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Physical models of traffic safety at crossings

Andreas Leich, Ronald Nippold, Andreas Schadschneider, Peter Wagner

• By using physical models for the conflicts at two crossing streams of ve-
hicles, the relationship between the traffic flows of two crossing streams
and the number of conflicts can be mapped.

• For small flows, a simple analytical model is in line with the simulation
results, while it seems different from empirical results.

• While this might be due to human factors, this work instead models the
step from the simulation to reality as well. This leads to a narrowing
of the gap between simulation results and empirical results.
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Abstract

Traffic safety at intersections is studied quantitatively using methods from
Statistical Mechanics on the basis of simple microscopic traffic flow models.
In order to determine a relationship between traffic flow and the number of
crashes, the modelling focus is on the building block of any road network,
namely the crossing of two streams. In this paper, it is shown that the
number of crossing conflicts is proportional to the product of the two traffic
flows from which a simple model is developed. This model substantiates
known empirical findings. Since real crash data are obtained by an involved
process from such building blocks, there is a difference between the theoretical
and empirical results. This process is modelled here as well and narrows the
gap between theory and observation.

Keywords: Traffic safety, Conflict rates, Traffic models

1. Introduction

The relation between the number of crashes and the number of vehicles
at some location of a road network is fundamental for road safety research.
It has been studied extensively in the traffic engineering literature [1, 2, 3,
4, 5], mostly by analyzing empirical data with regression models that lack a
physical or mechanistic model behind.

In addition, some theoretical studies, often by physicists, have investi-
gated the occurrence of accidents or dangerous situations in specific scenar-
ios. However, almost none of these investigations has done a comparison with
empirical data. They are often theoretical approaches that focus on rear end
collisions due to violations of the safety distance.
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One of the first studies [6] considered the effect of a block, caused by a
crash, in a network. Later, a crash model was introduced [7, 8] that is based
on simple criteria derived from the motion rules of the model (often variants
of the Nagel-Schreckenberg model [9]). However, the ensuing crashes are
never executed explicitly. Instead, the simulation is continued as without an
accident. Therefore, the terminology “accident” has been replaced by “dan-
gerous situations” in later works. Such a procedure will lead to correlations
as it becomes rather likely that the criteria for a potential crash are again
fulfilled immediately after such a “dangerous situation”. This leads to an
overestimation of the number of crashes in such a setting, especially since
most works considered periodic boundary conditions.

Here we attempt to bridge the gap between theoretical and empirical
studies using concepts from Statistical Mechanics and simple microscopic
traffic flow models to obtain quantitative results that can be compared with
empirical data. This delivers a deeper insight into the emergence of road
crashes and the process of measuring crash rates.

The approach here is restricted to conflicts between two vehicles, which
is the overwhelming majority of all crashes (more than 90% in urban areas),
and to the crossing of two streams of vehicles. In urban areas, more than
50% of all crashes are of this type.

1.1. Modelling Crashes using Cellular Automata

Cellular automata (CA) have been used to simulate traffic flow since the
early 1990s [9], from simple set-ups where all vehicles run in a circle to fairly
complex network geometries, and to the simulation of different modes of
traffic (cars, bicycles, pedestrians). It is not easy to give a concise review here,
but see [10] (updated in [11]) for some more or less complete overview of early
work. Road traffic safety simulation has received less attention in both the
physics and transportation safety research communities. For a few examples
see [7, 12, 13, 14] and [15] for the traffic safety community. In physics,
especially the TASEP (Totally Asymmetric Simple Exclusion Process) and
related models have been used to study crossings, however usually focusing
on the traffic flow aspect and not on safety [16]. The reasons for this are
that those models are constructed crash-free and so it is not clear whether
any concept of traffic safety might apply here. Furthermore, crashes are rare
events. Therefore, it is difficult to pin down detailed reasons for each crash
that then can be modelled in a physically appealing manner.
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Of special interest is the relationship between the number of crashes N
(per time-interval) and the traffic flow Q, since this is the most important
factor that determines the number of crashes. In the following, capital letters
are used to name the variables as measured in traffic safety studies, which
is in most cases the long-term sum of the number of crashes N (typically
aggregated over one or more years and across different crash-types), and the
so called Average Daily Traffic Q (often named ADT). An ADT-flow is the
average of the daily traffic of many days; in the following, to avoid confusion,
Q is often named ADT-flow.

The simulation models below work on a shorter time-scale and in a fully
controllable environment. This produces similar variables n (the number
of conflicts) and traffic flows q1, q2 for a crossing. It is assumed that the
relationship found between n and q1, q2 can be transferred to the macroscopic
variables N and Q1, Q2, or sometimes even to the total flow Q := Q1 +Q2.
This transformation is non-trivial, the section 3.2 will deal with it.

1.2. Empirical Examination of Crashes vs. Traffic Flow

The traffic safety community has come up with a lot of empirical work on
this topic, without reaching a clear conclusion. From a recent meta-analysis
[5], which assumed N ∝ Qβ, at least an idea for the dependency of the
number of crashes N on the ADT-flow Q may be found. Here, Q is the total
ADT-flow observed at a road or an intersection. In this case, the average of
the studies included in the meta-study leads to exponents β = 0.522 for single
vehicle crashes, and β = 1.210 for multi-vehicle crashes. Other work dealing
with intersections claim that N ∝ Qβ1

1 Qβ2

2 (here Q1, Q2 are the ADT-flows of
the crossing roads, one is the major flow, one is the minor flow), where βi < 1
[17]. Note, however, that the power-law is at best an approximation to small
demand. For a larger demand, a kind of saturation might occur [4, 18].

In general, traffic safety is modelled by so called safety performance func-
tions where it is assumed that the number of crashes N depends on the
ADT-flows Qi and on other factors xi as follows [2, 3, 19, 20, 21]:

N = β0Q
β1

1 Qβ2

2 exp

(∑
i>2

βixi + ξ

)
. (1)

Here, the xi are factors believed to influence N as for instance the speed-
limit, intersection organization and the like, and the βi are the coefficients
that determine how strongly each xi influences the final outcome. In the
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case of the flows, they are the exponents with which the crash-rate grows as
function of the Qi. As mentioned already, the traffic flows in this equation are
the average daily traffic (ADT); these Qi are the result of a sum over complex
traffic flow time-series qi(t) which are often not known exactly. In addition, in
empirical work it is often difficult to come up with reasonable and trustworthy
values of Qi at all the places where crashes occur. This is because, especially
for small crash numbers, there are issues with under-sampling, and even
with under-reporting. And finally, Eq. (1) is just a regression analysis where
a detailed model in the physical or mechanical sense is missing.

The noise-term ξ is constructed so that the distribution of N follows a
negative binomial distribution (NBD). The NBD is a generalization to the
Poisson distribution (PD). Its variance is larger than that of the PD with a
parameter γ that describes how the variance σ2 depends on the mean value
µ of the distribution. This is also named over-dispersion, since the width of
the crash-number distribution is larger than what could be expected from a
Poisson distribution. While σ2 = µ holds for PD, the NBD has

σ2 = µ+ γµ2, (2)

i. e. the variance increases quadratically with the mean-value. For γ = 0, the
NBD is a PD. Eq. (2) is an exact relation that holds for any NBD distribution.

The particular form in Eq. (1) is used since it is possible to fit real data
to the mean of logN by a generalized linear model (GLM), and rely on the
strong mathematical and statistical foundation of GLM’s. The downside is
that it is often difficult to check if this form is really consistent with the
data. Admittedly, doing so is not trivial, as Fig. 1 demonstrates (included
here only as an illustration). Fig. 1 displays the number of crashes versus the
ADT-flow Q for a subset of roundabouts in Germany, together with a fitted
GLM. It can be seen that parameter values of the model fits are strongly
influenced by a few data-points for large Q, and that the bulk of the data at
smaller ADT-flow could be better described by a model where N ∝ Q.

1.3. Outline

This work is restricted to one of the building blocks of a road traffic
system: the crossing of two traffic streams. Each real-life intersection is
constructed of many conflict areas where two streams cross, see Figure 2 for
a visualization.

The simplest 3-leg intersection has three areas where streams cross, three
areas where vehicles merge, and three areas where rear-end conflicts could
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Figure 1: Fit of a GL-model to crash data from German roundabouts. Plotted is the
number of crashes versus the total flow Q (sum over the flows of all approaches), both for
roundabouts in urban areas and in rural areas (for more details, see [22]).

occur, each with its own pair of demands (this counts only the conflicts
between vehicles and ignores the ones between vehicles and pedestrians and
is true for one-lane roads only). This work concentrates on just one conflict
area (always named X in the following). With regard to traffic safety, this
simplifies the matter greatly to essentially two types of conflicts: the ones
that stem from the crossing itself, and the ones that are there due to the fact
that a crossing is a capacity bottleneck which causes more braking compared
to free flow, thus leading to rear-end conflicts in the approaching links. And
it makes it treatable by simple simulation models, so that some complexity
of the real-world can be dropped.

Note that empirical data are always a mixture of these and many more
conflicts-types. However, since crashes are rare, it is in most cases not pos-
sible to discern the different conflict types and their dependency on traffic
flow and other external circumstances, so they are lumped together in one
crash number.

To connect models with empirical data, we concentrate on the dependency
of the number of crashes N on flow only. We focus on the pure mechanics,
without considering the many human factors that may influence the crash
probability. To do so, two carefully crafted CA models of a conflict area X
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Figure 2: Scheme of the conflict areas of a 3-leg or T-intersection. The crosses show
the three crossing conflicts, the three rectangles rear-end (sometimes named diverging
conflicts), and the triangles could be both (merging conflicts). Such a T-intersection has
six possible flows.

are used as mechanistic models for the conflicts and their number, and the
related number of crashes.

2. A short theory and two simulation models

2.1. Crossing and rear-end conflicts

From the set-up above, two simple considerations might be put forward.
Given are two streams of traffic objects with volumes (traffic flows) q1, q2
wanting to cross a conflict area of size L1 × L2. The streams are assumed
to be statistically independent, which means that each flow qi emits with a
certain probability pi = qi∆t a vehicle at random, where ∆t is the time-step
size. Each vehicle has a length ℓi (they can be made different, but here
it is assumed that they are equal for all of them), and that means that it
needs the time τi = (Li + ℓi)/vi to cross X, where vi is the speed right at X.
The average time between two vehicles is the gross time headway Ti = 1/qi.
From the assumption of independence the following deduction holds for the
probability Π that these two end up being in conflict (Li = ℓi = ℓ has been
set to simplify the resulting expressions):

ΠX =
τ1
T1

τ2
T2

= 4ℓ2
q1 q2
v1 v2

(3)

Here, the subscript ’X’ has been used to indicate crossing conflicts. The
same can be done for the conflicts caused by rear-end interactions (subscript
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’RE’):

ΠRE =
τ1
T1

τ1
T1

+
τ2
T2

τ2
T2

= 4ℓ2

((
q1
v1

)2

+

(
q2
v2

)2
)

(4)

For completeness, the total number of conflicts may then be written as:

Π = 4ℓ2

(
q1 q2
v1 v2

+

(
q1
v1

)2

+

(
q2
v2

)2
)

(5)

The notable property of these equations is that they connect the proba-
bility for conflict with two traffic flow parameters – the speed and the flow.
Clearly, an alternative formulation would be to use the densities ρi = qi/vi;
this is not done here, since in traffic safety speeds are typically not available,
except for freeway data.

For an intersection, there is of course a complicated relationship between
these four variables, which in most cases can only be mapped by simulations,
especially for larger flows. In addition, it depends on the organization of the
intersection, in this paper the symmetric “first come first serve” (FCFS) will
be used, but others can be considered as well.

2.2. From conflicts to crashes

This approach might also be a good starting point for more detailed crash
models. The simplest one, which is used here, states that the actual crash
probability π is simply a constant factor α to be multiplied with Π, where α
is a very small number (e. g. α = 10−3 . . . 10−6), and it might be different for
crossing as well as for rear-end conflicts:

π = αΠ (6)

Note, too, that the traffic safety research community’s predominant mod-
els for a whole intersection [17, 23] are not exactly the same as Eq. (5):

N = πTobs ∝ Qβ1

1 Qβ2

2

Here, Tobs is an observation period. To our knowledge, speeds have not been
used in such models apart from a general speed-limit that may or may not
be in place at an intersection. With the exception of freeway data, speeds
are almost never available for intersections.
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More complicated dependencies of α on the traffic state might be consid-
ered, but this means to enter the realm of human factors. This will not be
done here. Instead, we concentrate on a better understanding of the rela-
tionship between Π, π and the traffic state described by qi, vi. If α is in fact a
constant, then the number of crashes is directly proportional to the number
of conflicts, and therefore it suffices to regard the latter ones instead of real
crashes. From Eq. (5) it might be expected that n ∝ q1q2 + q21 + q22 is the
right relationship between n and q. As will be seen in the results section, this
is only true for small flows, as long as the speed v is mostly independent of
the traffic flow q. For larger flows, the interaction between the objects gains
influence and changes this simple picture.

2.3. Models

Two models have been chosen here, the CA model with maximum speed
vmax = 2 (measured in sites/time-step, where the length of a site is the
generalized vehicle length of λ = 7.5m, and the TASEP (totally asymmetric
simple exclusion process) with parallel update. The time-step ∆t has been
chosen to be 1 second for the CA, and ∆t = 0.5 s for the TASEP, respectively,
which leads to the same speed of 15m/s when expressed in real-world units.
Each stream is a set of vehicles that are described by their position as well
as their speed, {(xi(t), vi(t))}i=1,...,K(t). The number of objects K(t) in each
stream is time-dependent. Open boundary conditions are used: Objects try
to enter with a certain rate pi∆t and can enter only if there is a free space at
the beginning of the link. Therefore, the flow that is finally achieved and that
determines the number of crashes is always smaller or equal to qi ≤ pi∆t.
The downstream boundary is completely open without any restriction on
leaving. This outflow is what is named flow qi in the following, and this is
the variable that determines the conflict-rates in Eq. (5). The crossing site is
located vmax sites upstream of the last site, this helps to catch the interaction
between vehicles approaching X and the ones leaving X.

Choosing these two models has an advantage over more complex mod-
elling approaches (like continuous models as those implemented in micro-
simulation software): A conflict can be determined unambiguously and there-
fore can be counted. The speed and position update rules, which are repeated
here for the sake of completeness (g: number of empty cells in front, v, v′, v̂:
current, updated, and intermediate speeds, respectively, rand() a random-
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number in (0, 1], and pbrake = 0.25 a randomization probability) are:

v̂ = min{v + 1, vmax, g}, (7)

v′ =

{
max{0, v̂ − 1} if rand() < pmax

v̂ else
, (8)

x′ = x+ v′. (9)

They have to be supplemented with rules that are applied to X, which will
be stated below.

The TASEP update rule is just the one of the CA with vmax = 1. Some
simulation experiments have also been performed with a modified random-
ization rule for the TASEP (where the probability to move after standstill
increases with standing time), but they yield very similar results and so are
only mentioned here to confirm the robustness of the results below.

The conflicts are handled as follows: The crossing area X has an own
discrete variable, which can be either free, or a block to one of the two links.
For the TASEP (starting from an unblocked state), in each time-step it is
checked whether there is an object on the two sites upstream of X. If just
one of these two sites is occupied, the other TASEP’s site X is blocked. This
blocking state is retained until the first object has cleared X, which needs at
least two time-steps. If both sites upstream of X are occupied (no matter the
speed of the two objects), then this is recorded as a conflict, and it is resolved
by deciding randomly which object is allowed to run first. This conflict is
counted, and the respective exit times are recorded as well – they will be
used in the subsequent analysis below.

For the CA, the handling of conflict area X is more complicated: Here,
all sites that can reach X in the next time-step are checked for the presence
of objects and counted if at least one is present. If on one link the count is
larger than zero and the other is zero, then the other link gets blocked. If
there are objects on both links that can reach X in the next time-step, then
it is decided randomly which one moves first towards X. And, as in the case
of the TASEP, it is counted as a conflict. Again, the block is removed after
the object has cleared X completely; this may happen in this case in one
time-step.

A typical space-time diagram for one link is displayed in Figure 3.
All simulations have been run for at least 105 time-steps per traffic flow

value. For small demand, typically more time-steps are needed to reach a
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Figure 3: Space-time diagram of one link of CA objects approaching conflict site X, which
is located at site 60. Here, X corresponds to one of the crossing points in Figure 2. Note
that vmax additional sites downstream of X have been included to catch the interaction
between a vehicle approaching X and the one leaving X. Each point is colored according
to the speed.

reasonable number of events: In this case, the simulation is run until at least
100 conflicts had been recorded.

The rear-end conflicts are counted differently. For the TASEP, any inter-
action where the following vehicle is blocked by a leading vehicle is counted as
a conflict. For the CA model, all interactions where the speed was adjusted
to the distance ahead, i. e. where v̂ = g had been applied, are counted as a
conflict. This includes two standing objects, since in principle the follower
could move and crash.

Clearly, at least for the CA-model a kind of severity might be assigned
to each conflict, depending on the speed-difference between them. Again, for
the sake of simplicity, this work refrains from such additional complications.

3. Results

3.1. Conflicts versus flows

The result of the simulations are several functions f(q1, q2) that charac-
terize the system’s response. Here, f are chosen to be the average speed, the
speed difference ∆v = v1 − v2 between the two links, the number of crossing
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conflicts nX(q1, q2) and the number of rear-end conflicts nRE(q1, q2). Plots
of those quantities are displayed in Figure 4 for the CA model. In the fol-
lowing, a normalized conflict rate will be used: All numbers of conflicts are
divided by the length of the time-interval within which they occurred, while
the rear-end conflicts, in addition, are divided by the number of cells used in
the simulation, therefore giving a rate per cell. The normalized conflict rates
are named as rX(q1, q2) and rRE(q1, q2), respectively, and the sum of both is
the conflict rate r(q1, q2).
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Figure 4: The average speed v (top left), the speed difference ∆v = v1 − v2 (top right),
and the two crash-rates rX (lower left) and rRE (lower right) as function of the two flows
q1, q2 for the CA model.

In Eq. (5), conflict rates are simple functions of the traffic state z, where
zX = q1q2/(v1v2) for the crossing conflicts, and zRE = (q1/v1)

2 + (q2/v2)
2 for

the rear-end conflicts. Therefore, Figure 5 displays the rates versus the two
zx variables for the two simulation models, together with a linear fit of rx
versus zx (the fit is done with weights of 1/r2x to favor small values of z). This
shows that the considerations above are very well in line with the simulation
results.
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Figure 5: The two rates rX (top cloud of points) and rRE (bottom cloud of points) are
plotted versus the variables z = zX or zRE, respectively. They follow the theoretical
approach quite nicely. The color of the points indicates the speed, the red (for zRE) and
violet (for zX) lines are linear fits. The figure on top is from the TASEP, the one on the
bottom from the CA-model.

For medium and large values of z, deviations can be seen: The number of
crossing conflicts saturates, while the number of rear-end conflicts first grows
stronger than in theory, but seems to saturate as well when approaching the
capacity of the link.

3.2. Empirical analyses and the Average Daily Traffic

The results so far are not completely in line with the empirical results.
The main differences are: The exponents of the N(Q) relationship in empir-
ical data are smaller than in the simulation, and the distribution of crash
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numbers is different from the Poisson distributions obtained in the simula-
tion. This could be the already mentioned negative binomial (NBD), or any
other distribution with over-dispersion. Therefore, a closer look is needed
how the empirical results are obtained, given the rarity of real crashes.

One data-point (Qk, Nk) in an empirical analysis is obtained e. g. by the
number of crashes Nk over a certain time-period (typically of the order of
months and years) at a certain place k = 1, . . . , K, while the corresponding
ADT-valueQk in ideal cases is counted over the same period. More often, it is
obtained by short-term counts extrapolated, or it is based on a travel demand
model. Even in good conditions, each Qk is a sum over all the different traffic
flows (enumerated by ν) in this place (think of the six streams at the three-leg
intersection above), and it averages over time t:

Qk =
1

T

∑
t,µ

qνk(t) (10)

The daily curves qνk(t) display a wide range of shapes, one example could
be seen in Figure 6 with data from one detector in Berlin, the data-set has
been obtained from [24]. Similar data-sources can be found elsewhere [25]. It
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Figure 6: Scaled flow values (gray values) of all flow values, and ten daily courses Q̂i(t)
(lines) for one typical loop detector in Berlin.
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is assumed that there will be no principal difference between the data from
Berlin and data from other places.

This sampling process can be modelled as well, with a few assumptions
about the form of the various distributions needed:

• The distribution of qk(t)-values that are used to compute Qk is simply
a uniform distribution in [0, 2Qk].

• The distribution of the Qk-values itself is again a uniform distribution,
this time in the interval 103, 5 · 104 vehicles/day.

• From this, artificial crashes are generated by setting a crash probability
p = αqβ, resulting in a reasonable number of collisions.

Doing this for a simulated for 1000 days and K = 1000 places, the result-
ing N(Q)-curve still reproduces the exponent and the crash-number distri-
bution is P (see Fig. 7, left plot). Several approaches have been tried, the by
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0 20000 40000 60000 80000
Q (veh/day)
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Figure 7: Simulated measuring process. Left, without error, the red line is a fit to a model
with Qβ and a Poisson distribution. The plot on the right is the same crash data, in
this case all Q-values have been shuffled as described in the text. Now, the exponent has
changed. The red line is again a fit with Qβ , as is the green line. The red line is from a
Poisson distribution, while the green is for a negative binomial one.
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far the simplest one is to assume that the Qk-data are strongly disturbed. By
multiplying each Q-value with a number drawn from a uniform distribution
in [0.25, 1.75] and then repeating the fitting process, the exponent changes,
and the distribution switches to an over-dispersed one.

The result of this procedure is shown in Fig. 7. It is very likely that in the
real world more complicated processes are in place that modify the Poisson
distribution at the heart of this process, but for this paper the simplest
possible explanation is used.

4. Conclusions

This research has tried to find a relationship between the traffic flow and
the number of crashes at the crossing of two traffic streams. This is achieved
by investigating the behavior of two simulation models and therefore yields
a mechanism that can explain some of the empirical observations. It turned
out to be important to make a distinction between the microscopic picture
drawn by the simulation, which leads to a relationship between the traffic
flows qi and the number of conflicts n, and the macroscopic picture from
empirical results, which yields a similar relationship between the macroscopic
ADT-flows Qi and the number of crashes N .

The simulation results confirm a theoretical approach that shows that
the number of conflicts behaves as simple functions of the traffic state, see
Eq. (5). The main result is that especially for small flows, the number of
conflicts n, and with it the number of crashes, should in fact be n ∝ q1q2 for
crossing conflicts, and n ∝ q21+q22 for rear-end conflicts. For large flows, more
complicated behavior becomes visible: For intermediate flows, the crash-rate
seems to grow stronger than n ∝ q1q2, while at very large flows close to capac-
ity, saturation becomes visible. The increase is due to an increased number
of interactions caused by the crossing, while the final saturation might be due
to a decrease in speeds when approaching capacity. This saturation effect has
so far only been found in a small number of empirical studies, so this study
lends further support to it. Furthermore, it provides a complete picture of
the number of conflicts in relationship to the traffic state in general.

There are differences between the simulation results and the empirical
observations. While n ∝ q1q2 for the simulation results, and the number of
crashes derived from the number of conflicts must follow a Poisson distri-
bution, real data have N ∝ Qβ1

1 Qβ2

2 with exponents βi < 1 and they follow
a negative binomial distribution. Therefore, an observation model has been
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investigated to try to understand how to do the transition from the micro-
scopic variables (n, qi) to the macroscopic ones (N,Qi). It turns out that the
simplest explanation we have found so far is to assume that the ADT-flows
Qi that enter into the empirical analyses are strongly disturbed by a number
of processes. E. g., as the example of one loop detector in Fig. 6 shows, even
what is associated with one Qi-value carries considerable variance. Further-
more, in reality the process how the Qi are measured (or estimated) is prone
to errors. A second problem is with the modelling in typical traffic safety
analyses; they are too strongly bound to equations where a GLM can be used.
Eq. (5) is not of this type, and the saturation effects seen in the simulation
results are also not very well described by the power-law approach of Eq. (1).
The approach here shows that at least for small traffic flows a mechanistic
explanation is possible that we deem better than the simple regression used
in most empirical studies.

Note that there is an additional twist in the transformation from the
simulation variables to the empirical ones: Since the Qi are average values,
they do a poor job in sampling maximum values – the Qi will never reach the
areas where there are strong deviations from the low-flow behavior. However,
the N do sample from the whole area of flow values that make up Qi, further
muddling the picture. The analyses where saturation have been seen work in
fact with short-term flows (e. g. hourly values), and not with the ADT-values
of all the other analyses. Which is a nice explanation why some studies do
in fact see saturation, while others do not.

Finally, as pointed out already, the crash probability (named α in the
description above) itself could be a function of the traffic state and transform
the relationships found here by simulation: One effect is when speeds of the
vehicles decrease, then at least the severity of the crashes decreases, and one
may argue that slower speeds give drivers a longer time-span to react, so
the number of crashes might go down with speed as well. This paper has
not investigated this avenue, which might be better left to human factors
experts, and it will come on top of the simple model explored here.

Clearly, it might be interesting to see whether the approach here holds
also for different intersection organizations and for more complicated models,
which will be the topic of future work. In addition, the approach here makes
a prediction about the ratio between rear-end and crossing conflicts as a
function of the traffic flow, which is in principle testable with real data.
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