
Citation: Neumayr, A.; Otter, M.

Modelling and Simulation of Physical

Systems with Dynamically Changing

Degrees of Freedom. Electronics 2023,

12, 500. https://doi.org/10.3390/

electronics12030500

Academic Editor: Xue (Shelley) Lin

Received: 19 December 2022

Revised: 14 January 2023

Accepted: 16 January 2023

Published: 18 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Modelling and Simulation of Physical Systems with
Dynamically Changing Degrees of Freedom
Andrea Neumayr * and Martin Otter *

German Aerospace Center (DLR), Institute of System Dynamics and Control (SR), 82234 Wessling, Germany
* Correspondence: andrea.neumayr@dlr.de (A.N.); martin.otter@dlr.de (M.O.)

Abstract: A new approach is introduced to model and simulate equation-based systems where
variables can appear and disappear during simulation without re-generation and re-compilation of
code when the numbers of equations and states change during events. The method is presented in a
generic, mathematical way and can be in principle applied to all types of declarative, equation-based
modelling languages, such as Modelica. A concrete implementation is given for the Julia-based
experimental modelling language Modia, which is similar to Modelica. However, Modia has a much
simpler semantics based on hierarchical collections of name/value pairs, and is capable of supporting
domain-specific algorithms, expecially for multibody systems with collision handling. The new
method is demonstrated with heat-transfer in a rod, separation of stages of a rocket and gripping
operations of a robot.

Keywords: Modelica; Julia; Modia; multibody; multi-mode; variable structure systems; segmented
simulation; built-in component

1. Introduction

The standardized, declarative and equation-based Modelica language [1] and the open
source and commercial tools supporting Modelica [2] are in widespread use in scientific and
industrial applications to model, simulate and design cyber-physical systems. Modelica
can be seen as a format to define large sets of differential, algebraic and discrete equations
in a standardized way on a high, user-friendly level.

Modelling languages that are declarative and equation-based have the principle ad-
vantage that complex models can be defined on a high level because sophisticated symbolic
algorithms allow automatic transformation into a low-level format that can be solved
with standard numerical solvers for ODEs (ordinary differential equations). The principle
drawbacks are that (a) the approach does not scale for large systems because the equations
of n instances of a model component are present n times in the generated code, and (b)
specialized modelling techniques and algorithms that are successfully utilized in various
physical domains cannot be directly applied. For example, the multibody community
has designed specialized methods for efficient simulation of 3D-mechanical systems (see,
e.g., [3]) that cannot be directly utilized by an equation-based language.

Modia [4] is an experimental, open source modelling and simulation system that is
used to develop new approaches to overcome the limitations of declarative, equation-
based modelling languages, for example, by combining equation-based modelling with
domain-specific algorithms, especially from the multibody and fluid fields, or by using very
simple, yet powerful, language semantics that define models with hierarchical collections
of name/value pairs. Modia consists of a set of Julia packages, most importantly of
packages Modia.jl (https://github.com/ModiaSim/Modia.jl, accessed on 13 January 2023)
and Modia3D.jl (https://github.com/ModiaSim/Modia3D.jl, accessed on 13 January 2023),
and relies heavily on the powerful programming language Julia [5] and the Julia eco-system
(https://julialang.org/, accessed on 13 January 2023).

Electronics 2023, 12, 500. https://doi.org/10.3390/electronics12030500 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12030500
https://doi.org/10.3390/electronics12030500
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0033-6914
https://orcid.org/0000-0001-6348-9569
https://github.com/ModiaSim/Modia.jl
https://github.com/ModiaSim/Modia3D.jl
https://julialang.org/
https://doi.org/10.3390/electronics12030500
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12030500?type=check_update&version=3

Electronics 2023, 12, 500 2 of 31

In this article, we present a new approach to modelling and simulating equation-
based systems where variables can appear and disappear during a simulation without
re-generation and re-compilation of code when the numbers of equations and states change
during events. The method is presented in a generic, mathematical way and can be in
principle applied to all types of declarative, equation-based modelling languages, such as
Modelica. A concrete implementation is given for Modia, together with several applications
that are based on this new feature.

Equation-based languages define models with DAEs (differential algebraic equa-
tions). With structural analysis methods such as the Pantelides algorithm [6] or Pryce’s
∑-method [7], along with further symbolic transformation techniques, it is possible to
transform DAEs to ODEs that can be solved with standard numerical methods.

Variable-structure systems are models where equations change during simulation. The
idea of multi-mode modelling is to define model components with state machines where
component equations change whenever a transition to another state occurs; see, e.g., [8].
One difficulty is to efficiently treat such models. Another difficulty is that a transition can
lead to Dirac impulses. Benveniste, Caillaud et al. [9–11] extended the structural analysis
with the Pantelides algorithm and Pryce’s ∑-method for multi-mode models. In [11], it is
demonstrated how a multi-mode Modia model is treated by re-generating and re-compiling
code on-the-fly with Julia when a state transition occurs and initializing in the new states
even if Dirac impulses occur.

Höger [12] also worked on Pryce’s ∑-method for variable-structure modelling. Zim-
mer [13] used a run-time interpreter to process the DAE equations at run-time, when the
structure and/or the DAE index was changing. The limitations of this approach are that
impulsive behaviour is not supported and that the simulation time is one or more orders of
magnitude larger than if compiled code is used. Pepper et al. [14] described the semantics
of variable-structure modelling with state machines. Mehlhase [15] provided a Python-
based approach where transitions can be made between pre-defined models. Elmqvist,
Mattsson et al. [8,16] proposed high-level descriptions of multi-mode models in Modelica
by extending the synchronous clocked state machines to continuous-time state machines.

Tinnerholm et al. [17] provided a Julia-based implementation of Modelica called
OpenModelica.jl that supports variable-structure systems. A distinction is made between
an explicit and an implicit variable structured system. For the explicit variable structured
system the transition between states of the system are explicitly encoded by the user. Thus,
all equations and variables of the system are known beforehand and the compiler and
the simulation runtime need to process the entire model at once. For the implicit variable
structured systems predefined events trigger a re-compilation of the model with Julia
on-the-fly during simulation.

All current proposals for variable-structure systems either need to know the entire
models for all modes beforehand and switch between these models during simulation,
or the entire model is newly processed and code re-generated and re-compiled (or inter-
preted) whenever the equation structure is changed. In this article, several novel features
are introduced that overcome current limitations:

1. The sizes of array equations can be changed after code generation. A simple example
is shown in Section 2, where the parameter matrices of an LTI (Linear Time-Invariant)
system can still be provided with different dimensions after generation and compila-
tion of code.

2. Built-in model components are introduced that scale for large systems because the
component equations are split into a (usually) large part that is encoded in a small
set of pre-compiled functions and into a (usually) small part in form of standard
equations which is processed with the entire model. A simple example is shown
in Appendix B.1, where the core part of a discretized partial differential equation is
present in pre-compiled functions and the (acausal) component is defined with four
scalar equations that are independent of the discretization.

Electronics 2023, 12, 500 3 of 31

3. Variables and equations of built-in model components can appear and disappear
during simulation, without re-generation and re-compilation of code, provided these
variables and equations are part of the pre-compiled functions. Simple examples
are shown in Appendix B, where (a) the number of volumes of a discretized partial
differential equation can be changed after generation and compilation of code, and
(b) the number of equations and states of a two-stage rocket are changed during
simulation due to the separation of stages.

The limitation of the new approach is that built-in components cannot be designed
for arbitrary (useful) connection scenarios. For example, built-in components cannot be
used in a way so that one or more of its pre-compiled functions need to be differentiated.
Therefore, the approach is not as general as if all equations of an entire model are newly
processed when the model’s structure is changing. However, the class of systems that can
be practically handled is still large and has the advantage that it scales for large systems and
leads to efficient simulations because code is not re-generated and re-compiled on-the-fly
during simulation.

This article is organized as follows: An overview is given in Section 2 of how to handle
Modia models where the number of states changes after the model code is generated
and compiled but before simulation begins. In Sections 3 and 4, a new, general method
is described in which states and other variables can be introduced and removed during
simulation without having to re-generate and re-compile the model code. This approach
is specialized for 3D mechanical systems in Section 5, and two applications of multibody
systems with dynamically changing degrees of freedom are presented in Section 6. Ad-
ditionally, in Appendix A, a short overview of Modia is given, and in Appendix B, other
examples with the new approach are provided.

2. Changing Number of States after Model Translation

In this section, an overview is given of how the symbolic and simulation engine of
Modia can treat models where the number of states can be changed after generation and
compilation of the model’s code and before simulation is started. Appendix A gives an
overview of the modelling language Modia. In Section 4, models are treated in which the
number of states can be changed during simulation. All this is done without re-translation,
and the simulation speed is therefore hardly influenced when using these new techniques.

Traditional object-oriented modelling languages, in particular, the Modelica language,
define variable types and array sizes precisely. This information is used by the symbolic
engine when generating code that is compiled into binary form. Modia does this differently
in order to take full advantage of the Julia language. In particular, the goal is that Modia
models can use all variable types that can be described with Julia. Since Julia has a very
rich type system with type inference, it makes no sense that a language such as Modia tries
to replicate this very powerful underlying engine. As a consequence, the Modia language
and Modia’s symbolic engine do not have the complete information about the variable
types because a variable type can be determined in the Julia compiler inference pass.

For this reason, a Modia model basically defines a set of unknown variables, with-
out necessarily knowing the types of these variables, and a set of equations, along with a set
of known variables (=parameters). Note, an unknown variable might also be an instance of
a mutable Julia struct, as will be shown below. The basic requirement is that the number of
unknown variables and the number of equations must be equal. For example, if a variable
is a vector, then an equation must be present that is able to compute this vector. Whether
this requirement is fulfilled or not might only be detected by the Julia compiler during
compilation of the generated model code, or even only during execution of the model code.
Furthermore, a variable is typically treated as one symbol and the associated equation as
one symbol-equation, even if the symbol is an array. Two examples are given in Listing 1.

Electronics 2023, 12, 500 4 of 31

Listing 1. An array equation must be defined for an array variable and an array must be declared
with an init or start array value when its sizes cannot be inferred.

Correct code
m1 = Model(v = Var(init=zeros (2)), # size of v cannot be inferred,

therefore, init needed
equations = :[a = der(v) # size of a can be inferred

m*a = [2.0, 3.0]] # array equation for a
)

Wrong code
m2 = Model(equations = :[wd = der(w) # sizes of w,wd cannot be inferred

m*wd[1] = 2.0 # no array equation for wd
m*wd[2] = 3.0])

As a consequence, the size of a variable typically has no influence on the symbolic
engine or the code generation: The generated equations are basically the same, whether
a variable is a scalar or has, let us say, 1000 elements. Note, all this is different to current
Modelica tools, where variables and equations are typically scalarized before symbolic
processing takes place (e.g., a vector of 1000 elements is replaced by 1000 scalars, so 1000
symbols are used in the symbolic engine).

Array sizes of parameters and of variables defined with init or start attributes can
be changed in Modia after code generation, provided they are not defined as static arrays.
Some examples are given in Listing 2.

Listing 2. Examples of array equations. The sizes of the statically sized arrays A1, y1 cannot be
changed after compilation. The sizes of arrays A2, y2 can be changed after compilation.

using StaticArrays

LinearODEs = Model(
A1 = parameter | SMatrix {2,2}([-1.0 0.0; # statically sized matrix

0.0 -2.0]),
A2 = parameter | [-1.0 0.0; # variable sized matrix

0.0 -2.0],
y1 = Var(init = SVector {2}(1.0, 2.0)), # statically sized vector
y2 = Var(init =[1.0, 2.0]), # variable sized vector
equations = :[der(y1) = A1*y1 # static array equation

der(y2) = A2*y2]) # variable array equation

linearODEs = @instantiateModel(LinearODEs) # generate and compile code
simulate !(linearODEs, stopTime = 2,

merge = Map(A2 = [-1.0 0.0 0.0; # change sizes of A2
0.0 -2.0 0.0;
0.0 0.0 -3.0],

y2 = [1.1, 2.1, 3.1])) # change size of y2

Generated code (simplified)
function getDerivatives(_der_x, _x, _m, _time)

...
_p = _m.evaluatedParameters # _p is a hierarchical dictionary
A1 = _p[:A1]:: SMatrix {2,2, Float64,4} # _p[:A1] is the value of symbol :A1
A2 = _p[:A2]:: Matrix{Float64} # :: Matrix{Float64} is the type of _p[:A2]
y1 = SVector {2, Float64 }(_x[1], _x[2])
y2 = _m.x_vec [1]
var"der(y1)" = A1 * y1 # var"der(y1)" is a macro defining name "der(y1)"
var"der(y2)" = A2 * y2
...

end

A1,y1 are statically sized arrays, and their dimensions cannot be changed after
@instantiateModel(..) has been called. In contrast, A2,y2 are standard Julia arrays, and
their dimensions can be changed with the merge attribute of the simulate!(..) command
after compilation of the generated getDerivatives function.

In the generated function getDerivatives, the statically sized state vector y1 is always
newly generated by utilizing the corresponding elements from the model state vector _x in

Electronics 2023, 12, 500 5 of 31

the SVector constructor. This constructor allocates memory on the stack, and operations on
y1 are efficiently implemented in package StaticArrays. New arrays needed in calculations
are automatically constructed again on the stack (which is an efficient operation). For
example, Julia’s multiple dispatch feature will deduce at compile time, that A1 * y1 is a
static array (because A1 and y1 are static arrays and the operator * is overloaded to return a
static array), and therefore, var"der(y1)" is generated on the stack as a static array.

Auxiliary memory _m.x_vec[1] is allocated for the state vector y2 whenever the merge-
attribute has been processed. Before function getDerivatives is called, the corresponding
elements of the model state vector _x are copied into _m.x_vec[1], and this vector is then
accessed with the alias name y2 due to y2 =_m.x_vec[1] (y2 is a reference to _m.x_vec[1]).
The generated array equations’ code does not depend on the array sizes of the involved
variables. The drawback of non-static arrays is that intermediate computations, and left-
hand side variables such as var"der(y2)", allocate new memory on the heap, whenever the
corresponding statements are executed. If there are many such statements, this can reduce
the efficiency of the simulation. In the next section, built-in components are introduced that
do not have this drawback. Arrays used in functions of built-in components operate on
memory that is allocated once on the heap and not in every model evaluation.

3. Built-In Components

In this and the next section, a new, general method for handling equation-based
models is described, where states and other variables can be introduced and removed
during simulation without re-generation and re-compilation of the model code. The
method is described in a generic, mathematical way and is practically demonstrated with
an implementation in Julia/Modia. In principle, the method can also be used for other
modelling systems, for example, in an extended version of Modelica.

To simplify the description and focus on the new technique, time-discrete systems,
time events, event iteration, and super-dense time (see, e.g., [1] Appendix B and [18]
Section 3.1) are not discussed in this article. However, in the Modia implementation, these
features are included.

3.1. Acausal Components

Declarative, equation-based modelling languages, such as Modelica or Modia, define
acausal component models as shown in Figure 1. In this context, acausal means that
interface variables are present that are neither inputs nor outputs of the component (cp, c f
in Figure 1). Instead, the connection between a component and the symbolic transformation
defines the order equations are evaluated, and whether an interface variable is provided to
the component equations or is computed by the component equations.

In Figure 1, the following definitions are used: Let R be the set of real numbers
and assume k ∈ N0. Ck(R) is the space of functions which are bounded and k-times
continuously differentiable in R; see, e.g., [19]. This means C1(R) is the function space of
1-time continuously differentiable functions. C0(R) is the function space of continuous
functions. Furthermore, due to events, there are non-continuous jumps. C1

pw(R)
n is the

space of piecewise (pw) one-time continuously differentiable functions in n dimensions,
and C0

pw(R)
n is the space of piecewise (pw) continuous functions in n dimensions. Figure 1

shows the minimal smoothness requirements of the variables. Depending on the structure
of the equations 0 = fc(. . .) and how the component is connected with other components,
higher smoothness might be required; see, e.g., [20].

An acausal component, according to Figure 1, consists of a set of implicit equations
0 = fc(. . .), e.g., the equations in the equation section of a Modelica model or the equations
in the quoted vector that are assigned to variable equations in a Modia model. It can
be connected with other components via inputs u, outputs y, and connectors containing
pairs of potential cp and flow variables c f . As usual, when connecting potential and flow
variables via connectors, the corresponding potential variables are set equal, and the sum
of the corresponding flow variables is set to zero. It is required that a connector has only

Electronics 2023, 12, 500 6 of 31

equal pairs of potential and flow variables to ensure that any connection of acausal com-
ponents is globally balanced. In other words, the number of equations and the number
of unknowns of any set of connected components is equal, provided every component is
locally balanced. A component is called locally balanced if dim(cp) = dim(c f) = nc and
dim(fc) = ny + nc + nw + nz. For details, see [21].

0 = fc

(
ẋ, z, w, cp, c f , y, x, u, p, t

)
t ∈ R time
p ∈ Rnp parameters
u(t) ∈ C0

pw(R)nu inputs
x(t) ∈ C1

pw(R)nx continuous states
y(t) ∈ C0

pw(R)ny outputs
c f (t) ∈ C0

pw(R)nc flow variables
cp(t) ∈ C0

pw(R)nc potential variables
w(t) ∈ C0

pw(R)nw local variables
z(t) ∈ C0

pw(R)nz event indicators
dim(fc) = ny + nc + nw + nz

p

u
y

cp
c f

ODE solver

t x ẋ z

Figure 1. Mathematical description of an acausal component. Components can be connected via
u, y, cp, c f . Events are defined by zero crossings of elements of z. At events, variable values can
change discontinuously. R is the set of real numbers. Ck

pw(R)n is the space of piecewise (pw) k-times
continuously differentiable functions in n dimensions. 0 = fc(. . .) is a set of implicit equations.
Variables in dark blue are assumed to be known: variables t, x are provided by the ODE solver,
p are parameters that get constant values before simulation starts, u are inputs and are provided
externally to the component. There are nc equations missing in order to solve 0 = fc(. . .) for its
unknowns ẋ, z, w, cp, c f , y. These missing equations are provided when connecting the component
via the connection equations of cp, c f .

The equations of all components of a model, together with the connection equations,
form a set of DAEs. The set of DAEs is transformed into a set of ODEs and is solved
by an ODE integrator. In every model evaluation, the time t and the continuous states
x are supplied to the model by the solver. Using the symbolically processed equations,
the derivative of the states ẋ and the event indicators z are calculated and returned to the
solver. Hereby, linear and/or non-linear algebraic equation systems might be solved within
the model; see, e.g., [1] Appendix B.

3.2. Acausal Components with Pre-translated Mathematical Functions

Elmqvist [22] proposes a generic method to split the equations of an acausal component
(see Figure 1) into causal and acausal partitions. The intuition is that the causal partitions
are always evaluated in the same order, regardless of how the component of Figure 1 is
connected with other components. These partitions are sorted, explicitly solved for the
unknowns, and pre-translated. In contrast, the evaluation order of the acausal partition
depends on the actual connection of the component, and this partition is kept as an implicit
equation system. The method of Elmqvist defines the causal partitions as mathematical
functions where the states and state derivatives are known in the calling environment. It is
then possible that the symbolic engine differentiates these functions if needed. In this article
a variant of this method is used, where the information about states and state derivatives is
hidden in these functions and then a symbolic engine cannot differentiate these functions
any more, resulting in limitations on how a component can be utilized in an overall model.
The benefit of this variant is that the number of states can be changed during simulation
without influencing the symbolic transformation and code generation of the overall model.

For certain cases, it is possible to find better partitioning (smaller acausal part) if
special connection topologies are being considered. For example, a component without
potential and flow variables (input/output block) is usually used in a way that the inputs
are provided externally, and the outputs are computed from the component equations.
Partitioning is then performed for this common situation. All equations can be sorted and

Electronics 2023, 12, 500 7 of 31

solved for the unknowns, and the entire code can be pre-translated. When the inverse
of an input/output block shall be determined, the outputs are provided externally, and
the inputs are computed from the component equations. It could be that this inverse
model cannot be determined from a pre-translated block, because it may be necessary to
differentiate equations and this is not possible if the information about the states is hidden
in the pre-translated block as done below.

If all code of a pre-translated block is included in one function, an implicit equation
system might occur when connecting the block, whereas no implicit equation system might
occur if the code is included in two functions. For an example, see [18] Figure 5. This
example demonstrates that even if a partitioning in causal and acausal parts is made, there
is still the difficulty of deciding whether to put all causal code in one or in several functions.

If potential and flow variables are present in a component, common connection
scenarios are that either the potential or flow variables or a combination of both are
provided externally. In order to prepare for all these cases, nc implicit dummy equations

0 = gc(cp, c f), (1)

are defined. Every element of every argument appears in every equation of gc, so (1) has
full incidence of all of its arguments. Mathematically, (1) defines a large set of potential
connection possibilities. Note, more general scenarios could be treated, if u and y would
be arguments of gc too. However, this results usually in a larger acausal part. Sorting the
following equations,

0 =

 fc

(
ẋ, z, w, cp, c f , y, x, u, p, t

)
gc(cp, c f)

 (2)

under the assumption that x, u, p, t are known and utilizing only structural informa-
tion (whether a variable appears or does not appear in an equation, see, e.g., (https:
//modiasim.github.io/ModiaBase.jl/stable/Tutorial.html, accessed on 11 December 2022,
Sections 1.1–1.4), results in a sorted set of equations that has at least one implicit
equation system,

0 =

[
fc,eq(. . .)

gc(. . .)

]
(3)

that cannot be split into smaller implicit equation systems by sorting. All equations of (1)
are included in (3) because (1) has full incidence. Equations 0 = fc,eq are a subset of fc and
form the acausal part of the component because these equations are needed to compute
all the arguments of gc, and so the potential and flow variables of Figure 1. All other
sorted equations can be explicitly solved (possibly by solving linear and/or non-linear
equation systems) and packed into functions fc,i(. . .) that are called either before or after
(3). Removing (1) from the sorted equations results in Figure 2.

Note, the unknown variables ẋ, z, w, cp, c f , y of Figure 1 are split into three parts;
for example, y = (y1, yeq, y2), where y1 is an output argument of function fc,1, yeq is
computed from the implicit equation system 0 = fc,eq(. . .), and y2 is an output argument
of function fc,2. Furthermore, fc,1, fc,2 might be split in several functions, depending on the
expected usage scenarios. When the acausal component of Figure 2 is connected with other
components and the overall model is sorted, fc,1 is called before equations 0 = fc,eq(. . .) are
evaluated, because all output arguments of fc,1 are (possible) arguments of fc,eq. Function
fc,2 is called afterwards, because variables computed by fc,1 and fc,eq are (possible) input
arguments of fc,2.

The big advantage of an acausal component according to Figure 2 is that functions
fc,1, fc,2 can be pre-translated once in advance, so that symbolically processing an overall

https://modiasim.github.io/ModiaBase.jl/stable/Tutorial.html
https://modiasim.github.io/ModiaBase.jl/stable/Tutorial.html

Electronics 2023, 12, 500 8 of 31

model, and generation and compilation of code, can be made much more efficiently as with
the original formulation of Figure 1.

(ẋ1, z1, w1, cp1 , c f1 , y1) = fc,1(x, u, p, t)

0 = fc,eq(ẋeq, zeq, weq, cpeq , c feq , yeq,

ẋ1, z1, w1, cp1 , c f1 , y1, x, u, p, t)

(ẋ2, z2, w2, cp2 , c f2 , y2) = fc,2(ẋeq, zeq, weq, cpeq , c feq , yeq,

ẋ1, z1, w1, cp1 , c f1 , y1, x, u, p, t)

p

u

y = (y1, yeq, y2)

cp = (cp1 , cpeq , cp2)

c f = (c f1 , c feq , c f2)

ODE solver

t x = (x1, xeq, x2) ẋ = (ẋ1, ẋeq, ẋ2) z = (z1, zeq, z2)

Figure 2. Mathematical description of an acausal component with pre-translated functions with the
same interface as in Figure 1. These components can be connected via u, y, cp, c f . Arguments given
in grey will be moved into an internal memory in Section 3.3. fc,1, fc,2 are explicit functions, whereas
0 = fc,eq(. . .) is a set of implicit equations. Variables ẋ, z, w, cp, c f , y are unknown and are split into
three parts, e.g., y = (y1, yeq, y2), where y1 is an output argument of function fc,1, yeq is computed
from the implicit equation system 0 = fc,eq(. . .), and y2 is an output argument of function fc,2.

3.3. Acausal Built-In Components

In order that the number of variables, and especially the number of states, can change
during simulation without re-generating and re-compilation of code, the scheme from the
previous subsection is changed by storing the grey variables of Figure 2 inside an internal
memory m; see Figure 3.

(w3, cp1 , c f1 , y1) = fc,1(m, xeq, u, p, t)

0 = fc,eq(ẋeq, zeq, weq, cpeq , c feq , yeq,

w3, cp1 , c f1 , y1, m, xeq, u, p, t)

(cp2 , c f2 , y2) = fc,2(ẋeq, zeq, weq, cpeq , c feq , yeq,

w3, cp1 , c f1 , y1, m, xeq, u, p, t)

p m = fc,0(sim, id, p)

u

y = (y1, yeq, y2)

cp = (cp1 , cpeq , cp2)

c f = (c f1 , c feq , c f2)

ODE solver

t x = (mx1 , xeq, mx2) ẋ = (mẋ1 , ẋeq, mẋ2) z = (mz1 , zeq, mz2)

Figure 3. Description of an acausal built-in component with functions of a programming language
that has internal memory and with the same interface as in Figure 1. m = fc,0(sim, id, p) is an
instance of the built-in component. It is constructed before simulation starts given a reference to the
simulation engine sim, a unique identification id of the instance, and the parameters p. The hidden
state derivatives mẋ1 are computed in fc,1 and mẋ2 in fc,2. In some cases, (new) local, algebraic
variables w3 need to be introduced to hide, e.g., state variables in fc,eq.

In the sequel, such components are called acausal built-in components. Contrary
to the previous figures in this section, fc,1, fc,2 in Figure 3 are no longer mathematical
functions but functions of a programming language where argument m is both an input
and an output argument to the respective function. The memory m is exchanged between

Electronics 2023, 12, 500 9 of 31

the functions fc,1, fc,2. Function fc,1 copies states x1, x2 from the solver into m. Functions
fc,1, fc,2 copy the state derivatives ẋ1, ẋ2 and the event indicators z1, z2 from these functions
to the solver.

One issue is that the states x and the output variables ẋ1, z1, w1 of function fc,1 are
(possibly) present in fc,eq, as seen in Figure 2. It would then not be possible to add or remove
these variables during simulation without re-translation. In such a case, re-formulations
are needed, e.g., by computing some part of the expressions present in fc,eq in a function
that has the memory m as argument, so that variables ẋ1, z1, w1, x1, x2 are no longer visible
in fc,eq. It might also be necessary to hide some of these variables in (new) local, algebraic
variables w3 that are returned from fc,1 and used in fc,eq; see Figure 3.

The big benefit of an acausal built-in component is that the hidden states x1, x2 and
their derivatives are not visible in the model equations. Consequently, it is in principle
possible to change the number of states during simulation, as is shown in Section 4. Fur-
thermore, the code parts inside functions fc,1, fc,2 are pre-translated and present once,
independent of the number of instances of the built-in component that are used in a model.
As a result, the effort to symbolically process and translate the equations can be drastically
reduced. A drawback of acausal built-in components with internal memory m is that
they might be used in a way requiring one to differentiate functions fc,1, fc,2, which is not
possible due to this memory.

A simple acausal built-in component of an electrical capacitor is discussed in Section 3.4.
A more involved acausal built-in component describing heat transfer in a rod is discussed
in Appendix B.1.

3.4. Application: Capacitor

In Figure 4, an equation-based model of a capacitor is shown that is defined by three
equations. A Modia implementation of this model is given in Appendix A.2.

pv
p

pi

v

C

nv
n

ni

0 = pi + ni

v = pv − nv

C · v̇ = pi

Figure 4. Equation-based model of a capacitor with parameter C, state v, connectors p, n with
potential variables pv, nv (electrical potentials), and flow variables pi, ni (electric currents).

Additionally, the same model is defined as (a) an acausal component with mathemati-
cal functions and (b) as a built-in component with functions of a programming language
(that have internal memory) in the form of pseudo-code in Table 1. Note, function fc,0 of
the built-in component is called once during setup of the simulation run. This function
allocates a record or a struct that holds the internal memory m for the component and
copies the parameters into this memory.

Electronics 2023, 12, 500 10 of 31

Table 1. The capacitor is defined as a component with mathematical functions (left column) and with
functions that have an internal memory (right column) to hide the state and the state derivative of
the component in the equation section.

as component as built-in component
(with math. functions) (with functions of a prog. language that have internal memory m)

equation section
w = fc,1(v)

w = pv − nv

0 = pi + ni

v̇ = fc,2(C, pi)

w = fc,1(m)

w = pv − nv

0 = pi + ni

fc,2(m, pi) # prog. language function without return argument

function definitions

function fc,1(v)

return v

function fc,2(C, pi)

return pi/C

function fc,0(sim, id, C) # called once

< allocate new record m >

msim := sim; mid := id; mC = C; return m

function fc,1(m)

< copy mv from states in msim for mid >; return mv

function fc,2(m, ni)

mv̇ := pi/mC ; < copy mv̇ into state derivatives of msim for mid >

This capacitor model is just used as demonstration of the principle, due to its simplicity.
The formulation as a built-in component does not give an advantage, because the equation
section has four equations, and the function bodies are tiny, whereas the pure equation-
based model consists of three equations. Note, when two capacitors defined as built-in
components with internal memory are connected in parallel, then both capacitors return
the respective state w1, w2 from function fc,1. Since the parallel connection introduces an
equation w1 = w2, an implicit equation system with three equations for two unknowns
is present. Therefore, such a model will be rejected (the issue is that due to the parallel
connection, w2 can be computed from w1, but then w2 cannot be a state as defined in the
built-in component).

4. Changing the Number of States during Simulation

In order that the number of states can be changed during simulation (without newly
generating and translating code) the generic concept sketched in Figure 5 is used. The
variables of the solver (state vector x and the vector of event indicators z) are split into an
invariant and a variant part: x = (xinv, xvar) and z = (zinv, zvar). The dimensions of the
invariant parts were fixed before the simulation starts. The dimensions of the variant parts
can change during events in the simulation. The variables of a model are characterized by
the following attributes:

• Invariance (inv): Variable name, type, and number of dimensions are fixed before
translation. The dimensions of an invariant variable (e.g., length of a vector) can be
changed before simulation starts. The solver provides vector xinv to the model function
that contains the sorted and solved equations. The elements of xinv are copied into the
elements of the invariant state variables of the model. The computed derivatives of
the invariant state variables are copied into vector ẋinv and the computed invariant
event indicators are copied into zinv before the model’s function returns. All variables
defined and used in an equation section are invariant variables. This includes all
input/output arguments of the called functions.

• Variant (var): Variables can appear and existing variables can disappear during events.
The type and the number of dimensions of a variant variable cannot be changed after
it is first introduced in a simulation run. However, its dimensions (e.g., the length
of a vector) can be changed at event initiation. All model variables defined inside
functions of built-in components are variant variables. Before a variant state variable
of the model is used in a function of a built-in component, its elements are retrieved

Electronics 2023, 12, 500 11 of 31

from vector xvar provided by the solver. After the derivatives of variant state variables
of a model are computed, they are copied into vector ẋvar provided by the solver.

As defined above, all variables present in the sorted and solved equations, including
the variables that are input/output arguments of built-in component functions, must be
invariant variables. Under this restriction, it is possible to sort and solve the equations
of all components/built-in components and generate/translate code, provided (a) the
symbolic transformation algorithms treat an array as one symbol during the assignment
phase, as sketched in Section 2, and (b) no function of a built-in component needs to be
differentiated. Note, this implies that all names, types, and number of dimensions of all
interface variables of a component (u, y, p, cp, c f of Figure 1) are fixed before translation
starts and cannot be changed after translation.

sorted and solved
equations

functions of
built-in

components

solver
ẋ = f (x, t)
z = z(x, t)

x = (xinv, xvar)

z = (zinv, zvar)

xinv, t xvar, t

ẋinv, zinv ẋvar, zvar

Figure 5. Communication between the solver, the sorted and solved equations, and the functions of
the built-in components. The state vector x and the event indicators z are split into an invariant and a
variant part: x = (xinv, xvar), z = (zinv, zvar). The variant parts consist of xj,1, xj,2, zj,1, zj,2 from all
built-in components j (see Figure 3) present in the overall model. The dimensions of the invariant
parts are fixed before simulation starts. The dimensions of the variant parts can change at events
during simulation.

A simulation run is partitioned into phases that are called segments or modes, as
sketched in Figure 6.

A run starts with mode i = 1, and the corresponding system is initialized with the
initial states x1,0 = (xinv

0 , xvar
1,0). The ODE ẋi = fi(xi, t) of actual mode i is solved until

either a termination condition is reached or a full restart (FR) event indicator zFRi ,j becomes
positive. In the latter case, the system switches to the next mode i + 1 with potentially new
equations and potentially different variant states than in the previous mode. Initial values
xi+1,0 in mode i + 1 are (a) the invariant states at the current time instant t of mode i, xinv(t);
and (b) initial variant states that are computed from the states of mode i with function
hi. Reinitialization is a complex topic because Dirac impulses can occur. For more details,
see [11] Section 4, in which a general reinitialization method for a large class of multi-mode
systems is presented. In all the examples discussed in this article, Dirac impulses do not
occur, so reinitialization in these cases is straightforward. The re-initialized mode is solved
until it is terminated or another full restart event is triggered. Note, the number of modes
is usually not known in advance.

Electronics 2023, 12, 500 12 of 31

init mode 1
i = 1

xi,0 = (xinv
0 , xvar

i,0)

solve mode i

ẋi = fi(xi, t)
zFRi = zFRi (xi, t)

reinit mode i+1

fi → fi+1

xvar
i → xvar

i+1

xi+1,0 = (xinv(t), hi(xi(t), t))
hi → hi+1

i = i + 1

zFRi ,j > 0terminate

Figure 6. State machine of segmented simulation. The first mode i = 1 is initialized with its start
values. The ODEs of the actual mode i are solved until they are terminated or interrupted by a
full restart zero-crossing event indicator zFRi ,j that becomes positive. In the latter case, the model is
re-initialized in mode i + 1. Hereby, variant variables can appear or disappear. The number of modes
is unknown beforehand.

Since variables may appear and disappear at events and theses changes are not known
in advance, new schemes are needed to store result data. In [23], such a proposal is given,
introducing signal tables as a format for exchanging data associated with simulations
based on dictionaries and multi-dimensional arrays with missing values. This format
was developed and evaluated with the open source Julia package SignalTables (https:
//github.com/ModiaSim/SignalTables.jl, accessed on 12 December 2022) and is used
in Modia.

The general scheme presented above is implemented in Modia. Some details of the
Modia implementation are shown in Figure 7. Typically, whenever the number of equations
changes at an event, some internal data structure must be updated that is used to efficiently
compute the equations of a built-in component. This internal data structure is constructed
from the dictionary of the Modia Model that defines the interface and the equations of the
built-in component. This data structure and the functions to evaluate it are called the
execution scheme in Figure 7.

When the model is initialized in mode i = 1, the execution scheme for mode i = 1 is
defined, together with the variant states and their start values. The ODE ẋi = fi(xi, t) of
the actual segment i is solved for t ∈ [ti,0, tstop] and its start values xi,0 = (xinv

0 , xvar
i,0) until

tstop is reached, or an event for a structural change is triggered. In the latter case, actions
are defined and stored internally in the built-in components that define how to construct
mode i + 1. More details and examples for execution schemes and actions are given in
Section 5.3 and Appendix B.2. When the built-in component is reinstantiated in mode i + 1,
the execution scheme is redefined, together with new states xi+1 = (xinv, xvar

i+1) and their
start values xi+1,0 = (xinv(t), xvar

i+1,0). Afterwards, the ODE for segment i + 1 is solved.
Applications of changing number of states during simulation are given in Section 6 and
Appendix B.2.

https://github.com/ModiaSim/SignalTables.jl
https://github.com/ModiaSim/SignalTables.jl

Electronics 2023, 12, 500 13 of 31

init

. . .

instantiate built-in components
with m = fc,0(. . .); fc,init(m)

define execution scheme
(with states and start values)

initial segment: i = 1, ti,0 = t0
define states: xi = (xinv, xvar

i) where
xinv ∈ Rninv , xvar

i ∈ Rnvar,i

given start values:

xi,0 = (xinv
0 , xvar

i,0)

solve ODE for segment i

solve ẋi = fi(xi, t) for
t ∈ [ti,0, tstop] and xi,0

if event for a structural change
define actions
restart = FullRestart

elseif event for termination or t = tstop
restart = Terminate

init next segment i+1

. . .

reinstantiate built-in com-
ponents with fc,init(m)
execute defined actions

redefine execution scheme (define
states and compute start values)

next segment: ti+1,0 = t
redefine states: xi+1 = (xinv, xvar

i+1)
compute start values:

xi+1,0 = (xinv(t), xvar
i+1,0)

i = i + 1

terminate

restart == FullRestart

restart == Terminate

Figure 7. State machine of the segmented simulation as used by Modia.

5. Segmented Simulation with Built-In Component Modia3D
5.1. Overview Modia3D

The open source Julia package Modia3D (https://github.com/ModiaSim/Modia3D.jl,
accessed on 17 January 2023, release v0.12.0) is a multibody tool for 3D mechanical systems
implemented as a built-in component of Modia and can therefore be combined with other
Modia components. Modia3D is targeted for solvers with adaptive step-size control to
compute results close to real physics including collision handling using the Minkowski
portal refinement (MPR) algorithm [24,25] and collision response for elastic contacts [26–28].
Furthermore, it is inspired by the generic component-based design pattern of modern game
engines, allowing very flexible and modular definitions of 3D systems: A coordinate system
located in 3D is used as a container with optional components (geometry, solid and collision
properties, visualization data, light, camera, etc.); see [29], Unity [30], Unreal Engine [31],
and three.js [32].

The core component of Modia3D is an Object3D. It is a coordinate system moving in
3D with associated optional features; see Figure 8. An Object3D’s position and orientation
is defined relative to an optional parent Object3D by translation and rotation. The Object3D
with feature Scene is the root of all other Object3Ds and defines a global inertial system. The
feature Visual is for 3D animation and defines shapes such as box, sphere, cylinder, beam,
and 3D meshes with visualization properties. The feature Solid defines solid bodies. It has
mass properties and can be considered in collision situations if collision = true is set. It
can have a shape and visualization properties. For a more extended description, see [4]

https://github.com/ModiaSim/Modia3D.jl

Electronics 2023, 12, 500 14 of 31

and the Modia3D Tutorial (https://modiasim.github.io/Modia3D.jl/stable/, accessed on
11 December 2022).

parent Object3D

Object3D

rotation

translation

feature
Scene
Visual
Solid

Figure 8. Object3D defined relative to its parent with translation and rotation. An Object3D can have
one optional feature: Scene, Visual or Solid.

An example of a simple pendulum model (https://github.com/ModiaSim/Modia3D.
jl/blob/main/test/Tutorial/Pendulum3.jl, accessed on 14 December 2022) with damping
in its joint is given in Listing 3 with the already described features of the Modia3D built-in
component. The remaining elements of the Pendulum use predefined models of a small
Modia library: the Modelica.Mechanics.Rotational library. In particular, a rotational 1D
Damper is connected to a fixed point and to the flange of the revolute joint, see Listing 4,
to model damping in the joint.

Listing 3. Simple damped pendulum defined with constructors of Modia3D (Object3D, Revolute-
WithFlange) and equation based components of Modia (Damper, Fixed).

Pendulum = Model3D(
world = Object3D(feature=Scene()),
obj1 = Object3D(feature=Solid(solidMaterial="Steel", collision=true,

shape=Beam(length =1.0, width =0.2, thickness =0.2, <...>))),
obj2 = Object3D(parent =:obj1, translation =[-0.5, 0, 0],

feature=Visual(shape=Cylinder(diameter =0.1, length =0.21),
visualMaterial = VisualMaterial(color="Red"))),

rev = RevoluteWithFlange(obj1=: world, obj2=:obj2),

Equation based components
damper = Damper | Map(d=100.0),
fixed = Fixed,
equations = :[connect(damper.flange_b, rev.flange),

connect(damper.flange_a, fixed.flange)]
)
pendulum = @instantiateModel(Pendulum, <...>)
simulate !(pendulum, stopTime =3.0)

Listing 4. Definition of a Modia3D revolute joint containing a Modia 1D rotational flange that can be
connected with Modia components.

Flange = Model(phi=Var(potential=true), tau=Var(flow=true))
RevoluteWithFlange (; obj1, obj2, <...>) = Model(; _constructor = <...>,

flange = Flange,
equations = :[

phi = flange.phi
w = der(phi)]

)

Modia3D offers two kinds of joints: The first kind of joints contains Modia equation sec-
tions with invariant variables, including invariant states, according to Figure 5. These joints
are visible for Modia and cannot be removed or added during simulation. In order that
state constraints can be defined and index reduction on invariant states can be performed,
the interface to the Modia3D functionality is designed to define differential equations only
on the Modia side in Modia equation sections. The definition of a RevoluteWithFlange joint
(a revolute joint that has a Modia 1D rotational Flange) is shown in Listing 4; for more

https://modiasim.github.io/Modia3D.jl/stable/
https://github.com/ModiaSim/Modia3D.jl/blob/main/test/Tutorial/Pendulum3.jl
https://github.com/ModiaSim/Modia3D.jl/blob/main/test/Tutorial/Pendulum3.jl

Electronics 2023, 12, 500 15 of 31

details, see [4]. During the instantiation of an overall model, the model is traversed, and
each built-in component can inject equations into the model definition that is used during
symbolic processing. As a result, in Listing 5, the code generated for the pendulum of
Listing 3 is shown.

Listing 5. Generated code for pendulum of Listing 3.

function getDerivatives(_der_x, _x, _m, _time)
<...>
var"pendulum.rev.phi" = _x[1]
var"pendulum.rev.w" = _x[2]
_mbs1 = Modia3D.openModel3D !(<...>) # equation "injected" from Modia3D
_mbs2 = Modia3D.setStatesRevolute !(# equation "injected" from Modia3D

_mbs1, var"pendulum.rev.phi", var"pendulum.rev.w")
<...>

end

As can be seen, the states _x of the solver are copied into the Modia variables phi and
w of the revolute joint which are in turn passed to function Modia3D.setStatesRevolute!(..)
of the Modia3D built-in component.

The joints of the second kind define variant variables, including variant states, accord-
ing to Figure 5, which are visible only in the built-in component Modia3D. These variables
can be added or removed during simulation. For example, an Object3D has an optional
keyword fixedToParent with a default value of true. In this case, the Object3D is rigidly
connected to its parent Object3D; this means it has zero degrees of freedom. If the value is
set to false, the Object3D is allowed to move freely with respect to its parent, meaning it
has 6 degrees of freedom and 12 variant states. At events, keyword fixedToParent can be
changed from false to true and vice versa, as will be shown below.

5.2. Super-Objects

Rigidly connected Object3Ds are grouped together into so-called super-objects [33].
An example is given in Figure 9. Super-objects are disjunct via joints. Based on the features
of Object3Ds in super-objects, different actions are performed: For example, all Object3Ds
in the same super-object cannot collide with each other, but they can collide with all other
Object3Ds that are enabled for collision handling. A common mass, common inertia tensor,
and common center of mass are computed for a super-object taking into account the mass
properties of all Object3Ds inside this super-object. For further information, see [33].

An Object3D can be marked to be the root of an assembly, or it can be marked to be
lockable. As an example, Figure 9 shows 14 Object3Ds. In segment 1, they are grouped into
six super-objects at initialization. If defined in an action program, two Object3Ds (e.g., obj2
and obj10, which are both defined as lockable Object3Ds) are locked, and a full restart is
triggered, resulting in a new segment 2, as shown in Section 5.3, if the two Object3Ds are
close to each other. During re-instantiation of segment 2, see Figure 7, the internal data
structure of the Modia3D built-in component is regenerated, resulting in five super-objects
in Figure 9. This is a very cheap operation in the milli-seconds range. More details are
given in Section 5.3.

Electronics 2023, 12, 500 16 of 31

root

obj1

obj3

obj2

obj4

obj5

obj9

obj10

obj6

obj8

obj7

obj13

superObject2

superObject3

superObject5

superObject6

superObject4

obj11

obj12

superObject1

tree joint

cut-joint

mass

collision

visible

force element

assembly root

lockable

segment 1

root

obj1

obj3

obj2

obj4

obj5

obj6

obj8

obj7

obj13

superObject2

superObject3

superObject5

superObject4

obj12

superObject1

obj9

obj10

obj11

segment 2

Figure 9. Internal execution scheme at initialization (segment 1) and after re-initialization
(segment 2). (Segment 1): Fourteen Object3Ds with different properties are defined: They are al-
lowed to collide, can have a mass, are visible and/or can be connected by force elements. They are
grouped into six super-objects that are disjunct via tree- and cut-joints; see [33]. SuperObject5 is
an assembly with a lockable Object3D (obj10). Only the assembly root (obj9) is allowed to change
joints and states during simulation. SuperObject2 is able to interact with this assembly via its rigidly
attached locking mechanism (obj2). (Segment 2): A full restart is triggered with ActionAttach(...,
obj10, obj2) to initialize the second segment if both locking mechanisms (obj10 and obj2) are close
to each other with negligible relative velocity. The lockable obj10 identifies its assembly root, which is
obj9. The joint and states of the assembly root obj9 are removed, and all Object3Ds of the assembly
are attached to superObject2. This results in five rigidly attached super objects after re-instantiation.

5.3. Segmented Simulation of Modia3D Models

In this subsection, a brief overview is given how Modia3D supports the generic
segmented simulation method of Figure 7. At initialization, the Modia3Ds execution scheme
is built up based on the Modia3Ds model definitions; see Figure 9. All information about
the multibody systems’ components (e.g., Object3Ds, joints, and solids; for an example,
see Listing 3) and their functionality (e.g., collision properties) is sorted and mapped
to an internal data structure with super-objects that can be efficiently evaluated during
simulation. This execution scheme includes the definitions of the states of the multibody
systems and of its initial values that are deduced from the utilized joints. The execution
scheme is executed during the simulation of the current segment, until one of the defined
actions requests a full restart for a structural change at the time of an event or when the
simulation is terminated. If a full restart is required, the execution scheme is restructured,

Electronics 2023, 12, 500 17 of 31

as shown in the example of Figure 9 (basically, this means that some internal data structures
are changed).

Rigidly connected Object3Ds can form an assembly by setting assemblyRoot = true for
the freely moving Object3D, i.e., fixedToParent = false. All rigidly connected children of
such an Object3D belong to the assembly. Additionally, any Object3D, whether it is part of
an assembly or not, can be a locking mechanism by setting lockable = true in the Object3D
constructor. In Figure 9, segment 1, superObject5 is an assembly because obj9 is marked as
an assembly root. This assembly is able to interact with superObject2 because obj10 of the
assembly and obj9 of superObject2 have lockable = true defined.

Actions on a Modia3D model and especially on assemblies are executed according
to the construction sketched in Listing 6; for an application, see Listing 7. A collection of
action commands is defined in a Julia function (e.g., modelProgram). This function is passed
as actions argument to the Modia3D constructor ModelActions that returns a reference (e.g.,
currentAction) to an internal data structure. This data structure is passed to executeActions,
which is called in a Modia equations section.

Listing 6. Defining actions for a Modia3D built-in model with commands of Tables 2 and 3 to interact
with Modia.

function modelProgram(actions)
<...> # action commands

end

myModel = Model3D(
world = Object3D(feature=Scene()),
<...>
modelActions = ModelActions(world =: world, actions=modelProgram),
currentAction = Var(hideResult=true),
equations =:[

currentAction = executeActions(modelActions)],)

The action commands in Table 2 increase or decrease the number of degrees of freedom,
and therefore trigger a full restart of a new segment. If the number of degrees of freedom
increases, new states are defined, and their initial values are computed based on the last
configuration. Two actions (ActionAttach, ActionReleaseAndAttach) are only possible if
the referenced lockable Object3Ds are close together and the relative velocity and angular
velocity are close to zero. Currently, the following cases are treated:

• A freely moving assembly is rigidly connected to an Object3D with ActionAttach. This
action reduces the number of degrees of freedom by six.

• If an assembly has at least two lockable Object3Ds (objA, objB) and is rigidly connected
via objA, this rigid connection is removed, and another rigid connection via objB is
introduced with ActionReleaseAndAttach. This action does not affect the number of
degrees of freedom but changes the structure of the super-objects.

• A rigidly connected assembly, i.e., rigid connection to an Object3D, is unlocked with
ActionRelease to get a freely moving assembly. This action increases the number of
degrees of freedom by six.

• An assembly that is either freely moving or is rigidly connected to an Object3D is
deleted with ActionDelete. All Object3Ds of this assembly are removed from the
Modia3D model.

Whenever one of these actions is executed, the internal data structure with its super-
objects must be restructured because the relations and connections between parents and
their children have changed. As a result of this restructuring, objects may no longer
be able to collide with each other, or the common mass properties of super-objects may
have changed.

Electronics 2023, 12, 500 18 of 31

Table 2. Modia3D actions that trigger a full restart for a structural change. For applications, see
Section 6.

Function Description

ActionAttach(...) Rigidly attaches the specified assembly.
ActionReleaseAndAttach(...) Changes one rigid connection to another rigid connection.
ActionRelease(...) Releases the specified assembly.
ActionDelete(...) Deletes the specified assembly.

To initialize the next segment, a full restart is triggered in Figure 9 (segment 1) with
ActionAttach(..., obj10, obj2), see Table 2, provided both lockable Object3Ds (obj2 and
obj10) are close to each other. Hereby, the joint connecting obj9 with obj5 is removed and
obj10 is rigidly connected to obj2. The re-instantiation reduces the number of super objects
and states and results in the execution scheme of Figure 9 (segment 2).

Other Modia3D actions that can be utilized but do not result in a full restart are listed
in Table 3.

Table 3. Modia3D actions. For applications, see Section 6.

Function Description

EventAfterPeriod(...) Triggers an event after a specific period of time.
ActionWait(...) Waits a specific period of time.
addReferencePath(...) Adds a new reference path.
ptpJointSpace(...) Generates a point-to-point trajectory.

6. Applications

Two applications with segmented simulations with the built-in component Modia3D
are presented in this section. The first one deals with a two-stage rocket where the two
stages are separated after a while. The second application is a robot where gripping and
releasing actions are modelled with dynamically changing degrees of freedom.

6.1. Two-Stage Rocket

In Appendix B.2, an extremely simplified model of a two-stage rocket with mass
points is shown, implemented as a Modia built-in component. The same model was
implemented as a Modia3D model in Listing 7. The full code is available from (https:
//github.com/ModiaSim/Modia3D.jl, accessed on 17 January 2023, release v0.12.0, Two-
StageRocket3D.jl). In Listing 7, one stage is modelled with submodel RocketStage consisting
of a cylinder with lockable Object3Ds at the top and at the bottom and a thrust at the
bottom. Model TwoStageRocket builds up the rocket system with the world object, two
instances of RocketStage, and a ModelActions constructor that defines the actions with
function rocketProgram:

1. Initially, the two stages are not rigidly connected. At initialization, the top of stage1
and the bottom of stage2 are attached with ActionAttach(actions, "stage1.top",
"stage2.bottom"); see the visualization in the left part of Figure 10.

2. An event is triggered after 5 s with EventAfterPeriod(actions, 5) to release state1.top
from state2.bottom with ActionRelease(actions, "stage1.top"). This separates the
two stages. Furthermore, thrust1 is switched off.

3. Again, an event is triggered after 5 s with EventAfterPeriod(actions, 5); see the right
part of Figure 10. Since the movement of stage1 is no longer of interest in this scenario,
state1.top and all Object3Ds connected to it are deleted with ActionDelete(actions,
"stage1.top"). Thus, stage1 is removed from the simulation run.

Plots of the relevant variables are shown in Figure 11.

https://github.com/ModiaSim/Modia3D.jl
https://github.com/ModiaSim/Modia3D.jl

Electronics 2023, 12, 500 19 of 31

Listing 7. Modia3D model of a simple two stage rocket. The stages are instances of sub-model
RocketStage that is a cylinder of length L, diameter d, mass m, with lockable Object3Ds at the top and
at the bottom, and a thrust at the bottom.

function rocketProgram(actions)
ActionAttach(actions, "stage1.top", "stage2.bottom")
EventAfterPeriod(actions, 5) # Trigger an event after 5s
ActionRelease(actions, "stage1.top") # Release stage1.top
EventAfterPeriod(actions, 5) # Trigger an event after 5s
ActionDelete(actions, "stage1.top") # Delete stage1

end

RocketStage (; L=1.0, d=0.1, m=100.0, color="blue", r_init,
thrustFunction) = Model(# rocket stage is a cylinder

body = Object3D(parent =: world, fixedToParent=false,
translation=r_init, assemblyRoot=true,
feature=Solid (...),

Lockable Object3Ds at cylinder bottom and top
bottom = Object3D(parent =:body, translation =:[0.0, -$L/2, 0.0],

lockable=true),
top = Object3D(parent =:body, translation =:[0.0, $L/2, 0.0],

lockable=true),
thrust is applied at bottom
thrust = WorldForce(objectApply =: bottom, forceFunction=thrustFunction)

)

TwoStageRocket = Model3D(
world = Object3D(feature=Scene()),
stage1 = RocketStage(L=2.0, d=0.2, color="blue", r_init =[0,1,0],

thrustFunction=thrust1),
stage2 = RocketStage(L=1.0, d=0.15, color="red", r_init =[0,2.5,0],

thrustFunction=thrust2),

modelActions = ModelActions(world=: world, actions=rocketProgram),
currentAction = Var(hideResult=true),
equations =:[

currentAction = executeActions(modelActions)
],

)

rocket = @instantiateModel(TwoStageRocket)
simulate !(rocket, stopTime =15u"s")

Figure 10. A two-stage rocket (stage 1: blue cylinder, stage 2: red cylinder). (Left): At initialization.
(Right): After separating (release). The locking mechanisms at the top and bottom are each visualized
with a coordinate system.

Electronics 2023, 12, 500 20 of 31

0 5 10 15

0

500

1000

b
o
d

y.
tr

a
n

sl
a
ti

o
n

[2
]

in
m

stage2.

stage1.

0 5 10 15

time in s

0

5000

10,000

th
ru

st
[2

]
in

N

0 5 10 15

time in s

0

50

100

b
o
d

y.
v
el

o
ci

ty
[2

]
in

m
/
s

Figure 11. Plots of relevant variables from the simulation of model TwoStageRocket of Listing 7.
Variable values are not shown in the plots, if they are not defined in the respective phase.

6.2. Gripping Robot

The new support of segmented simulations in Modia3D allows one to carry out
gripping operations without elastic contact handling. For example, an assembly A is locked
at object B (meaning, A is lying on B) and is then gripped from an object C, and then A is
released from B and is locked (so rigidly fixed) to C. The advantage of this procedure is
that collision handling issues can be avoided. For example, simulations can be performed
with larger tolerances and fine-tuning of the details of the gripping operations, and the
transport of the gripped object is no longer required. Thus, the simulation is faster and
more robust, and the setup of the scenario is easier (see Scenario 2). It is also possible to
model gripping operations that are not based on frictional contacts but use rigid mechanical
connections, such as a bayonet lock. The drawback is that the details of the gripping are
not modelled, but this could be essential, e.g., when designing a control system that carries
out an assembly task.

This approach is demonstrated with a gripping operation of a KUKA YouBot robot.
This robot has a five degrees of freedom arm and was manufactured in the years 2010–2016.
The robot was modelled with Modia (drive trains and controllers) and with Modia3D (3D
mechanics); see [4].

Scenario 1: Adding and removing states during simulation. Therefore, a slightly differ-
ent version of model [4] was created for this article; see (https://github.com/ModiaSim/
Modia3D.jl, accessed on 17 January 2023, release v0.12.0, YouBotDynamicState.jl) using the
approach sketched above. Listing 8 shows parts of the action commands, and Figure 12
(left) shows a screenshot of the animation. The transportation procedure started with a free
sphere lying on the plate of the robot (six DoF) that became rigidly attached (zero DoF)
for transportation by the robot’s gripper, until it was released and fell freely downwards
(six DoF), bouncing on the plate. This application combined the benefits of segmented
simulation for the gripping and transportation of the sphere (no collision handling) with
the collision response of the freely bouncing sphere.

https://github.com/ModiaSim/Modia3D.jl
https://github.com/ModiaSim/Modia3D.jl

Electronics 2023, 12, 500 21 of 31

Listing 8. Action definitions for the KUKA YouBot robot. The transportation procedure starts with
initializing a new reference path for driving 5 arm angles and the gripper itself, with unique names,
initial positions, and maximum angular velocity vmax, and maximum angular acceleration amax of
the revolute joints. The arms and gripper are driven to the given points to rigidly attach the resting
sphere with the gripper. The robot transports the rigidly attached sphere until it is released, falls
freely and bounces on the plate.

function robotProgram(robotActions)
addReferencePath(robotActions,

names = ["angle1", "angle2", "angle3", "angle4", "angle5", "gripper
"],

v_max = [2.68512, 2.68512, 4.8879, 5.8997, 5.8997, 2.0],
a_max = [1.5, 1.5, 1.5, 1.5, 1.5, 0.5],
position = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0])

ptpJointSpace(robotActions, [pi pi/4 pi/4 1.057 0.0 diameter +0.01])
ActionAttach(robotActions, "sphereLock", "youbot.gripper.gripperLock")
ptpJointSpace(robotActions, [pi 0.0 pi/2 0.0 0.0 diameter-0.002])
ActionWait(robotActions, 0.2)
ActionRelease(robotActions, "sphereLock")
...

end

Figure 12. (Left) Scenario 1: A YouBot robot after releasing a free falling sphere (six DoF).
The sphere will bounce on the grey plate. (Right) Scenario 3: A YouBot transporting a box with
segmented simulation.

Scenario 2: Transportation of a sphere by segmented simulation compared to collision
handling. Thus, a sphere was gripped by a robot and transported, until it was released
and placed on a plate. Finally, it was gripped and transported again. This procedure was
modelled (a) with a segmented simulation (https://github.com/ModiaSim/Modia3D.jl,
accessed on 17 January 2023, release v0.12.0, YouBotFixSphere.jl) and (b) with collision
handling (https://github.com/ModiaSim/Modia3D.jl, accessed on 17 January 2023, release
v0.12.0, YouBotSphereTransport.jl). The simulation of (a) took about 0.22 s, whereas the
simulation of (b) took about 6.67 s on a standard notebook. Therefore, the simulation time
of (a) was about 30 times faster than (b). The reason is that (a) was basically a non-stiff
system where the solver could use large step-sizes, and the time for the reconfiguration of
the multibody system (for gripping and releasing) was negligible, whereas (b) was a stiff
system, since the gripper held the sphere via elastic contact and friction forces that varied
during the transportation, and therefore, the solver had to use much smaller step-sizes.

Scenario 3: Transportation of a box by segmented simulation. The models of scenario 3
were similar to those of scenario 2, but only the sphere was replaced by a box; see Figure 12,
right. The simulation time of model (a) with segmented simulation was approximately
the same as that of scenario 2. It is not possible to simulate model (b) with a box, be-
cause Modia3D collision handling currently only supports point contacts with elastic
contact laws due to the used MPR algorithm. For parallel or nearly parallel surfaces, such
as a box and gripper, or box and plate, no unique point contact can be computed that is
continuous over time, as required from an adaptive step-size control.

https://github.com/ModiaSim/Modia3D.jl
https://github.com/ModiaSim/Modia3D.jl

Electronics 2023, 12, 500 22 of 31

7. Conclusions

This article introduced a new method to extend declarative, equation-based mod-
elling systems so that variables can appear and disappear during simulation without
re-generation and re-compilation of code when the numbers of equations and states change
during events. This was introduced in a generic, mathematical way and was demonstrated
with an extended version of Modia and of Modia3D. The main advantages of this approach
are (a) that the modeller does not need to define in advance how the system changes the
equations because this is decided at run-time and (b) that the transformation to a new mode
is typically very efficient, because no code needs to be newly generated and compiled on
the fly. This is, in particular, the case for the multibody built-in component Modia3D, which
allows a superfast re-arrangement of the execution scheme for a new mode and opens up
new applications, because gripping operations are much more efficient and more robust as
sketched with the scenarios of the previous section.

As a side-effect, it is now possible to implement acausal components in Modia that
consist to a large extent of pre-translated functions that can, for example, hide space
discretization schemes of PDEs (partial differential equations) from equation-based code
and its transformation algorithms, so that, for example, the number of discretization
elements can be changed after code generation and even during simulation. This was
demonstrated with heat transfer in a rod and can be generalized for many more PDE-
based components, especially for thermo-fluid systems. It is planned to support much
more models of this kind in Modia. Another benefit is that the transformation of a model
into ODE form and generation and compilation of code is much faster with such built-in
components, especially for large models with many states, because the core part of the
equations is compiled once, independently of how many instances of the component are
used in a model.

A drawback of this method is that the manual implementation of built-in compo-
nents is quite involved, when compared to the simple definition of pure equation-based
components. In the future, it might be possible to automatically transform a higher-level
component description to a built-in component. Furthermore, built-in components cannot
be used in an arbitrary way. For example, it is usually not possible to invert a model that
contains built-in components, even if this would work for the underlying, pure equation-
based version of the model. In the future, it would be also useful to combine the technique
of built-in components with on-the-fly translation during simulation.

Author Contributions: Conceptualization, methodology, software, validation, writing—original
draft preparation, review and editing, visualization: A.N., M.O., project administration: M.O.. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The Julia packages Modia (https://github.com/ModiaSim/Modia.
jl, accessed on 17 January 2023, release v0.10.0) and Modia3D (https://github.com/ModiaSim/
Modia3D.jl, accessed on 17 January 2023, release v0.12.0) are publicly available under the MIT open
source license.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

3D three dimensional
AST abstract syntax tree
DAE differential algebraic equation
DoF degrees of freedom
FR full restart
MDPI Multidisciplinary Digital Publishing Institute

https://github.com/ModiaSim/Modia.jl
https://github.com/ModiaSim/Modia.jl
https://github.com/ModiaSim/Modia3D.jl
https://github.com/ModiaSim/Modia3D.jl

Electronics 2023, 12, 500 23 of 31

MPR Minkowski portal refinement
ODE ordinary differential equation
PDE partial differential equation
inv invariant
var variant

Appendix A. Overview of Modia

This appendix section provides a concise introduction to Modia as needed to under-
stand the code fragments used in this article. It is a shortened and modified version of [4]
Section 2. Much more details are given in the Modia tutorial (https://modiasim.github.io/
Modia.jl/stable/, accessed on 11 December 2022).

Modia is a Julia package and provides a modelling and simulation environment for
declarative, equation-based models. Contrary to other modelling languages, a Modia
model is defined directly with the Julia language using some pre-defined helper functions
to define the model AST (Abstract Syntax Tree), so there is no language that is parsed
and transformed to Julia code. This is possible and is reasonably user-friendly due to the
feature-rich Julia language.

A Modia model is defined with hierarchical collections of name/value pairs, together
with merging of such collections. This unified scheme is used for models, variables,
equations, hierarchical modifiers, inheritance, and replaceable components.

Appendix A.1. Variables and Models

Variables are implicitly defined by their references in equations. A constructor Var
allows one to define variables with attributes.

name = Var(attribute=value, ...)

Var is a function taking name/value pairs, building and returning a corresponding
dictionary. The currently introduced attributes are: value; min; max; init; start; and the
Booleans: parameter, constant, input, output, potential, and flow. Par is an abbreviation for
Var(parameter=true). Example:

T1 = Var(parameter=true, value =0.2, min=0)
T2 = Par(value =0.2, min=0) # definitions are equivalent for T1 and T2

If the value contains references to other declared variables in the model, the expressions
must be enclosed in quotes :(). A parameter can also be defined by name = literal-value.

A model (Listing A1) is defined as a collection of name/value pairs with the
constructor Model.

Listing A1. Syntax of a Modia model.

name = Model(
<variable-or-component-definition >,
...,
equations = :[

<equation1 >
<equation2 >
...]

)

The equations have Julia expressions on both left and right sides of the equals sign.
Note that the entire array of equations is quoted, since it is enclosed in :[]. This enables
later processing, such as symbolically solving the equation, since an AST is built-up,
instead of evaluating the expressions. The Modia-specific operator der(v) defines the time
derivative dv/dt of variable v. Definition of units is done with a string macro u"..." from
Julia package Unitful.jl [34]. For example, a low pass filter can be defined as in Listing A2.

https://modiasim.github.io/Modia.jl/stable/
https://modiasim.github.io/Modia.jl/stable/

Electronics 2023, 12, 500 24 of 31

Listing A2. Modia model of a low pass filter.

LowPassFilter = Model(
T = 0.2u"s",
u = Var(input=true),
y = Var(output=true),
x = Var(init =0.0),
equations = :[

T * der(x) + x = u
y = x]

)

This corresponds to the Modelica model in Listing A3.

Listing A3. Modelica model of a low pass filter.

block LowPassFilter
parameter SIunits.Time T = 0.2;
input Real u;
output Real y;
Real x(start =0.0, fixed=true);

equation
T * der(x) + x = u;
y = x;

end LowPassFilter;

Appendix A.2. Connectors and Components

Models which contain any flow variable (with attribute flow = true) are considered
connectors. Connectors must have an equal number of flow and potential variables (with
attribute potential = true) and have matching array sizes. Connectors may not have any
equations. An electrical connector with potential v and current i is defined as:

Pin = Model(v = Var(potential=true), i = Var(flow=true))

Components are declared by using a model name as a value in a name/value pair. An
electrical capacitor with two Pins p and n can be described as in Listing A4.

Listing A4. Capacitor model.

Capacitor = Model(
C = 0.1u"F",
p = Pin,
n = Pin,
equations = :[

0 = p.i + n.i
v = p.v - n.v
C*der(v) = p.i]

)

Appendix A.3. Merging

Models and variables are defined with hierarchical collections of name/value pairs.
Setting and modifying parameters of components and attributes of variables are also natu-
rally performed in the same way. A constructor Map is used for that. For example, modifying
the parameter T of the LowPassFilter model defined in Listing A2 can be implemented by:

lowPassFilter = LowPassFilter | Map(T = Map(value=2u"s", min=1u"s"))

The achieved semantics is the same as for hierarchical modifiers in Modelica and
result in:

lowPassFilter = Model(T = Par(value=2u"s", min=1u"s"), ...)

The used merge operator | is an overloaded binary operator of bitwise or with recursive
merge semantics. Merging of equations is handled in a special way by concatenating the
equations vectors.

Electronics 2023, 12, 500 25 of 31

Appendix A.4. Connections

Connections are described as a special equation of the form:

connect(<connect-reference-1 >, <connect-reference-2 >, ...)

A “connect-reference” has either the form “connect instance name” or “component
instance name.” “connect instance name" is either a connector instance, input, or output
variable. For connectors, all the corresponding potentials of the connected connectors
are set as equal. The sum of all incoming corresponding flows to the model is set equal
to the sum of the corresponding flows into sub-components, i.e., the same semantics as
in Modelica.

Having electrical component models enables defining a filter (Listing A5) by instan-
tiating components, setting parameters and defining connections. The filter model was
instantiated and simulated, and the results are plotted:

Listing A5. Filter model defined with electrical components is instantiated, simulated and plotted.

using Modia
include("$(Modia.path)/models/Electric.jl") # include electrical components

Filter = Model(
R = Resistor,
C = Capacitor | Map(C=2.0u"F"),
V = ConstantVoltage | Map(V=10.0u"V"),
equations = :[

connect(R.n , C.p)
connect(C.n , V.n)]

)

filter = @instantiateModel(Filter)
simulate !(filter, stopTime =2.0u"s", merge=Map(C=Map(C=100u"F")))

@usingModiaPlot # Use selected plot package
plot(filter, ("R.v", "C.v"))

Julia macro @instantiateModel symbolically processes the model, generates, and com-
piles Julia code. Symbolic processing is performed with standard algorithms of object-
oriented modelling languages and with extensions described in [35]. Function simulate!
performs one simulation of the instantiated model with a solver from the Julia package
DifferentialEquations.jl [36,37]. This package contains a large set of solvers. In Listing A5,
the Modia default solver CVODE_BDF is used. With various keyword arguments, the sim-
ulation run can be defined, e.g., the stop time is set to 2 s. Parameters and initial values
can be provided by a hierarchical Map that is merged with the current values via the merge
keyword. The simulation results are stored within the instantiated model and are plotted
with function call plot.

Appendix B. Examples

Appendix B.1. Heated Rod with Acausal Built-In Component

In Figure A1, an equation-based model of heat transfer in a rod with isolated surface
is shown.

On the left and right sides of the rod, thermal connectors a, b are present that have
potential variables aT , bT (temperatures) and flow variables aQflow , bQflow (heat flow rates).
The partial differential equation that mathematically describes heat transfer in one dimen-
sion is discretized in space by volumes Vi = ∆x · A of equal lengths ∆x and identical areas
A. In the middle of volume i, a temperature Ti is defined. All temperatures are collected
in vector T = [T1, T2, . . . , Tn]. In Listing A6, a Modia model is shown that uses a built-in
component InsulatedRod of the rod that is connected at its left thermal connector a with a
fixed temperature source FixedTemperature and at its right thermal connector b with a fixed
heat-flow source fixedHeatFlow with the default zero heat-flow rate (so the rod is totally
insulated on the right side and has a fixed temperature on the left side).

Electronics 2023, 12, 500 26 of 31

T1 Ti−1 Ti Ti+1 Tna b
aT bT

aQflow
bQflow

∆x

∆x = L/n

Qflow,i = λ · A/∆x ·

2(aT − T1) i = 0
Ti − Ti+1 i = 1, . . . , n− 1
2(Ti − bT) i = n

;
aQflow = Qflow,0

bQflow = −Qflow,n

$ · c · A ·∆x · Ṫi = Qflow,i−1 −Qflow,i, i = 1, . . . , n; Ti(t = t0) = T0

Figure A1. Space discretized partial differential equation of one-dimensional heat transfer in a rod
with an isolated surface, defined with parameters L (length of rod), n (number of volumes), A (area), $

(density), c (specific heat capacity), λ (thermal conductivity), T0 (initial value in every volume), states
Ti (temperatures in the middle of every volume), thermal connectors a, b with potential variables
aT , bT (temperatures), and flow variables aQflow , bQflow (heat flow rates).

Listing A6. Simple usage of isolated rod InsulatedRod with one-dimensional heat-transfer that is
connected on the left side with a fixed temperature source FixedHeatFlow with T = 220 ◦C = 493.15 K,
and on the right side with a fixed heat flow source FixedHeatFlow with Qflow = 0.

HeatPort = Model(T=Var(potential=true), Q_flow=Var(flow=true))
HeatedRod = Model(

fixedT = FixedTemperature | Map(T=493.15), # temperature source
fixedQflow = FixedHeatFlow, # heat flow source with default Q_flow =0
rod = InsulatedRod | Map(L=1.0, T0 =273.15, n=5), # 5 volumes
equations = :[connect(fixedT.port, rod.a),

connect(rod.b , fixedQflow.port)])
heatedRod = @instantiateModel(HeatedRod)
simulate !(heatedRod, stopTime = 1e5, merge=Map(rod = Map(n=8)) # 8 volumes
plot(heatedRod, ("fixedT.port.T", "rod.T"))

Command @instantiateModel(HeatedRod) symbolically processes this model, and gen-
erates and translates Julia code. The simulate!(..) statement changes the discretization
(and therefore, the dimension of the temperature vector T) from 5 to 8 volumes before
simulation starts (and without a new translation). With function plot(heatedRod, ...), the
plot of Figure A2 is generated, showing the temperatures at the temperature source and
in the rod volumes. Two different implementations of the InsulatedRod model are shown
in Table A1 in the form of pseudo-code. In the left column, the model’s implementation
with mathematical functions is shown. In the right column, the model’s implementation
is shown as a built-in component using functions of a programming language that have
internal memory.

Figure A2. Plot of temperatures of heated rod model of Listing A6.

Electronics 2023, 12, 500 27 of 31

Table A1. Built-in component of an insulated rod with parameters L, n, A, $, λ, c, T0, state vector T
of length n (temperatures at rod volumes), connectors a, b on the left and right sides of the rod with
potential variables aT , bT (temperatures), and flow variables aQflow , bQflow (heat flow rates).

as component as built-in component
(with mathematical functions) (with prog. lang. functions that have internal memory m)

evaluated once
dx = L/n

k1 = (λ/dx)/(c · $ · dx)

k2 = 2 · λ · A/dx
m = fc,0(sim, id, L, n, A, $, λ, c, T0)

equation section
(T1, Tn) = fc,1(T)

aQflow = k2 · (aT − T1)

bQflow = k2 · (bT − Tn)

Ṫ = fc,2(T , k1, aT , bT)

(k2, T1, Tn) = fc,1(m)

aQflow = k2 · (aT − T1)

bQflow = k2 · (bT − Tn)

fc,2(m, aT , bT) # no return arguments

function definitions
function fc,0(sim, id, L, n, A, $, λ, c, T0)

< allocate new record m >; assert(n ≥ 2)

msim := sim; mid := id; mn := n; ∆x := L/n

mk1 := (λ/∆x)/(c · $ ·∆x)

mk2 := 2 · λ · A/∆x; return m

function fc,1(T)

return (T1, Tn)

function fc,1(m)

< copy mT from states in msim for mid >

return (mk2 , mT1 , mTn)

function fc,2(T , k1, aT , bT)

Ṫ1 := k1 · (2 · (aT − T1)− (T1 − T2))

Ṫn := k1 · (Tn−1 − Tn − 2 · (Tn − bT))

for i = 2 : n− 1

Ṫi := k1 · (Ti+1 − Ti − (Ti − Ti−1))

return Ṫ

function fc,2(m, aT , bT)

T := mT ; n := mn; k1 = mk1

mṪ1
:= k1 · (2 · (aT − T1)− (T1 − T2))

mṪn
:= k1 · (Tn−1 − Tn − 2 · (Tn − bT))

for i = 2 : n− 1

mṪi
:= k1 · (Ti+1 − Ti − (Ti − Ti−1))

< copy mṪ into state derivatives of msim for mid >

A Modia model of the built-in component is available from (https://github.com/
ModiaSim/Modia.jl, accessed on 17 January 2023, release v0.10.0, TestHeatTransfer2.jl).
The advantage of the acausal built-in component implementation is its very compact
definition in the equation section with four scalar equations. Once the used functions are
translated (once), the symbolic processing and the code generation have to handle only
four scalar equations per insulated rod, independent of the number of temperature nodes.

Note, since the left connector a of the rod is connected to a temperature source, aQflow =
k2 · (aT − T1) is kept in this form in the generated code (aT is provided by the temperature
source, T1 is provided, since it is a state, and aQflow is computed from this equation). Since
the right connector b of the rod is connected to a heat flow source, equation bQflow =
k2 · (bT − Tn) is transformed into the statement bT := Tn during symbolic processing
because bQflow = 0.

Appendix B.2. Two-Stage Rocket with Acausal Built-In Component

The approach of Section 4 is demonstrated with an extremely simplified acausal built-
in component of a rocket with two stages. In Section 6.1, a 3D version is shown defined
with a Modia3D built-in component.

The two stages i ∈ {1, 2} of a two-stage rocket are approximated by mass points mi
(constant masses are used; the effect of the variable masses due to the burned fuel is taken
into account by decreasing the thrusts over time, since bodies with variable masses are not
yet supported in Modia3D, which is used for the 3D version of the rocket). Other important
variables of the model are: hi height over ground i, vi velocity, Fi thrust, g gravitational

https://github.com/ModiaSim/Modia.jl
https://github.com/ModiaSim/Modia.jl

Electronics 2023, 12, 500 28 of 31

acceleration (height dependency is neglected), and time t. An enumeration to indicate the
actual modes,

phase =

1 one body with two stages (m1 + m2),
2 two bodies with separated stages (m1, m2),
3 one body(m2) left, stage 1 is removed from model,

is introduced.
Initially, in phase = 1 the two stages are connected together, and the system has

two states h1, v1 and is described by the equations:

v1 = ḣ1 (A1)

(m1 + m2) · v̇1 = F1 − (m1 + m2) · g. (A2)

At t = t1, phase = 2, the two stages are separated, and the thrust of stage 2 is switched
on. In this phase, the system has four states h1, v1, h2, v2 and is described by the equations:

v1 = ḣ1 (A3)

m1 · v̇1 = F1 −m1 · g (A4)

v2 = ḣ2 (A5)

m2 · v̇2 = F2 −m2 · g. (A6)

At t = t2, phase = 3, stage 1 is removed from the simulation, because it is no longer of
interest, and the system has two states h2, v2 and is described by the equations:

v2 = ḣ2 (A7)

m2 · v̇2 = F2 −m2 · g. (A8)

A Modia model RocketSystem implementing these equations is given in Listing A7 and
is available from (https://github.com/ModiaSim/Modia.jl, accessed on 17 January 2023,
release v0.10.0, TestTwoStageRocket.jl). The utilized built-in component TwoStageRocket
has varying number of states and its pseude-code is shown in Table A2. Simulation results
are shown in Figure A3.

Listing A7. Modia model of simple two stage rocket. TwoStageRocket is a built-in component with
varying number of states.

using Modia

RocketSystem = Model(
rocket = TwoStageRocket(m1 = 100.0, m2 = 100.0,

F1Max = 1e4, F2Max = 0.2e4, g = 9.81,
t1 = 5.0, t2 = 10.0, t3 = 15.0),

)
rocketSystem = @instantiateModel(RocketSystem)
simulate !(rocketSystem, stopTime =15.0)

The Modia built-in component with pseudo-code implementation for this component
is shown in Table A2. Note that function fc,init defined in Table A2 is called before a new
segment is initialized, also including segment 1. This function defines the variables of the
respective segment and initializes them. Function fc,2 is called for every model evaluation.
In this function, the current states of the rocket instance are copied from the state vector of
the solver to the rocket instance. The state derivatives are computed based on the phase of
the rocket and are then copied into the derivative of the state vector of the solver.

https://github.com/ModiaSim/Modia.jl

Electronics 2023, 12, 500 29 of 31

Table A2. Pseudo-code for variable structure state handling of built-in component TwoStageRocket.

equation section (events are triggered at t == t1 and t == t2)
phase = if t < t1 then 1 elseif t < t2 then 2 else 3 end

fc,2(m, phase)

function definitions
function fc,0(sim, id, m1, m2, g, f1,max, f2,max, t1, t2, t3) # called once

< allocate new record m and store parameters in m >

mphase := 0; mnextPhase := 1; return m

function fc,init(m) # called before a segment is initialized

mphase := mnextPhase

if mphase == 1

< define new variables h1(init = 0), v1(init = 0), ḣ1, v̇1, F1 >

elseif mphase == 2

< define new variables h1(init = mh1
), h2(init = mh1

),

v1(init = mv1), v2(init = mv1), v̇1, v̇2, F1, F2 >

elseif mphase == 3

< define new variables h2(init = mh2), v2(init = mv2), ḣ2, v̇2, F2 >

end
function fc,2(m, phase) # called in equation section

if isEvent(msim) and mphase! = phase

mnextPhase := phase; setFullRestartEvent(msim); end

if mphase == 1

< copy mh1
, mv1 from states in msim for mid >

ḣ1 = mv1

F1 = F(mF1,max , 0, mt1) # Function F(..) to compute thrust is not shown

v̇1 = F1/(m1 + m2)− g

< copy ḣ1, v̇1, F1 into states/local variables of msim for mid >

elseif mphase == 2

< copy mh1
, mv1 , mh2 , mv2 from states in msim for mid >

ḣ1 = mv1

F1 = F(mF1,max , 0, mt1) # Function F(..) to compute thrust is not shown

v̇1 = F1/m1 − g

ḣ2 = mv2

F2 = F(mF2,max , mt1 , mt3) # Function F(..) to compute thrust is not shown

v̇2 = F2/m2 − g

< copy ḣ1, v̇1, ḣ2, v̇2, F1, F2 into states/local variables of msim for mid >

elseif mphase == 3

< copy mh2 , mv2 from states in msim for mid >

ḣ2 = mv2

F2 = F(mF2,max , mt1 , mt3) # Function F(..) to compute thrust is not shown

v̇2 = F2/m2 − g

< copy ḣ2, v̇2, F2 into states/local variables of msim for mid >

end

Electronics 2023, 12, 500 30 of 31

0 5 10 15

0

500

1000
rocket.h1 [m]

rocket.h2 [m]

0 5 10 15

time in s

0

5000

10,000
rocket.f1 [N]

rocket.f2 [N]

0 5 10 15

time in s

0

50

100

rocket.v1 [m/s]

rocket.v2 [m/s]

0 5 10 15

time in s

1

2

3
phase

Figure A3. Plots of the variables from the simulation of model RocketSystem of Listing A7. Variable
values are not shown in the plots, if they are not defined in the respective phase.

References
1. Modelica Association. Modelica—A Unified Object-Oriented Language for Systems Modeling, Language Specification, Version

3.5. 2021. Available online: https://specification.modelica.org/maint/3.5/MLS.pdf (accessed on 13 January 2023).
2. Modelica Tools. Available online: https://modelica.org/tools.html (accessed on 11 December 2022).
3. Arnold, M. DAE Aspects of Multibody System Dynamics. In Surveys in Differential-Algebraic Equations IV; Ilchmann, A., Reis, T.,

Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 41–106. [CrossRef]
4. Elmqvist, H.; Otter, M.; Neumayr, A.; Hippmann, G. Modia—Equation Based Modeling and Domain Specific Algorithms. In

Proceedings of the 14th International Modelica Conference, Linköping, Sweden, 20–24 September 2021; pp. 73–86. [CrossRef]
5. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98.

[CrossRef]
6. Pantelides, C.C. The Consistent Initialization of Differential-Algebraic Systems. SIAM J. Sci. Stat. Comput. 1988, 9, 213–231.

[CrossRef]
7. Pryce, J.D. A simple structural analysis method for DAEs. BIT Numer. Math. 2001, 41, 364–394. [CrossRef]
8. Elmqvist, H.; Matsson, S.E.; Otter, M. Modelica extensions for multi-mode DAE systems. In Proceedings of the 10th International

Modelica Conference, Lund, Sweden, 10–12 March 2014; Linköping University Electronic Press: Linköping, Sweden, 2014;
pp. 183–193. [CrossRef]

9. Benveniste, A.; Caillaud, B.; Malandain, M.; Thibault, J. Algorithms for the Structural Analysis of Multimode Modelica Models.
Electronics 2022, 11, 2755. [CrossRef]

10. Caillaud, B.; Malandain, M.; Thibault, J. Implicit Structural Analysis of Multimode DAE Systems. In Proceedings of the 23rd
International Conference on Hybrid Systems: Computation and Control, HSCC ’20, Sydney, NSW, Australia, 22–24 April 2020.
[CrossRef]

11. Benveniste, A.; Caillaud, B.; Elmqvist, H.; Ghorbal, K.; Otter, M.; Pouzet, M. Multi-Mode DAE Models—Challenges, Theory and
Implementation. In Computing and Software Science: State of the Art and Perspectives; Springer International Publishing: Cham,
Switzerland, 2019; pp. 283–310. [CrossRef]

12. Höger, C. Dynamic Structural Analysis for DAEs. In Proceedings of the 2014 Summer Simulation Multiconference, SummerSim’14,
Monterey, CA, USA, 6–10 July 2014; Society for Computer Simulation International: San Diego, CA, USA, 2014.

13. Zimmer, D. Equation-Based Modeling of Variable-Structure Systems. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2010.
[CrossRef]

14. Pepper, P.; Mehlhase, A.; Höger, C.; Scholz, L. A Compositional Semantics for Modelica-style Variable-structureModeling. In
Proceedings of the 4th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, EOOLT’11,
Zürich, Switzerland, 5 December 2011; pp. 45–54.

15. Mehlhase, A. A Python framework to create and simulate models with variable structure in common simulation environments.
Math. Comput. Model. Dyn. Syst. 2014, 20, 566–583. [CrossRef]

16. Mattsson, S.E.; Otter, M.; Elmqvist, H. Multi-mode DAE systems with varying index. In Proceedings of the 11th International
Modelica Conference, Versailles, France, 21–23 September 2015; pp. 89–98. [CrossRef]

17. Tinnerholm, J.; Pop, A.; Sjölund, M. A Modular, Extensible, and Modelica-Standard-Compliant OpenModelica Compiler
Framework in Julia Supporting Structural Variability. Electronics 2022, 11, 1772. [CrossRef]

https://specification.modelica.org/maint/3.5/MLS.pdf
https://modelica.org/tools.html
http://doi.org/10.1007/978-3-319-46618-7_2
http://dx.doi.org/10.3384/ecp2118173
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/0909014
http://dx.doi.org/10.1023/A:1021998624799
http://dx.doi.org/10.3384/ECP14096183
http://dx.doi.org/10.3390/electronics11172755
http://dx.doi.org/10.1145/3365365.3382201
http://dx.doi.org/10.1007/978-3-319-91908-9_16
http://dx.doi.org/10.3929/ethz-a-006053740
http://dx.doi.org/10.1080/13873954.2013.861854
http://dx.doi.org/10.3384/ecp1511889
http://dx.doi.org/10.3390/electronics11111772

Electronics 2023, 12, 500 31 of 31

18. Modelica Association. Functional Mock-Up Interface for Model Exchange and Co-Simulation—Version 2.0. 2014. Available online:
https://fmi-standard.org/assets/releases/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf (accessed on 13 January 2023).

19. Steinbach, O. Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements; Springer: New
York, NY, USA 2007. [CrossRef]

20. Campbell, S.L.; Linh, V.H.; Petzold, L.R. Differential-algebraic equations. Scholarpedia 2008, 3, 2849. [CrossRef]
21. Olsson, H.; Otter, M.; Mattsson, S.; Elmqvist, H. Balanced Models in Modelica 3.0 for Increased Model Quality. In Proceedings of

the 8th International Modelica Conference, Bielefeld, Germany, 3–4 March 2008; pp. 21–33.
22. Elmqvist, H. Pages 7–10 of Modia—A Prototyping Platform for Next Generation Modeling and Simulation Based on Julia.

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation. Available online: https://modelica.github.io/
Symposium2019/slides/jubilee-symposium-2019-slides-elmqvist.pdf (accessed on 4 December 2022).

23. Otter, M. Signal Tables: An Extensible Exchange Format for Simulation Data. Electronics 2022, 11, 2811. [CrossRef]
24. Snethen, G. Xenocollide: Complex collision made simple. In Game Programming Gems 7; Course Technology; Charles River Media:

Newton, MA, USA, 2008; pp. 165–178.
25. Neumayr, A.; Otter, M. Collision Handling with Variable-step Integrators. In Proceedings of the 8th International Workshop

on Equation-Based Object-Oriented Modeling Languages and Tools, EOOLT’17, Weßling, Germany, 1 December 2017; pp. 9–18.
[CrossRef]

26. Hertz, H. On the contact of solids—On the contact of rigid elastic solids and on hardness. In Miscellaneous Papers; MacMillan:
Stuttgart, Germany, 1896; pp. 146–183. Available online: https://archive.org/details/cu31924012500306 (accessed on 13 January
2023).

27. Flores, P.; Machado, M.; Silva, M.T.; Martins, J.M. On the continuous contact force models for soft materials in multibody
dynamics. Multibody Syst. Dyn. 2011, 25, 357–375. [CrossRef]

28. Neumayr, A.; Otter, M. Collision Handling with Elastic Response Calculation and Zero-Crossing Functions. In Proceedings of
the 9th International Workshop on Equation-Based Object-Oriented Modeling Languages and Tools, EOOLT’19, Berlin, Germany,
5 November 2019; pp. 57–65. [CrossRef]

29. Nystrom, R. Game Programming Patterns; Genever Benning, 2014.
30. Unity Technologies. Unity—Manual: Unity User Manual 2021.3 (LTS). Available online: https://docs.unity3d.com/Manual/

index.html (accessed on 27 April 2022).
31. Epic Games. Unreal Engine 5 Documentation | Unreal Engine Documentation. Available online: https://docs.unrealengine.com

(accessed on 27 April 2022).
32. Three.js. Available online: https://threejs.org/docs/#api/en/core/Object3D (accessed on 13 October 2022).
33. Neumayr, A.; Otter, M. Algorithms for Component-Based 3D Modeling. In Proceedings of the 13th International Modelica

Conference, Regensburg, Germany, 4–6 March 2019; Linköping University Electronic Press: Linköping, Sweden, 2019. [CrossRef]
34. Keller, A. Unitful.jl. Available online: https://github.com/PainterQubits/Unitful.jl (accessed on 12 December 2022).
35. Otter, M.; Elmqvist, H. Transformation of Differential Algebraic Array Equations to Index One Form. In Proceedings of the 12th

International Modelica Conference, Prague, Czech Republic, 15–17 May 2017; Linköping University Electronic Press: Linköping,
Sweden, 2017. [CrossRef]

36. Rackauckas, C.; Nie, Q. DifferentialEquations.jl—A Performant and Feature-Rich Ecosystem for Solving Differential Equations in
Julia. J. Open Res. Softw. 2017, 5, 15. [CrossRef]

37. DifferentialEquations.jl. Available online: https://github.com/SciML/DifferentialEquations.jl (accessed on 12 December 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://fmi-standard.org/assets/releases/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
http://dx.doi.org/10.1007/978-0-387-68805-3
http://dx.doi.org/10.4249/scholarpedia.2849
https://modelica.github.io/Symposium2019/slides/jubilee-symposium-2019-slides-elmqvist.pdf
https://modelica.github.io/Symposium2019/slides/jubilee-symposium-2019-slides-elmqvist.pdf
http://dx.doi.org/10.3390/electronics11182811
http://dx.doi.org/10.1145/3158191.3158193
https://archive.org/details/cu31924012500306
http://dx.doi.org/10.1007/s11044-010-9237-4
http://dx.doi.org/10.1145/3365984.3365986
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html
https://docs.unrealengine.com
https://threejs.org/docs/#api/en/core/Object3D
http://dx.doi.org/10.3384/ecp19157383
https://github.com/PainterQubits/Unitful.jl
http://dx.doi.org/10.3384/ecp17132565
http://dx.doi.org/10.5334/jors.151
https://github.com/SciML/DifferentialEquations.jl

	Introduction
	Changing Number of States after Model Translation
	Built-In Components
	Acausal Components
	Acausal Components with Pre-translated Mathematical Functions
	Acausal Built-In Components
	Application: Capacitor

	Changing the Number of States during Simulation
	Segmented Simulation with Built-In Component Modia3D
	Overview Modia3D
	Super-Objects
	Segmented Simulation of Modia3D Models

	Applications
	Two-Stage Rocket
	Gripping Robot

	Conclusions
	Appendix A
	Appendix A.1
	Appendix A.2
	Appendix A.3
	Appendix A.4

	Appendix B
	Appendix B.1
	Appendix B.2

	References

