hand, if one decides to trust a combination of measurements in a context, then it
is possible to estimate an unknown latent variable, like for example experienced frustration.
This method, of course, is the ultimate aim of a FAAS.

I showed that the methods used for frustration induction in Studies 1 and 2 were successful
in inducing driving- or vehicle-interaction-related frustration. For future research on frustration
recognition, this means that using dense traffic, slow vehicles, and shortly timed red lights are
suitable for inducing frustration in a manual driving context. For automated driving, HMI
with unclear icons and paths work well. In comparison, the HMI was rated as more frustrating
than the frustrators used in the manual driving use cases. I also found that participants’
frustration rating might be influenced by experiencing something new and exciting during
frustration induction. This influence seemed to be present in Study 2, where participants rated
higher frustration in the frustration-inducing drives than in the baseline drives only in the
frustration rating that was given in a calm setting after the drives in the automated car were
experienced. The frustration rating given after every drive (on-site, in the automated car) did
not differ between frustration-inducing and baseline conditions. Interestingly, the continuous
frustration rating given post-hoc by all participants revealed that frustration built up slowly,
over time, for most participants. This slow buildup is in contrast to other emotions, which are
caused by one event and have a clear ‘spike’ after the emotion-inducing event. For example,
most studies regarding the six basic emotions (Ekman, 1992) induce emotions through film
clips or audiobooks (Maryam Fakhrhosseini and Myounghoon Jeon, 2017). However, this
continuous buildup of frustration was not true for all participants. Some participants did
rate frustration in spikes or not at all. We cannot know whether this difference in frustration
rating is due to actual differences in experienced emotion or to the participant’s way of rating
frustration. The fact that frustration built up slowly implicates challenges for its real-time
measurement, as sudden spikes of emotion, and therefore the associated measurements, are
generally easier to detect than gradual changes in measurements.

Overall, the results regarding the recognition of frustration support researchers that aim
to assess frustration in real-time through time-series data such as camera or EEG data. In
comparison to questionnaires, which are commonly used at the end of every experimental
condition (Breyer and Bluemke, 2016), such measurements enable to detect exact moments of
frustration in real-time. They provide an implicit frustration measure while increasing the
temporal accuracy compared to post hoc questionnaires. Implicit and continuous frustration
measures like EEG or expression data have two key advantages: (1) In experimental settings,
researchers can measure frustration as the additional dependent variable in real-time and avoid
that participants solely remember their most frustrating experiences, and report only these in
questionnaires. (2) In real-world settings, currently used machine learning methods lead to
a generalized frustration recognition model that does not consider individual differences in
perceived frustration and their thresholds. Through constant frustration measures, existing
machine learning models can be refined to match individual frustration levels while deducing
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new potential sources for frustration, effectively including them into existing prediction models
and making adaptive FAAS more robust.

4.2 Data Sources and Estimators - Context

The second part of this dissertation researches when opportune moments for mitigation by
FAAS are by presenting contexts that usually lead to experienced frustration in driving. These
presented contexts answer research question 2 of this dissertation: ‘What contexts lead to
in-vehicle frustration?’ For this, we conducted a diary study in which participants reported
frustrating events during one week of driving. These I found to be within the categories of
traffic, in-car causes, self-inflicted causes, and weather conditions. This finding is consistent
with the results from Bethge, Kosch, et al. (2021), who conducted a study where participants
drove and reported their emotions every 30 seconds while contextual data such as cell phone
data, calendar data, and weather and traffic information were recorded. They found that
especially weather and traffic conditions co-occurred with negative emotions (Bethge, Kosch,
et al., 2021). In a follow-up study, Bethge, Coelho, et al. (2023) found that using contextual
data is more robust than using facial expressions for detecting drivers’ emotions. To develop
a complete picture of contextual causes of frustration, additional studies will be needed
that investigate individual differences in elicitors of frustration. A study similar to that of
Bethge, Kosch, et al. (2021), but focused on frustration only, could give important insights
and especially more data on the bandwidth of possible causes of frustration, as well as a better
statistical indication of the occurrence of each elicitor.

In practice, contextual frustration elicitor recognition could first work with the generally
trained algorithm. Then, to improve the measurement, users could agree to customize their
frustration context algorithm by labeling frustrative situations for the first few hours of driving.
By this, individual-typical frustrative situations and the individualized extent of frustration
could be extrapolated. The customization of expressions for frustration would be possible
at the same time. Users of technological systems are more likely willing to share personal
information if the system is personalized to their interests (Chellappa and Sin, 2005) or when
providing it for a global benefit for the wider public (Ziefle, Halbey, and Kowalewski, 2016).
However, a continuous camera measurement in-vehicle might cause privacy concerns. One
solution to this is that the cameras recognizing expressions of frustration are only switched on
when these frustrating situations are recognized, and detected frustration can be confirmed or
dismissed. This combination of contextual and expressive data would pave the way for reliable
frustration detection.

4.3 Mitigation Strategy and Intervention Execution

In this paragraph, I will discuss what a FAAS does upon detecting frustration and how the
resulting frustration mitigation could affect the real world. Krüger et al. (2021) have used
the same setup and frustration induction as Study 1 of this dissertation but used a voice
assistant that empathized with the participant in the frustration-inducing conditions in one
half of the participants. Based on Gross (1998), Krüger et al. (2021) used the mitigation
strategies of situation modification and cognitive change to mitigate frustration in half of the
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participants. While the sample size was too small to reveal differences between the groups
with and without the empathic assistant, a trend showed that participants of the empathic
voice assistant group reported less frustration than the control group without a voice assistant.
Although the voice assistant showed a mitigation trend, there is a gap in how mitigation can
be efficiently communicated with users.

Hence, this paragraph describes how mitigation can be achieved via a communication
modality. The human sensory system reacts differently to notifications with varying urgency.
For example, Glatz et al. (2018) found that drivers perceive verbal commands and auditory
icons differently depending on the auditory design. Since frustration can implicitly lead to
situations where immediate driver attention is required, FAAS can communicate the mitigation
modality that matches the sensory perception of the user. Although the previous study found
that voice assistants lead to mitigation, future research must ensure that voice assistants
communicate such mitigation efficiently. For example, verbal commands can be used when the
user is frustrated and might not pay attention to the cues given by the voice assistant. Instead
of using auditory icons (Glatz et al., 2018), the voice assistant can use verbal commands to gain
the driver’s attention. At the same time, cues that lead to the highest attention levels should
be selective since users will get used to them. Thus, users will stop paying attention to the
mitigation strategy. Isolating mitigation strategies and investigating their design is a relevant
future research field. Especially when assessing mitigation strategies with physiological sensing
(e.g., EEG), research can provide novel insights into isolated mitigation modalities’ sensory
perception and granularities.

4.4 Ethics

A point that is important to consider is that emotions are highly personal. In spaces where a
recognized emotion could become visible to others, it is highly relevant that this information
is concealed. Furthermore, according to the General Data Protection Regulation (GDPR),
data cannot be stored permanently without the user’s consent. Therefore, measured data
must not be saved in the long term. With the same conclusion, K. Ihme, Bohmann, et al.
(2021) developed a data privacy concept regarding a FAAS. It was based on the principle of
’privacy by design’ (privacy is technically integrated when a system is developed) and ’privacy
by default’ (default settings are set to protect the privacy of users). Participants that rated the
concept in an online survey evaluated the indicated measures as rather sufficient or sufficient
on average.

A FAAS that accidentally leaks information about recognized emotions could easily lead to
backlashes. Also, a FAAS that mis-recognizes moments of frustration could lead to acceptance
changes towards the worse very quickly. It is, therefore, essential to ensure that a FAAS
functions well before it is deployed in real-world systems. Furthermore, a FAAS needs to be
designed in a way that avoids discrimination of gender, age, and race. Currently, most data
that is collected to train frustration classification algorithms work with participants that are
WEIRD – western, educated, industrialized, rich, and democratic (Linxen et al., 2021). No
one should be systematically disadvantaged from using FAAS because the system does not
detect their frustration correctly.
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In addition, technological developments and assistance in systems where the human plays
a safety-critical role hold the risk of over-reliance on the system. For example, in the case of a
FAAS, a driver that has not been classified as frustrated might be less cautious when knowing
that they are usually warned in cases their attention and emotions might diminish cognitive
function. This could lead to more risky driving maneuvers or over-reliance on the system in
general, for example, to warn in every critical situation or correct driving mistakes (e.g., lane
keep assistant). On the other hand, travelers could experience loss of control if a FAAS is,
for example, used to decide when a human driver can take back driving control from a highly
automated driving car. Whether frustration is wrongly or correctly detected, in these cases, a
human traveler could feel overruled by the system if they are not allowed to drive in case of
frustration. As a result, frustration could be enhanced instead of mitigated in these cases. A
system that can influence emotions has the potential to be misused in several contexts. For
example, customers could be manipulated into buying products, or citizens could be spied on
by authorities. An extreme example is given in George Orwell’s 1984 (Orwell, 1954):

"It was terribly dangerous to let your thoughts wander when you were in any public place
or within range of a telescreen. The smallest thing could give you away. A nervous tic, an
unconscious look of anxiety, a habit of muttering to yourself – anything that carried with it
the suggestion of abnormality, of having something to hide. In any case, to wear an improper
expression on your face (to look incredulous when a victory was announced, for example) was
itself a punishable offence. There was even a word for it in Newspeak: facecrime, it was called."
— George Orwell, 1984

The possibilities of an automated emotion recognition system should be treated with
caution when considering the following statement from Edward Snowden (Snowden, 2019):

“Technology doesn’t have a Hippocratic oath. So many decisions that have been made by
technologists in academia, industry, the military, and government since at least the Industrial
Revolution have been made on the basis of “can we,” not “should we.” And the intention driving
a technology’s invention rarely, if ever, limits its application and use.” — Edward Snowden,
Permanent Record

4.5 Limitations and Future Work

In order to employ FAAS in the real world, a few steps are still necessary. First, broader data
sets than the one presented in Paper 1 are needed to include culturally different people. Second,
this thesis concentrated on post-hoc recognition, but it is necessary to build algorithms that
detect frustration in real time. Third, by building upon the findings of Paper 2, algorithms
that adapt to individuals in real-time are promising to improve frustration recognition further.
Next, Paper 3 enables a comparison of which measurement methods are needed in which
context. Further research is needed to evaluate which measurement methods are best to use in
slightly different in-vehicle contexts, for example in public transport.

The scope of this thesis was limited to post-hoc analyses and did not yet produce a
closed-loop FAAS. More research on successful mitigation strategies in general but also tailored
towards different contexts and individuals is necessary to achieve this. Then, the next step is
to produce a FAAS that recognizes frustration and reasons for frustration in real-time, initiates
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respective mitigation strategies, and evaluates whether frustration was reduced. The first
step in this direction has been taken by Krüger et al. (2021) (see Section 4.3) and shows that
participants that experienced the frustration mitigation voice assistant reported less frustration
than the participants that did not. First, an evaluation of a closed-loop FAAS is needed to
evaluate its utility in practice fully.

Furthermore, more modalities for the measurement of frustration exist. Previous studies
have used ECG and skin conductance data to recognize frustration (Ding et al., 2020; Egger,
Ley, and Hanke, 2019). The additional use of these data sources could further improve the
recognition of in-vehicle frustration. I recorded ECG and skin conductance data in Studies 1
and 2, but found no differences between frustrating and non-frustrating drives in these measures.
Research finds differences in ECG and skin conductance data between emotional conditions
(DMello and Kory, 2015; Schmidt et al., 2019). For example, W. Yang et al. (2018) detect
moments of frustration during gameplay based on ECG, skin conductance, electromyogram,
respiration, and acceleration data with an F1-score of 68.5% when classifying time segments
into frustration vs. no frustration. Belle et al. (2010) detect moments of frustration and no
frustration based on only Heart Rate Variability (HRV) data with an accuracy of 81.45%
and a sensitivity of 78.1%. However, experience sampling research that collected affective
moments in everyday-life situations has found that physiological responses can be very different
in similarly labeled emotions (Hoemann et al., 2020). DMello and Booth (2022) discuss the
results of the MOSAIC Challenge, in which the U.S. Intelligent Advanced Research Project
Agency (IARPA) funded three teams whose results were rigorously tested for accuracy and
robustness in measuring ‘psychological, physiological and physiological aspects of an individual.’
None of the three teams met the demanded criteria, and several results were null (DMello and
Booth, 2022). Therefore, I argue that a driving study’s situation was too complex to measure
frustration with a two-dimensional measure like ECG or skin conductance.

The analyses of the facial expression frequencies are based on hand annotations of facial
expressions. These cannot be perfect, as facial expressions are not always shown in clear
categories. We, therefore, used two independent annotators and a third that decided on one of
the two annotations. Even though the inter-rater agreement was only moderate according to
Landis and Koch (1977), this is similar to previous research in the field (Schömig et al., 2018).
Human annotations outperform computational annotations nowadays (Dupré et al., 2020).

Analyzing facial expressions in a time-dependent way without using a black-box approach
remains challenging, as long time stretches without any facial expression exist. Such sparse
data is challenging to handle with any statistical method. The method of using expression
frequencies solves this problem but needs to consider the time-series nature of the data. An
approach considering this has been taken in Paper 1 by using a Long short-term memory
model. This method, on the other side, is a black-box approach. Future work could find an
analysis method that is time-dependent and makes results transparent at the same time.

The subjective continuous frustrating rating was collected post-hoc in Studies 1 and 2.
This ‘remembered’ frustration level might have been different from the experienced emotion.
Therefore, we also acquired the widely-used PANAS questionnaire in a modified version that
includes a ’frustration’- item (we called it the emotion scale rating). By this, we compared
the rating after every drive with the continuous rating given after all drives and found a high
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correlation between both ratings. A continuous frustration rating during the drive would have
changed the participant’s task from ’solving the actual task’ to ’solving the actual task and
rate frustration.’ We, therefore, would have measured a frustration rating, not of the actual
task alone, but a frustration rating that could also contain frustration induced by giving the
continuous frustration rating. This is why we decided to use the emotion scale rating and the
post-hoc continuous rating. In Study 3, the method of a diary study and a focus group study
were used. Participants were asked to report their current experience of frustrating moments
and to extrapolate of what they expect to be problems in automated driving. Of course, it is
not possible at this moment to investigate the causes of frustration when automated driving
vehicles belong to a common everyday life. This research would best be repeated in the future
when automated vehicles are integrated into people’s everyday life.

Individuals differ in how they experience frustration, how they express it, in which
circumstances they feel frustration and which mitigation methods work in which contexts.
Therefore, every step of a FAAS should be tailored to individuals rather than using a one-size-
fits-all solution. For example, Bethge, Kosch, et al. (2021) find that a classifier based on context
data for recognition of emotions during driving works much better when using a personalized
classifier. Individuals are, therefore, highly different in which situations they experience as
frustrating. Moreover, physiological changes can be very different per person (Hoemann et al.,
2020). The paper on individual-typical expressions of this dissertation underlines these findings.

An important feature to consider when further developing FAAS is that it will work
implicitly in the optimal case. Frustration would be detected and mitigated without the user
noticing that he or she was on the way to becoming frustrated. For this, it would be necessary
to detect frustration before the user feels it. Also, mitigation would need to be implicit enough
not to be noticed as an intervention by the FAAS. This is, of course, a challenging task.

4.6 Conclusion

This dissertation took one step in the direction of the development of a frustration-aware
assistance system. More specifically, I showed that it is possible to recognize frustration
through facial expressions and that this can be improved by considering individual-typical
expressions. I presented a method that enables the investigation of optimal emotion recognition
methods in different contexts. Lastly, I found common frustrators in driving. These can be
used to improve the recognition of frustration by considering contextual data.

The presented research shows that frustration can be detected in-vehicle reasonably well.
Based on this, future research is promising for interfaces that adapt to sensed user frustration.
The mitigation strategies mentioned in Section 4.3 can be connected with the frustration
sensing modalities to present a closed-loop FAAS. For this, previously mentioned mitigation
strategies, such as empathic voice assistants, can be employed in-situ when detecting moments
of frustration. Consequently, I anticipate improvements in driver experience through reduced
frustration levels.

One use case for a system that recognizes frustration is to provide users with the option to
reflect when, where, and in which transportation modes of their journeys they are frustrated.
By this, they can decide on the frustration-free instead of the fastest route. When collected
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over several participants, continuous data on travelers’ frustration could also indicate points
of frustration in a transportation system. These ’pain points’ could inform transportation
planners, scientists, politicians, and citizens of points that are challenging for the user.

If we imagine a world with fully functioning FAAS, frustration-related accidents could
be reduced, and therefore mobility by car could be safer. When deployed in new mobility
systems, a FAAS could increase user acceptance by decreasing frustration that mainly occurs
when unfamiliar with a system. Ultimately, it might be possible to use FAAS not only in the
context of transportation but also in different contexts, like in meetings, mobile interaction
at the workplace, or to evaluate the customer experience. If slightly adjusted, FAAS could
also help in mental health clinical settings. On the one hand, a FAAS could help patients who
have trouble recognizing emotions. On the other hand, patients that are especially sensitive to
frustration could be helped by specialized FAAS that could be tailored to their specific needs.
Another use case could be to improve mental health and productivity at the workplace. This
could be done by recognizing moments in which employees are unable to solve tasks so that
help can be provided.

If fully functioning, such a FAAS could make ’Vision Zero’ a reality – a vision to eliminate
all fatalities and severe injuries in transportation (Tingvall, 1997). Moreover, in the future,
a FAAS could help, especially in introducing new mobility concepts like automated vehicles.
This development, in turn, is crucial to make a zero-emission vision for transportation reality.
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