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ABSTRACT

We present a general framework on how the polarization of radiation due to scattering, dichroic extinction, and birefringence of aligned
spheroidal dust grains can be implemented and tested in 3D Monte Carlo radiative transfer (MCRT) codes. We derive a methodology
for solving the radiative transfer equation governing the changes of the Stokes parameters in dust-enshrouded objects. We utilize the
Müller matrix and the extinction, scattering, linear, and circular polarization cross sections of spheroidal grains as well as electrons.
An established MCRT code is used, and its capabilities are extended to include the Stokes formalism. We compute changes in the
polarization state of the light by scattering, dichroic extinction, and birefringence on spheroidal grains. The dependency of the optical
depth and the albedo on the polarization is treated. The implementation of scattering by spheroidal grains both for random walk steps
as well as for directed scattering (peel-off) are described. The observable polarization of radiation of the objects is determined through
an angle binning method for photon packages that leaves the model space as well as through an inverse ray-tracing routine for the
generation of images. We present paradigmatic examples for which we derive analytical solutions of the optical light polarization by
spheroidal dust particles. These tests are suited for benchmark verification of MCPOL and other such codes and allow the numerical
precision reached by these codes to be quantified. We demonstrate that MCPOL is in excellent agreement (within ∼0.1%) of the Stokes
parameters when compared to the analytical solutions.
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1. Introduction

Dust processes the radiation that astronomical objects emit.
Ultraviolet to optical light is easily scattered or absorbed. The
dust also emits radiation, mostly at infrared to sub-millimeter
wavelengths. Nearly all astronomical objects are seen through
dust shrouds, and their spectral energy distributions (SED) are
altered by the dust. Dust also polarizes the radiation that is scat-
tered, extinguished, or emitted by grains when passing through
the medium. Observations have shown the polarization of radi-
ation due to dust, for example, around active galactic nuclei
(Miller & Goodrich 1990), around supernovae (Tran et al. 1997),
around single stars (Forrest et al. 1975), and in the galactic
interstellar medium (Serkowski et al. 1975) or other galaxies
(Montgomery & Clemens 2014).

Dust clouds have complex morphologies and varying den-
sity profiles, and they contain nonpherical dust grains of various
sizes and compositions that are partially aligned. An ana-
lytic description of the signatures of dust on the radiation
field is only possible under the assumption of strong simpli-
fications, which generally do not hold. A common numerical
technique to account for all these different dependencies of the
dust-photon interactions is the Monte Carlo radiative transfer
(MCRT) approach. In this procedure, photon packages propa-
gate along probabilistic paths through a simulation of the volume
under study. Effects like absorption, scattering, and emission
of photons are explicitly carried out in this approach, and the
effects on the dust temperature are recorded. A vast body of

theoretical work has been developed for MCRT (a starting point
can be the review by Steinacker et al. 2013). A large number
of radiative transfer (RT) codes based on the Monte Carlo tech-
nique are also available, and their scopes, sophistication, and
application domains are extremely different.

The polarization of radiation influences how it interacts with
dust, and the interaction with the dust influences the polariza-
tion. Several MCRT codes therefore started treating polarization
in simplified schemes. A first step of implementing polarization
is often to calculate the polarization that is due to scattering
at spherical dust grains and electrons. The MCRT codes that
include such polarization mechanisms have been presented by
Voshchinnikov & Karjukin (1994), Bianchi et al. (1996), Harries
(2000, TORUS), Watson & Henney (2001, Pinball), Pinte et al.
(2006, MCFOST), Min et al. (2009, MCMAX), Robitaille (2011,
HYPERION), Goosmann et al. (2014, STOKES), and Kataoka
et al. (2015, RADMC-3D), to name a few. We also treat polariza-
tion due to scattering on dust as presented in Peest et al. (2017,
hereafter called P17).

Very few MCRT codes implement additional and more
sophisticated processes that can lead to the polarization of radi-
ation by dust. Among those that do are codes developed by
Whitney & Wolff (2002) and Lucas (2003), which treat scat-
tering, dichroic extinction, and birefringence due to perfectly
aligned spheroidal grains. The POLARIS code (Reissl et al.
2016) calculates the polarized emission, scattering, dichroic
extinction, and birefringence due to (imperfectly) aligned oblate
grains. The MCRT code by Bertrang & Wolf (2017) uses
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spherical grains in its first step for dust heating and scattering
processes, and then it uses nonspherical grains aligned by radia-
tive torques and magnetic fields for the dust emission phase. The
MoCafe code (Lee et al. 2008; Seon 2018) uses spherical grains,
including polarization by scattering and an empirical formula,
to emulate dichroism based on optical depth and magnetic field
alignment. Vandenbroucke et al. (2021) implemented polarized
emission by partially aligned spheroidal grains in the SKIRT
MCRT code (Camps & Baes 2020).

A code that implements or improves an established func-
tionality can be verified by comparing its results with previous
numerical computations. Such benchmark tests are available for
dust RT models of unpolarized light by Ivezic et al. (1997),
Pascucci et al. (2004), Pinte et al. (2009), and Gordon et al.
(2017). They provide numerical proof of the scattering, extinc-
tion, and emission of radiation due to dust in various envi-
ronments. For treatments of dust polarization, such tests are
generally not accessible except one, which covers the case of
scattering by spherical dust grains (Pinte et al. 2009). The test
compares polarization images of a flared dust disk around a cen-
tral star. The dust is spherical and extends optically thin above
and below the optically thick disk. The geometry of the test
provides mostly the accuracy of the polarization after single scat-
tering events. As discussed in P17, when the various MCRT
codes mentioned are applied to more general cases, they show
significant differences without the correct results being known a
priori. We therefore believe that flexible and easily reproducible
tests are necessary to benchmark and verify the current and
future implementations of polarization due to nonspherical dust.

In this paper, we present a simple and efficient implementa-
tion of the polarization of radiation due to scattering, dichroic,
and birefringent extinction by spheroidal particles. We provide
analytical test cases against which we verify our implementation
and estimate the numerical accuracy of our code, which we call
hereafter MCPOL. The goal of this paper is to provide test cases
to other teams, enabling them to verify and estimate the numer-
ical precision of their codes. This should allow groups from
many different research areas to explore polarization, including
estimated numerical uncertainty.

In Sect. 2, we present the basic equations governing dichroic
extinction and scattering of radiation by spheroidal dust grains.
We illustrate the functionality of MCPOL and detail how
we implement these polarization mechanisms in Sect. 3. We
describe the validation methods in Sect. 4, which are applied
to confirm that the implementations work as desired. We discuss
our results and present our conclusions in Sect. 6.

2. Radiative transfer with polarization

2.1. Stokes vector and Müller matrices

The RT equation describes the interaction of radiation with mat-
ter. For a medium that absorbs, scatters, and emits radiation, the
basic RT equation is

dI
ds

(r, k) = j(r, k) − n(r) Cext(r) I(r, k)

+n(r) Csca(r)
∫
Φ(r, k, k′) I(r, k′) dΩ′, (1)

with I as the specific intensity of the radiation field1, n as
the matter density, j as the anisotropic emissivity of radiation,
1 In our notation, we do not write obvious wavelength dependencies
(e.g., for the intensity and the cross sections).

Cext as the extinction cross section, Csca as the scattering cross
section, and Φ as the phase function. The different quantities
depend on the position in the medium, r, and the direction of the
radiation, k.

However, this description is incomplete, as it does not con-
sider the polarization of the radiation. Thus, we use the Stokes
formalism instead where the radiation field is the 4D Stokes
vector S,

I =⇒ S =


I
Q
U
V

 . (2)

The first element describes the intensity of the radiation. The
second and third elements describe the linear polarization, and
the fourth describes the circular polarization (Stokes 1852).
There are different conventions in the literature concerning the
handedness (Hamaker & Bregman 1996; Peest et al. 2017), and
we use the convention favored by the International Astronomical
Union (IAU) (Contopoulos & Jappel 1974), which, for example,
is not applied by Planck Collaboration Int. XIX. (2015).

Changes to the Stokes vector are described by 4 × 4 Müller
matrices M,

S′ = M S =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44




I
Q
U
V

 . (3)

Linear polarization refers to a particular direction, which can be
any direction perpendicular to the propagation direction. In anal-
ogy to observations, we call our choice of the reference direction
“north,” dN, which shall not be confused with magnetic north.
In our definition, north is “up” when looking at the propagation
direction toward the source. In the plane of the sky, east is con-
sidered as “left” from the north, as is common in astronomy. The
Stokes vector changes depending on the choice of north. When
rotating the north direction by an angle β, the Stokes vector must
be multiplied with a rotation matrix R(β)

S′ = R(β) S =


1 0 0 0
0 cos 2β sin 2β 0
0 − sin 2β cos 2β 0
0 0 0 1

 S. (4)

The ideal choice of reference direction depends on the
phenomenon.

2.2. Scattering by spheroidal grains

For radiation that is scattered on spherical grains, the north
direction is usually chosen in the plane of scattering, defined
by the propagation direction before scattering k and the prop-
agation direction of the photons after scattering k′ (see e.g.,
Chandrasekhar 1960). This allows for more efficient approaches
when treating scattering events, as in the case of spherical grains,
the 16 entries of the scattering matrix (see below) can be simpli-
fied to just four independent elements. This method is widely
applied (e.g., Goosmann & Gaskell 2007).

For spheroidal grains, the Müller matrices typically have
their simplest form when north is in the plane of incidence
(Mishchenko et al. 2002), defined by the propagation direction
before scattering and the grain symmetry axis (Fig. 1). Scat-
tering events by spheroidal grains are described by the 4 × 4
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Müller matrix denoted as Z and referred to as the “scattering
matrix.” For each incoming photon k, Z(k, k′) provides the
probability that it is scattered toward an outgoing direction
k′. The matrix elements depend on the grain shape, size,
porosity, and optical constants as well as the wavelength and
direction of incoming and outgoing radiation. The calculation
of Z can be simplified using symmetry arguments. In the case
of spheroidal grains in Z only, seven of the 16 elements are
independent (Bohren & Huffman 1998; Abhyankar & Fymat
1969). For spheroids, the separation of variables method has
been established (Asano & Yamamoto 1975; Voshchinnikov
& Farafonov 1993). For rotationally symmetric particles,
the scattering matrix can be calculated using the so-called
T-matrix method (Mishchenko et al. 1996; Mishchenko 1991;
Vandenbroucke et al. 2020). For general nonspherical particles,
Z can be calculated by binning the grains into a grid of dipoles
(Purcell & Pennypacker 1973; Draine 1988; Draine & Flatau
1994). Several codes are publicly available or can be requested
from the above-listed authors. The different methods provide
consistent results when computing the cross sections up to a size
parameter of x = 2πa/λ ∼ 10 but encounter numerical problems
at x>∼ 20 (Siebenmorgen & Peest 2019; Draine & Hensley 2021).

Because of the rotational symmetry of spheroids, the direc-
tion of the incoming radiation can be described by one angle:
the angle of incidence. It is defined as the angle between the
direction of propagation and the grain symmetry axis.

The scattering part of the RT equation (Eq. (1)) changes to a
tensor equation when polarization is considered

n(r) Csca(r)
∫
Φ(r, k, k′) I(r, k′) dΩ′

=⇒ n(r)
∫

Z(r, k, k′) S(r, k′) dΩ′. (5)

Following Whitney & Wolff (2002) and Mishchenko et al.
(2002), we can calculate the total scattering cross section C̃sca. It
is defined as the integral over all the scattered intensity I′ relative
to the intensity I incident onto a spheroidal grain,

C̃sca =
1
I

∫
I′ dΩ′

=
1
I

∫
(Z11I + Z12Q + Z13U + Z14V) dΩ′

=

∫
Z11 dΩ′ +

Q
I

∫
Z12 dΩ′

= Csca +Csca,pol
Q
I
. (6)

The integrals over Z13 and Z14 are zero because the grains are
rotationally symmetric, and we integrate over the entire unit
sphere (Van De Hulst 1957, pp. 47–51). The “classical” scatter-
ing cross section for unpolarized radiation is Csca, while Csca,pol
is the polarization scattering cross section, which complicates
matters and becomes important for polarized impinging light.
Hence, the probability that a photon is scattered by a spheroid
depends on the polarization status of the photon.

2.3. Extinction by spheroidal grains

Extinction by spherical grains is very straightforward and fully
described by a single quantity, the extinction cross section Cext.
For spheroidal grains, the cross section also depends on the
polarization status of the radiation. The relevant effects are

called dichroism and birefringence. Dichroism describes that
the extinction differs for differently polarized radiation, whereas
birefringence describes that the travel speed of the photons
through the medium depends on their polarization status.

The extinction term in the RT equation can be expanded to
contain the dichroism and birefringence effects,

−n(r) Cext(r) I(r, k) =⇒ −n(r) K(r, k) S(r, k), (7)

with K as the extinction matrix. For spheroids with north in the
plane of incidence, the extinction matrix has a block diagonal
shape (Martin 1974; Mishchenko 1991; Whitney & Wolff 2002;
Lucas 2003; Krügel 2008; Voshchinnikov 2012),

K =


Cext Cpol 0 0
Cpol Cext 0 0

0 0 Cext Ccpol
0 0 −Ccpol Cext

 . (8)

The “classical” extinction cross section is Cext. The dichro-
ism cross section Cpol describes how much more a radiation
wave polarized parallel to the north direction is extincted than a
radiation wave polarized parallel to the east direction. The bire-
fringence cross section Ccpol represents how much more a north
polarized wave is slowed down than an east polarized wave. All
cross sections depend on the grain shape, size, porosity, and
optical constants as well as the wavelength and the angle of
incidence.

2.4. Radiative transfer equation

When polarization due to spheroids is considered, the basic
RT equation (Eq. (1)) becomes the following partial integro-
differential vector equation

dS
ds

(r, k) = j(r, k) − n(r) K(r, k) S(r, k)

+ n(r)
∫

Z(r, k, k′) S(r, k′) dΩ′. (9)

The goal of polarized RT is to derive the Stokes vector S at any
position r and in any direction k for a given density n, emissivity
j, and optical properties and alignment of the dust grains.

3. Monte Carlo solution of polarized radiative
transfer

3.1. MCPOL

We implemented polarization in the MCRT code “MCPOL”
developed by Krügel (2008). The efficiency of the code was
significantly improved by Heymann & Siebenmorgen (2012),
who vectorized it using graphical processing units and applied
optically thin cells in the treatment by Lucy (1999) and opti-
cally thick cells in the method by Fleck & Canfield (1984). A
ray-tracing routine allowed for the computation of images in
areas of interest at any wavelength. MCPOL uses the scatter-
ing and absorption events treated in the simulation and enables
the calculation of SEDs of sub-domains of the model. The
code has been applied to describe the effective extinction curve
when photons are scattering in and out of the observing beam
(Krügel 2009). It has been used to investigate the structure
of disks around T Tauri and Herbig Ae stars (Siebenmorgen
& Heymann 2012), to create a two-phase AGN SED library
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(Siebenmorgen & Heymann 2012), to study the effects of a
clumpy interstellar medium (ISM) on the extinction curve
(Scicluna & Siebenmorgen 2015), and to examine the appearance
of dusty filaments at different viewing angles (Chira et al. 2016).
A time-dependent MCRT version was used to discuss the impact
of a circumstellar dust halo on the photometry of supernovae Ia
(Krügel 2015).

So far, polarization has not been considered in MCPOL.
We present an MCRT dust polarization implementation for
spheroidal grains that keeps the code backward compatible. This
means that the logical order of the processing steps remain as
before and that all calculations required for the polarization are
in a module separate from the main program. The most important
change compared to the previous MCRT code is that we added
the Stokes formalism. Each photon package in the original ver-
sion of the code was characterized by its frequency, origin, and
propagation direction. In the new version, the east direction dE
and the Stokes Q, U, and V parameters are stored as well, as
motivated in P17.

In the following subsections, we describe how the effect of
scattering and extinction by spheroidal grains is implemented in
MCPOL. First the Stokes vector of each photon package must
be oriented so that north is in the plane of incidence for the
aligned dust grains (Sect. 3.2). Then, the photon package propa-
gates through a cloud of spheroids and continuously changes its
Stokes vector (Sect. 3.3). The relationship between the physical
path length through a cloud of aligned spheroids and the optical
depth experienced by radiation is discussed in Sect. 3.4. If the
radiation interacts with the dust, a part of the intensity is either
scattered or absorbed following its albedo. The albedo of the dust
depends on the polarization of the incoming radiation, which
further complicates the problem (Sect. 3.5). If scattering takes
place, the propagation direction of the photon after the scattering
is obtained via rejection sampling of the scattering Müller matrix
(Sect. 3.6). When the photon packets exit the model space, their
polarization is recorded (Sect. 3.7). Additionally, we implement
a routine to calculate the probability of directed scattering (peel-
off, Sect. 3.8). Finally, a routine is presented that is capable of
treating dichroism for inverse ray-tracing, which can be used for
the generation of polarization maps (Sect. 3.9).

3.2. Orienting the Stokes vector

The polarization of the radiation changes as it propagates
through the model space. As described in Sect. 2, these changes
are encoded in Müller matrices. When dealing with aligned
spheroidal grains, the Müller matrices have their simplest form
when the north direction of the radiation is in the plane of
incidence, which is defined by the propagation direction of the
radiation k and the symmetry axis of the grains o.

The propagation direction k, the north direction dN , and the
east directions dE are unit vectors and describe a right-handed
coordinate system (Fig. 1),

dE = k × dN and dN = dE × k. (10)

During the life cycle of a photon package, the orientation of the
plane of incidence changes frequently. It changes either when the
orientation of the grains changes (e.g., when a photon package
enters a new cell where the grains are oriented in a different way
from the previous cell), when the propagation direction changes
(e.g., after a scattering event), or when a new photon is emitted
by the dust. When either of these situations occurs, the Stokes
vector must be rotated to ensure that the north direction is in the
plane of incidence.

init

,

,

Fig. 1. Geometry of a scattering event used for the analytical validation
in Sect. 4. A photon arrives from the right side of the grain with some
initial north direction dN,init (red). Grain symmetry axis o and angle of
incidence α are shown in black. The photon package initial direction k,
the plane of incidence, and the north direction in the frame of the grain
dN are shown in orange. Scattering angles θ and φ and north directions
dN,sca, d′N,sca during the scattering process are in blue. The direction of
the scattered photon k′, exit angle γ, plane of departure, and outgoing
north direction d′N is shown in green.

We computed the normal to the plane of incidence n from
the propagation direction k and the grain symmetry axis o,

n =
k × o
| k × o |

. (11)

We let β be the angle that describes the rotation so that the north
direction is in the plane of incidence. Thus, β is also the angle
such that the east direction is perpendicular to the plane of inci-
dence. Therefore, β is the angle between dE and n. We calculated
β from the two directions and the vector algebra relations,

cos β = dE · n, (12)
sin β = k · (dE × n), (13)

We then rotated the Stokes vector S to the plane of incidence
using β,

S′ = R(β) S. (14)

We stress again that the plane of incidence and the angle of inci-
dence depend on both k and o. The steps above must be repeated
whenever either of them changes, that is, when the photon is
scattered, when it enters a cell with a different grain orientation,
or when a new photon is emitted. We note that Eq. (11) breaks
down and cannot be applied when the angle of incidence is 0◦
or 180◦, that is, when k and o are parallel or antiparallel. In this
case, the photon path is oriented along the spheroid’s symmetry
axis, and there is no preferential direction for the north or east
direction. Consequently, any arbitrary direction perpendicular to
k can be chosen as n.

3.3. Propagating the photon package

The polarization of a photon changes when traveling through
a dichroic or birefringent medium. To mathematically describe
this, we considered a beam of light propagating through such a
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medium. Without dust emission or scattering, the polarized RT
Eq. (9) simplifies to

dS
ds

(r, k) = −n(r) K(r, k) S(r, k). (15)

As we assume that the density, grain orientation, and the optical
properties within a single dust cell are constant, this linear dif-
ferential matrix equation can be solved analytically within each
individual cell. Using Eq. (8) we obtained two coupled systems,
and their solution is (Lucas 2003; Whitney & Wolff 2002)

S(s) = e−Cextns


I0 cosh(Cpolns) − Q0 sinh(Cpolns)
Q0 cosh(Cpolns) − I0 sinh(Cpolns)
U0 cos(Ccpolns) − V0 sin(Ccpolns)
V0 cos(Ccpolns) + U0 sin(Ccpolns)

 . (16)

The equation describes the change of the Stokes vector when
the photon travels through a single cell in a dichroic or bire-
fringent medium. The change of the Stokes vector S(s) needs
to be considered in MCRT computation when the photon pack-
ets propagate by s in such a medium. We note that whenever the
photon package entered a new cell where the grain orientation is
different, we needed to apply a reorientation of the Stokes vector
(Sect. 3.2) before we could continue the propagation.

3.4. Optical depth and path length

One necessary exercise in the MCRT treatments is computing
the optical depth along the flight path of the photon package
through the cell in order to determine whether and where it will
interact with the dust. In MCPOL, the grid cells are cubes with a
constant density n, and grains have a fixed alignment. The flight
path of the photon packets goes along a straight line from the
entry point into a cube up to either the interaction point or, in
case of no interaction, up to the exit point of that cube.

Photon packets of unpolarized light in a nondichroic medium
travel the distance from the entry point of a cube to the inter-
action point ∆s corresponding to an optical depth τ(∆s). This
optical depth can be computed from a random exponential dis-
tribution such that the interaction of the photon package with
dust in a cell follows a uniformly distributed random number ξ
(Krügel 2008; Witt 1977; Lucy 1999; Steinacker et al. 2013),

∆s =
− ln(ξ)
nCext

. (17)

The optical depth along ∆s is

τ(∆s) = Cext n∆s. (18)

In comparison to the unpolarized light, the photon packets
of polarized light in a dichroic medium travel the distance from
the entry point of a cube to the interaction point ∆spol and cor-
responding optical depth τpol(∆spol). We added the suffix “pol”
for quantities that depend on polarization. Following Baes et al.
(2019), a direct connection between the physical path length and
the optical depth as given for unpolarized light was lost in media
with dichroism and birefringence. Considering polarization in
a dichroic medium, the optical depth cannot be calculated in a
closed form as in Eq. (18). Diminishing of the polarized radia-
tion needs to consider the change of the Stokes vector S when
the photon packet travels through that cell and follows Eq. (16).
In that solution, there are additional terms of the Stokes com-
ponents noted between the brackets beside the extinction given

by an exponential decay. We visualize in Fig. 2 that dichroism
indeed complicates the relation between path length and optical
depth. We chose two examples of the exact solution for polar-
ized light of Eq. (16), adopting qo = Qo/Io = 0.5 and qo = −0.1,
and we show the solution for unpolarized light given by exp (−τ).
For better visualization, an extremely dichroic cell was adopted,
with n = 0.0015, Cext = 1000, and Cpol = 300 (a.u.); hence, the
extinction optical depth τ(1) = 1.5. We note that there are large
differences between the interaction points ∆s and ∆spol calcu-
lated using the same optical depth, either τ or τpol, at the same
random number ξ. The interaction points are at ∆spol = 0.47 for
qo = 0.5, at ∆spol = 0.57 for qo = −0.1, and at ∆s = 0.54 for
unpolarized light (Fig. 2).

To stress the fact that we dealt with dichroic extinction,
we used the term polarization optical depth τpol. We used the
definition of an optical depth and inserted Eq. (16)

τpol(s) = − ln
(

I(s)
I(0)

)
, (19)

= Cext n s − ln
(
cosh(Cpol n s) − sinh(Cpol n s)

Q0

I0

)
. (20)

Except for special cases, the right-hand side of Eq. (20) cannot
be simplified. For nonspherical dust particles, there is another
complication regarding the orientation of the Stokes vector to
the grain orientation. Hence, the dust cross sections needed to
be considered. In MCPOL, the grain alignment in a cell is fixed,
which simplifies computation of the angle of incidence α, which
is the angle between the Stokes vector of the incoming pho-
ton and the grain orientation (Fig. 1). The Stokes vector of the
incoming photon needs to be rotated to the plane of incidence,
and Cext(α) and Cpol(α) are computed for that α. For clarity, the
angle and frequency dependence was dropped in Eq. (20).

When taking dichroism into account, the polarization state
changes along the flight path of the photon (Sect. 3.3), and
an analytical solution for ∆spol does not exist. Baes et al.
(2019) showed that the solution can be expressed by a Taylor
expansion and that the extinction optical depth τ (i.e., the opti-
cal depth ignoring polarization) approximates the polarization
optical depth τpol to the first order, hence

∆s
∆spol ≈

τ(∆s)
τpol(∆s)

. (21)

The density n of the cube, the angle of incidence α, and Cext(α)
are known. As indicated by the horizontal line in Fig. 2, the
same optical depth for unpolarized and polarized light are cho-
sen by the same random number, − ln(ξ) = τ(∆s) = τpol(∆spol),
which leads to different path lengths ∆s , ∆spol. The dis-
tance ∆s is derived by inserting the quantities n, Cext, and
τ(∆s) = − ln(ξ) into Eq. (17). This allows for the computing of
τpol(∆s) using Eq. (20). Hence, we derived the path length of the
polarized light

∆spol ≈ ∆s
τpol(∆s)
− ln(ξ)

. (22)

In the magnified examples of Fig. 2, the approximation of
∆spol (Eq. (22)) is within 0.3% of the correct solution. For typ-
ical ISM dust, Cpol is about a factor 100 smaller (Siebenmorgen
2023), and the uncertainty in ∆spol is below 10−4. Whenever
possible, the grid in MCPOL is set up so that the total extinc-
tion optical depth of a cube or a sub-cube, when needed, is
about τ <∼ 1. Radiation penetrating through a highly optically
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Fig. 2. Change of Stokes intensity along a flight path of a photon along
a cell. The decay of the intensity is shown for unpolarized light (green)
and polarized light (Eq. (16)) with qo = Qo/Io = 0.5 (blue) and qo =
−0.1 (magenta). The interaction points of light with dust for random
incidence ξ = 0.45 are indicated by the gray lines.

thick medium is challenging for MCRT codes (e.g., Min et al.
2009; Siebenmorgen & Heymann 2012; Gordon et al. 2017;
Camps & Baes 2015). The MC applications that consider polar-
ization treatments at path length τpol ≫ 1 can progressively solve
the RT equation along the ray in each cube, as outlined by Baes
et al. (2019). However, this results in an extraordinary increase in
computing time and is not considered.

3.5. Dust albedo of polarized light

When the radiation interacts with a dust grain, it is either scat-
tered or absorbed. The ratio of scattered over extincted intensity
defines the albedo Λ. We rotated the Stokes vector so that its
component U = 0, applied Eqs. (6)–(8), and derived the albedo
of a spheroid including polarization,

Λ =
C̃sca

C̃ext
=

Csca +Csca,pol · Q/I
Cext +Cpol · Q/I

. (23)

This equation can be seen as a more general form of the albedo.
For unpolarized radiation or if the polarization scattering cross
section and the dichroism cross section are zero, Eq. (23) reduces
to its common form. We also note that Eq. (23) is independent
of Ccpol. This is consistent with the physical meaning of Ccpol, as
it describes a differential phase shift (i.e., a delay) between the
north and east polarized parts of the radiation. Such a delay does
not reduce the intensity of the radiation.

3.6. Sampling the scattering Müller matrix

In the case of nonpolarized MCRT, simulating a scattering event
is relatively straightforward. It essentially comes down to gen-
erating a random scattering angle θ from the scattering phase
function Φ(θ). Based on the original propagation direction k
of the photon package, this scattering angle can be converted
into a new propagation direction k′, and this direction describes
the scattering event. In polarized MCRT, computing a scattering
event is more complicated. Not only is the random generation of
a new propagation direction more complex, but the polarization
status and the reference direction of the photon package must be
updated.
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Fig. 3. Visualization of the rejection sampling method. An arbitrary
probability density function P(θ, φ) is shown in blue, and the ceiling
value vceil is in yellow. An angle pair (θ, φ) is accepted if a third (0, vceil)
is smaller than P(θ, φ). For two-angle pairs, the segments in green and
red visualize the ζ value leading to acceptance or rejection, respectively.
The case where the green line is longer has a higher chance of being
selected than the other case where the green line is shorter. For the
selected case of the longer green line, P(θ, φ) becomes much larger than
in the other case, as is expected.

Rather than a single scattering angle, a new pair of angles
(θ, φ) must be determined. In this pair, θ is still the scattering
angle, that is, the angle between the original propagation direc-
tion k and the new propagation direction k′. The angle φ is the
azimuth of k′ in a coordinate system with k as the polar direction
and the north direction as the reference direction with azimuth
zero.

The appropriate probability distribution from which the
random couple (θ, φ) needs to be generated is

p(θ, φ) =
I′(θ, φ) sin θ∫

I′(θ′, φ′) sin θ′ dθ′ dφ′
, (24)

where

I′(θ, φ) = Z11(θ, φ) I + Z12(θ, φ) Q + Z13(θ, φ) U
+ Z14(θ, φ) V. (25)

This formula shows two characteristics. Firstly, the probabil-
ity density function is a true bivariate distribution that depends
explicitly on θ and φ in a nontrivial way. Secondly, it depends not
only on the characteristics of the dust grains and the grain align-
ment but also on the polarization state of the photon package. To
generate a random couple (θ, φ) from the bivariate probability
distribution function of Eq. (24), we used the rejection sampling
method (Von Neumann 1951). This method is comparatively
simple and is readily applicable to multivariate probability den-
sity functions (Devroye 2013; Baes & Camps 2015). A scattering
angle pair (θ, φ) is generated and accepted if a third random num-
ber ξ3 is lower than the probability P(θ, φ) of scattering in this
particular direction (Fig. 3). A ceiling value vceil gives the max-
imum probability for any of the angles and is used to scale the
third random number. The actual implementation begins with
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calculating two scattering angles based on uniform deviates ξi,

φ = ξ1 · 2π, (26)
θ = ξ2 · π. (27)

Importantly, we note that we uniformly sampled in θ, which
means that we sampled more angles per surface area in the for-
ward and backward directions. This was motivated by the fact
that dust grains preferably scatter forward or backward. The sam-
pling density had to be taken into account when we calculated
the probability of scattering in the direction θ, φ. We calculated
a ceiling value vceil, which is representative for the highest prob-
ability of scattering toward a direction φ, θ. Following Eq. (3),
with the scattering matrix Z, the outgoing intensity I′ for an
incoming photon with the Stokes vector S is

vceil = max
[
I′(θ, φ) sin θ

]
, (28)

= max [(Z11I + Z12Q + Z13U + Z14V) sin θ] , (29)

with Zi j(λ, α, φ, θ) as the elements of the scattering matrix. The
factor sin θ compensates for oversampling of the forward and
backward regions and reduces the ceiling value vceil. The ceiling
value needs to be recomputed for each scattering event where the
Stokes parameters Q, U, and V; the angle of incidence α; or the
wavelength λ change. The decision of whether the angle pair is
accepted is based on the third random number,

ζ = ξ3 · vceil, (30)

with 0 ≤ ξ3 ≤ 1. The angles φ and θ are accepted, if

ζ ≤ I′(θ, φ) sin θ. (31)

A low ceiling value vceil, increases the probability that an angle
pair is accepted. Our method of changing the sampling density
used a simple approach to reduce the average number of draws
until a pair was accepted. There are more sophisticated methods
utilizing the scattering behavior of the dust mixture used in the
simulations.

After generating a random angle pair (θ, φ), we needed to
update the characteristics of the photon package. The obvious
characteristic to update was the propagation direction. The new
propagation direction after scattering was calculated following
Eq. (30) of P17,

k′ = k cos θ + (dE × k cosφ + dE sinφ) sin θ. (32)

The polarization state of the photon package also needed to be
updated since the scattering event affects the state. The new
Stokes vector became

S′ =
(

1
Z11 + Z12Q + Z13U + Z14V

)
Z S, (33)

where the factor between the brackets guarantees that the total
intensity of the photon package is conserved during the scat-
tering event. Finally, the east direction was also updated. The
convention we used required that the new north direction be in
the plane of departure after scattering. This plane is given by the
direction after scattering k′ and the symmetry axis of the grain
o, similar to the plane of incidence. Therefore, the east direction
after scattering is

d′E =
k′ × o
|k′ × o|

. (34)

If the outgoing direction and the symmetry axis are parallel or
antiparallel, the photon package continues its path through the
model space without the need to rotate the Stokes vector.

3.7. Detection of escaped photons

Eventually, the photon packages leave the model space. We
recorded their exiting directions k and wavelengths. Photons
that exited with the same wavelength and with similar angles
to the simulation z-axis were binned together. For axisymmetric
geometries, this method allowed for the quick calculation of the
spectral energy distribution of the model under different viewing
angles. The Stokes vector of the photon packages was rotated
upon exit such that north was in the plane given by the escape
direction and the z-axis of the model space. This permitted bin-
ning of the photon packages by adding their Stokes vectors and
intensities.

3.8. Directed scattering (peel-off)

The MCRT codes commonly allow for viewing of the model
space from (arbitrary) directions kobs. This simulates an obser-
vation by a distant observer. The chance of a photon scattering
directly toward the observer is low. We therefore employed the
peel-off method (Yusef-Zadeh et al. 1984) in which the proba-
bility of scattering toward the observer is calculated explicitly.
During the model run for all scattering events, we stored the
position, direction k, and Stokes vector S of the photon pack-
ages before scattering. After the simulation finished, we used
the scattering matrix Z to calculate the Stokes vector Sobs of the
radiation that would have scattered toward kobs,

Sobs = C−1
sca Z(φobs, θobs)S, (35)

where C−1
sca is used as a normalization factor (see below) and φobs

and θobs are the angles by which the photon is scattered toward
the observer. The scattering angle θobs was calculated from the
direction before and after scattering,

cos θobs = k · kobs. (36)

And the azimuth φobs from the east direction dE and the normal
to the scattering plane were calculated from k and kobs,

cosφobs = dE ·

(
k × kobs

|k × kobs|

)
, (37)

sinφobs = k ·
(
dE ×

(
k × kobs

|k × kobs|

))
. (38)

The normalization C−1
sca of the scattering matrix is essential for

calculating the peel-off probability using Eq. (35). The scatter-
ing matrix was stored internally as a multidimensional array with
Nθ and Nφ elements along the respective angles (θ, φ). Follow-
ing Eq. (6), the sum of the Z11 elements over the unity sphere
is Nθ Nφ Csca. As the scattering probability had already been
considered during the MC run, we divided by Csca.

The intensity of the radiation that was scattered toward the
observer was the first component of the Stokes vector resulting
from Eq. (35). The intensity of the radiation that would reach the
observer had to be reduced to account for (dichroic) extinction
between the point of scattering and the observer. To apply this
properly, we developed an inverse ray-tracing routine, which is
discussed in the following section.

3.9. Inverse ray-tracing

An inverse ray tracer was developed to calculate the spatially
resolved maps of the model space. For the ray tracer, it was nec-
essary to know the optical depth of the scattering event toward
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the observer. We computed a Stokes map by sending rays in the
direction −kobs from the observer to an area of the model. Along
the path of a ray, the ray encounters cells that are numbered by
i = 1, ...,m. For each cell, we calculated the amount of radiation
Ii that would be scattered and emitted toward kobs and attenuated
this according to the optical depth τout from the present position
to the entry point of the ray in the model space. The map was
created by varying the position at which the ray enters the model
and under the assumption that the complete model space was
sampled (Heymann & Siebenmorgen 2012).

Without considering polarization, the intensity of the radia-
tion leaving the simulation was determined by the optical depth
to the edge of the model space, τout. By stepping through the
system along −kobs, the optical depth increased. The ray crossed
the cells 1, ...,m, and in each cell i, the optical depth to the edge
increased by the product of the extinction cross section of the
dust Cext,i, its density ni, and the path length (∆s)i,

τout
i = τ

out
i−1 +Cext,i ni (∆s)i. (39)

The radiation that was scattered or emitted in cell i toward the
observer with an intensity Ii, exited the model and reached the
observer with the reduced intensity Ii e−τ

out
i .

When we took dichroism into account, the optical depth
through cell i depended on the polarization of the radiation. In
addition, the polarization of the radiation changed along kobs.
Both effects are described by Eq. (16). We also had to con-
sider the orientation of the grains, as they can be different for
each cell. The Stokes vector S of the photon package changes
on its way from cell i along direction kobs out of the model
space. The change is given by an initial rotation into the frame
of the cell, R, then an alternating application of a dichroic
extinction step toward the edge of that cell followed by a rota-
tion into the plane of incidence of the next cell and so forth
until the photon package eventually leaves the model space.
This can be written as a single equation by combining Eq. (16)
and Eq. (4):

Sout
i = Robs R1 e−τext,1 E1 · · · Ri e−τext,i Ei R S. (40)

For each cell j with 0 ≤ j ≤ i, the rotation into the cell j − 1
is R j, and Robs is the rotation of north into the reference frame of
the observer. The optical depth inside j is τext, j = Cext, j n j (∆s) j,
and the dichroism and birefringence matrix is E j,

E j =


cosh τpol, j − sinh τpol, j 0 0
− sinh τpol, j cosh τpol, j 0 0

0 0 cos τcpol, j − sin τcpol, j
0 0 sin τcpol, j cos τcpol, j

 ,
(41)

where for cell j, the dichroism and birefringent optical depths
are given by

τpol, j = Cpol, j n j (∆s) j, (42)
τcpol, j = Ccpol, j n j (∆s) j. (43)

The ray-tracing equation, Eq. (40), assumes that the photon pack-
age is emitted or scattered at the edge between the cell i and cell
i + 1. This is correct for optically thin cells (τ < 0.1). In the case
of optically thicker cells, the emission is distributed along the
path in cell i and needs to be integrated within cell i.

The advantage of Eq. (40) is that it can be evaluated while
stepping along the pencil beam. Additionally, the product of the

matrices of the previous cells is sufficient to calculate the Stokes
vector of the next cell. For cell i, the matrix of the previous cell
i − 1 is multiplied by Ri e−τext,i Ei. One can also store the com-
pound matrix that is updated when entering the next cell. Finally,
the compounded exponential factor of Eq. (40) can be stored sep-
arately to keep the entries of the matrix closer to unity and to
prevent numerical instabilities.

4. Validation

The MCRT codes need to be carefully validated. To do so, one
can often use benchmark results from existing codes for compar-
ison. However, as scattering, dichroism, and birefringence due
to spheroidal dust grains are uncommon capabilities for MCRT
codes, there are no such benchmarks to reproduce. In an ideal
benchmark, the different functionalities are tested individually.
Such a procedure simplifies the identification of potential short-
comings or even mistakes, and it enables codes with different
sets of functionalities to reuse the same tests.

As advocated by P17, it is particularly advantageous to com-
pare the results of our implementations to analytical solutions.
Analytical solutions are easy to reproduce and can be used to
estimate the errors of the numerical treatment. Analytical solu-
tions are also of interest to other teams aiming to verify their
MCRT codes. In this section, we develop analytical test cases to
verify our numerical implementation of scattering, dichroism,
and birefringence due to spheroidal dust. The MCRT treat-
ment of scattering by spheroidal dust (Sect. 4) is confirmed
using renewed versions of analytical test cases by P17 devel-
oped for spherical grains. Additional analytical test cases for
estimating the numerical accuracy of MCRT codes that are treat-
ing dichroism and birefringence mechanisms are presented in
Sect. 5.4.

In P17, we considered radiation scattering on spherical grains
and developed several test cases to validate the numerical proce-
dure for solving this RT problem of polarized light. The analytic
solutions can only be expressed exactly because single scattering
in a simplified geometry was considered (Fig. 4) and electrons
with their uncomplicated Müller matrix were applied. Four test
cases (TCs) are distinguished with analytical solutions given by
P17 (Eqs. (44)–(63)). Circular polarization was not considered
in TC 1–TC 3 (V = 0) but is treated in TC 4.

In the first TC scenario, a central point source emits unpo-
larized radiation. To test the peel-off scattering procedure, we
selected two slabs of electrons. The photons scattered once at
these optically and physically thin electron slabs that lie on the
xy plane. A distant observer recorded the intensity, polarization
degree, and polarization angle of the radiation scattered off the
slabs. TC 1 verifies the polarization by single scattering and the
peel-off mechanism.

In the next test scenarios (TC 2–TC 4), the central light
source was replaced by a tiny cloud of electrons, and they were
illuminated by a collimated beam. The analytical solutions of
P17 were derived for photons that encounter a first scattering
event at the center and a second scattering event at the slabs
(Fig. 4).

In the second test case, TC 2, the direction of the collimated
beam was in the same plane as the direction of the slabs. The
second scattering was from the electron slab to the observer. In
this configuration, scattering and the peel-off mechanism as well
as a random walk step of the photons were tested.

In the third test case, TC 3, the initial beam direction was
at an angle to the plane of the slabs. The plane of scattering of
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Fig. 4. Geometry of the analytical test cases. The z-axis is oriented
toward the reader and −y toward the observer. TC 1: a central point
source illuminates thin slabs of electrons that are slanted 45◦ toward the
observer. For the other test cases, the central point source is replaced by
a small cloud of electrons. TC 2: the cloud is illuminated by a collimated
beam, which is located in the xy plane. TC 3–TC 4: the illuminating
source is located below the xy plane.

the initial scattering was rotated to the plane of scattering off
the slabs. The rotation led to a variable polarization angle at the
observer.

In the final test case, TC 4, the scattering properties of the
particles were changed. The Müller matrix of the electrons was
hypothetically changed so that radiation scattering on them could
become circularly polarized. In particular, M34 , 0 and M43 , 0
(Eq. (3)), which are zero for electrons.

We expanded the test scenarios of P17 to cover the case of
scattering at spheroidal dust particles. For spheres and sphere-
like particles, the scattering matrix is most simple when north
is in the scattering plane before and after the scattering event.
In that case, the scattering matrix Z reduces to a block diagonal
shape, which for electrons depends only on the scattering angle
θ and is independent of φ, hence

Z(θ) =


a(θ) b(θ) 0 0
b(θ) a(θ) 0 0

0 0 c(θ) d(θ)
0 0 −d(θ) c(θ)

 . (44)

The geometry and our notation of the scattering process
on spheroidal grains is shown in Fig. 1 and summarized in
Table A.1. In contrast to spheres, for spheroidal particles, the
scattering matrix is usually given for north in the plane of
incidence before the scattering event and for north in the plane
of departure after the scattering event.

In the test cases for spheroidal grains, we used spherical
grains that were treated in the computations as if they were
spheroids. Therefore, an orientation o was artificially assigned
to these spherical grains. The orientation o can either be fixed or
even chosen at random without altering the result of the scatter-
ing computation. In addition, the scattering matrix of the spheres
was multiplied by two rotation matrices R to account for the dif-
ferent orientations of the north direction during the scattering
process on spheroidal grains. These two rotations describe the
change of the north direction from the plane of incidence to the

plane of scattering by the angle φ and the rotation from the plane
of scattering to the plane of departure by the angle γ (Fig. 1).
The scattering matrix Zsph of the artificially assigned orientation
of spherical particles is therefore

Zsph = R(γ)Z(θ)R(φ), (45)

=


a bx by 0

bp apx − cqy apy + cqx dq
−bq −aqx − cpy −aqy + cpx dp

0 dy −dx c

 , (46)

where x = cos 2γ, y = sin 2γ, p = cos 2φ, and q = sin 2φ. The
angle γ was calculated using the angle of incidence α and the
scattering angles θ and φ, as described in Appendix A.

5. Results

5.1. Numerical setup

We verified the numerical treatment of the analytical test cases
TC 1–TC 4 as implemented in MCPOL, while P17 verified
them using SKIRT. The MC treatments of both codes differ in
many aspects. In SKIRT, various acceleration methods, such as
forced scattering and forced absorption, are included that are
not implemented in MCPOL. In SKIRT (Camps & Baes 2015),
a simplified Stokes formalism is used, which is derived from
assuming spherical particles, whereas MCPOL treats spheroidal-
shaped particles. Different vectorization technologies are used in
SKIRT and MCPOL, and the model grids in both codes are also
different. For their test cases, P17 used a grid of (601, 601, 60)
cuboids with each having a length of (0.003, 0.003, 3 × 10−7) in
arbitrary units, and for each cube, an electron cloud with an opti-
cal depth of τ = 10−3 was included. The MCPOL code uses a
Cartesian coordinate system with cubes that can be divided into
sub-cubes. For the test cases, we found a good MCPOL setup
using (587, 587, 3) cubes with a side length of one for each cube.
The cube in the center and the cubes of the slabs were filled by
electrons at an optical depth of τ = 0.5, other cubes were free of
electrons and had τ = 0. Hence, the probability of multiple scat-
tering events in cells filled with electrons was unlikely but not
zero. Photons that scattered a second time, either at the center
or at the slabs, were ignored so that the numerical results could
be compared with the analytical solutions. Therefore, the choice
of τ was done with some care. A too-low value of τ reduces
the scattering probability of the photons, while an increase of τ
enhances the chance of multiple scattering and leads to photons
that must be ignored.

The number of photon packets launched, unless otherwise
stated, was Nγ = 2.5 × 1010. Results from decreasing or increas-
ing the number of emitted photon packets and applying different
sampling of the model space are discussed in Sect. 5.3. We
repeated test cases TC 1–TC 3 of P17 using the scattering matrix
Zsph and pretending that sphere-like grains had an orientation
and therefore needed to be treated as spheroids. We chose the
grain orientation along +êz.

5.2. Test cases 1–4

We compared the numerical results of MCPOL for the TCs 1–
4 against the analytical solutions provided in Eqs. (44)–(63) by
P17. The results are plotted in Figs. 5 and 6. The instrumental
position x of the detector determines the scattering angle θ (see
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Fig. 5. Test cases 1 through 3 using the spheroid-like Müller matrix (Eq. (46)) with the assumed particle orientation along the z-axis. The different
rows show the intensity (top row), linear polarization degree (middle row), and polarization angle (bottom row) of the observed radiation. The
analytical solution is shown in black and the model results in orange. The bottom panels present the absolute differences (blue) and relative
differences (shaded area) between the analytic solution and the model. The magnitude of the shaded area is given in every panel.

Fig. 4) through the relation derived in P17,

θ =
π

2
± atan

(
1
| x |
− 1

)
. (47)

The left column of Fig. 5 shows the results of the first test
case (TC 1). The result of MCPOL jitters around the analytic
solution. The middle graph shows the linear polarization degree
computed using Eq. (3) in P17. The MCPOL code reproduces the
analytic solution of TC 1 to better than ±0.1%rel. We attributed
the residual deviations to sampling errors in the initial direction
of the photons from the source and the finite size of the model
grid. The analytical curves were calculated for an infinitesimal
“height” of the slabs. In the numerical treatment, the photon
packages that arrived at a given detector pixel took paths with a
small but finite height. In the outer parts (∥x∥ > 0.3), these paths
led to a lower average polarization degree. In the inner parts
(∥x∥ < 0.3), they led to a higher average polarization degree. In
the bottom graph of the left column, the polarization angle com-
puted using Eq. (4) in P17 is compared to the analytic result,
which is 0◦. Here, MCPOL deviates from the analytical result in
the very central region (∥x∥ < 0.1). Such inaccuracies cannot be

avoided and are expected to be due to the setup of the numerical
grid, namely, the finite height of the slabs, and the amplification
of the noise for polarization degrees close to zero.

The middle column of Fig. 5 shows the result of the second
test case (TC 2). The intensity curve includes the noise of several
percent and is higher than the curve in TC 1. This is because the
chance of scattering at the central cell is lower than unity. Some
photons did not scatter, so fewer photons propagated toward the
slabs. This led to a lower photon count at the detector. The polar-
ization degree for TC 2 is correct to 0.1%rel (Fig. 5). As in the
case of TC 1, we attributed the remaining differences to the reso-
lution of the grid. The analytic solution of the polarization angle
was zero and is shown together with the numerical solution by
MCPOL at the bottom of Fig. 5.

The right column of Fig. 5 shows the result of the third
test case (TC 3). The intensity curve is plotted in the first row.
The model results follow the analytic solution. The noise in the
numerical solution is comparable to the noise found in TC 2
and has the same explanations. The polarization degree derived
by MCPOL for TC 3 is correct to well below 0.2%rel. As we
noted in P17, the area around 0.6 ≤ ∥x∥ ≤ 0.7 is very difficult
to treat with high precision. In this area, the scattering angle
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Fig. 6. Circular polarization test case from P17 using the spheroid-
like Müller matrix (Eq. (46)) with assumed orientation of the particles
along the z-axis. We show the intensity I, Stokes U/I and Q/I, the
linear polarization degree and angle, and the circular polarization V/I.
The analytic solution is indicated by the dashed lines in black and the
MCPOL model results in red and orange. For the circular polarization
we also plot the difference from the analytical solution in the lower
panel. The absolute difference is shown in blue and a relative differ-
ence of σ (∆(x)) = ±3 × 10−4 (Eq. (50)) is shaded in grey.

from the initial direction to the slabs changes only by 0.1◦,
whereas the polarization degree changes by ∼40%abs. The scat-
tering matrix was tabulated for integer scattering angles and was
linearly interpolated for non-integer scattering angles. This com-
paratively sparse sampling is sufficient to calculate the correct
result. In comparison to P17, we even attained greater preci-
sion. We attribute this to the fact that the scattering matrix for
spheroids not only contains the scattering but also the rotations

Table 1. Precision of MCPOL for TC 4 tested by varying the number of
sub-cubes and emitted photons..

Nsub Nγ Min Max σ
(10−4)

1 2.5 × 109 –35 28 18
1 2.5 × 1010 –26 23 18
3 2.5 × 109 –63 64 20
3 2.5 × 1010 –25 22 9
11 2.5 × 1010 –16 13 5
11 2.5 × 1011 –9 10 3

Notes. The minimum, maximum, and the standard deviations σ of the
model result minus the analytical solution in V/I is specified using ∆, as
in Eq. (50)

of the plane of scattering. In P17, we calculated the effect of the
plane rotations separately. Variations of the polarization angle
are shown in the third row of Fig. 5. The MCPOL code applied
to this test case followed the analytic result to the high precision
of 0.1%rel.

Scattering at electrons did not lead to circular polarization,
as d(θ) = 0 in Eq. (44). In P17, we introduced a hypothetical
particle for which

d(θ) = − cos θ sin θ, (48)
c(θ) = cos θ cos θ. (49)

Otherwise, these test particles behave as electrons. Such parti-
cles lead to circular polarization. They were applied in TC 4,
which uses the geometry of TC 3. In Fig. 6, the results of
TC 4 are displayed for MCPOL launching the large number
of Nγ = 2.5 × 1011 photon packets. The intensity, the reduced
Stokes parameters Q/I and U/I, the linear polarization degree,
the polarization angle, and the circular polarization expressed as
V/I are shown. The MCPOL code reproduced the analytic solu-
tions of the Stokes parameters of TC 4 at high precision as well
as those for the circular polarization to better than 0.03%rel.

5.3. Numerical precision

The precision of MCPOL was exemplified by varying the num-
ber of sub-cubes Nsub of cells along the x, y, and z coordinates
and the number of emitted photons Nγ in computations of circu-
lar polarized light. The difference between the numerical model
V/IMCpol and the analytical solution V/Iana (P17) was computed
for the reduced Stokes parameter of the circular polarized light
in TC 4

∆ =
V
I MCpol

−
V
I ana
. (50)

The minimum, maximum, and standard deviations σ of that
difference ∆ are given for the parameter variations in Table 1. For
the minimum number of emitted photons (Nγ = 2.5 × 109), an
increase of Nsub from one to three did not improve the 1σ noise
in the model. When launching ten times more photons, the noise
in the model without sub-cubes (Nsub = 1) remained unchanged,
whereas it improved by a factor of two for the Nsub = 3 and
by almost a factor of four for the Nsub = 11 model. In models
without sub-cubes, the location of the first scattering event (i.e.,
the blob of electrons in the center of the model space) was not
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well sampled. This caused a systematic error in backward scat-
tering (θ ∼ 180o) at x ∼ 0. The effect was reduced by increasing
the number of sub-cubes, and for Nsub = 11, it decreased to
∆ (x ∼ 0) < 10−3, as shown in the bottom panel of Fig. 6. Even
for our choice of optically thin cubes, the detailed fine sampling
impacted the precision that could be reached, and the precision
could not be improved by simply increasing the photon statistics
(Table 1). Obviously, with an even finer grid and more pho-
tons, the precision of MCPOL could be further improved, at
the expense of significantly increased computational cost. In our
server environment, the latter model took (already) ∼200 h. Both
codes show similar run times to reach similar precisions.

5.4. Dichroism and birefringence

In addition to the polarization due to scattering, we had to con-
firm the implementations of polarization due to dichroism and
birefringence. For this, a spherical distribution of dust with den-
sity n and radius r around a central source were considered.
The test was performed using hypothetical dust particles that
dichroically absorb and slow radiation but do not scatter. The
dust is tailored to remove any side effects from the scattering
implementation. The hypothetical dust particles were chosen to
be analytically simple,

Cext · n · r = 2.2, (51a)
Cpol · n · r = 2 sinα, (51b)

Ccpol · n · r = cosα, (51c)
Csca · n · r = 0, (51d)

Csca,pol · n · r = 0. (51e)

The angle α is the angle of incidence (Fig. 1), and the sine and
cosine make it such that the transition is smooth for the sight
lines around α = 0. When initially right-handed circular polar-
ized radiation, S = (1, 0, 0, 1), travels through the dust cloud, its
direction and the grain orientation have a constant angle of inci-
dence α. Following Eq. (16), upon leaving the simulation area,
the Stokes vector of the photon package is

S = e−2.2


cosh(2 sinα)
− sinh(2 sinα)
− sin(cosα)
cos(cosα)

 . (52)

We note that in this scenario, the Stokes vector depends only on
α. The analytic solutions for the reduced Stokes parameters are,

I = e−2.2 cosh(2 sinα), (53a)
Q/I = − tanh(2 sinα), (53b)

U/I =
− sin(cosα)
cosh(2 sinα)

, (53c)

V/I =
cos(cosα)

cosh(2 sinα),
(53d)

under the different viewing angles α toward the z-axis. We used
this closed form to validate the implementation of dichroism and
birefringence in MCPOL.

In Fig. 7, we compare the results of MCPOL with the analytic
solutions. In the top panel, the observed Stokes parameters are
plotted, using lines for the analytic solution and symbols for the
numerical results achieved by MCPOL. The lower panel gives
the relative error between the numerical and analytical solu-
tions. As we binned the exiting photons using the cosine of their
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Fig. 7. Dichroism and birefringence test case. Intensity I (black),
reduced Stokes Q/I (cyan), U/I (magenta), and circular polarization
V/I (orange) for different viewing angles. Analytic solutions (Eq. (53))
are represented by lines and MCPOL results by symbols. The relative
error of the numerical run against the analytic solution is shown in the
bottom panel using the same color code.

exit angles, there are more data points for large viewing angles
than for small viewing angles. Generally, the analytic solution is
reproduced to better than 5%rel. There are a few aliasing effects
at 18◦, 33◦, 42◦, and 61◦, and U/I shows slightly more noise. We
attributed this to sampling errors caused by the finite resolution
of the grid.

5.5. Albedo test case

The final test confirms the correct implementation of the albedo.
The albedo of spheroids and spheroid-like particles depends
on the polarization of the radiation interacting with the grains.
The MCPOL code handles this interaction by using Eq. (23).
The albedo connects the effects of scattering and extinction,
and a test of the implementation must consider both effects
simultaneously.

We set up a test in which a collimated beam of right-handed
circular polarized radiation propagates along an elongated dust
cloud of length r. The dust cloud dichroically extinguishes and
scatters the radiation. The orientation o of the dust particles is
perpendicular to the beam (α = 90◦, Fig. 1), and no radiation
scatters into the beam. The geometry of the albedo test case is
illustrated in Fig. 8. We used an artificial dust grain that scatters
isotropically while preserving the Stokes parameters. Mathemat-
ically, such a particle is obtained by using the 4D unity matrix as
the scattering matrix,

Ziso(λ, α, φ, θ) = ⊮4. (54)

The cross sections are similar to the previous test (Eq. (51)), but
in this case the scattering cross sections differ from zero:

Csca · n · r = 0.1, (55a)
Csca,pol · n · r = −0.1. (55b)

The Stokes vector along 0 ≤ s ≤ r in radial direction r of the dust
cloud before scattering is

S(s) = e−2.2s/r


cosh(2s/r)
− sinh(2s/r)

0
1

. (56)
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Dichroic, scattering dust cloud

Detector

y

𝑠
𝒐

0 𝑟

Fig. 8. Geometry of the albedo test case. A collimated beam passes
along s from zero to r through a dichroic dust cloud. Some of the pho-
tons are scattered to a detector. The alignment of the dust grains o is
pointing out of the page, towards the reader, and is perpendicular to the
beam, α = 90◦.

As the beam is collimated, the inverse square law does not
apply here. The scattering probability is given by Eq. (6),

C̃sca = 0.1(1 + tanh(2s/r)). (57)

The Stokes components of the radiation arriving at the detector
are given by multiplying C̃sca with S(s),

I = 0.1e−0.2 s/r, (58a)
Q/I = − tanh(2 s/r), (58b)
U/I = 0, (58c)
V/I = 1/ cosh(2 s/r). (58d)

The change of the Stokes components can be illustrated as fol-
lows: The component of the radiation that is polarized parallel
to the orientation o of the grains (out of the plane of the paper in
Fig. 8) is more strongly extincted than the component perpendic-
ular to o. Along the path through the dust cloud, the remaining
radiation is more polarized in the plane of the paper, hence
Q < 0. Following Eq. (58d), the circular polarization degree V/I
decreases along s (Fig. 8). As the incidence of the radiation is
perpendicular to the alignment (α = π/2), the phase between
the two components stays constant (Ccpol = 0), and the circular
polarization does not turn into linear polarization (U ≡ 0).

In Fig. 9, we show the results of the albedo test case solved
by MCPOL along with the analytic solutions. The intensity
decreases by ∼20% along the profile of the dust cloud. The cir-
cular polarization degree (V/I) of the radiation decreases from
one to about 0.27. These effects follow the analytic expectation
with high precision, and the relative error is below 0.3%. In sum-
mary, MCPOL reproduces the correct behavior of the analytic
solution of the albedo test case, and the numerical imprecision
of the Stokes vector is low (<∼1%).

If the albedo would not favor reflecting radiation polarized
perpendicular to the alignment, the reflected intensity would
behave very differently. As an example, we show the analytic
solution of the intensity for test particles having Csca,pol = 0. In
that case, the total intensity of the beam decreases exponentially,
as often applied in astronomy.

6. Summary

We implemented polarization of radiation by spheroidal dust
considering scattering, dichroic extinction, and birefringence in
the MCRT code MCPOL. We provided a detailed description
of the selected methodology: Stokes formalism. We developed
paradigmatic examples for testing numerical polarization RT
models using spheroidal dust against analytical solutions. These
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Fig. 9. Albedo test case. Elements of the reduced Stokes vector of pho-
tons scattered out of a cloud having spheroidal particles with Csca,pol =
−0.1. Intensity using spheroids with Csca,pol = 0 is shown as a dashed
line. Analytic solutions (Eq. (58)) are represented by lines and MCPOL
results by symbols. Intensities in black are multiplied by a factor of 11.
The rest of the notation is the same as in Fig. 7 and Table A.1.

examples were used to verify the correct functionality of the
MCPOL code, and they may be applied by other teams to ver-
ify their codes. Further, the comparison of MCPOL against the
analytical solutions provided a means for estimating the numer-
ical precision of the calculated polarization. We found a typical
deviation of 0.1% between the MCPOL and the analytical solu-
tion regarding the intensity, the linear polarization degree, and
angle. The circular polarization showed a deviation of 0.03%.
However, at a small angle of incidence α ∼ 0 or for backward
scattering (θ ∼ 180◦), we noticed larger deviations that are due
to sampling errors caused by the finite size of the applied grid of
the model volume.

The analytical test cases are suitable for use by other teams
to estimate the precision of their dust polarization treatments. So
far, only a limited number of MCRT codes support polarization
for particle geometries that are more complicated than spheres.
This is despite the fact that extinction due to spheres cannot
explain the well-established Serkowski curve (Serkowski et al.
1975) of the diffuse interstellar medium (ISM). We hope that
the presented examples with their attached analytical solutions
will ease the verification of MCRT codes that treat dust polar-
ization for complex grain shapes, and thus increase the number
of available codes.

In realistic applications, one needs to consider more appro-
priate dust geometries. For example, a starting point could be
replacing spherical grain shapes with spheroidal grain shapes.
For a mix of such particles made up of different kinds of car-
bon and silicate materials and spanning a range of particle sizes
and grain porosity, their optical cross sections and correspond-
ing scattering matrix would need to be computed. Furthermore,
some type of grain alignment would need to be implemented.
Using the algorithms presented in this paper, the MCPOL code
is now capable of tracing the polarization due to spheroidal dust
grains. The MCPOL code we presented and tested is openly
available to the community. We are inviting collaborative efforts
to apply it and other codes to realistic scenarios.
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Appendix A: Calculation of the exit angle

We begin with the vectors of the symmetry axis of the grain
o, the propagation direction before scattering k, and the nor-
mal to the plane of incidence n. By rotating n around k by φ,
we obtained the normal to the scattering plane nscat. Rotating k
around nscat by θ results in the propagation direction after scat-
tering k′. The (as of yet unknown) exit angle γ was used to
rotate nscat around k′ into the normal of the plane of departure
n′. These rotations can be calculated with Euler’s finite rotation
formula (Cheng & Gupta 1989) and simplified by taking into
account that many pairs of these vectors are perpendicular. With
the substitutions cx = cos x and sx = sin x, we can write

n′ = n(cφcγ − sφcθsγ) + k × n(sφcγ + cθcφsγ) + k sθsγ. (A.1)

This normal must be perpendicular to the symmetry axis of the
grain, o · n′ = 0. This leads to

0 = −sα(sφcγ + cφcθsγ) + cαsθsγ, (A.2)

which can be solved for γ,

γ = tan−1
(

sαsφ
cαsθ − sαcφcθ

)
. (A.3)

The arc-tangent function is undefined for 0/0. This happens if
either sφ = 0 and α = θ or if sα = 0 and sθ = 0. The first case
means that the scattering plane is the plane of incidence (because
φ = 0). Therefore, the plane of scattering is the plane of depar-
ture as well, γ = 0 (or γ = π). In the second case, the propagation
direction before scattering is (anti)parallel to the grain orienta-
tion, and the scattering plane will be the plane of departure, again
γ = 0.
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Table A.1. Notation

Symbol Description
i, j,m numbering indices
(x, y, z) axis of Cartesian system
α angle of incidence, Fig. 1
β rotation angle, esp. between north direction and the plane of incidence, β := ∢(dE, n)
γ exit angle, Fig. 1
(θ , φ) pair of scattering angles
(θobs , φobs) pair of angles to observer
Nθ, Nφ number of bins along scattering angles
ζ random number
vceil “ceiling” value for rejection sampling (maximum probability)
P(θ, φ) probability density function
s, s′ length of photon path through medium
∆s j length of incremental photon path in cube j
∆ 104 times the difference of V/I of MCPOL minus the analytical solution by P17
r position vector in the medium
o symmetry axis of grain along major axis, Fig. 1
k incoming photon direction, Fig. 1
k′ outgoing photon direction
kobs photon direction toward observer
dN north direction in the particle frame (plane of incidence)
dN,init initial north direction, Fig. 1
dN,sca north direction in the plane of scattering before the scattering event, Fig. 1
d′N north direction in particle frame (plane of departure), Fig. 1
d′N,sca north direction in the plane of scattering, outgoing after scattering process, Fig. 1
dE east direction
n normal to the plane of incidence
n′ normal to the plane of departure
I intensity
I′ scattered intensity
j anisotropic emissivity
Φ scattering phase function
Cext extinction cross section
Csca scattering cross section
Cpol dichroism cross section
Ccpol circular polarization cross section
Csca,pol polarization scattering cross section
Λ albedo
n density
τ optical depth
τout optical depth from present position to outer cloud boundary
S Stokes vector
(I,Q,U,V) components of Stokes vector S
M 4 × 4 Müller matrices
R rotation matrix
Robs rotation from cell to observer frame
Z(k, k′) scattering matrix
K extinction matrix
E j dichroism and birefringence matrix
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