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Abstract

Job scheduling is a complex optimization problem with multiple variables, constraints, and
goals. Solving such problems using classical computing can be challenging, since they are
NP-complete and real-world instances can be quite large. Quantum computing is a promising
solution, as it is theoretically faster than classical computing for certain types of problems.
In this thesis, we use the filtering variational quantum eigensolver (F-VQE), a parameter-

ized quantum algorithm, to solve a simplified real-world scheduling problem. The F-VQE
algorithm optimizes solutions by filtering out unpromising ones and using a classical op-
timization routine to refine the remaining solutions. Although the F-VQE algorithm is
based on a paper by Amaro et al. [AMR+22], it has not yet been fully evaluated for solving
scheduling problems. While VQEs have been successful in solving combinatorial optimiza-
tion problems, we seek to assess the performance of F-VQE in solving scheduling problems.
We have two objectives in this research: firstly, to enhance and analyze the F-VQE al-

gorithm, and secondly, to evaluate the potential of quantum computing in solving complex
scheduling problems. To accomplish this, we will compare the performance of the F-VQE
algorithm with other quantum and classical approaches for solving real-world scheduling
problems. This will provide valuable insights into the effectiveness of quantum comput-
ing for solving these problems, as well as identify potential improvements to the F-VQE
algorithm.
We delve deeper into the F-VQE algorithm to identify potential areas for improvement. We

will examine various ansatz designs, different filtering strategies, and encoding techniques.
Worthwhile additions are implemented and tested against.
To compare the F-VQE algorithm’s performance with other variational quantum algo-

rithms and an approach using Grover’s algorithm, which is already implemented by the
DLR. We evaluate the efficiency, scalability, and quality of solutions provided by each algo-
rithm and discuss the potential benefits and drawbacks of the F-VQE for solving real-world
scheduling problems.
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1 Introduction

With the advent of real and usable quantum computers, old and new techniques and al-
gorithms are coming into the spotlight. Although quantum computers are still plagued by
problems such as limited size, vulnerability to errors, high costs, and limited supply, a big
field for new innovations has opened. Especially with companies such as IBM, D-Wave, and
Google making it easier than ever for common researchers to write their own algorithms and
simulations by providing cloud-based access to quantum computers [Pow08, Mai20], with
some even consisting of hundreds of qubits. Research spans a wide spectrum of use cases,
encompassing familiar use cases like post-quantum security, molecular simulation, artificial
intelligence, financial services, and the solving of combinatorial problems. [BBB+21]. Ad-
vances would impact several important real-world applications, such as developing new drugs
or materials, improving already impressive artificial intelligence products, making cryptog-
raphy safer against quantum algorithms, and improving routing and scheduling tasks. Com-
binatorial problems hold particular significance in the realm of computer science. Three
prominent examples are:

• Finding satisfying variable assignments of propositional formulae (SAT)

• Finding the shortest round trips in graphs (TSP)

• Finding the optimal schedule to complete a set of jobs (JSSP)

All three problems are NP-complete [Woe03] and are often, depending on the problem in-
stance size, solved by heuristic approaches, resulting in approximations of optimal solutions.
Combinatorial problems are used to model scheduling and pricing for airlines, to decide
the routes of delivery trucks, or to make media and ad recommendations [Tre11]. It is yet
unclear which or if any quantum algorithms will provide a real advantage for NP-complete
problems over classical computing in real-life applications. It revolves around the distinction
between bounded-error quantum polynomial time (BQP) and P complexity, highlighting
that while quantum algorithms show theoretical promise, their practical applicability de-
pends on factors like algorithm design, available quantum hardware, and the nature of the
specific problem. BQP comprises problems that quantum computers can solve in polynomial
time, and if P = BQP, the advantage of quantum algorithms diminishes.
Even with this in mind and faced with the limitations of today’s Noisy-Intermediate

Scale Quantum (NISQ) devices, multiple organizations and businesses are working on new
methods to outperform classical computers in the near future [Gib19]. For a limited set of
small problem instances, currently existing NISQ devices have already outperformed classical
computers [RSR+17, DBK+22]. The number of operations in current quantum algorithms
must be kept low, since with longer chains of operations, more and more errors are intro-
duced into the system, resulting in inaccurate and unreliable outcomes. Some algorithms,
which have theoretically been proven to outperform classical computers, such as Shor’s algo-
rithm [Sho94], are therefore not yet feasible. Given these hardware limitations, much of the
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1.1. CONTRIBUTION

research effort has been directed toward hybrid algorithms using a combination of classical
and quantum computation.

1.1 Contribution

In this work, we will evaluate and improve the Filtering-Variational Quantum Eingensolver
(F-VQE) algorithm, which can be used to find optimal solutions to a given objective. The
problem or objective is given by its objective function. The objective function encodes the
problem and returns the quality of a given solution. In the range of all potential solutions,
the ground state symbolizes the optimal solution, reflecting the lowest energy, cost, or highest
quality. F-VQE’s quantum nature allows it to navigate this extensive solution space more
efficiently than classical algorithms, presenting numerous applications that might benefit
from its usage. The F-VQE algorithm is based on a paper by Amaro et al. [AMR+22] and
has not yet been fully evaluated for real-life use cases. One potential problem for which
F-VQE could potentially provide an improvement is job scheduling. Here, one tries to find
the best sequence of jobs that uses the least time or resources while not violating any given
constraints. A comprehensive overview of this problem is given in 2.1.1. In this work, we aim
to evaluate the suitability of the FVQE algorithm for job scheduling on the basis of a real
problem at the German Space Operation Center. To evaluate the performance of F-VQE,
we will examine different ansatz and filtering strategies, investigate encoding techniques like
”binary encoding,”, and use a hyperparameter optimization approach.
This work also compares the results of different quantum algorithms with each other.

One solution uses Grover’s algorithm to find all solutions that fulfill the given constraints.
Grover’s algorithm can find the solution for unstructured search problems where nothing
is known (or no assumptions are used) about the structure of the solution space and the
corresponding function. Afterwards, this set of solutions can be classically optimized for
a set of goals. As with Shor’s algorithm, Grover’s algorithm requires a large number of
operations and is therefore not optimally suited for NISQ devices. A deeper explanation of
Grover’s algorithm is given in 2.3.1.
The remaining quantum solutions, the Variational Quantum Eingensolver (VQE) and

the Quantum Approximation Optimization Algorithm (QAOA), are approaches that have
already been thoroughly researched and tested, making them great benchmarks. The algo-
rithms along the F-VQE are part of a set of hybrid approaches in which a quantum computer
serves as one component in the minimization of a set of parameters to ultimately find the
minimum energy value of the objective.

1.2 Outline

Chapter 2 introduces the fundamentals of optimization, quantum computing, and the used
quantum algorithms. Chapter 3 provides a concise overview of related work, while Chapter
4 explains the methods and concepts used in this work. In Chapter 5, we will talk about the
specific problem and discuss the implementation of the final approach. These are evaluated
through simulations and using quantum hardware in Chapter 6, along with a comparison
with other quantum algorithms. Finally, Chapter 7 presents the conclusion and an outlook
for future work.
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2 Background

In this chapter, we will explain the underlying techniques and concepts on which the al-
gorithms in the later parts build. We begin with an introduction to general optimization
problems, explain the special case of job scheduling for the ”job shop scheduling” problem,
and introduce the most common methodology to find optimal solutions for a given objective.
Then we explain the fundamental concepts of quantum computing and why there might be
a potential advantage compared to classical computation. And lastly, we will talk about
important quantum algorithms, some of which will be compared with the F-VQE algorithm.

2.1 Optimization

In the field of problem-solving, optimization is a fundamental discipline that empowers us
to uncover the good solutions in a vast set of potential candidates for intricate challenges.
Optimization, at its core, tries to approximate these solutions in an iterative fashion to
converge to the final solution. Whether it is designing an efficient transportation network,
maximizing profits in business, or fine-tuning a working schedule, optimization plays a pivotal
role in finding optimal solutions from a myriad of possible options [LY16a]. The problem
is defined by an objective function 𝑓(x) considering a set of unknown real variables x =
{𝑥1, ..., 𝑥𝑛}, subject to a system of equalities ℎ(x) = 0 and inequalities 𝑔(x) ≥ 0 known
as constraints. The aim is to calculate the extrema (maxima, minima, or stationary points)
of this function. These extrema correspond to the optimal values for the variables x that
satisfy these conditions and achieve the best possible outcome [LY16b].

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(x)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ(x) = 0, 𝑔(x) ≥ 0

While equality constraints can be put into practice, direct implementation of inequalities
is not viable. Instead, they have to be converted to equalities first. This is achieved by intro-
ducing new variables—slack variables. Slack variables are additional non-negative variables
in the solution vector that function as an offset with the size of inequality bounds. Each
path or inequality needs its own slack variables. The encoding for slack variables can vary,
but a very common one is the binary encoding. Here every slack variable is represented by
the sum

∑︀
𝑙 2
𝑙𝑦𝑙, where 𝑙 is the bit index with a maximum bit length of 𝐿. The conversion

from an inequality to an equality can be shown with a simple example:

2∑︁
𝑖=0

𝑎𝑖 ≤ 2 ≡
2∑︁
𝑖=0

𝑎𝑖 +
1∑︁
𝑙=0

2𝑙𝑦𝑙 = 3 (2.1)

To represent the bounds of the inequality, we need two bits, 𝑙 ∈ {0, 1}. One can see that the
inequality is fulfilled if an allocation of slack variables 𝑦𝑖 for every state of the binary variables

3



2.1. OPTIMIZATION

𝑎𝑖 can be found, so that the equality is also fulfilled. Consider the state 𝑎 = {1, 1, 0}; both
slack variables 𝑦0 and 𝑦1 need to be zero to fulfill the equality. Naturally, there can be no
allocation of slack variables for states that violate inequality to achieve equality. For the
state 𝑎 = {1, 1, 1}, the inequality is not met, and there is no allocation for 𝑦0 and 𝑦1 to fulfill
the equality. The equality in 2.1 can be formulated as an objective function:

𝑓(𝑎, 𝑦) = (3−
2∑︁
𝑖=0

𝑎𝑖 +
1∑︁
𝑙=0

2𝑙𝑦𝑙)
2 (2.2)

which punishes variable allocations by how far they are over the given bounds of 3.
There are various specialized fields that address distinct challenges. For the purpose of

this work, where we delve into combinatorial scheduling problems characterized by discrete
decision variables and frequently involving non-linear objective functions, our primary focus
centers on non-linear binary optimization with constraints.
This subset has two defining features. First, it encompasses problems where at least some

of the constraints or the objective function exhibit nonlinearity; e.g., it contains terms for
variable interactions: 𝑓(x) = 𝑎𝑥1 + bx2x3. Second, within this subset, all variables are
binary, meaning they can only take on two values, typically 0 or 1 - x ∈ {0, 1}𝑛. Combina-
torial problems involve selecting a combination of elements from a set to achieve a desired
outcome, which can be modeled through binary decision variables (0 or 1) to represent the
inclusion or exclusion of elements. This makes binary optimization particularly well-suited
for combinatorial problems. Combinatorial problems also typically involve specific require-
ments, limitations, and conditions that must be adhered to. In addition to the objective
function, a set of constraints must be observed.

2.1.1 Job Shop Scheduling

We now want to introduce the concept of NP-complete combinatorial job scheduling problems
via the well-known example ”Job Shop Scheduling Problem” (JSSP) [Man60]. It is used to
describe the workflow of machines completing jobs in manufacturing and production settings.
For example, consider a company specializing in car manufacturing. This company operates
a range of machines responsible for producing various components of their cars, such as the
engine, chassis, body panels, and interior features. Each car’s production involves a sequence
of tasks that must be performed on specific machines. The company wants to find the order
in which tasks for different cars should be executed on the available machines to minimize
costs, use resources efficiently, and meet demand.
To formalize the JSSP, consider the following scenario: A set of jobs is denoted as 𝐽 =

{𝐽1, 𝐽2, ..., 𝐽𝑛}, and a set of machines is represented as 𝑀 = {𝑀1, 𝑀2, ..., 𝑀𝑚}. Each job
could be a step in the car manufacturing process of our imaginary company. We now try to
find a schedule for all jobs and machines that minimizes, for example, the total time taken
until every job is finished. Additionally, the following constraints have to be observed:

1. Each job 𝐽𝑖 must be executed in a distinct order of machines. 𝑆 ∈𝑀𝑇 , where T is the
number of machines needed for the job 𝐽𝑖.

2. Only one machine 𝑀𝑗 can work on a job 𝐽𝑖 simultaneously.

3. The time a machine 𝑀𝑗 needs to complete its part of the job 𝐽𝑖 can be different
depending on the job and the machine. It is given by: 𝑑(𝑀𝑗 , 𝐽𝑖).

4



2.1. OPTIMIZATION

4. Each machine can handle just one task at any given moment.

Imagine we have three different car types: a sports car, an off-road car, and a truck.
Each type can be represented by a job: {𝐽1 ≡ Sports Car, 𝐽2 ≡ Off-road, 𝐽3 ≡ Truck}.
To complete a car, all parts must be built on their respective machines. To simplify
the process, we will only consider three parts: the engine, the chassis, and the wheels.
{𝑀1 ≡ Engine,𝑀2 ≡ Chassis,𝑀3 ≡ Wheels}. The order in which each car has to be built is
determined by its importance. A sports car needs to look dashing and be lightweight, so the
chassis is most important. The truck needs a good engine to haul its cargo, and the off-road
car needs good tires to master the terrain. In Table 2.1, the sequence of machines and the
duration of production can be seen for each car.

Jobs Sequence of machines with respective duration

1 𝑀2(3) 𝑀3(1) 𝑀1(2)
2 𝑀3(3) 𝑀1(2) 𝑀2(1)
3 𝑀1(4) 𝑀3(2) 𝑀2(2)

Table 2.1: Sequence of machines and duration of production.

Figure 2.1: Gantt chart of the JSP with three jobs and three machines

Gantt charts often serve as a graphical depiction of the solution to the JSSP, providing a
visual representation of the scheduling of individual jobs and machines spanning the entire
required time frame. A chart showcases both the completion time of each job and the optimal
scheduling of the machines. In Figure 2.1, the Gantt Chart shows a scheduling solution for
our car manufacturing problem. According to this chart, the total completion time of the
jobs is 9 time units.
Because the JSSP involves both discrete choices (task sequences) and resource constraints

(machine availability), solving it optimally becomes an intricate computational task. Spe-
cialized optimization techniques, including heuristic and metaheuristic approaches, are often
employed to efficiently navigate the complex solution space [CAS20].

5



2.1. OPTIMIZATION

2.1.2 Gradient Descent

We will now look at how one would find the extrema or an approximation of the extrema
for a problem such as the JSSP. We will describe the basic technique of gradient descent,
which is the standard of reference for all other advanced techniques. It is also used in our
implementation for the VQE and F-VQE.
Gradient descent is a first-order method, which means the objective function, denoted as

f, is required to have continuous first partial derivatives. It is then possible to compute the
gradient ∇𝑓(x) to iteratively update the variables x. The updated variables, denoted as
xk+1, are determined by the formula:

xk+1 = xk − 𝛼𝑘∇𝑓(xk)

with a step size or learning rate 𝛼𝑘, which governs the extent of movement in the direction
opposite to the current gradient, leading towards a local minimum. The value of 𝛼 is
allowed to change at every iteration. Big step sizes reduce the number of steps but risk
overshooting the minimum. Contrary to popular belief, a small step size is more precise,
but the number of iterations to reach the minimum might also be higher. The process
commences with an initial guess, x0, representing an initial cost of 𝑓(x0). As each subsequent
value x1,x2, · · · follows the direction opposite to the gradient of 𝑓 , a sequence is generated:
𝑓(x0) ≥ 𝑓(x1) ≥ 𝑓(x2) ≥ · · · . Through a sufficient number of iterations, the optimal
solution x* with 𝑓(x*) ≤ 𝑓(xi), or an approximation to the best solution, can be reached.
In Figure 2.2, the gradient descent algorithm is presented for energy landscapes with only

one (𝑎, 𝑏) and with two variables 𝑥0, 𝑥1 (c). The energy landscape is computed via the
objective function, where the x-axis represents the parameter values or the input of the
objective function and the y-axis shows the corresponding energy value. For graph (c), an
objective function with two variables is examined, resulting in a three-dimensional energy
landscape. For the optimization process for one variable, small and large step sizes are
compared. It can be seen that the step size has a significant impact on the end result. Also,
the chosen starting point can influence the quality of the solution and the speed at which
the algorithm converges. Even in the example with a small step size, the optimal solution
could have been found if a better starting point was chosen. It is important to note that the
optimal value for 𝛼 is heavily dependent on the chosen algorithm and objective function.
The example in Figure 2.2 shows an improvement for larger step sizes, but this is not always
the case and has to be evaluated for the specific energy landscape. For the graph with two
variables, only one step size is shown. It is important to see how the search for the minimum
gets more and more complicated with the increasing number of variables. Typically, a
lot more variables are employed, rendering the optimization of such a higher-dimensional
landscape exceptionally challenging.

Gradient descent can also struggle with pronounced curvature or erratic gradients since
we encounter multiple saddle points and have to deal with very jittery optimization steps.
The gradient of the objective function at saddle points is negligible or zero, which in turn
leads to only slim optimization steps. In response, Momentum [NBH20] extends the gradient
descent optimization algorithm by facilitating the accumulation of momentum in a specific
direction within the search space. This feature aids in overcoming oscillations resulting from
noisy gradients or large learning rates and enables a smoother traversal of flat regions in the
search space. The update rule for gradient descent with momentum 𝜉 is given by:

xk+1 = xk − 𝛼𝑘∇𝑓(xk) + 𝜉∇𝑓(xk−1)

6



2.1. OPTIMIZATION

a b c

Figure 2.2: Example effect of step size on gradient descent. (a) Small step size. Energy
gradually decreases but does not achieve the optimal point. (b) Large step size.
Energy decreases but oscillates. Avoids local minima and achieves the optimal
point. (c) Gradient descent examining two variables 𝑥0 and 𝑥1 on energy function
simultaneously.

Here, 𝜉 ∈ [0, 1] is the ratio that governs the influence the previous gradient has on the
current update step. In Figure 2.3, the effect of the momentum on oscillating gradients can
be seen. Note that this is only an example and could also lead to an unoptimal result if
the optimization runs into a local minima. It is crucial to find the right approach for the
particular problem and to select good values for 𝜉.

It can also make a big difference in how the gradient ∇𝑓(x) is computed. Two widely
used approaches are mini batch [Rud17] and stochastic [Ket17] gradient descent. In mini-
batch gradient descent, the average of multiple gradients is computed and used to update
the parameters. This leads to smooth update steps but is computationally expensive for
larger batch sizes. This is in contrast to stochastic gradient descent. Here, only one gradient
is computed to update the parameters. Since just one example is considered at a time, the
cost will fluctuate and will not necessarily decrease immediately. It is important to choose
the best method for the concrete problem.
In our case, the approach is constrained by the nature of the quantum computer, where

the quantity of data points is determined by the volume of measurements or samples. When
dealing with a relatively small sample size, the optimization mirrors stochastic gradient
descent, while with a larger number of samples, the optimization takes on the characteristics

7



2.1. OPTIMIZATION

a b

Figure 2.3: Example effect of momentum on gradient descent. (a) No momentum. No in-
formation from the last optimization step is used. (b) with momentum. The
previous gradient informs the next optimization step.

of mini-batch gradient descent.

2.1.3 Other classical approaches

We will now look at other approaches, which we will later use for the implementation of
QAOA.

Conjugate Gradient Descent

Nonlinear Conjugate Gradient Descent (CG) [CLR22] is a gradient descent method that
combines local information (the gradient at the current point) with the previous direction
to choose the direction of the following step:

xk+1 = xk + 𝛼𝑘𝑑𝑘

The set of directions 𝑑 = {𝑑0, · · · , 𝑑𝑛−1} is given by:

𝑑𝑘 =

{︃
−∇𝑓(xk) if 𝑘 = 0

−∇𝑓(xk−1) + 𝛽𝑘𝑑𝑘−1 otherwise

The parameter 𝛽𝑘 specifies the degree to which the previous direction influences the next
direction. In the field of nonlinear CG, it is a big research topic, and there are various
ways to compute the parameter. But regardless of the variant that is used, the produced
directions 𝑑𝑘 can lead to the computation of the following directions 𝑑𝑘+1 > 0. In such a
case, the algorithm can no longer guarantee a decrease in this direction. To circumvent this,
the algorithm restarts the direction search by setting the new direction. 𝑑𝑘+1 = −∇𝑓(xk)
every time 𝑑𝑘+1 > 0.

Powell’s algorithm

Powell’s algorithm (Powell) [Pow64] is a numerical optimization algorithm that focuses on
finding the optimal solution within a local region of the function’s search space as opposed
to seeking the global minimum or maximum across the entire search space.

8



2.1. OPTIMIZATION

Powell’s algorithm initially starts with a random point within the function’s search space
𝑥0. Additionally, it maintains a set of search directions 𝑑 = {𝑑0, · · · , 𝑑𝑛−1} similar to CG.
The initial search directions are often aligned with the coordinate axes. The update step
consists of minimizing 𝑓(x𝑘 + 𝛼𝑘d𝑘) for each direction 𝑑𝑘.

xk+1 = xk +
𝑛−1∑︁
𝑖=0

𝛼𝑘𝑑𝑘

where
∑︀𝑛−1

𝑖=0 𝛼𝑘𝑑𝑘 is added to the set of direction vectors used in the next update step. On
the other hand, the largest vector 𝛼𝑖𝑑𝑖 is removed from the set. These steps are repeated
iteratively until no significant improvement is made.

Constrained Optimization by Linear Approximation

COBYLA [CLR+20] is also a non-gradient-based optimization method. It instead uses a
numerical optimization method for constrained problems where the derivative of the objec-
tive function is not known. It iteratively approximates the actual problem with a linear
programming problem, which is then solved to obtain a candidate for the optimal solution.
The candidate solution is evaluated using the original objective and constraint functions,
yielding a new data point for the approximating linear programming problem. When the
solution cannot be improved anymore, the step size is reduced, refining the search. When the
step size becomes sufficiently small, the algorithm finishes. Due to the fact that linear ap-
proximations tend to be inefficient at a higher number of variables, this algorithm is suited
mostly for small-dimension numbers. Even though our problem is suitable for COBYLA
since it is also a constraint optimization problem, it can require a vast amount of variables,
with scaling layers 𝑝 reducing the efficiency.

Vanishing Gradients

For a lot of optimization problems and variational algorithms, it is a challenge to cope with
barren plateaus and resulting vanishing gradients [TCC+22]. This can have multiple causes,
from choosing a poor objective function or starting initialization to alternative states with
bad overlap. [TCC+22]. The barren plateau is a result of the concentration of measure
phenomenon [Led01] where functions with high dimensional variables and with small local
oscillations are almost constant. The measured states are highly concentrated around a mean
value, and the fraction of states that fall outside decreases exponentially in the number
of variables. This is especially important for us since the number of variables increases
with the number of qubits as well as with the depth of the circuit [Led01]. Gradients
for observables within this flat plateau, where values concentrate around the mean, are
exponentially small. Additionally, all observables can only be measured to a certain precision,
making the distinction between positive and negative values for gradually vanishing gradients
increasingly difficult. [TCC+22]. Changing gradient signs leads to searches resembling
random walks and will result in an exponentially small probability of exiting this barren
plateau. It is essential to combat this phenomenon to guarantee a smooth optimization
process.
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2.2 Quantum Computing

As we will discuss various quantum algorithms going forward, we will give a concise in-
troduction to quantum computing. Quantum computing is an interdisciplinary field that
merges principles from quantum mechanics, computer science, and mathematics to explore
a novel approach to computation. As of now, practical quantum computers remain in the
early stages of development. And near-term quantum computers, with limited qubit counts,
face challenges like noise, error rates, and qubit connectivity.
Computations in classical computers are based on bits, which can have a value of either 0

or 1 at any given time. These bits are manipulated using logic gates. Quantum computers,
on the other hand, employ qubits for computations. The state of a qubit can be represented
as an arbitrary linear combination of states |0⟩ and |1⟩:

|𝜓⟩ = 𝛼 |0⟩+ 𝛽 |1⟩ ; |0⟩ =
[︂
1
0

]︂
, |1⟩ =

[︂
0
1

]︂
; 𝛼2 + 𝛽2 = 1 (2.3)

Here, 𝛼 and 𝛽 are the amplitudes for the respective states |0⟩ or |1⟩ and are complex num-
bers. For 𝛼, 𝛽 ̸= 0, the state of the qubit is in between states |0⟩ and |1⟩. This phenomenon
is known as superposition. The square of the amplitudes represents the probabilities for
which the qubit exists in the states |0⟩ or |1⟩, respectively. This leads to another important
property of qubits: the sum of the squared amplitudes is always equal to 1. Since parameters
𝛼 and 𝛽 are complex numbers, we can also write them in exponential form:

|𝜓⟩ = |𝛼|𝑒𝑖𝜑𝛼 |0⟩+ |𝛽|𝑒𝑖𝜑𝛽 |1⟩
|𝜓⟩ = 𝑒𝑖𝜑𝛼(|𝛼| |0⟩+ |𝛽|𝑒𝑖(𝜑𝛽−𝜑𝛼) |1⟩)

Here 𝜑𝛼 is called the global phase and can be neglected since it has no further impact on the
measurement or other operations. 𝜑𝛽 − 𝜑𝛼, on the other hand, is the relative phase. The
relative phase is important for further quantum operations. In Figure 2.4, the relative phase
can be seen as the rotation around the z-axis. While a rotation around this axis does not
lead to a different measurement probability, it does influence future operations.

Figure 2.4: Bloch Sphere of one qubit [Com09]

In Figure 2.4, the state of a qubit is depicted on a bloch sphere. The state |𝜓⟩ is given as:

|𝜓⟩ = 𝑐𝑜𝑠
𝜃

2
|0⟩+ 𝑒𝑖𝜑𝑠𝑖𝑛

𝜃

2
|1⟩

10
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When measured, this superposition collapses, and the qubit ends up in state 0 with a
probability of |𝑐𝑜𝑠𝜃2 |

2 and in state 1 with a probability of |𝑒𝑖𝜑𝑠𝑖𝑛𝜃
2 |

2 [Hom22]. The super-
position of qubits allows for a much larger and more complex set of possible combinations
and computations compared to classical bits. For example, a system with two bits can
only work with one combination at a time: 00, 01, 10, or 11. A quantum system with
two qubits, on the other hand, can consist of a superposition over all four combinations:
|𝜓⟩ = 𝛼 |00⟩ + 𝛽 |01⟩ + 𝛾 |10⟩ + 𝛿 |11⟩. So although we can only measure one of these four
combinations in the end, a quantum algorithm can manipulate the quantum state and thus
the amplitude of each combination.

2.2.1 Quantum Operations

To change the state of a qubit, a quantum gate is applied to the qubit. Quantum gates
are represented by unitary matrices, which are square matrices with complex numbers as
elements. Unitary matrices preserve the normalization of quantum states and ensure that
the total probability of all possible outcomes remains 1. The application of a quantum gate
to a qubit is equivalent to multiplying the state vector of the qubit by the corresponding
unitary matrix. For example, one can look at the Hadamard gate (H gate). This gate
operates on a single qubit and creates a superposition if applied to one of the basis states.
It transforms the basis states |0⟩ and |1⟩ into equal superposition states, represented as:

𝐻 =
1√
2

[︂
1 1
1 −1

]︂
𝐻 |0⟩ = |0⟩+ |1⟩√

2
, 𝐻 |1⟩ = |0⟩ − |1⟩√

2

The Hadamard gate is often used at the beginning of quantum algorithms to prepare an
initial superposition state.

Figure 2.5: Effect of Hadamard gate on a qubit

One can also design gates that work on multiple qubits at the same time. One such
example is the controlled-NOT gate (CNOT gate). The CNOT gate is a two-qubit gate that
applies a NOT gate to the target qubit if the control qubit is in state |1⟩. A two-qubit 𝑞1, 𝑞2
system is given by its state: |𝜓⟩ = |𝑞2𝑞1⟩ = 𝛼 |00⟩ + 𝛽 |01⟩ + 𝛾 |10⟩ + 𝛿 |11⟩. The CNOT
gate flips the state of the target qubit 𝑞1 while leaving the control qubit 𝑞2 unchanged. The
concrete unitary and the application of the CNOT gate are shown in:

11
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𝐶𝑁𝑂𝑇 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ , 𝐶𝑁𝑂𝑇 |00⟩ = |00⟩ , 𝐶𝑁𝑂𝑇 |01⟩ = |01⟩
𝐶𝑁𝑂𝑇 |10⟩ = |11⟩ , 𝐶𝑁𝑂𝑇 |11⟩ = |10⟩

Several other categories of gates are important for a variety of quantum algorithms. Often
referred to as the NOT gate, the Pauli-X gate flips the state of a qubit from 0 to 1, and vice
versa. Differently, the Pauli-Y and Pauli-Z gates introduce phase shifts and rotations around
the Y and Z axes of the Bloch sphere, respectively. Rotation gates, which also play a major
role in the quantum algorithms we will discuss later, allow for controlled rotations of the
quantum state vector in the complex plane. There are three types of single-qubit rotation
gates: the Rx, Ry, and Rz gates. Each of these gates rotates the state around the given axis
by a parameter 𝜃. For example, the two operations on the state |0⟩: 𝐻 |0⟩ = 𝑅𝑦(𝜋2 ) |0⟩ result
in the same state. (Note, this is not necessarily true if applied to other states.) In figure
2.6, all three rotation gates are applied with an angle of 𝜋

2 , starting with the Ry gate and
ending with the Rx gate. The first Bloch sphere shows the initial state |0⟩; in the second,
the Ry gate is applied, which has the same effect as in 2.5. With the rotations Rz and Rx,
the qubit is brought back to the state |0⟩.

a b c d

Figure 2.6: Bloch sphere after application of (a) no rotation. (b) 𝑅𝑦(𝜋2 ). (c) 𝑅𝑦(
𝜋
2 ), 𝑅𝑧(

𝜋
2 ).

(d) 𝑅𝑦(𝜋2 ), 𝑅𝑧(
𝜋
2 ), 𝑅𝑥(

𝜋
2 ).

Quantum circuits are constructed by combining these gates in specific sequences to per-
form computations and implement quantum algorithms. The choice and arrangement of
gates depend on the desired quantum computation or algorithm being executed. In figure
2.7, one such quantum circuit is depicted to showcase another important quantum effect:
entanglement. The circuit consists of two qubits, 𝑞[0] and 𝑞[1]. starting in state |00⟩. The
quantum operations are applied from left to right, beginning with the Hadamard gate fol-
lowed by the CNOT gate. The control qubit is indicated by the small black dot and line.
The NOT gate is depicted as

⨁︀
. To receive the result of the circuit, the qubits 𝑞[0], 𝑞[1]

need to be measured after state |𝜓2⟩. Since this is an inherently statistical process, multiple
measurements need to be taken to find the probability of all the resulting states.
When two qubits are entangled, their combined states cannot be factored into individual

states. Every operation on one qubit immediately has an effect on the other as well. For
example, one can look at the states |𝜓0⟩, |𝜓1⟩, and |𝜓2⟩ in Figure 2.7:

|𝜓0⟩ = |00⟩

The Hadamard-Gate is applied to the first qubit, resulting in |𝜓1⟩:

|𝜓1⟩ = (𝐻 ⊗ 𝐼) |00⟩ = 𝐻 |0⟩ ⊗ |0⟩ = 1√
2
(|0⟩+ |1⟩) |0⟩ = 1√

2
(|00⟩+ |10⟩)
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a b

Figure 2.7: (a) Quantum Circuit with two qubits starting in state |00⟩, creating a bell state.
(b) Measurement probability for all input states

The CNOT gate is applied to both qubits. It flips the second qubit only if the first is in
state |1⟩:

|𝜓2⟩ =
1√
2
(|00⟩+ |11⟩)

|𝜓2⟩ is a combination of both qubits being 0 and both qubits being 1. This state cannot be
written as a simple product of the states of the individual qubits. If one of the qubits is
measured, the state of the other one can be easily deducted. Were we measuring this circuit
enough times, we would receive the probabilities: 𝑃 (|00⟩) = ( 1√

2
)2 = 50% = 𝑃 (|11⟩).

2.3 Quantum Algorithms

Quantum algorithms are, as the name implies, algorithms that run on quantum computers.
They use the techniques and phenomena described in the section above to achieve a speedup,
or other efficiency improvement, over any possible classical algorithm.

2.3.1 Grover’s Algorithm

One of the most famous quantum algorithms is the Grover algorithm. It was proposed by
Lov Grover in 1996 and was used to solve unstructured search problems [Gro96]. It can find
a marked entry or an entry that satisfies a constraint in an unsorted database. Today, it is
also used as a subroutine for various other quantum algorithms [GWG21, GLRS16]. For our
problem, it is used in its initial form. Grover’s problem can be described more formally as
follows: We have a system with 𝑁 = 2𝑛 states, which we label 𝑠1, ..., 𝑠𝑁 . As in the previous
definition, every state in our system can be seen as an entry in a database. We now want to
find a state 𝑠𝑖 that satisfies an arbitrary condition 𝐶(𝑠𝑖) = 1. While for every other state 𝑠𝑖,
𝐶(𝑠𝑖) = 0. Grover’s algorithm aims to increase the amplitude of the state 𝑠𝑖 and to decrease
the amplitude of every other state 𝑠𝑖.

The algorithm can be divided into three parts. In the beginning, an equal superposition
over every qubit is created. This is easily accomplished by applying the Hadamard gate to
each input qubit. The resulting input state of our system is described as:

|𝜓𝑖𝑛𝑖𝑡⟩ =
1√
𝑁

𝑁∑︁
𝑠=1

|𝑠⟩
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Figure 2.8: Quantum circuit and operations for Grover’s algorithm for one iteration with an
example oracle operator marking state |010⟩.

Note that generally every qubit starts in the state |0⟩; otherwise, one would not get the
resulting state |𝜓𝑖𝑛𝑖𝑡⟩.
The next part encodes the condition 𝐶(𝑠) as a set of gates. This quantum oracle marks

the input state 𝑠𝑖 by flipping its amplitude. To achieve this, another qubit in the state 𝐻 |1⟩
is needed. In Figure 2.8, an example of such an oracle is given: if qubits 𝑞[0], 𝑞[1], and 𝑞[2]
are in state |𝑠𝑖⟩ = |010⟩, the state is marked by applying a bit flip to qubit 𝑞[3]. The state
|𝜓0⟩ after the oracle changes to |𝜓1⟩:

|𝜓0⟩ = |𝜓𝑖𝑛𝑖𝑡⟩
1√
2
(|0⟩ − |1⟩) −→

|𝜓1⟩ = |𝑠⟩ 1√
2
(|𝐶(𝑠)⟩ − |1⊕ 𝐶(𝑠)⟩)

= |𝑠⟩ (−1)𝐶(𝑠) 1√
2
(|0⟩ − |1⟩)

Per the definition of 𝐶, only our marked input state (𝑠𝑖) changes. Every other input state 𝑠𝑖
stays unchanged: |𝑠𝑖⟩ (−1)𝐶(𝑠𝑖) = |𝑠𝑖⟩. The amplitude of our marked input state, however,
does not change. If we were to measure this circuit, it would still result in an equal distribu-
tion. Therefore, in the last part of the algorithm, the diffuser operator, all amplitudes will
be mirrored by their average. This will result in the amplification of our marked amplitude
and a reduction of all other amplitudes. In Figure 2.9, the effect of the oracle and diffuser
operators can be seen for the marked input state |𝑠𝑖⟩ = |010⟩ for the three input qubits 𝑞[0],
𝑞[1], and 𝑞[2].
Parts two and three are repeated a specific number of times to increase the marked ampli-

tude even further. Nevertheless, if these steps are repeated excessively, the marked amplitude
can disproportionately influence the overall average. Since the marked amplitude is nega-
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Figure 2.9: Amplitude distribution of all input states for |𝜓𝑖𝑛𝑖𝑡⟩, |𝜓1⟩ and |𝜓2⟩ as can be seen
in [PSS+21, fig. 1]

tive, this could result in an equally negative average. The mirroring of the marked amplitude
along this negative average can lead to a reduction in our marked amplitude.

2.3.2 Hamiltonian Formulation

There is a wide variety of algorithms concerning Hamiltonians and their eigenvalues, eigen-
states, and ground state [CAB+21, GTD19]. Since this is a crucial concept and is used
throughout this work we will endeavor to explain it here. Hamiltonians are operators de-
scribing the properties of any physical system and are representations of this system’s total
energy spectrum, or eigenvalues [CMP18]. Measuring the system’s total energy yields a spec-
trum of possible outcomes, represented by its eigenvalues. Each eigenvalue corresponds to
a potential measurement for the system’s total energy. There are multiple reasons why one
would want to find the eigenvalues or the ground state of a Hamiltonian. For example, the
ground state of molecules also determines their chemical reactivity, bonding, and stability,
making it essential for understanding chemical reactions [KWPO+11]. And for combina-
torial and optimization problems, finding the ground state corresponds to minimizing the
objective function. Generally, the ground state represents the lowest possible energy state
of the system and, therefore, the most stable configuration of the system.
One rather often used description is the spin-lattice Hamiltonian [SIR+21]. The model

comprises discrete spin variables 𝑠𝑖, which can exist in either of two states, denoted as +1
or −1. These spins are organized in a lattice configuration, enabling them to interact with
adjacent spins. For any two adjacent elements 𝑖, 𝑗 on the lattice, there is an interaction that
is described by a matrix entry 𝐽𝑖,𝑗 . In addition, every element 𝑖 of the lattice has an external
magnetic field (ℎ𝑗).

𝐻 = −
∑︁
𝑖,𝑗

𝐽𝑖,𝑗𝑠𝑖𝑠𝑗 −
∑︁
𝑖

ℎ𝑖𝑠𝑖

In Figure 2.10, an example of a 2D spin-lattice is shown, where we look at the energy of a
single spin and its nearest neighbors. In the example configuration, we can see that, for this
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neighborhood, the system would flip the state of the red vertex since the energy decreases.

Energy for red vertex 𝑖 with 𝐽𝑖,𝑗 = 1
and ℎ𝑖 = 1:

𝐻 = −
∑︀

𝑖,𝑗 𝐽𝑖,𝑗𝑠𝑖𝑠𝑗 −
∑︀

𝑖 ℎ𝑖𝑠𝑖 =
− 1 · [(−1 · 1)+ (−1 · −1)+ (−1 · 1)+
(−1 · 1)]− 1 · [−1] = 3

If vertex 𝑖 changes to +1:
𝐻 = 1 · [(1 · 1) + (1 · −1) + (1 · 1) +
(1 · 1)]− 1 · [1] = −3

Figure 2.10: Hamiltonian as a 2D spin-lattice ising model

This is a reduced representation of Hamiltonians since it does not allow for more than
quadratic terms. This is often enough since a lot of problems can be transformed into a
quadratic one [CD22]. The model can also be extended for higher-order terms, allowing for
cubic or polynomial interactions.
A good example of the Hamiltonian construction for a combinatorial problem is given in

[WHJR18]. For a classical polynomial objective function with binary variables 𝑥1, ..., 𝑥𝑛,
the Hamiltonian can be constructed by substituting the objective function terms via 𝑥𝑖 =
1−𝑧𝑖
2 , 𝑧𝑖 ∈ {−1, 1}. In the resulting polynomial 𝑓(𝑧) =

∑︀
𝐶⊂{1,...𝑛} 𝛼𝐶

∏︀
𝑗∈𝐶 𝑧𝑗 , each occur-

rence of 𝑧𝑖 can be replaced with the Pauli operator 𝜎𝑧𝑖 to finally obtain the Hamiltonian.

𝐻 =
∑︁

𝐶⊂{1,...𝑛}

𝛼𝐶 ⊗𝑗∈𝐶 𝜎
𝑧
𝑗

Where 𝐶 is a subset of all variables or qubits, and the coefficient 𝛼𝐶 is the coupling weight
of the respective subset. [WHJR18] Every subset that is not needed will receive a coefficient
of 𝛼𝐶 = 0.
Let us consider an easy example. We have a classical cost function 𝑓(𝑥) = 2𝑥1 + 8𝑥1𝑥2 +

32𝑥1𝑥2𝑥3 and want to obtain the corresponding Hamiltonian. We replace the variables 𝑥𝑖 =
1−𝑧𝑖
2 and receive the new polynomial: 𝑓(𝑧) = (1−𝑧1)+2(1−𝑧1)(1−𝑧2)+4(1−𝑧1)(1−𝑧2)(1−𝑧3)

Finally, we use the Pauli operators instead of the variables 𝑧𝑖:

𝐻 = 7𝐼 − 7𝜎𝑧1 − 6𝜎𝑧2 − 4𝜎𝑧3 + 6𝜎𝑧1𝜎
𝑧
2 + 4𝜎𝑧1𝜎

𝑧
3 + 4𝜎𝑧2𝜎

𝑧
3 − 4𝜎𝑧1𝜎

𝑧
2𝜎

𝑧
3

It is important to note that we only consider Hamiltonians with the Pauli operator 𝜎𝑧. In
its more general form, the Hamiltonian can consist of all Pauli operators 𝜎𝑥, 𝜎𝑦, 𝜎𝑧, making
it much more complicated.

2.3.3 Quantum Phase Estimation

The Quantum Phase Estimation (QPE) algorithm was introduced by Kitaev, A. Y. [Kit95]
and is used to estimate the phase corresponding to an eigenvalue of a given Hamiltonian.
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However, such a method necessitates deep quantum circuits and therefore long coherence
times [JEM+19a]. Nevertheless, we will take a look at their work and see how one could
apply it to combinatorial problems, such as scheduling.
The first important step is to map the ground-state estimation to a phase estimation.

This is done by constructing a unitary �̂� = 𝑒𝑖𝐻𝜏 , which includes the Hamiltonian H. With
the eigenvalue E of H mapped to the phase of its eigenvalue 𝑒𝑖2𝜋𝜑, the unitary changes to
�̂� = 𝑒𝑖2𝜋𝜑𝜏 with 𝐸 = 2𝜋𝜑

𝜏 . If it is then possible to estimate the phase 𝜑 of the unitary Û, one
can also find the ground state of the Hamiltonian H. The phase-estimation algorithm (PEA)
of Abrams and Lloyd [AL99] is doing exactly that. So let us look at the algorithm in more
detail. It is comprised of two parts: 1. The wave function |𝜓⟩ represents the Hamiltonian.
It is encoded on a qubit register S (state). 2. The register R (readout) is used for the phase
estimation of the wave function |𝜓⟩.

Figure 2.11: Quantum phase estimation as seen in [CCGFR20]

The wave function is encoded via the eigenstates of the Hamiltonian. However, these
are, except for simple Hamiltonians, not known beforehand. Therefore, the input state is
prepared with a good overlap with the ground state. It is then possible to evolve this state
via the unitary U. The resulting state is given by:

|𝑅⟩ ⊗ |𝑆⟩ = (
∑︁
𝑛

𝑒(𝑖2𝜋𝜑)𝑛 |𝑛⟩)⊗ |𝜓⟩

with n enumerating the basis states of R. The inverse Fourier transform is then applied to
the register R, resulting in an approximation of the phase 𝜑, represented in binary. In Figure
2.11, this process is illustrated. The state is evolved by the unitaries 𝑈2𝑖 , and afterwards
the inverse Fourier transform is applied in the dotted box.
One big problem with this approach is the number of qubits needed for the readout register

R. To approximate a real number between 0 and 1 in binary for a chemically meaningful
result, at least 20 qubits are required. This might not be a big factor for bigger problem
instances, where the size of S will be substantially greater than for register R. However, for
today’s hardware, this does pose a significant problem since it also reduces the size of the
problem instances one can examine.
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2.3.4 Variatonal Quantum Algorithms

Variational Quantum Algorithms (VQA) are a subset of quantum algorithms that, in addi-
tion to their quantum part, make use of a classical subroutine. They are widely used for op-
timization problems, quantum chemistry, machine learning, or financial modeling [CAB+21].
They are also particularly well-suited for near-term quantum computers, where error rates
and qubit connectivity limitations may make it challenging to implement more complex
quantum algorithms.
The key idea behind variational quantum algorithms is to use a parameterized quantum

circuit, also known as a variational quantum circuit, to represent a family of quantum states.
In the classical subroutine, the parameters are adjusted based on an objective function. The
structure of the variational circuit can vary. It is often chosen based on the specific problem
being solved [FGG14, GBB+23] or just for maximal expressibility [LAS+22]. In figure 2.12,
a rough outline of the workings of most VQAs can be seen.

Figure 2.12: Schematic representation of the workflow of a VQA

In the following section, we will look at all components of a VQA in more detail.
The ansatz 𝑈(𝑥, 𝜃) is the parameterized quantum circuit. The tunable parameters 𝜃 allow

the circuit to represent a broad class of quantum states. The exact structure of the Ansatz
circuit varies and is sometimes based on the algorithm, the problem, or a specific scheme
to maximize expressibility [CAB+21]. Mostly, they consist of the same building blocks.
Multiple rotation gates (which use the parameters 𝜃 as input) and controlled operations,
such as CNOT gates For more complex problems, larger and more intricate circuits with
more parameters and gates may be required.
To apply VQAs to optimization problems, the problem is mapped onto a quantum system.

This problem has no relation to the quantum system other than acting on the same space or
a subset of qubits as the quantum system. An objective function 𝑓(𝑥, 𝜃) is defined based on
the properties of the quantum state represented by the variational circuit [BMWV+23]. The
objective function serves as a measure of how well the quantum state performs in solving
the problem. In optimization problems, the goal is to minimize or maximize this objective
function to find the best solution. For example, in machine learning tasks, the objective
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function may involve the comparison of the quantum state’s predictions with the true labels.
The circuit prepares a quantum state |𝜓(𝜃)⟩ that depends on the specific values of the

parameters 𝜃. To extract information from the quantum state, it needs to be measured. The
measurement outcomes are classical data points that are probabilistic, representing samples
drawn from the probability distribution of the quantum state. These data points are then
used to calculate the value of the objective function. For optimization problems, this step
quantifies how well the current set of parameters performs in solving the problem.
The classical optimization process aims to find the values of the parameters 𝜃 that lead

to a minimum or maximum value of the objective function, thereby obtaining the best
solution to the problem. Common classical optimization algorithms like gradient descent or
Nelder-Mead are often used for this purpose [CAB+21]. The optimization process seeks to
iteratively update the parameters to improve the performance of the variational circuit. In
each iteration, the parameters of the variational circuit are updated based on the chosen
classical optimization algorithm. The quantum circuit is evaluated, the objective function
is calculated, and the optimization process continues until it converges to a satisfactory
solution.

Parameter Shift Rule

For parameterized quantum circuits, it is also possible to directly compute the partial dif-
ferential equations 𝜕𝐶𝑡(𝜃)

𝜕𝜃𝑗
of the cost function 𝐶𝑡(𝜃) via the parameter shift rule [Cro19].

The parameter-shift rule states that the derivative of a parameterized quantum circuit is
proportional to the difference of two circuits with shifted parameters. Suppose we have an
objective function 𝐶(𝜃) for our quantum circuit with parameterized gates: 𝑈𝐺(𝜃𝑗) = 𝑒−𝑖𝑎𝜃𝑗𝐺,
where 𝐺 is the Hermitian generator and 𝑎 is a real constant. Note that it is, however, not
necessary for the circuit to only consist of parameterized gates 𝑈𝐺(𝜃𝑗). The parameter shift
approach is only applicable if the generator 𝐺 of the gate 𝑈𝐺(𝜃𝑗), or its decomposed sub
gates, have only two unique eigenvalues, 𝑒0 and 𝑒1. The derivative of a single parameter 𝜃𝑗
is given by:

𝜕𝐶(𝜃)

𝜕𝜃𝑗
= 𝑟(𝐶(𝜃 +

𝜋

4𝑟
𝜖𝑗)− 𝐶(𝜃 − 𝜋

4𝑟
𝜖𝑗)),

where 𝑟 = 𝑎
2 (𝑒1 − 𝑒0) is the shift constant and 𝜖𝑗 is the unit vector for the parameter 𝜃𝑗 .

For example, we construct a parameterized circuit with a single qubit and a rotation
𝑅𝑌 (𝜃0) gate. Our objective function is given as the Hamiltonian 𝐻 = 1 − 𝜎𝑧0 . Which is to
say the optimal solution is reached for 𝜎𝑧0 = 1. The cost function of our circuit is given by
the expectation value of this Hamiltonian: 𝐶𝑡(𝜃) = ⟨𝐻⟩|𝜓(𝜃)⟩ for the quantum state |𝜓(𝜃)⟩.
For parameterized rotation gates 𝑅𝑌 (𝜃𝑗) = 𝑒−𝑖

1
2
𝜃𝑗𝑌 , the shift constant is given as 𝑟 = 1

2 .
The derivative of our parameter 𝜃0 is then given by:

𝜕𝐶(𝜃)

𝜕𝜃0
=

1

2
(𝐶(𝜃0 +

𝜋

2
)− 𝐶(𝜃0 −

𝜋

2
) =

1

2
(⟨𝐻⟩|𝜓(𝜃0+𝜋

2
⟩ − ⟨𝐻⟩|𝜓(𝜃0−𝜋

2
⟩)

We initialize our parameter 𝜃0 = 𝜋
2 to create an equal superposition. The corresponding

expectation value is 𝐶𝑡(𝜃0) = ⟨1− 𝜎𝑧0⟩|𝜓(𝜃0)⟩ = 0.5. For the two parameter shifts 𝜋
2 and −𝜋

2 ,
the expectation values are ”0” and ”1”. The derivative of 𝜃0 is then given by:

𝜕𝐶(𝜃)

𝜕𝜃0
=

1

2
(0− 1) = −0.5
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With the updated parameter 𝜃0 = 𝜃0 − 𝛼(−0.5) = 1 for a simple learning rate 𝛼 = 1 the
expectation value of H is given by:

𝐶𝑡(𝜃0) = ⟨1− 𝜎𝑧0⟩|𝜓(𝜃0)⟩ = 0

In the next section, we will look at two very important VQAs. The VQE and the Quan-
tum Approximation Optimization Algorithm (QAOA) Both are later used as a comparison
against the F-VQE algorithm.

VQE

In 2014, Peruzzo and McClean et al. introduced the Variational Quantum Eigensolver (VQE)
as an innovative approach for addressing eigenvalue and optimization problems that remain
beyond the reach of conventional classical computing methods [PMS+14].

The VQE optimizes an upper bound for the ground state 𝜆0 of the given Hamiltonian H
and the quantum state |𝜓(𝜃)⟩. It is given by the equation:

𝜆0 ≤ ⟨𝜓(𝜃)|𝐻 |𝜓(𝜃)⟩ = ⟨𝐻⟩(𝜃)

It is now the goal to find the optimal parameterization of the ansatz circuit to minimize
the expectation value of the Hamiltonian. In an ideal case, the expectation value should
not only be an upper bound for the ground state but also be equal to it. The ansatz
is most commonly initialized as the state |0⟩𝑁 and can be expressed as a unitary gate
U(𝜃) over all qubits N. The expectation value of the Hamiltonian can thus be rewritten
as ⟨𝐻⟩(𝜃) = ⟨0|𝑁 𝑈 †(𝜃)𝐻𝑈(𝜃) |0⟩𝑁 . To compute the expectation value, one can write the
Hamiltonian in a form that is directly measurable on a quantum computer, as we have done
in the previous section. We can then minimize the energy of our problem by minimizing the
sum of the expectation values of each Pauli string ⊗𝑗∈𝐶𝜎

𝑧
𝑗 .

𝐸𝑔𝑟𝑜𝑢𝑛𝑑 = min
𝜃

∑︁
𝐶⊂{1,...𝑛}

𝛼𝐶 ⟨0|𝑁 𝑈 †(𝜃)⊗𝑗∈𝐶 𝜎
𝑧
𝑗 𝑈(𝜃) |0⟩𝑁

The energy for each Pauli sting is 𝐸𝐶 = 𝛼𝐶 ⟨0|𝑁 𝑈 †(𝜃)⊗𝑗∈𝐶 𝜎.
𝑧
𝑗 𝑈(𝜃) |0⟩𝑁 is also the expec-

tation value for that Pauli string and can be computed directly on the quantum device.
But one should note that it is not necessary to have this explicit Pauli string representation

for the Hamiltonian. It is also possible to minimize the energy with an unknown objective
function. The energy is given by 𝐸(𝜃) =

∑︀𝑁
𝑖=0 𝑝𝑖(𝜃)𝑓(𝑥𝑖). where 𝑥𝑖 is the solution for the

state |𝑖⟩ and 𝑝𝑖(𝜃) is the probability to measure the state |𝑖⟩ [ZMS+23]. The expectation value
can then be computed with, for example, a simple average over a number of measurement
samples (K).

⟨𝐻⟩(𝜃) ≡ 1

𝐾

𝐾∑︁
𝑖=0

𝐸𝑖,

where 𝐸𝑖 is the energy corresponding to the kth measured bit string. This can also be
relevant if the objective function cannot easily be converted to a Hamiltonian or if the
resulting Hamiltonian is not sparse enough. This could be the case if the objective function
contains inequalities and slack variables are needed or if there are too many couplings between
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qubits, making the Hamiltonian denser. In both cases, one might consider not formulating
the Hamiltonian directly.
One of the VQE’s key strengths is its compatibility with various quantum hardware,

making it ideal for early quantum computing exploration. It optimizes performance by
leveraging specific quantum architecture strengths and has an intrinsic ability to mitigate
errors through variational techniques. [MRBAG16]

QAOA

As for the VQE The QAOA [FGG14] tries to find an upper bound for the ground state 𝜆0
of the given Hamiltonian H. However, the QAOA uses a different approach to achieve that.
For one, it uses two sets of parameters for the quantum state |𝜓(𝛽,𝛾)⟩. The ground-state
energy is given by:

𝐸𝑔𝑟𝑜𝑢𝑛𝑑 = min
𝛽,𝛾

⟨𝜓(𝛽,𝛾)|𝐻𝑐 |𝜓(𝛽,𝛾)⟩

It also uses a fixed ansatz with a variational depth p. The ansatz circuit is dependent
on the Hamiltonian of the objective function. It is inspired by the quantum annealing
protocol, where a system is initialized in the easy-to-prepare ground state of a local or mixer
Hamiltonian 𝐻𝑥 =

∑︀
𝑖 𝜎

𝑥
𝑖 , which is then slowly transformed to the problem Hamiltonian

𝐻𝑐 [FT11]. The system Hamiltonian 𝐻(𝑡) is dependent on the time 𝑡. The time evolution
of the system Hamiltonian 𝐻(𝑡) is given by: 𝐻(𝑡) ≡ 𝑡𝐻𝑐 + (1− 𝑡)𝐻𝑥. The QAOA, however,
does not use a smooth transition from one Hamiltonian to the other. Instead, it utilizes
a trotterized version where one can decompose the total time evolution into short-time
operations during which the system Hamiltonian is approximately time-independent for each
step. The trotterized ansatz state consists of alternately applying 𝑒−𝑖𝛾𝑖𝐻𝑐 and 𝑒−𝑖𝛽𝑖𝐻𝑥 :

|𝜓(𝛽,𝛾)⟩ = 𝑒−𝑖𝛽𝑝𝐻𝑥𝑒−𝑖𝛾𝑝𝐻𝑐 · · · 𝑒−𝑖𝛽1𝐻𝑥𝑒−𝑖𝛾1𝐻𝑐 |+⟩𝑁

The number of parameters 𝛽 and 𝛾 is given by the depth p of the ansatz circuit. For each
layer p, two parameters are needed. As the number of layers p increases, QAOA demonstrates
a consistent improvement and eventually excels in the asymptotic 𝑝 −→ ∞ limit [FGG14].
At the same time, as the depth and number of parameters increases, local optimization
methods become unreliable [SA19]. As the limitations of these techniques become more
apparent, unlocking the potential of QAOA necessitates progress in the optimization of
variational parameters.
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3 Related Work

Solving combinatorial problems like the JSSP, Max-Cut [DGS18] or the nurse scheduling
problem [LHDC09] is a challenging task for which researchers have tried a vast variety of
solutions [ZDZ+19]. We will therefore explore some of the solutions to give the reader a more
comprehensible impression of how one can go about solving this family of problem instances.
An overview of the complexity of various scheduling variants and optimization strategies is
provided in [ZDZ+19]. Furthermore, we will give a broad overview of different quantum
variational algorithms and their peculiarities, advantages, and disadvantages. And lastly,
we want to discuss a new branch of optimizations in which we move away from classical
algorithms such as gradient descent and use a quantum computer directly to optimize our
objective function.

3.1 Solving Scheduling Problems

First, we will look at different optimization strategies to solve a wide variety of scheduling
problems. We will discuss both classical solutions and quantum ones.

On-Call Operator Scheduling for Satellites with Grover’s Algorithm

3.1.1 Grover’s Algorithm

One of the most important papers for this thesis is the work of the authors Antonius Scherer
et al. at the German Space Operating Center (DLR) in their paper ”OnCall Operator
Scheduling for Satellites with Grover’s Algorithm” [SGGC+21]. This implementation will
also be used in this thesis as a comparison for the variational quantum algorithms we will
present later on. In their paper, the application of Grover’s quantum search algorithm for
scheduling problems with constraints is introduced. Their specific problem is the creation of
valid schedules for on-call spacecraft operators at the DLR. This is particularly interesting
since we will also be working with the same problem later on. We will later explain the
problem in more detail, but the idea is that the DLR is supervising multiple satellite missions
that need to be attended to. The goal is to find a schedule over d days, o operators, and p
positions so that every satellite mission (position) is attended to. At the same time, a set of
constraints needs to be observed. In their paper, they only used three constraints as a proof
of concept. TODO: correct number of constraints Later, we will increase the number of
constraints to six and also use two goals, which are softer constraints. The three constraints
the authors used were:

A Per tuple of day and position, at least one operator needs to be assigned.

B Out of three consecutive days, an operator is only allowed to work two.

C An operator can be assigned to at most one position a day.

22



3.1. SOLVING SCHEDULING PROBLEMS

The paper proposes a method to encode variables of the problem into a quantum state to
use as the input for Grover’s algorithm. This is done via a method called binary encoding as
opposed to the more classical one-hot approach and can reduce the required number of qubits
to encode the problem. One-Hot represents each category as a binary vector, where each
category corresponds to a unique binary pattern, with a single ”1” indicating the presence
of a category and ”0s” elsewhere. Let us look at a very simple example with four categories:
”blue”, ”red”, ”yellow” and ”green”. To encode these in One-Hot, we create a binary vector
with four entries, one for each category.

𝑏 =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ , 𝑟 =

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦ , 𝑦 =

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦ , 𝑔 =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦
For binary encoding, each category is encoded as a binary string. This reduces the number
of needed bits to 𝑙𝑜𝑔2.

𝑏 =

[︂
0
0

]︂
, 𝑟 =

[︂
0
1

]︂
, 𝑦 =

[︂
1
0

]︂
, 𝑔 =

[︂
1
1

]︂
However, in their problem, the authors have three sets of categories: days, operators, and
positions, while binary encoding can only be applied to one of them. The biggest impact
would be achieved if the set with the most categories was represented as binary. This,
however, is a challenge since, with a binary encoding of the days, the size of the representable
state space is reduced and valid schedules may be removed. This representation for 2𝑛 days
can be written as:

𝑑𝑛𝑜,𝑝 =

⎧⎪⎨⎪⎩
0..0 operator o is assigned to position p at day 0

· · ·
1..1 operator o is assigned to position p at day 2𝑛

With the binary encoding of the days, every operator would be forced to work every position
exactly once within the given number of days. This is an unwanted constraint for our
problem definition and would lead to bad results. Instead, they use operators as a set of
binary categories. This also results in an encoding that intrinsically adheres to constraint
A. It thus only reduces the state space by removing invalid solutions. For 2𝑛 operators, the
binary representation yields:

𝑜𝑛𝑑,𝑝 =

⎧⎪⎨⎪⎩
0..0 operator 0 is assigned to position p at day d

· · ·
1..1 operator 2𝑛 is assigned to position p at day d

The main part of the algorithm is the oracle, in which the constraints are encoded. This
is accomplished by incrementing a counter register every time a constraint is violated. Only
for states with zero conflicts is the amplitude negated, resulting in an amplification of these
states by the diffuser operator. We will now exemplarily look at how the authors implemented
constraint C in their oracle. In this constraint, for any day and any operator, we want that
the operator not be scheduled for two or more positions. If this is violated, the counter
register is incremented.
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Figure 3.1: Quantum oracle for constraint C as seen in [SGGC+21]

Figure 3.1 depicts an example oracle constraint C with one day, four operators, and two
positions. Each block checks if one operator works on both positions 𝑝0 and 𝑝1. The
respective positions are encoded on the first two and on the last two qubits. If the qubit
allocation for the positions is the same, the operator with that particular representation is
working on both positions on the same day. Resulting in an increase in the counter register.
Note that even though four ”+1” gates are depicted in the circuit, only one can be activated
simultaneously.
One of the main challenges in this work is that it is not possible to make an accurate

guess as to how many valid solutions there are. This is a major drawback for Grover’s
algorithm since it needs the number of valid solutions a priori to calculate the number of
iterations. If it is unknown, a vast effort has to be extended to approximate the right number
of iterations. Another difficulty is finding the upper bound of constraint violations. This
is needed to initiate the counter register in the right size and to prevent overflows, which
would lead to the wrong classification of correct and incorrect solutions. In their work, the
minimal number of counter qubits and Grover iterations was empirically evaluated for a few
small problem cases. In figure 3.2, four different problem instances are given. For each case,
the success rate is evaluated for one to six counterqubits.
In their follow-up paper, ”Evolving Spacecraft Quantum On-Call Scheduling” [PSPS23],

the authors addressed the problem of the unknown number of Grover iterations. They
implemented the algorithm introduced in [BBHT98] to increment the number of iterations
until an adequate solution is found. They also introduced a number of improvements to
a variety of parts, resulting in a cost reduction ranging from 26% up to 90% depending
on the specific problem and used constraints. In figure 3.3, three major improvements are
compared against the work in the previous paper. In the first graph, the authors improved
the implementation of Constraint C using a different operation to detect violations. In the
second diagram, the results of a new method for Constraint B are presented. Although
the method uses more qubits, the sharp reduction in gate costs is a reasonable trade-off
in the eyes of the authors. And in the last chart, the gate cost for a quantum fourier
transformation-based counter register is shown.
In both papers, their methodology is validated using Qiskit on smaller problem instances

(up to 30 qubits) suitable for existing quantum simulators. The authors successfully show-
cased the process of finding a valid schedule for the ”on-call spacecraft operator scheduling”
problem through a quantum search algorithm.
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Figure 3.2: Success rate for different number of counter register qubits as seen in [SGGC+21]

3.1.2 QAOA

Another directly linked paper, ”Quantum Approximation for Wireless Scheduling” by Choi,
Jaeho et al. [COK20], uses the QAOA to solve scheduling problems. Since we will also com-
pare our solution with an implementation of QAOA, we will now look at how this paper ad-
dresses a wireless scheduling problem for device-to-device (D2D) wireless networks [KCM16].
D2D networks are special cases of peer-to-peer (P2P) networks where the connectivity of

their devices is determined by a shared medium with interference. Furthermore, connectiv-
ity is dependent on the distance between devices. A link between them only exists if they
are in the same transmission range. In contrast, in a P2P network, communication can be
implemented via a common IP connection. In a D2D network, direct connections between
pairs of user devices can be established without the need to pass through a central base sta-
tion, unlike an IP connection. In particular, each device caches popular files independently,
according to a certain optimal distribution. When a user needs a file not already present in
its own cache, it obtains it from one of its neighbors through a short-range D2D link. As
user density increases, the aggregate storage capacity of the D2D network increases linearly
with the number of users, while the average communication distance decreases.
Suppose such a D2D wireless network consists of a set of one-hop links, where each consists

of one transmitter and its associated receiver. Each link has a queue of data that needs to
be sent. Naturally, the queue backlog should be kept to a minimum for optimal workflow.
If some links are sending data at the same time, it might lead to interference and corrupt
the transmission. This behavior can be represented as a conflict graph, where each link is a
vertex. If two links are connected by an edge, interference would occur if both were active.
The conflict graph can be formulated by its adjacency matrix 𝐸𝑖,𝑗 for links 𝑙𝑖, 𝑙𝑗 :

𝐸𝑖,𝑗 =

{︃
1 if 𝑙𝑖 and 𝑙𝑗 interfere

0 otherwise

The goal is to find a schedule of links where no interference occurs. This means no two
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a b

c

Figure 3.3: Gate cost for three major improvements as seen in [PSPS23]. (a) Improved
implementation of Constraint C The scale is logarithmic, so we see a reduction
of a factor of roughly 100 in some basic cases. (b) Improved implementation
of Constraint B. Scale is 100.000 steps. (c) Improved implementation of the
counter register Comparison of different counter register sizes with a constant
control qubit amount of 3.

connected links can be present in this schedule. This can now be formulated as a max-
weight independent set (MWIS) problem [Bas01], where the weights 𝑤𝑖 of each link depend
on their queue backlog:

maximize
∑︁
𝑖

𝑤𝑖𝑥𝑖

subject to 𝑥𝑖 + 𝑥𝑗 + 𝐸𝑖,𝑗 ≤ 2

where 𝑥𝑖 = 1 if 𝑙𝑖 is scheduled and 0 otherwise. The above formulation ensures that conflicting
links are not scheduled simultaneously: if 𝐸𝑖,𝑗 = 0, then 𝑥𝑖 + 𝑥𝑗 + 𝐸𝑖,𝑗 ≤ 2 no matter what
link is scheduled. In contrast, if 𝐸𝑖,𝑗 = 1 at most, one of the two links can be scheduled.
To solve this problem with the QAOA, the objective function and constraint need to be

encoded in a Hamiltonian. The authors use two different Hamiltonians, 𝐻𝑜 and 𝐻𝑐, for
the objective and constraint, respectively. The objective Hamiltonian 𝐻𝑜 is rather straight
forward; the main difference to chapter 2.3.2 is the transformation from maximization to
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minimization. It is given by:

𝐻𝑜 =
∑︁
𝑖

1

2
𝑤𝑖𝜎

𝑧
𝑖

The constraint Hamiltonian 𝐻𝑐, on the other hand, is rather complex. In a naive implemen-
tation, one would need to encode the set of inequalities, which is very costly. The authors
instead look at three separate cases:

A A set of all link pairs (𝑙𝑖, 𝑙𝑗) where both are not scheduled

B A set of all link pairs (𝑙𝑖, 𝑙𝑗) where only one is scheduled

C A set of all link pairs (𝑙𝑖, 𝑙𝑗) where both are scheduled

As we saw earlier in cases A and B, the inequality is already fulfilled. It is therefore enough
to look at case C, where both adjacent nodes of the conflict graph are scheduled and an
interference is present:

𝐶 =
∑︁
𝑖

∑︁
𝑗

(𝑥𝑖 ∧ 𝑥𝑗)(𝑤𝑖 + 𝑤𝑗)

where 𝑥𝑖 ∧ 𝑥𝑗 can be written as 1 − 𝑥𝑖 − 𝑥𝑗 + 𝑥𝑖𝑥𝑗 . This can then be converted to the
Hamiltonian 𝐻𝑐, where we yet again have to transform C to a minimization:

𝐻𝑐 =
∑︁
𝑖

∑︁
𝑗

−1

4
(𝜎𝑧𝑖 + 𝜎𝑧𝑗 − 𝜎𝑧𝑖 𝜎

𝑧
𝑗 )(𝑤𝑖 + 𝑤𝑗)

Based on the definitions of 𝐻𝑜 and 𝐻𝑐, the problem Hamiltonian 𝐻𝑝 can be defined as
𝐻𝑝 = 𝐻𝑜 + 𝜌𝐻𝑐, where 𝜌 ≥ 1 is the penalty rate. With this, the Hamiltonian 𝐻𝑝 is used for
QAOA, as described in 2.3.4.

Figure 3.4: CDF 𝐺(𝜂) of approximations ratio 𝜂 for different algorithms as seen in [COK20]
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The performance of their implementation was evaluated and compared to random search
and greedy search algorithms. The evaluations were conducted on randomly generated
conflict graphs with 10 nodes. As can be seen in figure 3.4, the implementation consistently
outperformed the other methods across various conflict graph instances. The performance is
quantitatively measured with the approximation ration 𝜂 = 𝑎

𝑏 , where 𝑎 is the best solution
of the algorithm and 𝑏 is the true best solution. In the graph, the cumulative distribution
function (CDF) 𝐺(𝜂) for each algorithm is shown. The CDF sums up the total likelihood
of 𝜂 up to the current point, making solutions with an increase for lower values of 𝜂 worse
than ones with a steep increase for higher values of 𝜂. They achieved optimal solutions in
a significant proportion of cases, indicating the implementation’s effectiveness in accurately
solving the wireless scheduling problem.

3.1.3 VQE

There have also been solutions to a variety of scheduling problems using the VQE algorithm.
In the paper ”Variational Algorithms for Workflow Scheduling Problems in Gate-Based
Quantum Devices,” the authors Julia Plewa et al. [PSR21] solve the workflow scheduling
problem [TPMR20], which is related to the earlier JSSP. They use a VQE and QAOA
implementation to solve this problem and compare the results. In addition, they use different
encoding schemes to represent the problem. Together with the two encoding schemes One-
Hot and Binary we already know, they used a third one: Domain Wall Encoding [Cha19].
Let us first look at the difference between workflow scheduling and the JSSP. In contrast

to the JSSP, jobs have intrinsic dependencies on other jobs, which have to be completed
before the job can be begun. The set of job dependencies can be decomposed into a set of
R paths that lead from the starting job to the final job. A binary matrix 𝑃 (𝑖, 𝑘) defines if
a job 𝐽𝑖 is on the path 𝑘 or not. Jobs are also not restricted to a specific machine. Instead,
each machine 𝑀𝑗 has an associated cost 𝐶(𝑖, 𝑗) for running a job 𝐽𝑖. The time 𝑇 (𝑖, 𝑗) a
machine 𝑀𝑗 needs to complete a job 𝐽𝑖 is analogous to the JSSP formulation. Additionally,
the authors introduced a new deadline constraint, 𝑑, where all jobs must be completed before
the deadline is reached. To satisfy this constraint, every path in R has to have an execution
time smaller than 𝑑. This means the goal of this problem is no longer the shortest completion
time but rather the lowest total cost while staying within the deadline. Let us consider a
simple example of six jobs 𝐽1, 𝐽2, 𝐽3, 𝐽4, 𝐽5, and 𝐽6 and two machines𝑀1,𝑀2. We will ignore
the deadline constraint in this example and just show the different encoding schemes.

Jobs Machines with respective costs for the job

𝐽0 𝑀0(2) 𝑀1(3)
𝐽1 𝑀0(1) 𝑀1(2)
𝐽2 𝑀0(2) 𝑀1(4)
𝐽3 𝑀0(1) 𝑀1(2)
𝐽4 𝑀0(2) 𝑀1(3)
𝐽5 𝑀0(4) 𝑀1(2)

Table 3.1: Machines with respective cost for job.

The solution to our example workflow scheduling problem can be seen as a directed acyclic
graph (DAG) in figure 3.5.
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Figure 3.5: DAG for workflow scheduling with six jobs and two machines.

Next, we will take a look at the formulation of the objective function. We begin with the
simple minimization problem:

minimize

𝐽∑︁
𝑖

𝑀∑︁
𝑗

𝑐𝑖,𝑗𝑥𝑖,𝑗

where the variable 𝑥𝑖,𝑗 is 1 if job 𝐽𝑖 is scheduled on machine 𝑀𝑗 . Other than in the formu-
lation in Section 3.1.2, the constraints are directly part of the objective function and do not
construct separate constraint Hamiltonians. This is achieved by introducing penalty terms,
which increase the cost if the constraint is not met. The first constraint is the deadline
constraint.

𝐽∑︁
𝑖

𝑀∑︁
𝑗

𝑡𝑖,𝑗𝑥𝑖,𝑗 ≤ 𝑑

As we discussed in the previous section, it is not trivial to implement such an inequality. In
this case, we have to deal with one inequality for each path 𝑘 in 𝑅. The set of inequalities
is given by:

𝑅∑︁
𝑘

(

𝐽∑︁
𝑖

𝑀∑︁
𝑗

𝑝𝑖,𝑘𝑡𝑖,𝑗𝑥𝑖,𝑗 ≤ 𝑑) (3.1)

To represent an inequality in our objective function, we first have to convert it to an equality.
For that, we define the set of slack variables 𝑦𝑘,𝑙 according to 2.1, where 𝑙 is the bit index
and 𝑘 is the path index. Then we just have to apply 2.1 and 2.2:

𝑂𝑡𝑖𝑚𝑒(𝑋,𝑌 ) =

𝑅∑︁
𝑘

(𝑑−
𝐽∑︁
𝑖

𝑀∑︁
𝑗

𝑝𝑖,𝑘𝑡𝑖,𝑗𝑥𝑖,𝑗 +
∑︁
𝑙

2𝑙𝑦𝑘,𝑙)
2

Before we explain the last constraint, we will take a look at the different encoding schemes.
For One-Hot, this is rather straight forward: every entry in X is a variable 𝑜 in the input
vector.

𝑋𝑖,𝑗 = 𝑜𝑖,𝑗 , for job 𝐽𝑖 and machine 𝑀𝑗
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3.1. SOLVING SCHEDULING PROBLEMS

To define X for binary encoding is, on the other hand, not as easy. For the machines 𝑀
is a number of variables 𝑚𝑤,𝑖 with 𝑤 ∈ {0, ...,𝑊}, where 𝑊 is the maximal bit length to
represent all machines. 𝑀 , as binary numbers, and 𝑖, the index of the job, are needed for
each job-machine pair.

𝑋𝑖,𝑗 =
𝑊∏︁
𝑤

(1− (𝑚𝑤,𝑖 − 𝑏𝑗,𝑤)
2), for job 𝐽𝑖 and machine 𝑀𝑗

where 𝑏𝑗,𝑤 is the bit-wise allocation for machine 𝑀𝑗 . With this, we only need the W number
of variables for each job, 𝐽𝑖, instead of |𝑀 |. Finally, domain wall encoding is dependent on
pairs of neighboring bits rather than the bit values directly, which allows for the saving of a
single bit. The information is stored via the position of a bit transition 𝑑𝑖−1 = 1 to 𝑑𝑖 = 0,
where only one such transition is allowed in the sequence. Additionally, two virtual bits with
fixed values: 𝑑−1 = 1 and 𝑑|𝑀 | = 0 can be imagined to account for the first and last bit
transition.

Machines Domain Wall Encoding

0 10000
1 11000
2 11100
3 11110

Table 3.2: Domain Wall Encoding for Four Machines

The matrix X is then given by the difference of subsequent bits:

𝑋𝑖,𝑗 =

⎧⎪⎨⎪⎩
1− 𝑑𝑖,𝑗 , for job 𝐽𝑖 and machine 𝑀0

𝑑𝑖,𝑗−1 − 𝑑𝑖,𝑗 , for job 𝐽𝑖 and machines 𝑀𝑚, 1 ≤ 𝑚 ≤ |𝑀 | − 2

𝑑𝑖,𝑗−1 , for job 𝐽𝑖 and machine 𝑀|𝑀 |−1

However, for an invalid vector with more than one bit of transition, X might also contain the
value -1. This can be avoided by either squaring the value or by excluding invalid vectors
via another constraint.
The final constraint makes sure all invalid bit configurations are punished. This is encoding-

specific, but not that complicated. For one-hot encoding, a valid bitstring can only contain
a single 1 for each machine-job pair.

𝐽∑︁
𝑖

(1−
𝑀∑︁
𝑗

𝑥𝑖,𝑗)
2

For binary encoding, every dummy machine created for a machine count |𝑀 | mod 2 ̸= 0
must be punished.

𝐽∑︁
𝑖

𝑈∑︁
𝑢

𝑊∏︁
𝑤

(1− (𝑚𝑤,𝑖 − 𝑏𝑢,𝑤)
2)
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where U is the set of dummy machines. And for the domain wall encoding, there is only one
bit of transition allowed. We can simply count all transitions:

𝐽∑︁
𝑖

((1− 𝑑𝑖,0)
2 +

|𝑀 |−2∑︁
𝑗=1

(𝑑𝑖,𝑗−1 − 𝑑𝑖,𝑗)
2 + 𝑑2𝑖,|𝑀 |−1)

In their research, the authors also introduce mixer operators for the different encoding
schemes for QAOA. These mixer operators are chosen to ensure that, during transitions
between different configurations, the optimization process stays within the set of valid solu-
tions, known as the feasible subspace. The default mixer operator used in QAOA is given
as 𝐻𝑥 in section 2.3.4, which essentially acts as a bit flip operator. However, while 𝐻𝑥 is a
straightforward choice and allows for transitions between states, it has limitations. Specif-
ically, it can sometimes generate invalid states or states that violate problem constraints,
leading to incorrect solutions. In their paper, the custom mixer operators are especially ben-
eficial when applied to one-hot encoding and domain wall encoding. For their comparison,
the authors evaluated the performance of the VQE and QAOA while considering various
factors, including the encoding methods, classical optimization algorithms, and the selection
of parameters for quadratic unconstrained binary optimization (QUBO). In their experi-
ments, the results indicate that for smaller problem instances, VQE tends to outperform
QAOA in terms of finding optimal solutions. In figure 3.6, the percentage of incorrect so-
lutions for VQE and QAOA is compared for the domain wall and binary encoding schemes
and for different classical optimizers. While the two algorithms perform quite similarly for
the optimizers ”L-BFGS-B” and ”NELDER-MEAD”, VQE outperforms QAOA in the other
two.

Figure 3.6: Percentage of incorrect solutions as seen in [PSR21]. (left) QAOA; (right) VQE

And while increasing the QAOA parameter 𝑝 improves results up to 𝑝 = 2, it does not for
𝑝 ≥ 3. Moreover, the choice of classical optimizer plays a substantial role in influencing the
performance of VQE. Different classical optimization algorithms yield varying results when
combined with VQE. It’s worth noting that the benefits of custom mixers in QAOA may not
translate as effectively into real quantum computers due to the presence of noise. Lastly, the
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3.2. VARIATIONAL QUANTUM ALGORITHMS

authors emphasize the critical role of selecting appropriate weights for the objective function
and constraints.

3.2 Variational Quantum Algorithms

Other variational algorithms have been introduced that can simulate the real or imaginary
time dynamics of quantum systems [LDG+21]. While there has been extensive research on
finding the ground states of physical systems, the exploration of excited states has not re-
ceived as much attention [JEM+19b]. Hamiltonian time evolution can be used to sequentially
calculate its energy levels and provide a larger use case than only ground state evaluation.
The Hamiltonian simulation problem [Llo96] represents the standard approach for simu-

lating the time evolution of a quantum system. In this problem, we assume the quantum
system whose time evolution we wish to simulate consists of 𝑛 qubits, and we want to sim-
ulate its time evolution for time 𝑡, in the sense that we are provided with the initial state
|𝜓0⟩ and we want to compute the state of the system at time 𝑡, |𝜓𝑡⟩. The goal of an efficient
simulation is to solve the problem in polynomial time for 𝑛 and 𝑡. The relation between the
output state at time t and the initial state at time 0 is given by the Schrödinger equation
for time-independent Hamiltonians:

|𝜓𝑡⟩ = 𝑒−𝑖𝐻𝑡 |𝜓0⟩

By encoding quantum states with a parameterized circuit |𝜓(𝜃𝑡)⟩, the evolution of the state
can be mapped to the evolution of the parameters 𝜃𝑡) controlling the circuit. The time
evolution for a small time-step 𝛾𝑡 is then given by:

|𝜓𝑡+𝛾𝑡⟩ = 𝑒−𝑖𝐻𝛾𝑡 |𝜓(𝜃𝑡)⟩

The evolution can be approximated by a sequence of short-time evolutions using the well-
known Trotter product formula. With 𝑁 time steps of size 𝜏 = 𝛾𝑡/𝑁 , one obtains 𝑒−𝑖𝐻𝛾𝑡 ≈
𝑈(𝜏)𝑁 , with 𝑈(𝜏) = 𝑒−𝑖ℎ𝑘𝐻𝑘𝜏 · · · 𝑒−𝑖ℎ1𝐻1𝜏 , where 𝐻𝑘 are tensor products of Pauli operators
and ℎ𝑘 are real numbers. The accuracy of this approximation can be improved using higher-
order Trotter product formulas. The authors Barison et al. [BVC21] aim to maximize the
overlap between the evolved parameterized state |𝜓𝑡+𝛾𝑡⟩ and the state |𝜓(𝜃𝑡 + 𝜃𝑡)⟩:

𝐿(𝜃𝑡, 𝛾𝑡) =
1− |⟨𝜓(𝜃𝑡)|𝑒𝑖𝐻𝛾𝑡 |𝜓(𝜃𝑡 + 𝜃𝑡)⟩ |2

𝛾𝑡2

where 𝜃𝑡 is a vector of parameter variations. The optimal optimization step 𝜃𝑡 is determined
by the gradient 𝜕

𝜕𝜃𝑗
𝐿(𝜃𝑡, 𝛾𝑡). They use a quantum circuit of the form:

|𝜓⟩ = 𝑉𝑝𝑈𝑝(𝜃𝑝) · · ·𝑉1𝑈1(𝜃1)

where only the gates 𝑈𝑗(𝜃𝑗) depend on a parameter 𝜃𝑗 . The parameterized gates 𝑈𝑗(𝜃𝑗)
are single qubit rotation gates, which allow the authors to compute the gradient via the
parameter shift rule, as outlined in Section 2.3.4. To find the optimal parameter perturbation
𝜃𝑡, the authors use the gradient descent update rule:

𝜃𝑡 = 𝜃𝑡−1 − 𝜂∇𝐿(𝜃𝑡−1, 𝛾𝑡)
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until 𝐿(𝜃𝑡−1, 𝛾𝑡) converges to a desired threshold 𝑣. After convergence, the new parameters
are given by:

𝜃𝑡+𝛾𝑡 = 𝜃𝑡 + 𝜃𝑡

They also show that their approach does not suffer from barren plateaus. This is despite
using a global objective function, which is shown to be especially vulnerable to vanishing
gradients [CSV+21]. Their approach is based on the fidelity between the two states |𝜓𝑡+𝛾𝑡⟩
and |𝜓(𝜃𝑡 + 𝜃𝑡)⟩. It can be demonstrated that when the two states undergo an infinitesimal
transformation, the gradient’s variance retains a non-zero lower bound [HK21]. This is
the case since at every step, the infidelity between the states is optimized and, therefore,
transformed. They also demonstrate an approach in which they replace the global objective
function with a local one with the same minimum. Since local objective functions do not
suffer from the same barren plateaus as global ones do [CSV+21], this should avoid barren
plateaus even if the transformation for each optimization step is not big enough. The authors
implemented both approaches and compared them later on. The used circuit design consists
of 𝑑 blocks, where one block is equivalent to the Trotter-Suzuki approximation 𝑈(𝜏).

|𝜓⟩ =
𝑑∏︁
𝑙=1

𝑐𝑙(𝜃
(𝑙)) =

𝑑∏︁
𝑙=1

[︂ 𝑁∏︁
𝑖=1

𝑅(𝑖)
𝛼 (𝜃

(𝑙)
𝑖 )

]︂[︂𝑁−1∏︁
𝑗=1

𝑒−𝑖𝜃
(𝑙)
𝑗 𝜎𝑧𝑗 𝜎

𝑧
𝑗+1

]︂

Every block 𝑐𝑙(𝜃
(𝑙)) has unique parameters. 𝜃(𝑙) and consists of single qubit rotations𝑅

(𝑖)
𝛼 (𝜃

(𝑙)
𝑖 )

and entangling two-qubit gates 𝑒−𝑖𝜃
(𝑙)
𝑗 𝜎𝑧𝑗 𝜎

𝑧
𝑗+1 . For 𝛼 = 𝑥, a block 𝑐𝑙 is equivalent to 𝑈(𝜏), but

a more general formulation is also possible for 𝛼 = {𝑥, 𝑦}.
In their comparative analysis between their own algorithm (p-VQD) and the TDVA (Time-

Dependent Variational Algorithm), the authors observed that, for a fixed number of samples,
p-VQD exhibited a significant advantage.

Figure 3.7: Integrated infidelity (∆𝐹 ) for both algorithms as seen in [BVC21]. With total
time of evolution 𝑇𝑒 = 3, 60 time steps, 3 variables, 10 iterations, and depth
𝑑 = 3 for both p-VQD and TDVA.
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P-VQD shows comparable results while using one order of magnitude fewer shots. In
3.7, the integrated infidelity (∆𝐹 ) was observed to be up to an order of magnitude lower
when compared to TDVA, even with an equivalent number of time steps. The authors also
showed a linear scaling behavior (O(p)) with respect to the number of parameters for their
algorithm, as can be seen in 3.8. This is in stark contrast to TDVA’s quadratic scaling.

Figure 3.8: Measurements needed for increasing parameters as seen in [BVC21]. With 3
variables and 8000 shots per circuit evaluation, Depth 𝑑 varies from 𝑑 = 2 to 𝑑 = 8
according to the number of parameters. For p-VQE, the number of measurements
depends on the optimization of the parameter variation, while it is fixed for
TDVA.

Finally, they compared the minimization of the global (𝑂𝐺) and local (𝑂𝐿) objective
functions for different time steps and an increasing number of variables. The two objective
functions show similar performances in terms of the number of iterations required. However,
in general, barren plateaus may not show up until even larger systems are considered, making
this comparison not conclusive.
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4 F-VQE

In this section, we will examine the extension of VQE presented in the paper ”Filtering
variational quantum algorithms for combinatorial optimization” [AMR+22]. This is the
groundwork for this thesis and will therefore be discussed in more detail. There is limited
work for this algorithm, and it is not yet clear if it provides a good approach to our schedul-
ing problem. In the following chapter, all development steps and ideas considered in this
work will be addressed. In particular, all concepts used in the final implementation will be
presented.
With the algorithm of Amaro et al., the first design decision was already made when the

work began. The initial concept was to implement the F-VQE algorithm as outlined in the
paper, along with some other approaches for a later comparison. The new challenge was to
extend F-VQE to our scheduling problem and optimize meta parameters for better results.
This and the implementation of the other approaches are discussed in Section 5. Here, we
will begin by going over all the differences between F-VQE and VQE and how one would
implement this approach via the weighted Max-Cut problem.
The weighted Max-Cut problem is a widely explored dilemma with a strong presence in

the literature. It’s a familiar challenge in which the objective is to partition the vertices of a
graph into two sets in such a way that the total weight of the edges connecting these sets is
maximized. Here we look at a weighted simple undirected and connected graph 𝒢(𝒱, ℰ ,𝒲)
where 𝒱 = {1, 2, ..., 𝑁} is the set of vertices, ℰ ⊂ 𝒱 × 𝒱 is the set of edges between different
vertices, and 𝒲 = {𝑤𝑒 ∈ [0, 1] : 𝑒 ∈ ℰ} is the set of random weights uniformly distributed in
the range [0, 1] for all edges.

Figure 4.1: Max cut example graph with |𝒱| = 4 nodes. Red line shows optimal cut. Large
weights are shown as black edges. Small weights are shown as purple edges.

An example of such a graph can be seen in figure 4.1. The Max Cut problem is equivalent
to minimizing the Hamiltonian of the Ising model we discussed in Section 2.3.2. Here, each
vertex i of the graph is represented by a variable 𝑧𝑖 = {+1,−1}. A configuration for variables
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𝑧𝑖 partitions 𝒱 into two sets: 𝒱+ and 𝒱−. The objective function C for a configuration is
given by:

𝐶 =
∑︁
𝑖,𝑗∈ℰ

(1− 𝑧𝑖)(1 + 𝑧𝑗)

4
𝒲𝑖,𝑗

This function adds the weight at index 𝑖, 𝑗 to the cost if 𝑧𝑖 ̸= 𝑧𝑗 . Minimizing this energy
is equivalent to the min-cut problem. By subtracting from an upper bound 𝑎 of the cost
function, one receives the max-cut problem:

𝐻 = 𝑎− 𝑏𝐶

4.1 Filtering Operator

F-VQE and VQE work in a similar pattern, but instead of approximating the expectation
value of the Hamiltonian, F-VQE instead approximates the action of a filtering operator (F)
on the parameterized quantum circuit. This filtering operator is dependent on the Hamilto-
nian and thus also leads to the minimal expectation value. The filtering operator cannot be
directly observed, but the filter value for a configuration can be efficiently computed via a
real-valued function 𝑓(𝐸, 𝜏) of the energy E and a parameter 𝜏 > 0. An example of a filtering
operator is the inverse of the Hamiltonian in regards to 𝜏 . For the Max-Cut Hamiltonian,
this can be written as:

𝑓(𝐻, 𝜏) = (𝑎− 𝑏𝐶)−𝜏

For a given energy E of the Hamiltonian, this can be efficiently computed.
By repeatedly applying the filtering operator F to a quantum state, we achieve two signif-

icant outcomes: the elimination of high-energy eigenstates, which correspond to suboptimal
solutions for the combinatorial optimization problem, and an increase in alignment with the
ground state. In figure 4.2, the distribution is given for the max cut example after applying
the inverse filter 0, 6, 9, and 12 times. As can be seen, the overlap with the ground state
”1100” increases with every successive filter application. This corresponds to a cut between
every edge: 𝒱0 = 0,𝒱1 = 0,𝒱2 = 1, and 𝒱3 = 1 with an energy of 𝐸 = 1.5. In our imple-
mentation, we decided to establish an inherent direction for the graph by assigning distinct
weights based on the order of indices on each edge. We set one weight value as illustrated in
Figure 4.1, while the weight for the other direction is set to zero. This choice was made to
minimize the number of optimal states, as it ensures that ”1100” is the optimal state rather
than ”0011.” Nevertheless, the measurement probability also increases for the state ”0100”.
This is due to the low weight associated between the vertices 𝒱0 and 𝒱3, which makes it
difficult for the optimizer to find a difference in the two expectation values.
To explain this phenomenon, we first have to take a look at the default distribution of

eigenbases or pure states |𝜆𝑥⟩, where 𝑥 = {0, · · · , 2𝑛−1} for a quantum state |𝜓⟩. The
distribution for an observable corresponding to a self-adjoint operator 𝐴 is given by the
Born rule [Lan09]. For our case, the observable 𝐴 is the quantum state |𝜓⟩. This means that
𝐴 has an orthonormal basis of eigenvectors |𝜆𝑥⟩ with corresponding eigenvalues 𝜆𝑥. The
Born rule states that the measured result of 𝐴 will be one of its eigenvalues, 𝜆𝑥. When we
want to find the likelihood of measuring the specific eigenvalue 𝜆𝑥 for an operator 𝐴 in our
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a b

c d

Figure 4.2: Probability distribution for Max Cut example with four qubits after applying
the inverse filter (a) 0, (b) 6, (c) 9, and (d) 12 times

quantum system |𝜓⟩, we can calculate it using the formula: 𝑃 (𝐴 = 𝜆𝑥
⃒⃒
|𝜓⟩) = ⟨𝜓|𝑃𝑥 |𝜓⟩.

Here, 𝑃𝑥 represents the projection of 𝜆𝑥 onto the eigenspace of the operator 𝐴. If our
quantum system is in a pure state |𝜆𝑥⟩, the probability of detecting the eigenvalue 𝜆𝑥 when
we measure operator 𝐴 is:

𝑃 (𝐴 = 𝜆𝑥
⃒⃒
|𝜓⟩) = |⟨𝜓|𝜆𝑥⟩|2

This default distribution changes with the application of the filtering operator 𝐹 on the
quantum state |𝜓⟩. The quantum state resulting in the application of the filter operator
|𝐹𝜓⟩ is given by the application of the filtering operator onto the state |𝜓⟩ and division
by the square root of the expectation value of the squared filter operator to preserve the
normalization of the quantum state: |𝐹𝜓⟩ = 𝐹 |𝜓⟩ /

√︀
⟨𝐹 2⟩𝜓. We demand that our filtering

operator be strictly positive in the range [𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥]. The probability distribution for the
state resulting from the application of such a filtering operator |𝐹𝜓⟩ depends on the energy
𝐸𝑥 of each eigenstate |𝜆𝑥⟩:

𝑃 (𝐴 = 𝜆𝑥
⃒⃒
|𝐹𝜓⟩) = |⟨𝐹𝜓

⃒⃒
𝜆𝑥⟩|2 =

⃒⃒⃒
𝑓(𝐸𝑥, 𝜏)/

√︁
⟨𝐹 2⟩𝜓 · ⟨𝜓|𝜆𝑥⟩

⃒⃒⃒2
=
𝑓2(𝐸𝑥, 𝜏)

⟨𝐹 2⟩𝜓
𝑃 (𝐴 = 𝜆𝑥

⃒⃒
|𝜓⟩)

If we now choose our filtering operator F in such a way that 𝑓2(𝐸𝑥, 𝜏) is strictly decreasing
on the interval given by the complete spectrum of the Hamiltonian, we can see that it indeed
increases the overlap with the ground state. For |𝜆𝑥⟩ with energy 𝐸𝑥 ≈ 𝐸𝑚𝑖𝑛, the squared
filtering value 𝑓2(𝐸𝑥, 𝜏) will reach its maximum and therefore be larger than the squared

expectation value of the filtering operator ⟨𝐹 2⟩𝜓. This results in 𝑓2(𝐸𝑥,𝜏)
⟨𝐹 2⟩𝜓

> 1 and will

increase the overall measuring probability. Vice versa for |𝜆𝑥⟩ with energy 𝐸𝑥 ≈ 𝐸𝑚𝑎𝑥. This
effect becomes more pronounced with each application of the filtering operator, and after a
significant number of iterations, it leads to the emergence of the ground state.
But since we cannot produce the state |𝐹𝜓⟩ directly, we have to approximate the ap-

plication of the filtering operator. In order to do that, we use a parameterized quantum
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circuit as we would for VQE. But instead of searching for the parameters that minimize the
expectation value of the Hamiltonian 𝐻, we search for parameters that minimize the Eu-
clidean distance between the parameterized quantum state |𝜓(𝜃𝑡)⟩ and the state that would
be produced if we could apply the filtering operator directly |𝐹𝑡𝜓(𝜃𝑡−1)⟩. Where 𝑡 denotes
the number of filter applications or optimization steps. By iteratively reducing the squared
euclidean distance between the two states, the approximation becomes more distinct. The
time-dependent cost function 𝐶𝑡(𝜃) is given by:

𝐶𝑡(𝜃) =
1

2

⃒⃒⃒⃒⃒⃒
|𝜓(𝜃𝑡)⟩ − |𝐹𝑡𝜓(𝜃𝑡−1)⟩

⃒⃒⃒⃒⃒⃒2
= 1− 𝑅𝑒⟨𝜓(𝜃𝑡−1)|𝐹𝑡|𝜓(𝜃𝑡)⟩√︁

⟨𝐹 2
𝑡 ⟩𝜓(𝜃𝑡−1)

This formulation no longer requires the state |𝐹𝜓⟩ and instead uses the expectation value of
F in regards to the quantum state before and after the optimization step: ⟨𝜓(𝜃𝑡−1)|𝐹𝑡|𝜓(𝜃𝑡)⟩.
From now on, we will abbreviate 𝜓(𝜃𝑡) with just 𝜓𝑡.

4.2 Optimizing the Cost Function

Optimizing the cost function 𝐶𝑡(𝜃) can be approached in two ways. The first method involves
implementing the cost function directly and utilizing its output, such as by approximating
a gradient. The second approach is to compute the gradient directly. In the first case, it’s
feasible to approximate the expectation value ⟨𝐹 2

𝑡 ⟩𝜓𝑡−1 , as we will discuss later. However,
estimating 𝑅𝑒⟨𝜓𝑡−1|𝐹𝑡|𝜓𝑡⟩ is not a straightforward task. To approximate this part, one can
use the Hadamard test [MF19].
To avoid the overhead of the Hadamard test, it is also possible to just compute the partial

differential equations 𝜕𝐶𝑡(𝜃)
𝜕𝜃𝑗

via the parameter shift rule 2.3.4. For VQE, the parameter-shift

rule can be used with the objective function 𝐶(𝜃) = ⟨𝜓(𝜃)|𝐻|𝜓(𝜃)⟩. The analytical gradient
of the objective function with parameters 𝜃𝑗 for rotation 𝑅𝑦 gates is given as:

𝜕⟨𝜓|𝐻|𝜓⟩
𝜕𝜃𝑗

⃒⃒⃒⃒
𝜃𝑡−1

=
⟨𝜓𝑗+𝑡−1|𝐻|𝜓𝑗+𝑡−1⟩ − ⟨𝜓𝑗−𝑡−1|𝐻|𝜓𝑗−𝑡−1⟩

2

In this context, the circuits |𝜓𝑗±𝑡−1⟩, which correspond to states |𝜓(𝜃𝑡−1 ± 𝜋
2 𝜖𝑗)⟩, are realized

by adjusting the parameter 𝜃𝑗 by either adding or subtracting 𝜋
2 . For the F-VQE, the partial

derivative of the parameter 𝜃𝑗 for the parameter vector 𝜃𝑡−1 is similarly given as:

𝜕𝐶𝑡(𝜃)

𝜕𝜃𝑗

⃒⃒⃒⃒
𝜃𝑡−1

= −
⟨𝜓𝑗+𝑡−1|𝐹𝑡|𝜓

𝑗+
𝑡−1⟩ − ⟨𝜓𝑗−𝑡−1|𝐹𝑡|𝜓

𝑗−
𝑡−1⟩

4
√︀
⟨𝜓𝑡−1|𝐹 2

𝑡 |𝜓𝑡−1⟩

Note that the denominator’s expected value remains consistent across all partial deriva-
tives (𝜃𝑗) during a fixed optimization step (t). The F-VQE algorithm therefore needs only
2 dim(𝜃) + 1 circuit evaluations per optimization step 𝑡. Only one more than the VQE with
a similar gradient computation. The expectation value of 𝐹𝑡 or 𝐹

2
𝑡 in regards to the circuits

|𝜓𝑗±𝑡−1⟩ and |𝜓𝑡−1⟩ can be efficiently approximated via the Monte Carlo estimator [LMB+20]
of the function 𝑓(𝐸, 𝜏):

⟨𝐹𝑡⟩𝜓 ≈ 1

𝑀

∑︁
𝑥

𝑀𝑥𝑓(𝐸𝑥, 𝜏)
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4.3. VANISHING GRADIENTS

This can be computed by sampling the quantum state M times in the Hamiltonian eigenbasis.
For the eigenstate |𝜆𝑥⟩,𝑀𝑥 and 𝑓(𝐸𝑥, 𝜏) are the corresponding sample count and filter value.
For the VQE, it is also possible to directly observe the Hamiltonian operator, as we have
seen in Section 2.3.4. The parameters are updated according to the gradient descent rule we
discussed in Section 2.1.2. For optimization step 𝑡, the new parameter vector 𝜃𝑡 is given by:

𝜃𝑡 = 𝜃𝑡−1 − 𝛼∇𝐶(𝜃𝑡−1, 𝜏), with: ∇𝐶(𝜃𝑡−1, 𝜏) =
∑︁
𝑗

𝜕𝐶𝑡(𝜃)

𝜕𝜃𝑗

⃒⃒⃒⃒
𝜃𝑡−1

𝜖𝑗

4.3 Vanishing Gradients

While there are different ways to combat the occurrence of barren plateaus, we use the
parameter 𝜏 to influence the gradient norm to stay in the vicinity of some desired large and
fixed value 𝑔𝑐. This value is a fixed parameter and can vary depending on the objective
function and problem instance. To dynamically adapt 𝜏 , we use a heuristic approach in
which we try to find a new 𝜏𝑡 with || ∇𝐶𝑡(𝜏𝑡)|𝜃𝑡−1

||2 = 𝑔𝑐 for the threshold 𝑔𝑐 > 0. For our
implementation, we chose the threshold 𝑔𝑐 = 0.1. For large values of 𝜏 , the gradient norm
saturates at a finite value that is determined by the overlap of the gradient circuits with the
ground state. We incrementally increase 𝜏𝑡 until:

1. we find a value 𝜏𝑢 with || ∇𝐶𝑡(𝜏𝑢)|𝜃𝑡−1
||2 > 𝑔𝑐, or

2. || ∇𝐶𝑡(𝜏𝑡)|𝜃𝑡−1
||2 converges to a constant.

We then select the new 𝜏𝑡 for which the gradient norm was closest below the threshold 𝑔𝑐.
This heuristic leads to each partial derivative changing non-trivially as a function of 𝜏 . It

is therefore not a normalization or a constant re-scaling of the gradient. In Figure 4.3, the
workflow of the F-VQE algorithm is illustrated. We begin with the initial measurement of
the quantum circuit to get a first value for the expectation value of the filtering operator
⟨𝐹𝑡⟩𝜓. Then we update the parameter vector 𝜃𝑡 by using the parameter shift rule. And
lastly, we update the parameter 𝜏𝑡 to guarantee non-vanishing gradients.

Figure 4.3: Workflow of the F-VQE algorithm separated into quantum and classical parts
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5 Methodolegy

Next, we will introduce the concrete problem at the DLR and its objective. We will discuss
the optimization metrics and the constraints to be followed. However, at least in this work,
not all constraints are implemented or tested. Furthermore, we will look at the implementa-
tion of all solvers, their respective advantages and disadvantages, and how they differ from
each other.

5.1 Problem Definition

The DLR operates a range of spacecraft missions through its German Space Operations
Center (GSOC) division. These missions, as illustrated in Figure 5.1, often necessitate
the continuous presence of one or more operators for specific subsystems, referred to as
positions, over specified time periods. To facilitate this, the operators follow an on-call
spacecraft operator scheduling process, which undergoes periodic updates throughout the
year to account for changes in operator availability or new personnel assignments [SGGC+21].

Figure 5.1: Visualization of On-Call Scheduling Problem with Different Operators, Positions,
Satellite Missions, and a Set Number of Days as Seen in [SGGC+21]

A typical scheduling task involves assigning roughly 50 operators to 20 different positions
over a 180-day time frame [SGGC+21]. This schedule must remain adaptable, as adjust-
ments may be required if assumptions change over time. Each on-call shift encompasses an
entire day, and an operator’s ability to cover certain positions depends on their training and
responsibilities.
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5.1. PROBLEM DEFINITION

Creating a valid schedule entails gathering input from both the spacecraft missions and
the operators themselves. This schedule must adhere to a set of constraints, including but
not limited to:

(i) Operators can only work on some given positions.

(ii) Per day position pair, at least one operator needs to be assigned.

(iii) Per day position pair, at most one operator is allowed to be assigned.

(iv) An operator can be assigned to at most one position a day.

(v) Operators can specify days in advance when they are unavailable.

(vi) A partially filled on-call schedule may be supplied and needs to be obeyed.

(vii) Operators can work at most two out of any three consecutive weeks.

(viii) Operators can work at most 35 days out of any 105 consecutive days.

It’s important to note that not all constraints are always applicable. Depending on the
specific problem requirements, certain constraints may or may not be used. For instance,
constraints (ii) and (iii) can be employed selectively. If a scenario dictates that certain
positions must be continuously supervised and can even be assigned to multiple operators,
only constraint (ii) is necessary. Conversely, if the situation involves positions that are
only managed by a single operator, are non-critical, and do not require constant manning,
constraint (iii) becomes relevant. For our specific problem, both constraints are always used
in tandem. Furthermore, not all valid schedules are equally suited to a variety of demands.
Therefore, we also include multiple goals for which the algorithm should optimize its results.
These goals function as soft constraints, allowing some degree of flexibility in achieving them.
In some cases, it may be acceptable for certain goals to be partially met, depending on the
extent of deviation. We will optimize for the following goals:

(a) Operators shall work, preferably whole weeks.

(b) All operators shall work a similar number of days.

Currently, at GSOC, a heuristic search algorithm that utilizes backtracking, powered by
the Plato library [LWM+12], is employed as the problem-solving approach.

5.1.1 Variable Encoding

In this section, we delve into the specifics of how operators are encoded in our implementation
for scheduling. We consider two encoding techniques: one-hot encoding and binary encoding,
both of which were introduced in Section 3.1.3. For the binary encoded scheduling, we will
use the same approach outlined in Section 3.1.1 and use the operators as the binary category.
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5.1. PROBLEM DEFINITION

One-Hot Encoding

One-Hot Encoding is a method where we represent operators for each pair of days and
positions (day-positions) using a vector of binary variables. To represent N operators, we
need a binary vector with N variables, where each variable corresponds to one operator.
These binary vectors are structured as follows:

𝑑𝑖𝑝𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑑𝑖𝑝

(0)
𝑗

𝑑𝑖𝑝
(1)
𝑗

...

𝑑𝑖𝑝
(𝑁−1)
𝑗

Therefore, we require a total of 𝑃 ·𝑁 ·𝐷 binary variables denoted as 𝑥
(𝑘)
𝑖,𝑗 for operators 𝑜(𝑘),

for 𝑖 ∈ {0, · · · , 𝐷 − 1}, 𝑗 ∈ {0, · · · , 𝑃 − 1}, and 𝑘 ∈ {0, · · · , 𝑁 − 1}. The decision variables

𝑜
(𝑘)
𝑖,𝑗 are then mapped directly to the binary variables 𝑥

(𝑘)
𝑖,𝑗 :

𝑜
(𝑘)
𝑖,𝑗 = 𝑥

(𝑘)
𝑖,𝑗

These binary variables are used to represent the assignment of operators to specific day
positions. The abstract decision variables are given by:

𝑜
(𝑘)
𝑖,𝑗 =

{︃
1, if operator k is working on position 𝑝𝐽 and day 𝑑𝑖

0, otherwise

Binary Encoding

Binary encoding is an alternative approach for encoding operators in the scheduling problem.
For each pair of day positions (𝑑𝑖𝑝𝑗), we utilize a binary representation for the operators.
Specifically, for 𝑁 = 2𝑛 operators, we require 𝑛 bits. For 𝑁 = 4 operators, we would only
need binary vectors of length two, where:

𝑜(0) = [0, 0]

𝑜(2) = [1, 0]

𝑜(1) = [0, 1]

𝑜(3) = [1, 1]

𝑜(0) = [0, 0, 0, 1]

𝑜(2) = [0, 1, 0, 0]

𝑜(1) = [0, 0, 1, 0]

𝑜(3) = [1, 0, 0, 0]

The general bit representation is structured as follows:

𝑑𝑖𝑝𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑑𝑖𝑝

(0)
𝑗

𝑑𝑖𝑝
(1)
𝑗

...

𝑑𝑖𝑝
(𝑛−1)
𝑗

where a bit allocation of variables 𝑑𝑖𝑝
(𝑙)
𝑗 corresponds to an operator 𝑜(𝑙). In this case, we

only need 𝑃 · 𝑛 ·𝐷 binary variables denoted as 𝑥
(𝑤)
𝑖,𝑗 , where 𝑤 ranges from 0 to 𝑛− 1. These

variables are calculated using the following formula:
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5.1. PROBLEM DEFINITION

𝑜
(𝑘)
𝑖,𝑗 =

𝑛−1∏︁
𝑤=0

(︂
1−

(︁
𝑥
(𝑤)
𝑖,𝑗 − 𝑏𝑘,𝑤

)︁2)︂
, 𝑘 ∈ {0, · · · , 𝑁 − 1}

Here, 𝑏𝑘,𝑤 represents the bit-wise allocation for operator 𝑜(𝑘). These binary variables are
used to represent the assignment of operators to specific day positions, similar to one-hot
encoding.

5.1.2 Constraint and Goal Formulation

We will now look at all constraints and goals in more detail and explain how one would
implement them. It is important to note that each constraint or goal alters the energy
landscape of the problem, making it more difficult to compute but not necessarily more
complex to find the global minima. In the following section, we will look at a simple example
with 2 operators, 3 days, and 2 positions for which we compute the energy landscape for
each constraint and goal. For this example, we define the operator position capabilities in
such a way that operator 𝑜(0) is able to work only on position 𝑝0 while operator 𝑜

(1) can work
on both positions. Likewise with the definition of the outages, operator 𝑜(0) has an outage
on day 𝑑0 while operator 𝑜(1) can work on all days. In tables 5.1, a visual representation of
the position capabilities and outages is given.

Operators 𝑝0 𝑝1

𝑜(0)
√

×

𝑜(1)
√ √

Operators 𝑑0 𝑑1 𝑑2

𝑜(0) ×
√ √

𝑜(1)
√ √ √

Table 5.1: Left: Example of operator position capabilities. Right: Example of operator
outages

For constraint (vi) a partially filled schedule is needed to compute the corresponding
energy. The used partial schedule in the example in Table 5.2 has 50% of all shifts already
occupied: operator 𝑜(1) is working on day-positions 𝑑0𝑝1, 𝑑1𝑝1, and 𝑑2𝑝0.

Day 𝑑0 Day 𝑑1 Day 𝑑2

𝑝0 𝑝1 𝑝0 𝑝1 𝑝0 𝑝1

- 𝑜(1) - 𝑜(1) 𝑜(1) -

Table 5.2: Example for constraint (vi): partial schedule filled to 50% of all shifts

As we can see in Tables 5.2 and 5.1, a correct schedule is no longer possible since operator
𝑜(0), even though they are able to work on position 𝑝0, has an outage on day 𝑑0 and operator
𝑜(1) already works on position 𝑝1 this day. This can also be seen in Figure 5.2, where the
combined energy landscape of all goals and constraints is shown. Even at the global minimum
at result ”010101”, which corresponds to a schedule where operator 𝑜(0) is scheduled for all
positions 𝑝0 and operator 𝑜(1) for all positions 𝑝1, the energy is not zero.
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Note that if one compares the overall energy landscape with the individual energy land-
scapes, it can sometimes be easier to find a global minimum if you add more constraints or
goals. For example, in Figure 5.4, because of its steep peaks and valleys, it would be rather
easy to run into a local minimum. By adding the rest of the constraints and goals, the slopes
can be reduced, making it easier to escape these local minima.
In the following subsections, we will only exemplarily show the different energy landscapes

for single constraints and goals.

Figure 5.2: Energy landscape for all binary encoded goals and constraints for 2 operators, 3
days, and 2 positions

Constraint (i): Operators can only work some positions

For the first (i) constraint, every operator is defined with a set of available positions.

𝑜(𝑘) : 𝑝𝑜(𝑘) , where 𝑝𝑜(𝑘) ⊆ 𝑃

If the operator is scheduled for a different position on any day of the on-call plan, the

constraint is violated and the plan is not valid. This can be written as a matrix 𝑦
(𝑘)
𝑗 , where

an entry is zero if the operator 𝑜(𝑘) can work on position 𝑝𝑗 :

𝑦
(𝑘)
𝑗 =

{︃
0, if 𝑝𝑗 ∈ 𝑝𝑜(𝑘)

1, otherwise

The penalty 𝐶(𝑖) is given by the sum over all operators and day-position pairs with the

matrix 𝑦
(𝑘)
𝑗 :

𝐶(𝑖) =

𝑁∑︁
𝑘

𝐷∑︁
𝑖

𝑃∑︁
𝑗

𝑦
(𝑘)
𝑗 · 𝑜(𝑘)𝑖,𝑗

This penalty is zero if all operators 𝑁 can work on all positions 𝑃 or if every operator 𝑜(𝑘)

only works on positions 𝑝𝑗 ∈ 𝑝𝑜(𝑘) .
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Constraint (ii) and (iii): Per day position pair, at least or at most one operator needs
to be assigned

Constraints (ii) and (iii) are dependent on the chosen encoding. For binary encoding, the
two constraints are already achieved through the encoding scheme, since only exactly one
operators can be scheduled for a day-position pair 𝑑𝑖𝑝𝑗 . For the one-hot encoding, however,
this is not the case.
For constraint (ii), the sum over all operators for the day-position pair has to be 1 or

more. The penalty 𝐶(𝑖𝑖)(𝑑𝑖, 𝑝𝑗) for a given day 𝑑𝑖 and position 𝑝𝑗 is given by the sum over

all pairs of two operators 𝑜(𝑘) and 𝑜(𝑙):

𝐶(𝑖𝑖)(𝑑𝑖, 𝑝𝑗) =

(𝑁2 )∑︁
𝑘,𝑙

(1− 𝑜
(𝑘)
𝑖,𝑗 − 𝑜

(𝑙)
𝑖,𝑗 + 𝑜

(𝑘)
𝑖,𝑗 · 𝑜(𝑙)𝑖,𝑗)

This penalty is zero if one or more operators are working on the day-position pair. The
penalty 𝐶(𝑖𝑖) for constraint (ii) can therefore be given by a simple summation of all day-
position pair penalties:

𝐶(𝑖𝑖) =
𝐷∑︁
𝑖

𝑃∑︁
𝑗

𝐶(𝑖𝑖)(𝑑𝑖, 𝑝𝑗)

The penalty 𝐶(𝑖𝑖𝑖)(𝑑𝑖, 𝑝𝑗), on the other hand, is the exact opposite:

𝐶(𝑖𝑖𝑖)(𝑑𝑖, 𝑝𝑗) =

(𝑁2 )∑︁
𝑘,𝑙

𝑜
(𝑘)
𝑖,𝑗 · 𝑜(𝑙)𝑖,𝑗

This penalty is zero if no operator is working on the day-position pair. Just as with constraint
(ii), the penalty 𝐶(𝑖𝑖𝑖) is given by a simple summation of all day-position pair penalties:

𝐶(𝑖𝑖𝑖) =

𝐷∑︁
𝑖

𝑃∑︁
𝑗

𝐶(𝑖𝑖𝑖)(𝑑𝑖, 𝑝𝑗)

With the summation of 𝐶(𝑖𝑖)(𝑑𝑖, 𝑝𝑗) and 𝐶(𝑖𝑖𝑖)(𝑑𝑖, 𝑝𝑗), the penalties for constraint (ii) and
(iii) are dependent on the number of day-position pairs that violate the constraint. The
more pairs violate the constraints, the higher the penalty term. This might not be wanted
in some cases, but for our problem, this might help in combating barren plateaus since it is
easier to find a better solution by simply satisfying one more day-position pair.

Constraint (iv): An operator can be assigned to at most one position a day

This constraint is working akin to constraint (iii), but where constraint (iii) compared two
operators for each day position, this constraint compares two positions for every operator-
day pair. This results in increased energy for operators who work more than one position
per day. The penalty 𝐶(𝑖𝑣) is given by:

𝐶(𝑖𝑣) =

𝑁∑︁
𝑘

𝐷∑︁
𝑖

(𝑃2)∑︁
𝑗,𝑙

𝑜
(𝑘)
𝑖,𝑗 · 𝑜(𝑘)𝑖,𝑙
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As said before, with every combination of two positions where the operator is working,
the penalty increases. Only if we cannot find a pair of two positions where the opera-
tor is scheduled will the penalty be zero. The energy landscape for specifically constraint
(iv) as a binary encoded problem is given in Figure 5.3, where we can see the minimiza-
tion of the energy at eight distinct points: ”010101”, ”010110”, ”011001”, ”011010”, and
their inverted counterparts. In every bit string, we can see that for each day-position pair:
”𝑝1𝑑2, 𝑝0𝑑2/𝑝1𝑑1, 𝑝0𝑑1/𝑝1𝑑0, 𝑝0𝑑0,” no two identical operators 𝑜(𝑘) are assigned.

Figure 5.3: Energy landscape for constraint (iv) as a binary encoded problem for 2 operators,
3 days, and 2 positions

Constraint (v): Operators can specify days in advance when they are unavailable

Constraint (v) is rather similar to constraint (i). Here, every operator is defined by a set of
unavailable days or outages.

𝑜(𝑘) : 𝑑𝑜(𝑘) , where 𝑑𝑜(𝑘) ⊆ 𝐷

If the operator is scheduled for a day in subset 𝑑𝑜 for any position, the constraint is violated

and the on-call plan is not valid. This can also be written as a binary matrix 𝜒
(𝑘)
𝑖 , where an

entry is zero if the operator 𝑜(𝑘) can work on day 𝑑𝑖:

𝜒
(𝑘)
𝑖 =

{︃
0, if 𝑑𝑖 /∈ 𝑑𝑜(𝑘)

1, otherwise

Similar to constraint (i), the penalty 𝐶(𝑖) is given by the sum over all operators and

day-position pairs with the binary matrix 𝜒
(𝑘)
𝑖 :

𝐶(𝑣) =

𝑁∑︁
𝑘

𝐷∑︁
𝑖

𝑃∑︁
𝑗

𝜒
(𝑘)
𝑖 · 𝑜(𝑘)𝑖,𝑗

This penalty is zero if no operator has an outage on any day or if every operator 𝑜(𝑘) only
works on days 𝑑𝑖 /∈ 𝑑𝑜(𝑘) .
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Constraint (vi): A partially filled on-call schedule may be supplied and needs to be
obeyed

Constraint (vi) is an extension of constraints (i) and (v). But rather than limiting the
operator’s capabilities to just days or positions, this constraint combines both depending
on the partial on-call schedule. A partial on-call schedule defines already scheduled day-
position pairs (𝑑, 𝑝) ⊆ 𝑑𝑖 × 𝑝𝑗 , which is the same as pairs not being available for the rest
of the operators. A matrix (𝑥𝑦)𝑖,𝑗 defines these day-position pairs for all operators 𝑜(𝑘),
positions 𝑝𝑗 , and days 𝑑𝑖.

(𝑥𝑦)𝑖,𝑗 =

{︃
0, if 𝑑𝑖𝑝𝑗 /∈ (𝑑, 𝑝)

1, otherwise

We do not need to specify different values for different operators since an already scheduled
day position is unavailable for all operators. The penalty 𝐶(𝑣𝑖) is given just as for constraints
(i) and (v):

𝐶(𝑣𝑖) =
𝑁∑︁
𝑘

𝐷∑︁
𝑖

𝑃∑︁
𝑗

(𝑥𝑦)𝑖,𝑗 · 𝑜(𝑘)𝑖,𝑗

The penalty is zero if the partial On-Call schedule is empty or if no operator 𝑜(𝑘) is scheduled
for 𝑑𝑖𝑝𝑗 ∈ (𝑑, 𝑝).

Constraint (vii) and (viii): Operators can work at most n out of any m consecutive
weeks

The final two constraints are somewhat more intricate compared to the others, as they
involve inequalities that must be taken into account. Since we only work with small problem
instances, we will only use constraint (vii), but both constraints work similarly, just with
different inequalities. For constraint (vii), an operator is only allowed to work two days in
a row, no matter what position, for a sliding window of length three days. The constraint
is violated if an operator is assigned to a position for all three consecutive days during a
sliding window. The constraint is given by a set of inequalities for each operator 𝑜(𝑘) and 𝑊
sliding windows 𝑤𝑚 ∈ {0, · · · ,𝑊 − 1}:(︂𝐷𝑚∑︁

𝑖

(︁ 𝑃∑︁
𝑗

𝑜
(𝑘)
𝑖,𝑗 −

𝑃−1∑︁
𝑗

𝑜
(𝑘)
𝑖,𝑗 · 𝑜(𝑘)𝑖,𝑗+1

)︁)︂
≤ 2

where 𝐷𝑚 are all days in the sliding window 𝑤𝑚. The term
∑︀𝑃

𝑗 𝑜
(𝑘)
𝑖,𝑗 −

∑︀𝑃−1
𝑗 𝑜

(𝑘)
𝑖,𝑗 · 𝑜(𝑘)𝑖,𝑗+1

defines if the operator 𝑜(𝑘) is working on any position on day 𝑑𝑖. It is zero if the operator
does not work on any position and one otherwise. It is important to choose a term that is
exactly 0 or 1 so we do not accidentally violate the inequality.
As we have seen in Section 2.1 for one sliding window 𝑤𝑚 and one operator 𝑜(𝑘), the

inequality can be expressed with two slack variables 𝑠0, 𝑠1:(︃
𝐷𝑚∑︁
𝑖

(︁ 𝑃∑︁
𝑗

𝑜
(𝑘)
𝑖,𝑗 −

𝑃−1∑︁
𝑗

𝑜
(𝑘)
𝑖,𝑗 · 𝑜(𝑘)𝑖,𝑗+1

)︁
+𝑠0 + 𝑠1 − 2

)︃2
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Unfortunately, one needs two new slack variables for every sliding window and every operator:

𝐶(𝑣𝑖𝑖) =
𝑁∑︁
𝑘

𝑊∑︁
𝑚

(︃
𝐷𝑚∑︁
𝑖

(︁ 𝑃∑︁
𝑗

𝑜
(𝑘)
𝑖,𝑗 −

𝑃−1∑︁
𝑗

𝑜
(𝑘)
𝑖,𝑗 · 𝑜(𝑘)𝑖,𝑗+1

)︁
+𝑠

(𝑘,𝑚)
0 + 𝑠

(𝑘,𝑚)
1 − 2

)︃2

For 4 operators and 2 sliding windows, 4 · 2 · 2 = 16 slack variables would be needed. This is
not possible for the current quantum hardware since every new slack variable needs one qubit.
For approaches using this Hamiltonian formulation, we decided to exclude this constraint.

Goal (a): Operators shall work preferably whole weeks

To implement punishing terms for goals, one has to define a function measuring conformity
with the goal. The further the schedule is from the goal, the higher the punishing factor
has to be. For goal (a), every operator should roughly work the same number of shifts for
a given number of days. We achieve this by defining the average number of working shifts
every operator should work.

𝜔 =

⌈︂
𝐷 · 𝑃
𝑁

⌉︂
The deviation from 𝜔 is the punishing factor for each operator:

𝐶(𝑎) =

𝑁∑︁
𝑘

(︁
𝜔 −

𝐷∑︁
𝑖

𝑃∑︁
𝑗

𝑜
(𝑘)
𝑖,𝑗

)︁2

Figure 5.4: Energy landscape for binary encoded problem with 2 operators, 3 days, and 2
positions for goal (b)
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Goal (b): All operators shall work a similar amount of days

For this goal, the objective is for every operator to work or to be free for a full week. To
test this goal for smaller problem instances with 𝐷 < 7, we will define 𝐷 as the full week.
To measure the conformity with this goal, we want to calculate the deviation from the two
extrema 0 and 𝐷 or 7 if 𝐷 > 7:

𝐶(𝑏) =

𝑁∑︁
𝑘

𝑃∑︁
𝑗

(︂
𝐷 −

𝐷∑︁
𝑖

𝑜
(𝑘)
𝑖,𝑗

)︂
·
𝐷∑︁
𝑖

𝑜
(𝑘)
𝑖,𝑗

The energy landscape in Figure 5.4 for this goal is very hard to traverse and find the global
minimum. With its steep peaks and multiple local minima, it is easy to miss the optimal
solution.
In the following two sections, we will discuss the three different VQAs, beginning with

the QAOA solver, which utilizes the Hamiltonian formulation of the objective function and
therefore excludes constraint (vii). Afterwards, we will look at the methods used for both
the VQE and F-VQE.

5.2 Hamiltonian Solver

In this section, we will look at the implementation of the QAOA solver using the Hamiltonian
defined by the constraints and goals in 5.1.2. This implementation uses the procedure
outlined in 2.3.4, where we divide the Hamiltonian into not commuting Pauli strings ⊗𝑗∈𝜌𝜎

𝑧
𝑗 ,

where 𝜌 is the set of indices for a given Pauli string. Let us imagine a system with 𝒩 = 5
qubits, and we want to define the Pauli string for the first and second qubits. The set 𝜌 is
therefore defined by just those two indices: 𝜌 = {0, 1}, and the resulting Pauli string is: 𝜎𝑧0⊗
𝜎𝑧1 . The energy or the expectation value of this Pauli string 𝐸{0,1} = 𝛼{0,1} ⟨0|𝒩 𝑈 †(𝜃) 𝜎𝑧0 ⊗
𝜎𝑧1 𝑈(𝜃) |0⟩𝒩 can then be directly measured on a quantum computer.
To generate all necessary Pauli strings, we first have to simplify the objective function,

adding the constraints 𝑐 ∈ {(𝑖), (𝑖𝑖), (𝑖𝑖𝑖), (𝑖𝑣), (𝑣), (𝑣𝑖)} and goals 𝑔 ∈ {(𝑎), (𝑏)}:

𝑓 = 𝛼
∑︁
𝑐

𝐶𝑐 + 𝛽
∑︁
𝑔

𝐶𝑔 (5.1)

The simplified terms are given by:

𝑓 =
∑︁

𝜌⊂{0,··· ,𝒩−1}

𝛼𝜌
∏︁
𝑖∈𝜌

𝑥𝑖 (5.2)

The product
∏︀
𝑖∈𝜌 𝑥𝑖 is taken over all variables 𝑥𝑖 belonging to the subset 𝜌 and repre-

sents the variable interaction terms inherent to the objective. The values 𝛼𝜌 represent the
coefficients associated with each subset. If a subset is not part of the objective, the corre-
sponding coefficient is zero. The variables 𝑥𝑖 correspond to the qubits of the system and can

be expressed as 𝑜
(𝑘)
𝑖,𝑗 or 𝑜

(𝑤)
𝑖,𝑗 , as seen in Subsection 5.1.1. It is possible to find such a repre-

sentation for every objective f since all variables 𝑥𝑖 are binary and we can reduce quadratic
or higher-order terms to linear combinations. The term (𝑥0𝑥1)

2, for example, is equivalent
to 𝑥20𝑥

2
1 = 𝑥0𝑥1. With all terms 𝜌, we use the substitution from Subsection 2.3.2 𝑥𝑖 =

1−𝑧𝑖
2
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to generate the Pauli strings ⊗𝑗∈𝜌𝜎
𝑧
𝑗 . Note that we exclude the constraints vii and viii in our

objective 𝑓 since both require a vast amount of slack variables and are therefore not usable
with current quantum hardware.
Let us look at a simple example: We want to solve a problem with two operators, positions

and days, while using constraints i, iv, and v and both goals. Operator 𝑜(0) has an outage on
day 𝑑0 and can only work on positions 𝑝0. Operator 𝑜(1), on the other hand, has no outage
and can work both positions. For this example, we will use binary encoding, so we only need
four qubits or variables. 𝑥0 ≡ 𝑑0𝑝0, 𝑥1 ≡ 𝑑0𝑝1, 𝑥2 ≡ 𝑑1𝑝0, 𝑥3 ≡ 𝑑1𝑝1 for the day-position
pairs. The terms for the different goals and constraints are given by Equation 5.5.

𝐶(𝑎) =− 6𝑥0−6𝑥1 − 6𝑥2−6𝑥3 + 4𝑥0𝑥1+4𝑥0𝑥2 + 4𝑥0𝑥3+4𝑥1𝑥2 + 4𝑥1𝑥3+4𝑥2𝑥3 + 8

𝐶(𝑏) =+ 2𝑥0+2𝑥1 + 2𝑥2+2𝑥3 −4𝑥0𝑥2 − 4𝑥1𝑥3

𝐶(𝑖) = −2𝑥1 −2𝑥3 + 4

𝐶(𝑖𝑣)=− 2𝑥0−2𝑥1 − 2𝑥2−2𝑥3 + 4𝑥0𝑥1 +4𝑥2𝑥3 + 4

𝐶(𝑣) =− 2𝑥0−2𝑥1 + 4

Figure 5.5: Punishment terms for 2 operators, 3 days, and 2 positions with goals (a), (b),
and constraints (i), (iv), and (v)

For 𝛼 and 𝛽 both set to 1, we can simplify the objective function in Equation 5.1 to the
form in Equation 5.2:

𝑓 = −8𝑥0 − 10𝑥1 − 6𝑥2 − 8𝑥3 + 8𝑥0𝑥1 + 4𝑥0𝑥3 + 4𝑥1𝑥2 + 8𝑥2𝑥3 + 20

The objective function can then be mapped to a quantum Hamiltonian via variable sub-
stitution. The Hamiltonian, denoted as 𝐻𝐶 , is given by the Pauli strings 𝜌. In this case, the
Hamiltonian 𝐻𝐶 is represented as:

𝐻𝐶 = 𝜎𝑧0 + 2𝜎𝑧1 + 𝜎𝑧3 + 2𝜎𝑧0𝜎
𝑧
1 + 𝜎𝑧0𝜎

𝑧
3 + 𝜎𝑧1𝜎

𝑧
2 + 2𝜎𝑧2𝜎

𝑧
3 + 10

Here, 𝜎𝑧𝑖 represents a Pauli-Z operator acting on qubit 𝑖. The terms in the Hamiltonian
capture the interactions and constraints inherent in the original optimization problem.
For QAOA, the ansatz circuit is given by the Hamiltonian 𝐻𝐶 and the mixer Hamiltonian

𝐻𝑥, where we use the simple bit flip mixer as defined in Subsection 2.3.4. The gates for the
circuit are given by:

𝑈𝐻𝐶 (𝛾) = 𝑒−𝑖𝛾𝐻𝐶 𝑈𝐻𝑥(𝛽) =
∏︁
𝑗

𝑒−𝑖𝛽𝑋

A circuit design for the QAOA ansatz with four qubits can be seen in Figure 5.6. The number
of repeated applications of the unitaries is given as the parameter 𝑝 and can be seen as the
gate block inside the big brackets. As both the unitary for 𝐻𝐶 and 𝐻𝑥 need one parameter
each for every layer 𝑝, 2𝑝 parameters 𝛾 = (𝛾1, · · · , 𝛾𝑝) and 𝛽 = (𝛽1, · · · , 𝛽𝑝) are required for
a circuit execution. In Figure 5.7, the implementation of the problem Hamiltonian unitary
𝑈𝐻𝐶 (𝛾) is shown for the first layer. In the example, we show a circuit for 2 operators, 2 days,

50



5.2. HAMILTONIAN SOLVER

Figure 5.6: QAOA ansatz circuit for four qubits. The circuit uses 𝑝 layers, where each layer
uses different values for 𝛽 and 𝛾. Black: The unitary for the problem Hamiltonian
𝐻𝐶 . Blue: The unitary for the mixer Hamiltonian.

and 2 positions while trying to optimize for the constraints (i) (dark blue), (iv) (light blue),
and goals a (dark red) and b (light red). We omitted the constraint (v) for the construction
of 𝑈𝐻𝐶 (𝛾) since it works comparable to constraint (i) and would lead to a similar gate design.
In our example input, the only restriction to operator position capabilities is for operator

𝑜(0), where they are not able to work on position 𝑝0. The dark blue gate block for constraint
(i) is constructed with that in mind and places two single rotation gates on the day-position
pairs 𝑑0𝑝1 and 𝑑0𝑝1. With the right value for 𝛾, it is possible to increase the measurement
probability of operator 𝑜(1) and decrease the probability of operator 𝑜(0) for both day-position
pairs, leading to a better overlap with the constraint. For constraint (iv), we need to compare
the two different positions for each day to check if the operator is the same. And just as
with constraint (i), for the right values of 𝛾, the probability of measuring the same operator
for both positions can be minimized. The gate design for goals (a) and (b) is a bit more
complicated but can be understood by looking at the problem formulation in Equation
5.5. For both goals, the variable interactions can be seen in the multivariable terms. The
punishment term 𝐶(𝑎) of goal (a) has every two-variable interaction term, so the gate design
is constructed accordingly. For this small example, this is by far the most complicated gate
design, but because of the large amount of variable interactions, it is possible to construct
a vast amount of output states. Through the classical optimization of the parameters 𝛾,
it is then possible to increase the measurement probability of all states that achieve the
goal. Likewise for goal (b), where we have the interaction terms between 𝑥0𝑥2 and 𝑥1𝑥3.
The resulting gate design is therefore much smaller but retains the property of achieving an
overlap with all optimal states.
The classical optimization part is then done by three optimizers: conjugate gradient de-

scent (CG) 2.1.3, Powell’s algorithm (Powell) 2.1.3, and constrained optimization by linear
approximation (COBYLA) 2.1.3. In chapter 6, a comparison of the results for each of these
solvers is given.
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Figure 5.7: 𝑈𝐻𝐶 (𝛾) gate design for 2 operators, 2 days, 2 positions, constraints i (Dark blue),
iv (Light blue), and goals a (Dark red) and b (Light red).

5.3 Black Box Solver

In this section, we will look into the implementation of F-VQE and VQE using a black box
objective function. A black-box objective function 𝑓 ′ does not need to be in a Hamiltonian
form and generally does not need to conform to any specifications. The output of such a
black box function, however, does construct an implicit diagonal Hamiltonian:

𝐻 =

⎡⎢⎣ 𝑓 ′(x0)
. . .

𝑓 ′(x𝒩−1)

⎤⎥⎦
This Hamiltonian, however, cannot be efficiently computed since it would require evaluating
all 𝒩 inputs, essentially solving the problem directly. The advantage of such a black-box ob-
jective function is that it is not constrained by the same limitations as a regular Hamiltonian
formulation. For example, to convert an objective function with inequalities to a Hamilto-
nian necessitates a transformation into equalities, which, as we have seen in 2.1, often times
requires multiple slack variables, which also results in a large number of additional qubits.
Black-box functions, on the other hand, do not impose these constraints, offering greater
flexibility in handling different types of objective functions. If we look at constraint (vii), an
easy solution would be to define the energy output as:

𝐶 ′
(𝑣𝑖𝑖)(𝑘,𝑚) =

{︃∑︀𝐷𝑚
𝑖

(︁∑︀𝑃
𝑗 𝑜

(𝑘)
𝑖,𝑗 −

∑︀𝑃−1
𝑗 𝑜

(𝑘)
𝑖,𝑗 · 𝑜(𝑘)𝑖,𝑗+1

)︁
−2 , if > 0

0 , otherwise

for operator 𝑜(𝑘) and sliding window 𝑤𝑚. And since we compute the expectation value of
⟨𝐹𝑡⟩𝜓 and ⟨𝐻⟩𝜓 via an approximation in which we sample single data points and compute
the corresponding energy, this approach is perfectly suitable. Additionally, checking for
constraint violations becomes considerably more straightforward. Rather than attempting
to formulate the objective function for all possible variable occupations, we work with a
fixed-bit string configuration in which we know the exact assignment of each variable. For
instance, when examining constraint (iv), where an operator is not allowed to simultaneously
be assigned to more than one position in a day, we no longer need to exhaustively evaluate
all combinations of position pairs. Instead, with a known schedule, as with all NP-complete
problems, it becomes a trivial process to identify if any operator is working on two or more
positions at the same time. This simplification leads to a substantial reduction in the energy
computation for a given set of bit strings. Consequently, the new energy value for a set of
bit strings is given by the number of constraint violations along with the overlap for each
goal.
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Figure 5.8: Potentially achievable states for single qubit parameterized circuits as seen in
[SJAG19, Fig. 1]

Having examined how the new energy values for a black-box objective function are deter-
mined, let us now shift our focus to the crucial aspect of selecting the right approach for
variational quantum algorithms. This selection is particularly significant, especially in the
case of VQE when dealing with multiple Pauli operators such as 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧, where the
solution space is notably expansive. But even if only one Pauli operator is used, it is often
not trivial to find a good alternative circuit. For a good approach, it is essential to maximize
its span in parts of the input space that contain the solution. This span of possible states
an ansatz can reach is referred to as its expressibility. For a circuit with just one qubit,
this measures its capability to explore the Bloch sphere and generate its states. Figure 5.8
illustrates the states that are potentially achievable for three distinct circuits, each consisting
of a single qubit. It is, however, often intractable to construct high-explicity algorithms due
to the higher number of parameters and increasing circuit depths. A good ansatz must find
a balance between efficiency and expressibility. The expressibility of a given ansatz can be
measured through the distribution of unitaries the ansatz can create. This score is a value
between 0 and 1, and reaches maximum expressibility at value 0[SJAG19].
Additionally, it is also possible to measure the entangling capability of an ansatz. Circuits

with a high entangling capacity can generate highly entangled states even at low depths.
Generating highly entangled states helps with efficiently representing the solution space for
tasks such as ground state preparation [SJAG19]. Strongly entangled circuits can be realized
by layered architectures, including two-qubit gates such as CNOT gates. The entangling
capability is also a measure between 0 and 1, but reaches its maximum at value 1 [SJAG19].
The two chosen ansatz circuits for F-VQE and VQE use a combination of parameterized

rotation (𝑅𝑌 ) gates and either CNOT gates or parameterized controlled rotation (𝑅𝑋) gates.
In Figure 5.9, the specific design for a circuit with four qubits can be seen. Circuit (𝑎1) is the
same circuit used in the first F-VQE paper and will be used as a baseline. Circuit (𝑎2) is an
ansatz introduced in [SJAG19] and was one of the best performing once in their comparison.
The number of rotation gates and parameters for circuit (𝑎1) is given by: 𝑞+ 𝑝(4

⌊︀ 𝑞
2

⌋︀
− 2),

and the number of CNOT gates by: 𝑝(2
⌊︀ 𝑞
2

⌋︀
− 1), for 𝑞 qubits and 𝑝 layers. For circuit

(𝑎2), the number of parameters is given by the total number of gates: 2𝑑(2𝑞), where we
need 𝑝(2𝑞) rotation 𝑅𝑌 and controlled rotation 𝑅𝑋 gates. In Figure 5.10, expressibility
scores and entangling capabilities are shown for both ansatz circuits with four qubits and
varying numbers of layers 𝑝 indicated by the different colors. The expressibility score is on
a logarithmic scale for better clarity between individual scores.
Expressibility scores for well-constructed ansatz circuits for problems with multiple Pauli
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a

b

Figure 5.9: Ansatz circuits for four qubits each for F-VQE and VQE. Both circuits use 𝑝
layers, where each layer uses additional values for 𝜃. (a) Circuit 𝑎1: Only rotation
𝑅𝑌 gates use angles 𝜃𝑖. Controlled NOT gates are static. (b) Circuit 𝑎2: Both
rotation 𝑅𝑌 and controlled rotation 𝑅𝑋 gates use parameters 𝜃𝑖.

operators typically fall within the range of 0 to 0.2 [SJAG19]. We only investigate problems
with Pauli 𝜎𝑧 operators, allowing for worse expressibility scores since not all states need to
be achievable. Still, it is important to investigate if the better expressibility score for circuit
(𝑎1) will also result in improved results or if even less-than-optimal expressibility scores are
adequate. It is also noteworthy that there is an apparent enhancement in expressibility
as the number of layers 𝑝 increases. Circuit (𝑎2) also exhibits lower expressibility scores,
even for fewer layers. Likewise, the entangling capability shows an increase with more
layers, and again, the second circuit shows an improvement compared to the first ansatz.
Interestingly, the second ansatz reaches its peak expressibility at 𝑝 = 3 and not at the
maximal tested number of layers. This is an indication that the circuit has achieved its
maximum expressiveness, and differences between 𝑝 = 3 and 𝑝 = 4 can be attributed to the
inherent stochastic and noisy nature of measurements. It remains to be determined whether
the added complexity and parameter count justify this improvement.
Just as it is important to choose the right alternative circuit, it is equally essential to find

a suitable initial parameter assignment. While the ansatz, amongst others, tries to provide
a vast solution space with good ground state overlap, a good initial parameter vector 𝜃
specifies where one starts to search for the optimal solution. If an initial input state is
chosen in the neighborhood or inside the space that contains the solution, it is less likely to
run into local minima, and fewer optimization steps are needed to reach a solution. There
is extensive research on how one can choose such an initial state, ranging from multi-start
methods, local pre-optimization, and classically computed solutions for a relaxed version of
the given problem. In our implementation, we tried two different methods:

1. Uniform distribution over all input states |+⟩ = 𝑅𝑌 (𝜋/2) |0⟩𝒩

2. Random initialization for 𝜃,𝜃𝑖 ∈ {−𝜋, 𝜋}
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Circuit layers for ansatz (𝑎1)
1 2 3 4

Expressibility 0.427022 0.288892 0.236862 0.180237
Entangling capability 0.683144 0.755244 0.801661 0.829320

Circuit layers for ansatz (𝑎2)
1 2 3 4

Expressibility 0.179573 0.020272 0.008531 0.010727
Entangling capability 0.832683 0.906962 0.930052 0.938004

Figure 5.10: Comparison of expressibility and entangling capability for both circuits with
four qubits and varying number of layers 𝑝

In Section 6, an overview of the results for each approach is given.
Next, we want to discuss how we compute the effective step size 𝛼𝑘∇𝑓(xk) for our ap-

proach. The gradient descent algorithm slowly decreases its effective step size near stationary
points, resulting in no further improvement once such a point is reached. While we try to
combat this in part with the adaptation of 𝜏 as seen in Section4.3, we want to incorporate
an additional approach: normalized gradient descent [SYRY21]. Its core idea is to ignore
the magnitude of the gradient ∇𝑓(xk) and introduce a consistent effective step size:

xk+1 = xk − 𝛼𝑘
∇𝑓(xk)

||∇𝑓(xk)||

Through the normalization of the gradient, the step size 𝛼𝑘 becomes the effective step size.
This should work well with our adaptive 𝜏 , since this approach only changes the optimization
step, while 𝜏 influences the actual gradient computation.

5.3.1 Additions for F-VQE

F-VQE requires additional considerations regarding the filter operators and the setting of
bounds to keep 𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 ∈ (0, 1]. We begin by looking at the different filter operators
we used in our comparison. An overview of all the filtering function definitions is given in
Figure 5.11. The first three filter functions are taken from the previous work on F-VQE,
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while the others are derived from sigmoid functions. Sigmoid functions are a good fit for a
filter operator since they are both real valued and strictly monotone on the interval [0, 1].

Filter 𝑓(𝐻; 𝜏) 𝜏

Inverse 𝐻−𝜏 0.65

Logarithm (−𝑙𝑜𝑔(𝐻))𝜏 0.51

Exponential 𝑒−𝜏𝐻 1.5

1 - Gudermannian 1− 3
2 · 𝑡𝑎𝑛−1(𝑡𝑎𝑛ℎ((𝐻/2)𝜏 )) 0.2

1 - Square root division (1− (𝐻/
√
𝐻))𝜏 2.5

Figure 5.11: Compared filtering operators. The normalized filter value is computed by di-
viding all values by their maximum. Filter values are computed for energies in
range [𝐸0, 1] where 𝐸0 = 0.001 is the ground state. For each filter operator, the
used value for 𝜏 for this plot is given in the table. For the computation of the
filter value, a problem instance with six qubits was used.

Before we apply filtering operators to our objective function, we need to re-scale the
energy range to [0, 1]. Otherwise some filter operators are no longer well defined or strictly
decreasing. This can be done via the parameters 𝛼 and 𝛽 in Equation 5.1. To find suitable
parameters, we first initiate the algorithm with unscaled values for 𝛼 and 𝛽 and start a
calibration run to get an even distribution over the energy spectrum �⃗�. The lower 𝑙𝑓 ′ and

upper 𝑢𝑓 ′ bounds of the objective function are then given by 𝑙𝑓 ′ = 0.001 and 𝑢𝑓 ′ = 𝑚𝑎𝑥(�⃗�).
The lower bound is arbitrary and chosen to be larger than 1. To ensure the minimal energy
𝐸𝑚𝑖𝑛 does not decrease beyond this point, the lower bound 𝑙𝑓 ′ is added to the objective
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function. Afterwards, the new parameters �̄� and 𝛽 are given by:

�̄� =
𝜖

𝑢𝑓 ′
𝛼; 𝛽 =

𝜖

𝑢𝑓 ′
𝛽

where 𝜖 ∈ (𝑙𝑓 ′ , 1] is the new maximal energy of the scaled objective function. Since it is not
probable that we will find the actual maximal energy in the calibration run, it is prudent
to set 𝜖 to a value not too close to 1. We choose 𝜖 = 0.8, which results in almost no energy
values larger than 1 for the following iterations. This approach works well since measurement
probabilities for high-energy states are reduced with each iteration. It is thus not likely to
measure higher maximal energies than in the first calibration run. We also only consider one
parameter 𝛾 = 𝛼

𝛽 for our objective function since we are mostly interested in the difference
of the goal and constraint energy for constraints 𝑐 ∈ {(𝑖), (𝑖𝑖), (𝑖𝑖𝑖), (𝑖𝑣), (𝑣), (𝑣𝑖), (𝑣𝑖𝑖)} and
goals 𝑔 ∈ {(𝑎), (𝑏)}:

𝑓 ′ = 𝑙𝑓 ′ + �̄�
∑︁
𝑐

𝐶 ′
𝑐 + 𝛽

∑︁
𝑔

𝐶 ′
𝑔 ≡ 𝑙𝑓 ′ +

𝜖

𝑢𝑓 ′

(︂
𝛾
∑︁
𝑐

𝐶 ′
𝑐 +

∑︁
𝑔

𝐶 ′
𝑔

)︂
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6 Evaluation

In this section, we present a comprehensive evaluation of the methodologies in Chapter 5
and algorithms in Chapter 4 and Subsection 2.3.4 presented earlier. Our primary objective
is to gain a deeper understanding of the F-VQE algorithm and to find suitable approaches to
optimize its performance. We will analyze and compare the different strategies and solvers
we introduced previously. In addition to delving into the details of the three primary solvers,
F-VQE, VQE, and QAOA, we will also provide a comparative analysis with the Grover solver
(discussed in Section 3.1.1), which has been developed by the DLR. Through this evaluation,
we aim to provide valuable insights into the practical applicability and limitations of the F-
VQE algorithm for real-world problems.

Section 6.1 introduces both the simulator and quantum hardware on which all tests were
run. Afterwards, section 6.2 will present an outline of the chosen test cases. In section 6.3,
we will delve into the heart of our findings. Subsection 6.3.1 will offer an overview of the
hyperparameters employed in the F-VQE and VQE approaches and present the optimiza-
tion process and the final values. Lastly, we will conclude our evaluation in Section 6.4,
highlighting the key takeaways. We aim to showcase the capabilities and limitations of the
F-VQE approach for real-life combinatorial scheduling problems and evaluate its suitability
for such applications.

6.1 Hardware

Due to time and implementation constraints, test cases could not be run on the same hard-
ware. For the QAOA implementation, we relied on the ”ibm qasm simulator,” which intro-
duced delays due to the need for constant data transfer between our local system and the
Qiskit backend.
Both F-VQE and VQE were implemented to support parallelization for multiple circuit

executions. It was thus able to spread the 2𝑚 + 1 circuit evaluations per iteration over
multiple processes. To this end, we used the High-Performance Data Analytics Platform
(HPDA)[Cen23] developed by the German Aerospace Center (DLR) and the Leibniz Super-
computing Centre (LRZ). The system relies on Lenovo’s ThinkSystem SD650-N V2 servers
and DSS-G memory. It consists of 61 CPU nodes, each equipped with two 40-core Intel
Xeon Platinum processors. The nodes are interconnected using Infiniband HDR technology,
allowing the platform to process data at speeds of 320 GB/s. Furthermore, we were able to
run two test cases for F-VQE on actual quantum hardware. To achieve this, we also utilized
the Qiskit backend, employing two quantum processors: ”ibm nairobi” [IBM23] with seven
qubits and ”ibm brisbane” [IBM23] with 127 qubits.
Given that Grover’s algorithm necessitates only one circuit evaluation, we couldn’t employ

the same parallelization approach used for F-VQE and VQE. Regrettably, we faced challenges
with the Qiskit backend for the deep circuits Grover requires, preventing us from executing
our simulations there. Consequently, we had to conduct the simulations on our local system,
imposing severe constraints on the problem instance sizes.
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6.2 Test Cases

In our evaluation, we consider a set of test cases that represent small combinatorial scheduling
problems. These test cases vary in terms of the number of positions, operators, and days,
making them suitable for small-scale testing of the F-VQE and VQE algorithms. Specifically,
our test cases encompass scheduling scenarios involving:

Positions: Test cases are designed to handle between 2 and 3 positions. This variability
allows us to assess the performance of our algorithms for different constraints, such as
(i) or (iv).

Operators: The number of operators considered in our test cases ranges from 2 to 6 for
binary-encoded operators and 2 to 3 for one-hot encoding.

Days: Test cases involve scheduling activities over a span of 3 to 5 days. The consideration of
different time frames is crucial for constraint (vii) to evaluate multiple sliding windows.

Each operator’s capabilities and work outage periods are randomly determined, reflect-
ing the realistic and dynamic nature of scheduling challenges. Additionally, partially filled
schedules vary from 10By including a diverse set of small-scale test cases, we aim to assess
the suitability of the F-VQE algorithm for tackling real-life combinatorial scheduling prob-
lems with a wide spectrum of constraints. In Table 6.1, a single example with three days,
four operators, and three positions can be seen.

Day 𝑑0 Day 𝑑1 Day 𝑑2

𝑝0 𝑝1 𝑝2 𝑝0 𝑝1 𝑝2 𝑝0 𝑝1 𝑝2

𝑜(1) - - - - - - - 𝑜(2)

Operators 𝑝0 𝑝1 𝑝2

𝑜(0)
√ √ √

𝑜(1)
√

× ×

𝑜(2)
√ √ √

𝑜(3)
√ √

×

𝑑0 𝑑1 𝑑2

×
√ √

√ √ √

√ √ √

√ √
×

Table 6.1: Test case with 3 positions, 4 operators, and 3 days. Top: Partial schedule with
operator 𝑜(1) at shift 𝑝0𝑑0 and operator 𝑜(2) at shift 𝑝2𝑑2. Left: Operator position
capabilities. Operator 𝑜(1) can only work on position 𝑝0; operator 𝑜(3) cannot
work on position 𝑝2. Right: operator outages. Operator 𝑜(0) has an outage on
day 𝑑0 and operator 𝑜(3) on day 𝑑2.
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6.3 Results

In this section, we will look at the results of our evaluation. We will begin by explaining how
we found and optimized various hyperparameters, and then we will show the results for the
previously defined test cases for F-VQE, VQE, QAOA, and the Grover solver. And lastly,
we will show the results obtained from an actual quantum computer.

6.3.1 Hyperparameters

Both F-VQE and VQE utilize multiple variables to enhance the optimization process. It
is important to choose good values for these hyperparameters since, otherwise, no solution
can be found. To that end, we used the Bayesian optimization SMAC3 algorithm [LEF+22],
which is a global optimization strategy for black-box functions. It is usually employed to op-
timize costly functions. Importantly, the algorithm is able to optimize for multiple objectives
over multiple problem instances. This ensures that found hyperparameter configurations do
not only perform for a single problem instance or objective, but for many. To make the op-
timization meaningful, care was taken in the implementation to choose a consistent seed to
ensure reproducibility. Unfortunately, due to time constraints, we were not able to conduct
additional hyperparamter optimizations for different initialization strategies, ansatz states,
filter operators, or the QAOA and Grover solvers. This should be kept in mind for the
later comparisons. The following hyperparameters were used in the implementation and are
sorted by relevance:

Learning Rate:
consistent effective step size for each iteration. It should not affect the computation time
but will most likely require more iterations for lower values to find a good solution.

Number of Iterations:
indicates how many training iterations are run. It directly affects the required compu-
tation time. This hyperparameter was taken into consideration to find potential depen-
dencies between the number of required iterations and other hyperparameters.

Quantum Circuit Evaluations:
regulates how many samples are taken per iteration. It has significant effects on the
accuracy of the computed gradient. It has to be seen if greater accuracy leads to better
results or if the introduced noise allows the optimization to escape local minima.

Ansatz depth:
defines how many layers the ansatz circuit has. Affects computation time for simulations.
It also introduces more parameters 𝜃 to the objective function, making it more difficult
to find the global minima. It is important to find a minimal alternative design that is
expressible enough to have ground-state overlap.

Momentum:
level of influence from previous gradient 2.1.2. As with the learning rate, this hyperpa-
rameter can significantly influence the speed and accuracy of the optimization process.
It is, however, not clear if our objective function is suitable for a momentum-based ap-
proach. If this is not the case, we will expect values near zero.
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Initial value for 𝜏 :
The parameter 𝜏 influences the effective step size, making it important to choose a good
initial point. Bad initial values could make the beginning of the optimization process
and the updating of subsequent values for 𝜏 harder.

Within this work, all six hyperparameters were optimized. We did not, however, use the
same test cases we introduced in 6.2 but rather took random samples where no care was
taken that they were actually solvable. This should ensure that optimized hyperparameter
values are not only suitable for our test cases. To evaluate the hyperparameter configuration
and the associated model quality, we used three objectives:

Mean energy:
average energy of all samples after the final iteration. However, it is not sufficient, as it
is not clear if the actual ground state was found.

Success rate:
indicates how many of the final set of samples are valid schedules. Together with the
average energy, it is very likely that the ground state was found. Still, there is no
guarantee that the schedule with optimal goal overlap will be found.

Computation time:
ensures that a trade-off between solution quality and required time is reached. Otherwise,
higher values for training iterations or circuit layers would always be preferred.

Due to the limited computation time on quantum computers, hyperparameter optimization
was performed as a simulation on a classical computer. Since we optimized the parameters
for F-VQE and VQE, we were able to run the optimization process on the LRZ HPDA
cluster. In Figure 6.1, the full optimization process can be seen. We compare the two
objectives ”mean energy” and ”success rate” for all found hyperparameter configurations.
Each blue dot is one hyperparameter configuration, and its ”mean energy” and ”success
rate” are the averages over multiple trials where different test case samples were used to
compute a solution. The incumbents are the best configurations for a particular iteration of
the hyperparameter optimizer. One iteration encompasses multiple trials but is not always
consistent in the number of trials. The number of trials within one iteration depends on the
ease with which the optimizer finds a better solution with which it can start a new iteration.
We displayed the optimal configurations of the first and last three iterations, recognizable
by the different colors. The red dotted lines show the improvement from one iteration to
the next, and the black dotted lines show the advancement within one iteration. It can be
seen that the optimizer was stuck inside a local minima for most of its iterations and only
managed to break out and find the global optimum in its last iterations.
This can also be seen in Figure 6.2 (a), which illustrates the success rate across all trials

alongside their respective learning rates. During the initial and mid-phase trials, a learning
rate close to one was usually chosen, leading to suboptimal success rates of > 90% with high
variance. In the final trials, the optimizer converged to configurations with learning rates
around 𝛼 ≈ 0.4, significantly enhancing the success rate to nearly 100% with low variance.
On the other hand, 6.2 (b) sees no improvement for different ansatz circuit depths. Instead, it
shows that later trials lean toward circuit depths 𝑑 = 1 since they require less computation
time and still yield the same results. This is likely the case since even the circuit design
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Figure 6.1: Hyperparameter optimization over all configurations

a b

Figure 6.2: Success rate for all trials. Black crosses show the incumbents of the last two
iterations (a) vs. learning rate. Eventual convergence to 𝛼 ≈ 0.4 in final trials
(b) vs. ansatz circuit depth. Different amounts of circuit layers 𝑑 ∈ {1, · · · , 5}
for ansatz 5.9 (a) No improvement for deeper circuits can be seen.

with one layer is expressible enough to have sufficient overlap with the ground state. It is
interesting to see if later experiments show the same outcome.
Figure 6.3 illustrates the relationship between momentum and learning rate. The con-

figurations are differentiated by their spatial density, revealing two distinct clusters at
𝛼 ≈ 0.3,𝑚 ≈ 0.2 and 𝛼 ≈ 0.9,𝑚 ≈ 0.9. These clusters correspond to the local minima,
in which the optimizer stayed most of its iterations (𝛼 ≈ 0.9,𝑚 ≈ 0.9) and the global
minima with lower overall cost (𝛼 ≈ 0.3,𝑚 ≈ 0.2). This can also be seen by the higher
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Figure 6.3: Mean Energy as Cost for all configurations with learning rate and momentum.
Red crosses show the incumbents of the last two iterations. Configurations are
density-color-coded showing two distinct clusters.

concentration of configurations and higher average cost in cluster 1. Interestingly, for higher
values of both 𝛼 and 𝑚, it appears that we take excessively large steps, causing us to over-
shoot the global minima. In contrast, using more precise step sizes enables us to locate the
global minimum effectively.
Finally, Figure 6.4 presents the relationship between the number of training iterations and

the quantity of samples taken in each iteration. Each configuration is depicted alongside its
corresponding cost, which, in this case, is represented by the mean energy. This graph shows
that there might also be two distinct local minima alongside the global minima. The first
cluster involves configurations with a low number of iterations and samples, while the second
cluster comprises configurations with a higher number of iterations and a still low sample
count. Notably, both clusters feature two incumbents from the second-to-last iteration.
However, the cluster with more training iterations exhibits an overall lower mean energy.
The global minimum, on the other hand, is in cluster three and is characterized by a low
number of iterations but a high number of samples. This cluster is notably smaller, as the
optimizer only managed to discover it in the final iteration. By looking at the last two
clusters, both of which exhibit a lower mean energy than the first cluster, it seems that more
iterations are needed when fewer samples are used, and vice versa.

6.3.2 Results on a Simulator

In our evaluation, we initially assessed the convergence of all algorithms using a 6-qubit
instance of a scheduling problem with two positions, three days, and two operators. Then we
used the same problem with one-hot encoding, which resulted in an instance with 12 qubits,
to compare the performance of F-VQE, VQE, and QAOA. We did not include comparisons
with classical solvers in this work since all instances under consideration can be solved
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exactly, rendering heuristic approaches unnecessary. Our primary focus lies in analyzing
the convergence and scalability of the VQAs. All quantum processors and simulators were
accessed through the Qiskit framework [Cro18].
We conducted tests for both encodings, evaluating the performance of the F-VQE, VQE,

and QAOA algorithms. Furthermore, we examined QAOA with three classical optimizers,
which we discussed in Section 2.1. For VQE and F-VQE, we explored two different ansatz
circuits, each initialized from different points. The Grover solver by [SGGC+21] was also used
to compute a solution for one small and one midsized instance. The algorithm is currently
only constructed for binary-encoded problem inputs, so we only ran one experiment per
problem instance. Each VQA experiment ran for 55 iterations and used 2400 measurements
per iteration. The Grover test cases were tested for Grover iterations between 1 and 10
and also used 2400 shots. To make the comparison between different approaches easier, we
computed the minimum energy of each test case and used it to normalize the results to the
range [0, 1].

𝐸* =
�̄� − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
∈ [0, 1]

where 𝐸𝑚𝑖𝑛 and 𝐸𝑚𝑎𝑥 are the minimum and maximum energy, respectively, for a given prob-
lem instance, and �̄� is the weighted average of the unfiltered energy of the given algorithm
per iteration:

�̄� =
1

𝑀

𝑀∑︁
𝑖=0

𝑀𝑖 · 𝐸𝑖

Figure 6.4: Mean energy cost for 1-55 training iterations and 1-5000 samples per iteration.
Formation of three low-cost clusters for iterations and samples: (35, 500), (10,
500), and (10, 2000)
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for 𝑀 samples per iteration, where 𝑀𝑖 is the amount of measurements for energy 𝐸𝑖. If
multiple approaches are compared in a single plot, the minimal and maximal energy are the
global values for all given approaches. This also means that, while in a plot with a single
problem instance, the scaled energy 𝐸* should approach the ground state 𝐸𝑚𝑖𝑛 = 0, the
ground state energy for a set of problem instances is not necessarily 0 for all of them. For a
good solution, we want the scaled energy 𝐸* to approach the minimal energy 𝐸𝑚𝑖𝑛.
We also computed the probability for measuring the ground state 𝑃𝑓 (𝐸𝑚𝑖𝑛) energy over

each iteration and the probability of finding a schedule 𝑃𝑠(𝐶) that complies with all con-
straints. Ideally, we would like to find the ground state with a frequency of 𝑃𝑓 (𝐸𝑚𝑖𝑛) ≈ 1
and measure the correct solutions with a probability of 𝑃𝑠(𝐶) ≈ 1.

Performance on 2p2o3d Schedule

We used a small initial example to test the viability of all tested algorithms since it requires
sufficiently few qubits, can be simulated on any hardware, and can also be run by essentially
every quantum processor and simulator. To make the results comparable, we use the same
number of samples, ansatz circuits, and initial points. The number of circuit layers will vary
since QAOA requires more to reach decent results. In Table 6.2, the used test case can be
seen. We decided not to include any outages since this would make constraint (iv), where
every operator is only allowed to work in one position per day, unachievable. For this small
example, the sliding window constraint is also not applicable since both operators have to
work three out of three days. This makes it a good example to compare Hamiltonian and
black box solvers since both approaches can implement the same constraints. For bigger
examples, we would need to artificially constrict the constraint set for black box solvers to
make a meaningful comparison. We therefore do not use QAOA in our comparisons for
larger problem instances.

Day 𝑑0 Day 𝑑1 Day 𝑑2

𝑝0 𝑝1 𝑝0 𝑝1 𝑝0 𝑝1

- - - - 𝑜(1) -

Operators 𝑝0 𝑝1

𝑜(0)
√ √

𝑜(1)
√

×

𝑑0 𝑑1 𝑑2

√ √ √

√ √ √

Table 6.2: Test case with 2 positions, 2 operators, and 3 days. Top: Partial schedule with
operator 𝑜(1) at shift 𝑝0𝑑2. Left: Operator position capabilities. Operator 𝑜(1) can
only work on position 𝑝0. Right: operator outages. No outages for any operator

For assessing the quality of a solution, a good metric is necessary to achieve comparable
results. To this end, we compare the scaled weighted averages 𝐸*, the success probability
𝑃𝑠(𝐶), the percentage amount of measurements for the current best energy 𝑃𝑚(𝑀), and the
ground state frequency 𝑃𝑓 (𝐸𝑚𝑖𝑛). In each comparison, all other hyperparameters are kept
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constant. But before we compare the performance of each algorithm, we first want to find
the best-performing alternative circuits, initial points, and classical optimizers.
In Figure 6.5, we compare three different classical optimizers for the QAOA algorithm on

our small problem instance. Each algorithm is also shown with three different circuit layers,
ranging from one to three. Additionally, in Table 6.3, the corresponding execution times can
be found.
We can see in both that with increasing layers, the performance and execution time in-

crease. For all three optimizers, we find higher ground state frequency, lower average energy,
and a higher success rate and measurement percentage for increasing circuit layers. We can
also see that, especially for the optimizer ”Conjugate Gradient (CG)”, the algorithm did not
run the full 55 training iterations. This is always the case when the optimizer is unable to
find a good next optimization step. This could either be because the algorithm found the
global optimum, or because the optimizer is stuck at other extrema, the gradient vanishes,
or only a local minima is found. Since no optimizer had remarkable ground state frequency,
it can be said to be one of the later two. In this small test case, both the ”Powel” and the
”CG” optimizers achieved the best performances. But since the last optimizer, ”Coblya,”
produces almost similar results and takes the least amount of time to compute all 55 it-
erations, we choose it going forward. Interestingly, it is important to note that while the
execution times of ”CG” and ”Coblya” seem similar, one has to consider that ”CG” only
ran for a maximum of five iterations. Even with just five iterations, it found better solutions
than ”Coblya”.

Layers 1 Layers 2 Layers 3

Coblya 03:28 05:48 08:21
Powell 09:33 35:31 39:33
CG 05:14 09:22 14:19

Table 6.3: Execution times (in minutes) for each classical optimizer and circuit layers
𝑝 ∈ [1, 3] Coblya is the fastest, even though CG only runs for a maximum of
5 iterations.

Next, we look at the two different encoding schemes. It is important to keep in mind that
while both present the same problem instance, one-hot encoding requires 𝑙𝑜𝑔2𝑁

𝑁 more qubits
(where 𝑁 is the number of operators). In Figure 6.6, both encoding schemes are shown
for F-VQE with the ansatz circuit (𝑎1) and (𝑎2), as well as for QAOA with the optimizers
”Coblya” and ”Powell”.
For QAOA, we chose the best-performing number of circuit layers 𝑝 = 3. Interestingly, we

observe the opposite for both algorithms: while F-VQE performs better in terms of success
rate 𝑃𝑠(𝐶) and average energy 𝐸* with binary encoding, QAOA performs better with one-
hot encoding. It also does not make a difference what optimizer method or what alternative
circuit was chosen. Notably, F-VQE with one-hot encoding fails to discover the ground
state altogether, suggesting convergence to a local minimum. This is further confirmed by
the nearly 100% measurement percentage 𝑃𝑚(𝑀), signifying that all samples originate from
this local minimum, consequently resulting in a 0% ground state frequency 𝑃𝑓 (𝐸𝑚𝑖𝑛). This
is also the case for QAOA, where, even with lower average energy and a higher success rate
𝑃𝑠(𝐶), the ground state frequency is 0% for both optimizers.
While we did not look at the different ansatz circuits, initial point selection, or different
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a b c

Figure 6.5: 𝑃𝑠(𝐶), 𝑃𝑚(𝑀), 𝐸*, 𝑃𝑓 (𝐸𝑚𝑖𝑛) are measured for all three QAOA classical solvers
using varying circuit depths from 1-3. (a) Coblya is a classical solver. Not
gradient-based. (b) Powell is a classical solver. Not gradient-based. (c) conjugate
gradient. Gradient based.

filter operators, we want to show the preliminary results for all variational solvers for our
small problem instance. For this comparison, we opted for ansatz circuit (𝑎1), the uniform
initial point, and the ”Inverse” filter, as these choices have minimal impact on small-scale
problem instances. Even further, the initial point selection does not result in comprehensive
results. This is most likely due to the fact that a random initialization is inherently noisy
and only achieves better performance on certain occasions. In Figure 6.7, the performance
of the F-VQE, VQE, and QAOA algorithms is shown. For this comparison, we chose to
use only one circuit layer for F-VQE and VQE while using three for QAOA. The number of
layers is gathered from the previous hyperparameter optimization. F-VQE and VQE use the
same remaining hyperparameters, and both are employing the parameter shift rule to update
the parameters 𝜃. For the small-problem instance, we see consistently better performances
in each metric. While VQE still achieves comparable results, QAOA only reaches half the
success rate 𝑃𝑠(𝐶) and a quarter of the ground state probability 𝑃𝑓 (𝐸𝑚𝑖𝑛). For VQE, we
can also observe a noisier optimization process. It finds a successful yet not optimal solution
in the early iterations but manages to escape these local minima, resulting in a decrease in
the success rate. Because of this initial local minima, VQE takes more iterations to find the
actual optimal result. Still, even after reaching the global optimum, the algorithm remains
noisy and almost escapes the global minima.
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a b c d

Figure 6.6: 𝑃𝑠(𝐶), 𝑃𝑚(𝑀), 𝐸*, 𝑃𝑓 (𝐸𝑚𝑖𝑛) are compared for both encoding schemes. (a) F-
VQE with ansatz (𝑎1). One-Hot encoding runs in local minima at 𝐸 ≈ 0.174,
very close to global minima. 𝐸 ≈ 0.165 (b) F-VQE with ansatz (𝑎2). One-Hot
also fails to find a global optimum but runs into worse local minima. (c) QAOA
with Coblya and depth 3. One-Hot performs better in 𝑃𝑠(𝐶), 𝑃𝑚(𝑀), and 𝐸*

but fails to obtain the ground state. (d) QAOA with Powell at depth 3. One-Hot
is unable to find update steps after iteration 6.

Performance on larger schedules

For the larger problem instances, we chose three examples to examine in more detail. The
first two examples use two or three positions, six operators, and three days. Both require
18 qubits for a binary-encoded problem. The third example consists of three positions, five
operators, and three days and uses 27 qubits. Bigger problem instances are increasingly
difficult to simulate, which is why we did not choose even larger instances.
In Figure 6.8, we compare both ansatz circuits, each with one layer for the last two problem

instances. We can see almost equal performance in both examples and ansatz circuits, with
only a small difference in mean energy for the example with three positions. Still, both
approaches are not able to find the ground state and run into local minima. For the second
example, both approaches are able to find the ground state with almost 100% accuracy.
Circuit (𝑎2) converges slightly faster to the optimum. After finding the global minima, it
also predominately finds a single solution until it discovers a second global minima, which
results in an even split in the measurement probability. Circuit (𝑎1), on the other hand,
finds both minima directly.
Since both alternative circuits seem to perform similarly, we will choose the first one for

further test cases since it requires fewer quantum gates and parameters. In the next test
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Figure 6.7: Performance comparison of F-VQE, VQE, and QAOA for small problem in-
stances of 2 positions, 2 operators, and 3 days. F-VQE outperforms both other
algorithms in every metric.

a b

Figure 6.8: Performance analysis for ansatz (𝑎1) and (𝑎2). Both ansatz circuits show similar
results. (a) Problem instance with 2 positions, 6 operators, and 3 days (b)
Problem instance with 3 positions, 5 operators, and 3 days.

case, we want to compare the different filtering operators with each other. In Figure 6.9, all
five filter operators and the VQE algorithm (used as a benchmark) are compared using the
example of two positions, five operators, and three days. With the exception of the ”inverse”
filter, all filter operators exhibit inferior performance compared to VQE. While they manage
to find the ground state, they struggle to minimize the mean energy and achieve high success
rates. Next to the ”Inverse” filter, only the ”Squared Root” filter attains a 100% success rate
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2p6o3d 3p5o3d
Ansatz (𝑎1) Ansatz (𝑎2) Ansatz (𝑎1) Ansatz (𝑎2)

Time 17:19 18:10 2:33:36 8:15:36
Evaluations 5670 7830 8586 11718
parameters 52 72 81 108

Table 6.4: Execution time (in hours and minutes), number of circuit evaluations, and number
of optimized parameters for both circuit ansätze and both problem instances.

and a mean energy close to 𝐸𝑚𝑖𝑛, but it requires an additional 10 iterations compared to
VQE. While each filtering operator shows improvement in the final iterations, they are still
slower to converge than VQE, or the ”inverse” filter. These results are unexpected, especially
when compared to the findings in previous work [AMR+22], where both the ”Exponential”
and ”Logarithm” filters outperformed the VQE implementation. Due to the performance of
the other filtering operators, we will only use the ”inverse” filter in the following experiments.

a b c

Figure 6.9: Comparison of 𝑃𝑠(𝐶), 𝑃𝑚(𝑀), 𝐸*, and 𝑃𝑓 (𝐸𝑚𝑖𝑛) for all five filtering operators
and the VQE algorithm. (a) ”Inverse” filter and VQE. As with the small problem
instance, F-VQE out performs VQE (b) ”logarithm” and ”exponential” filter
operators. Both filter operators show similar results, with the ”Logarithm” filter
having a slight edge in convergence speed. (c) ”Gudermannian” and ”square
root” filters The ”square root” filter achieves a success rate and ground state
probability of close to 100%.

In the next test case, we aim to assess the performance of F-VQE and VQE for larger
problem instances and validate our earlier hypothesis. In Figure 6.10, the results for all
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three examples are used for the comparison between F-VQE and VQE, both using a single
layer approach (𝑎1). And just as with the small example, F-VQE consistently performs
better even in larger instances. VQE takes more iteration to find the ground state and even
escapes the already-found global optima in the first two examples. The performance for the
largest problem is equally bad for both algorithms since neither is able to find the ground
state or a successful solution. Still, both are able to significantly reduce the mean energy
but stagnate at around 30 iterations. Along with the peaking measurement probability, this
indicates that both algorithms found a local minimum and are unable to find optimization
steps that would let them escape.

a b c

Figure 6.10: Performance comparison between the F-VQE and VQE algorithms. Both al-
gorithms use ansatz (𝑎1) with one layer and 2400 samples per iteration. (a)
Problem instance with 2 positions, 5 operators, and 3 days (b) Problem in-
stance with 2 positions, 6 operators, and 3 days (c) Problem instance with 3
positions, 5 operators, and 3 days.

Finally, we will take a separate look at the Grover implementation since it employs no
variational approach, currently does not yet consider goals, and singularly optimizes for the
constraint set. This also means that the ground state frequency is no longer significant
since every successful solution is simultaneously the ground state. The success rate and
minimization of the average energy, however, can still be compared with the variational
approaches. Grover’s algorithm is typically only applied once with a given number of Grover
iterations. These iterations differ in the sense that they are not continuous executions of the
same circuit with varying parameters but are inherited parameters of the circuit design. For
multiple Grover iterations, a gate block inside the circuit is repeatedly applied to achieve
an amplification of the ground state measurement probability. Nevertheless, we will use
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this parameter in the same way as we did for the variational approaches to illustrate the
amplification process. In Figure 6.11, we show the overall performance of Grover’s algorithm
over an interval of 1–10 iterations.

a b

Figure 6.11: Performance of the Grover solver for different numbers of iterations. In contrast
to the VQAs, each iteration is a separate full execution of the algorithm. (a)
Problem instance with 2 positions, 2 operators, and 3 days (b) Problem instance
with 2 positions, 4 operators, and 3 days.

For the smaller problem instance, we observe a peak in the success rate for a circuit
with three and nine Grover iterations. This behavior is to be expected from a Grover
implementation since the success rate periodically increases and decreases with the number
of iterations used. The wavelength is determined by the ratio of successful solutions within
the entire solution space. For the larger example, we only found the first peak at 10 iterations.
For further iterations, one would expect a slow decline until the success rate reaches 0%.
In contrast to the variational algorithms, Grover’s algorithm finds multiple global minima,
as can be seen by the percentage measurement amount. This is mostly due to the fact
that no goals were considered, resulting in an overall greater number of global minima. In
Table 6.5, the execution time, gate cost, circuit depth, and number of required qubits are
shown for the respective best-performing iteration number. The gate cost is a measure to
compare different circuit designs and get an idea of how the algorithm would perform on a
true quantum computer. It is given by the gates in the longest path of the circuit:

𝑐𝑜𝑠𝑡 = ||𝑆 * ||+ 10 · ||𝐶𝑁𝑂𝑇 ||

Where S* is the set of single qubit gates used in the longest path. The longest path in a
circuit is given by the qubit, which contains the most gates. To compute this metric, one has
to transpile the circuit into a basic gate set only containing a single qubit and CNOT gates.
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The circuit depth is a similar metric, but it does not take the type of gate into account. It
also shows the longest path for the untransposed circuit. Both metrics are important since
long circuits with many multi-qubit gates pose a limit to current quantum hardware with
low coherence times. To get an idea of the dimension of these values for the second problem
instance, F-VQE and QAOA only require a gate cost of 23 and 1369 and a circuit depth of 6
and 7, respectively. The table also highlights an interesting observation: Grover’s algorithm
demands a larger number of qubits for solving the same problem instances compared to the
variational approaches. For instance, in the case of the larger example, F-VQE encodes the
problem with 12 qubits, while Grover’s algorithm requires 20 qubits to address the same
instance. This is due to the fact that Grover utilizes additional quantum registers to detect
or count the number of constraint violations.

Execution Time Gate Cost Circuit Depth Qubits

2p2o3d 00:02 25003 92 12
2p4o3d 00:08 2382061 102 20

Table 6.5: Execution time, gate cost, circuit depth and number of qubits for Grover’s algo-
rithm.

6.3.3 Results on Quantum Hardware

For our test runs on real quantum hardware, we used the Qiskit backend. We had access
to a seven- and 127-qubit computer. For the smaller quantum processor, we were limited to
our smallest problem instance, which requires six qubits. For the larger one, we tried to test
a more extensive example. Unfortunately, our allocated processing time ran out before we
achieved noteworthy results. We will therefore only show the results of the smaller quantum
circuit.

a b

Figure 6.12: (a) Circuit qubit and gate mapping to quantum hardware. (b) Circuit Connec-
tivity Map for the ibm nairobi quantum processor: A seven-qubit layout was
used for the six-qubit F-VQE problem instance. Each circle represents a physi-
cal qubit, and the lines illustrate their physical connectivity. The color gradient
indicates the error rate for each connection and qubit, with darker colors signi-
fying lower error rates.
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Since IBM has to rebuild the circuit to fit on the actual hardware, all results included bit
string encodings with seven instead of six bits. To get the true bit string, one can find the
qubit that has no instructions in the circuit and remove the bit at the corresponding index.
In Figure 6.12, the rebuild circuit and the quantum processor architecture can be seen.
The circuit now utilizes all seven qubits, but notably, qubit 𝑞0[4] remains unused through-

out. The arrangement of quantum gates is also tailored to the specific hardware layout. For
example, in ansatz (𝑎1), a CNOT gate is placed between the second and third qubits. How-
ever, due to the hardware limitations, such a gate is not possible, so the circuit layout must
be adjusted. This adaptation also helps in optimizing the routing of quantum gates to qubits
with lower error rates. It’s important to emphasize that the error rates (represented by the
color gradient) indicate that qubit 𝑞0[4] exhibits the lowest error. However, it’s essential to
clarify that this doesn’t necessarily imply that qubit 𝑞0[4] is always the least error-prone, as
qubits undergo regular recalibrations. Additionally, it’s worth noting that the two figures
were not generated simultaneously, so it is likely that qubit 𝑞0[4] may have had the highest
error during the circuit mapping.

Figure 6.13: F-VQE 𝑃𝑠(𝐶), 𝑃𝑚(𝑀), 𝐸*, and 𝑃𝑓 (𝐸𝑚𝑖𝑛) for the DLR OnCall scheduling prob-
lem instance using 6 qubits and 2400 shots on the IBM quantum processors
ibm nairobi.

As it was expected, Figure 6.12 illustrates a higher variance in both ’in energy’ and ’mean
energy’ in the data from the quantum processor when compared to the simulator. Still, even
with increased noise, the solver is able to find the ground state and achieves close to 80%
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overlap after only 15 iterations. This is not significantly larger than the 10 iterations the
F-VQE algorithm requires to reach its own peak at almost 100% overlap. Interestingly, the
distribution for the success rate and multiplicity is almost identical throughout all iterations.
This means the algorithm only finds a single valid solution at every iteration step (excluding
iteration 2). Every other schedule found violates at least one constraint and is therefore
invalid. We can observe the same phenomenon for the simulator run, but only for the same
configuration. If one-hot encoding, a circuit (𝑎2), or another algorithm is used, this is not
the case.

6.4 Discussion

We examined the convergence of all algorithms using a small 6-qubit instance of a scheduling
problem with two positions, three days, and two operators. We then extended our investiga-
tion to include one-hot encoding, which expanded the problem to 12 qubits, enabling us to
compare the performance of both encodings for F-VQE, VQE, and QAOA. It’s important to
note that the choice of encoding methods, such as binary encoding, can significantly impact
the algorithm’s capacity to tackle larger problem instances. For instance, F-VQE was capa-
ble of efficiently handling a problem involving 18 qubits, which would have been impractical
using the one-hot encoding approach, as it would have required 36 qubits. Binary encoding
also leads to a more amendable energy landscape since One-Hot encoding introduces a large
number of inherent infeasible configurations, resulting in a lot more local optima.
We did not undertake comparisons with classical solvers since all problem instances can

be solved exactly, making heuristic approaches redundant. Our primary objective was to
analyze the convergence and scalability of F-VQE versus other quantum algorithms. In that
regard, it is important to note that not only was F-VQE able to outperform QAOA, it was
also able to implement all constraints since it was not forced to implement the required
inequalities via slack variables. F-VQE also has faster convergence speeds and less noise
when compared to VQE.
In our evaluation, we considered several key aspects for each algorithm, including the

number of circuit layers, initial points, and classical optimizers. It is important to determine
which combination of these factors works best for a given problem. We also found that for
combinatorial problems, the expressibility of the circuit arrangement does not seem to play
a big role when a baseline is met. Both ansatz circuits performed similarly, and further
layers in either did not increase the performance. It is yet to be seen if better expressibility
is needed for larger problem instances.
We also evaluated the performance of six different filtering operators. Interestingly, only

the initially used ”inverse” filter performed better than VQE. This is even more surprising
if one considers the results obtained by Amaro et al., where both the ”logarithm” and
”exponential” filters performed similarly to the ”inverse” filter. In our results, however, both
filter operators perform the worst out of the five. Exploring the source of the disparities in
the results would be of interest, especially considering that the parameters used should be
consistent.
Additionally, we conducted a separate analysis of Grover’s algorithm. Unlike VQAs,

Grover’s algorithm does not rely on variational approaches and primarily targets constraint
satisfaction. We evaluated Grover’s algorithm’s performance in terms of success rates and
execution times and observed how the number of iterations affects the algorithm’s results.
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For small problem instances, Grover’s algorithm is able to achieve results comparable to
F-VQE within a shorter time frame. However, Grover’s algorithm necessitates the use of
deeper circuits, prior knowledge of the number of iterations, or the application of heuristic
methods. Moreover, it utilizes a larger number of qubits and requires further optimization
to find solutions that also align with the given set of goals.
Our test on actual quantum hardware using a seven-qubit processor provided insights into

the practical applicability of the F-VQE algorithm. Notably, the quantum hardware intro-
duced additional noise into the results compared to the ideal simulator. Despite this noise,
the solver achieved impressive results and found the ground state within a few iterations.
In light of the results, it is difficult to say if the F-VQE algorithm is applicable to schedul-

ing problems. It certainly does perform the best out of all the examined approaches. It
is, however, concerning to see the algorithm struggle with even small problem instances of
27 qubits. While this instance represents the most substantial case in our study, it pales
in comparison to real-world applications involving approximately 50 operators, 20 distinct
positions, and spanning over 180 days. In the broader context, the used examples remain rel-
atively modest, even if they are of moderate size for quantum algorithms. This does not lend
credibility to the scalability of this application, even if quantum computers increase in size,
become less noisy, and find more constant error mitigation approaches. This is especially the
case since the algorithm easily finds solutions for smaller instances but encounters challenges
as the problem size grows. However, the algorithm demonstrates an ability to converge to-
ward local minima, often in proximity to the global optima. It also might be able to escape
these local minima and reach a good solution if the right techniques are applied. Overall,
F-VQE exhibited superior performance among all the algorithms examined, highlighting a
promising avenue for further advancements in variational quantum algorithms.
Our evaluation provides an introduction to the performance of quantum algorithms in

solving scheduling problems. It is important to note that the selected problems in this work
are small in comparison to real-world scheduling applications. These preliminary findings
serve as a foundation for further exploration of the potential and challenges of quantum
computing in addressing complex scheduling problems.
In our results, F-VQE showed the most promise among the algorithms in solving schedul-

ing problems, particularly for smaller instances. Filtering operators yielded mixed results
compared to previous research. Test cases for real quantum hardware introduced noise but
still delivered promising results. However, scalability for larger instances remains a challenge.
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7 Conclusion

In the analysis and evaluation of the F-VQE algorithm and the question of its applicability
for real-life scheduling problems, we implemented several test cases and rival optimization
algorithms. Our main objective was to evaluate the suitability of the F-VQE algorithm for
job scheduling on the basis of a real problem at the German Space Operation Center, and
through the comparison of different test cases and algorithms, we have found various answers
to this question. We tested F-VQE over multiple test cases, with instances ranging up to 27
qubits. We also tested the algorithm on real quantum hardware, but since our access and
computing time were limited, we were only able to use a small test case with six qubits.

While all algorithms displayed robust performance on smaller instances, they encoun-
tered challenges as the problem complexity increased. We observed that Grover’s algorithm,
though quicker in finding solutions, demanded a substantial increase in quantum resources
and precision, making it less resource-efficient than variational algorithms. F-VQE con-
sistently demonstrated the best performance across the test cases, making it the leading
candidate for solving scheduling problems with quantum computing. The results underscore
the potential for further improvements in variational quantum algorithms, especially when
applied to scheduling problems.
As we showed in our results, one of the many challenges for VQA optimization is solving

larger and more complex problem instances. Either because of noisier energy landscapes,
more parameters, deeper circuits, or more qubits It will be crucial to improve the convergence
of F-VQE and other VQAs, even for larger problem instances. Our experiments suggest that
F-VQE performs favorably compared to classical VQE, QAOA, and Grover’s algorithms.
This could be a step in the right direction and possibly lead to even better results with
improved approaches.
This is also the case since, just as VQE, F-VQE is hardware independent and can construct

alternative circuits that fit the architecture. Even with uncertainty about which quantum
hardware will prevail, the F-VQE can be applied, tested, studied, and improved. It is also not
restricted by a rigid Hamiltonian formulation and can instead employ a black-box objective
function. This compares very favorably with Hamiltonian solvers since it allows for greater
flexibility in the objective function.

7.1 Future Work

In the pursuit of advancing variational quantum algorithms, especially the F-VQE for com-
binatorial scheduling problems, several promising directions for future research are open.
Firstly, exploring adaptive circuit designs tailored to the unique characteristics of spe-

cific scheduling problems or circuits that adapt according to the current optimization pro-
cess [TSB+21] holds significant potential. Adaptive quantum circuits may enhance algorithm
efficiency and solution quality and help combat barren plateaus. Mitigating the issue of bar-
ren plateaus in variational quantum algorithms is another essential focus for future work.
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Implementing strategies to alleviate the challenges posed by barren plateaus, such as circuit
designs less susceptible to this problem [HSCC22] or local objective functions [CSV+21], can
significantly impact the algorithm’s stability. Moreover, the investigation of the multi-basis
encoding [PKAY22] method beyond binary and one-hot encoding offers a rich area for ex-
ploration. Utilizing this encoding scheme will allow us to explore the potential of F-VQE
for even larger problem instances. Warm starting techniques [TBB+23], such as the relax-
ation of the underlying objective function, which involve initializing quantum algorithms
closer to optimal solutions based on previous experiences, present an avenue for improving
algorithm convergence. The incorporation of quantum gradient descent methods [SIKC20],
which are tailored for quantum-aware optimization, is a growing field. Future research should
investigate the integration of quantum gradient descent techniques into variational quantum
algorithms to enhance their performance on large scheduling instances.
Additionally, a more comprehensive test would shed more light on the scalability of the

F-VQE algorithm. Since we were only able to perform single tests for each examined method
and approach, it would be interesting to see if our results are confirmed if tested over multiple
executions. Further hyperparameter optimization for different ansatz circuits and filtering
operators would potentially also allow us to find more optimal parameters. Finally, an
extensive evaluation of the F-VQE algorithm on real quantum hardware is a promising next
step considering the already good results in this work.
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