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Abstract
Alleviating gust and maneuver induced loads acting on the wing of a transport aircraft allows to reduce structural weight,
which in turn improves fuel economy and environmental friendliness. This is why active load control is being investigated for
future aircraft configurations. In this paper the model-based design of a gust load alleviation control law is described. The
controller shall be tested in an upcoming wind tunnel experiment, conducted within the oLAF project (optimal load-adaptive
aircraft) of the German Aerospace Center (DLR). The oLAF reference configuration is a long-range transport aircraft, with
a high aspect ratio swept wing. The aeroservoeolastic modeling uses the VarLoads environment to construct a structural
model in the modal domain, coupled with an aerodynamic model employing the doublet lattice method. The Loewner
Framework is found to deliver excellent results when applied for gust modeling, as well as for model order reduction.
The gust load controller is synthesized using H∞ optimal control, taking robustness requirements into account. The
performance is evaluated in a nonlinear simulation.
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1. INTRODUCTION

Increasing efficiency and reducing the environmental im-
pact of aircraft is a primary target of the aviation indus-
try. Novel control techniques can contribute to this objec-
tive. Due to aerodynamic and structural optimization, air-
craft tend to become more and more flexible, making them
more susceptible to external disturbances like gusts and dy-
namic response phenomena. This is why functionalities to
control the flexible motion are attracting attention. One area
of research is active load control, aiming to reduce the loads
induced by maneuvers and gusts. Simultaneously applying
gust and maneuver load alleviation can reduce the struc-
tural weight of the wing by up to 30% and the fuel consump-
tion by up to 10%, according to [1], [2], [3].
Within the oLAF project† (optimal load-adaptive aircraft) at
the German Aerospace Center (DLR), maneuver and gust
load alleviation is investigated, with application to a long-
range aircraft. A reference configuration is developed [4],
featuring a wing with high aspect ratio and sweep. A wind
tunnel test shall be conducted to experimentally validate
gust load alleviation functionalities. For the wind tunnel test,
a scaled model of the oLAF wing is built [5]. A CAD rep-
resentation (supplied by DLR-AE-LAE§) of this wind tunnel
model is shown in figure 1.
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FIG 1. CAD model§ of the oLAF wing wind tunnel model

This paper focuses on the model-based design of a gust
load alleviation (GLA) controller to be tested in the oLAF
wind tunnel experiment. The controller can command the
deflection of five trailing edge control surfaces (see figure 1)
to reduce the loads that occur due to a gust acting upon
the experimental flexible wing. Ten acceleration sensors
distributed across the wing provide information about the
current state, these are used for feedback control. The
experiment will be conducted at subsonic speeds with a
freestream velocity of 50 m/s.
To design the GLA controller, in a first step an aeroservoe-
lastic model of the oLAF experimental wing is created using
the VarLoads environment [6], [7]. Aeroservoelasticity in-
dicates that this model contains the structural properties,
the aerodynamics, the aero-structural coupling, as well as
actuators and sensors of the wing. A nonlinear MATLAB-
Simulink simulation is set up. For controller design, a re-
duced order state-space model is derived from this full order
nonlinear model.
One important aspect is how to include the gust disturbance
into the model used for controller design. A major chal-
lenge is to transform the complex gust aerodynamics from
frequency to time domain. Here, the Loewner framework [8]
will be applied, yielding very satisfactory results.
Having built the plant model, the controller design itself is
conduced applying H∞ optimal control. This allows to in-
corporate robustness as well as performance requirements
in the design process. The performance and robustness of
the developed controller is evaluated, comparing the system
with and without gust load alleviation.

2. AEROSERVOELASTIC MODELING

The plant for GLA controller design is the aeroservoelas-
tic model of the experimental flexible wing. The underlying
mathematical description of such a system is based on the
rigid body and flexible equations of motion (mean axis) [9],
[10]. The first equation (b-set) depicts the rigid body dy-
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namics around the center of gravity, the second equation
the flexible dynamics (f -set). The notation is adapted from
the Nastran Aeroelastic Analysis User’s Guide [11]. The
equations of motion are written in the modal domain:[

mb · (V̇b +Ωb ×Vb −TbE · gE)

Jb · Ω̇b +Ωb × (Jb ·Ωb)

]
= ΦT

gb ·Pext
g ,

Mff · üf +Bff · u̇f +Kff · uf = ΦT
gf ·Pext

g .

(1)

The rigid and flexible modes are excited by external forces
on the structural set Pg, fed through the eigenvector matrix
Φgb and Φgf . The external forces are created by aerody-
namics and the gust disturbance and stand on the right side
of the equations of motion. The mass mb, inertial tensor Jb,
modal matrices of mass Mff , damping Bff and stiffness
Kff are describing the structural part of the oLAF model.
The motion itself is captured using the modal deflection uf ,
rigid body linear velocity Vb, rotational velocity Ωb and their
derivatives.
Compared to a free-flying aircraft a wind tunnel model is
fixed to the wall. Thus, the rigid body motion does not de-
velop freely driven by the external forces. Instead, the ori-
entation, rate and acceleration can be imposed. This in turn
creates forces acting on the flexible model. Other than the
pitch, no rigid body motion is represented in the oLAF wind
tunnel experiment.
The force summation method [12] is used to recover the
loads, which shall be minimized by the GLA (neglecting the
influence of damping on the loads):

(2)
PFSM

g = Pext
g −Pinertia

g

= Pext
g −Mgg · (Φgb · üb +Φgf · üf ).

The wind tunnel experiment will be carried out at subsonic
speeds, with a freestream velocity of U∞ = 50 m/s and
M = 0.15, at ISA sea level values for pressure, density and
temperature.

2.1. Structural model

The structural model provides the matrices on the left side
of equation 1. A finite element model of the oLAF wind tun-
nel wing is set up by DLR-AE-LAE§. To reduce the size
of the resulting model, a Guyan reduction [13] is applied to
condense the model to a beam representation. The struc-
tural nodes of the condensed model lie along the loads ref-
erence axis. To further reduce the size of the matrices, a
modal truncation [14] is applied, taking only the first 15 flex-
ible modes into account.
The wind tunnel model exhibits a high torsional rigidity,
which is why the first six modes are bending-related.
The first torsional mode appears at the seventh lowest
eigenfrequency. The first bending mode occurs at a fre-
quency of about 50 rad/s in the undamped system without
aerodynamic contribution.
As stated previously, the rigid body motion is not modeled
as for a free-flying aircraft. The pitching motion can be im-
posed at the wind-tunnel mount. The resulting forces on the
structural set are computed at the center of gravity and then
fed into the flexible part of the equations of motion.

2.2. Aerodynamic model

The equations of motion are driven by the external forces,
on the right side of equation 1. Aerodynamics are the main
contribution to these forces. The doublet lattice method
(DLM) [15], [16] is used to calculate steady and unsteady

aerodynamic forces. It is evaluating the unsteady Prandtl-
Glauert equation [17]. Since the oLAF experiment is carried
out at low speeds (M = 0.15), this aerodynamic method
based on potential flow theory is sufficient, keeping compu-
tational effort moderate.
For application of the DLM the wing is discretized into pan-
els. The result of the DLM is an aerodynamic-influence-
coefficient (AIC) matrix Qjj , linking the downwash wj at the
quarter-chord point of each panel to the pressure coefficient
of the respective panel ∆cp [15]. A pressure-to-load-matrix
Skj [9] transforms the pressure difference into a force at
the reference point. Since the DLM is a frequency domain
method, the following equation for a specific reduced fre-
quency k [18] results [9]:

(3) Paero
k (k) = q∞ · Skj ·Qjj(k) ·wj

The downwash wj on each panel can be induced by the
flexible motion of the wing, the rigid body motion, or a de-
flection of the control surfaces. Thus, a coupling between
structural and aerodynamic model needs to be established,
as presented in the subsequent section.

2.3. Aero-Structural Coupling

The coupling between aerodynamic and structural model is
performed in two steps, as this best allows to capture the
structural behavior of the wing. The structural grid points
are located along a beam axis (loads reference axis). In a
first step a rigid body spline [19] is used to map the motion
of the structural grid points from the beam axis to the
end points of spars running in chordwise direction. These
spars exhibit a high torsional rigidity, which is why a rigid
attachment is a suitable modeling approach. Secondly,
from the beam as well as the spar end points a mapping
onto the aerodynamic panels is performed. A radial basis
function approach using an infinite plate spline [20] is em-
ployed. Both splining steps are summarized in the matrix
Tkg. For the inverse coupling, transferring forces from the
aerodynamic to the structural model, the transposed matrix
is used. Additionally, a mapping from the control surface
orientation (x-set) to the orientation of the aerodynamic
panels is required. The matrix Tkx is created from a purely
geometric relation.
Figure 2 presents the resulting aero-structural model. The
aerodynamic discretization for the DLM is shown. The five
trailing edge control surfaces that are used for load allevia-
tion are marked. The structural grid points of the condensed
model are indicated by diamonds.

FIG 2. Aero-structural model with discretization from the DLM
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Having completed the aero-structural coupling, the aerody-
namic contribution to the external forces can be stated - still
in the frequency domain for a certain reduced frequency:

(4) Paero
g (k) = q∞ ·TT

kg · Skj ·Qjj(k) ·wj .

with contributions from flexible (f -set, modal domain), rigid
body (b-set) and control surface motion (x-set):

(5)

wj =
(
D1

jk + i · k ·D2
jk

)
·Tkg ·Φgf · uf

+
(
i · k ·D2

jk

)
·Tkg ·Φgb · ub

+
(
D1

jk + i · k ·D2
jk

)
·Tkx · ux.

2.4. Rational Function Approximation

To construct a simulation model, the aerodynamic forces
described by equations 4 and 5 need to be transferred from
the frequency to the time or state-space domain. How-
ever, the terms in above’s equations are not (easily) trans-
ferable, there does not exist any suitable Laplace or Fourier
transform. Therefore, the equation terms are firstly approxi-
mated in the frequency domain, to make them suitable for a
Laplace transform, and secondly transformed. Here, a ratio-
nal function approximation (RFA) is employed, more specif-
ically the method developed by Roger [21], [22]. The RFA
can be performed on any AIC matrix. Here, a so-called
physical RFA first introduced in [9] is conducted, approxi-
mating the matrix Qgj = TT

kg · Skj ·Qjj instead of Qjj :

(6)

Qgj(ik) ≈ Q0
gj +Q1

gj · ik +D · (ik · I−R)−1 ·E · ik,

D =
[
Q3

gj Q4
gj · · · Q

np+2
gj

]
,

R = diag
([

−p1Inj · · · −pnpInj

])
,

E =
[
Inj · · · Inj

]T
.

The physical RFA has the advantage that steady and un-
steady aerodynamic contributions can be distinguished. A
number of poles pi has to be chosen, here np = 8. Applying
the RFA, Laplace transforming equation 6 and combining it
with equation 4 leads to the aerodynamic forces in the time
domain [9]:

(7)

Paero
g (t) = q∞ ·

(
Q0

gj ·wj

)
+ q∞ ·

(
Q1

gj ·
(

cref/2

U∞

)
· ẇj +D · xL(ẇj)

)
,

ẋL = R ·
(

U∞

cref/2

)
· xL +E · ẇj .

In this equation, the vector xL describes the aerodynamic
lag-states [23]. The AIC matrix with superscript 0 models
the quasi-steady aerodynamic contribution, the matrix with
superscript 1 the added mass term. An acceleration term is
not present in the physical RFA [9]. The input to the equa-
tion is the downwash wj and its derivative, as introduced in
equation 5, with ik being equivalent to a time derivative.
The RFA concludes the aero-structural modeling. Additional
external forces are created by the gust. How these are com-
puted is treated in section 3. The aero-structural model can
now be cast in state-space form or implemented within a
simulation.

2.5. Actuators and Sensors

The contribution to the aerodynamic forces are denoted in
equation 5. The effect of the flexible motion is captured
within uf , which itself is computed by solving the equation

of motion (equation 1). The rigid body motion ub is imposed
at the model mount. Still to be modeled is the action of the
control surfaces ux, which are moved by actuators.
The actuator dynamics need to be integrated in the model,
as these have considerably effects on the performance of
the GLA controller. Based on a commanded control surface
deflection, the actuator model outputs actual deflection, rate
and acceleration. A typical modeling of actuators is a first or
second order transfer function [24]. On the oLAF wind tun-
nel model electromechanical actuators are used. Here, the
actuator modeling is adapted from the one performed in a
previous DLR wind tunnel project [25]. A first order transfer
function was found sufficient to capture the dynamics, more
information is available in [26]. All five control surfaces will
be equipped with the same actuators.
In the simulation, nonlinearities of the actuation system are
taken into account. [24] lists typical nonlinearities introduced
by actuators. Here, only the saturation and the dead time
will be taken into account. Actuators are assumed to be
similar to the experiment analyzed in [26], such that the val-
ues are adopted from this paper. The saturation on control
surface deflection is 10°, the one on rate is 1129°/s and the
dead time is 4.3 ms.
Ten acceleration sensors capturing the motion of the flexi-
ble wing are used for feedback within the GLA control loop.
The sensors are distributed across the wing. Two sensors
are always placed on the same spanwise position, one near
the leading and the other near the trailing edge. This allows
to capture torsion, while the spanwise distribution allows to
capture bending. Figure 3 presents the location and num-
bering of the acceleration sensors, as well as the one of the
control surfaces.
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FIG 3. Location of control surfaces and sensors

The sensor dynamics are sufficiently fast to not model them
in more detail. Only a dead time of 3 ms [27] will be consid-
ered. In the aeroservoelastic model, the sensor measure-
ments are obtained from the acceleration üg of the struc-
tural grid points by splining. The spline matrix is denoted
Tmg, where m denotes measurements. From the modal
acceleration, the structural acceleration can be computed
by multiplying with the eigenvector matrix Φgf . Thus, the
sensor acceleration is recovered by a pure algebraic com-
putation on the output of the flexible equation of motion.
Including actuators and sensors completes the aeroservoe-
lastic modeling. Next, the gust disturbance needs to be
added to the model.
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3. GUST MODELING

To synthesize and to validate the controller it is essential
to include the gust disturbance into the model. The model
should describe the effect of a gust on the flexible wing, i.e.
which forces are created due to a gust with a certain length
and amplitude interacting with the wing. For the simulation,
the gust has to be modeled in the time domain. Starting
with frequency domain aerodynamics, the transfer to the
time domain cannot be performed with an RFA as outlined
in section 2.4. The RFA is unsuited to approximate the AIC
column of a gust [28], due to the spiral pattern (when plot-
ting real over imaginary part for multiple reduced frequen-
cies) of the underlying Sears function [23]. To overcome this
challenge, the Loewner framework is applied for the task of
identifying a state-space model based on a frequency do-
main representation of the gust aerodynamics.

3.1. Gust Model in the Frequency Domain

The wind tunnel model shall be exposed to discrete 1-cos
gusts, as defined in the certification documents CS25 [12].
The downwash induced by a discrete gust can be described
using the gust gradient H, the gust amplitude Uds, and the
gust start time ts, as detailed in [12]:

(8) wG(t) =


0 t < ts

Uds
2·U∞

·
(
1− cos

(
2π·U∞·t

2·H

))
ts ≤ t ≤ te

0 t > te.

For the wind tunnel experiment, the gust gradient H - half
the gust length - has to be scaled down, using the geometric
scale of the model. While for full aircraft the gust gradient
ranges between 9 and 107 m, for the oLAF experiment the
range is from 0.45 to 5.35 m. The gust amplitude depends
on the gust gradient and parameters like the weight of the
aircraft, for details see [12]. Figure 4 represents the range
of gusts that will be relevant for the oLAF experiment, with
the according gust amplitude.
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FIG 4. Gust profiles used in the oLAF experiment

Analogously to the aerodynamics due to the motion of the
wing itself, the gust aerodynamics can be computed by the
DLM in the frequency domain. The following equation taken
from [9] holds, with kG being the reduced gust frequency:

(9)

PG
g (kG) = q∞ ·QG

g (kG)

= q∞ ·Qgj(kG) ·wG
j (kG)

= q∞ ·TT
kg · Skj ·Qjj(kG) ·wG

j (kG),

wG
j (ωG) = νG(ωG) · e

(
−iωG·

xj
U∞

)
· nj .

The gust loads are calculated by multiplying the AIC matrix
with the downwash created by the gust at each panel. This
downwash is computed based on an exponential function
describing the transport delay with the location xj of the re-

spective panel (j-set, three-quarter-chord point). The gust
spectrum νG can be set identical to one, meaning each fre-
quency of gust occurs with the same magnitude, and each
frequency is able to contribute to a gust (principle of super-
position).
As for the aerodynamic loads, the gust loads contribute to
the right side of the equation of motion (equation 1). To
transform the gust loads from frequency to time domain, the
RFA is not suited [28]. Rational functions are unable to cor-
rectly approximate the frequency response of the gust aero-
dynamics, which are governed by the Sears function [23]. If
the gust aerodynamics shall be represented correctly in the
time domain, a different approximation method has to be
found. Here, the Loewner framework is used to create a
state-space model describing the gust dynamics. This ap-
proach produces very satisfactory results, and was already
applied in for example [28] or [29].

3.2. Loewner Framework for Gust State-Space Model

The Loewner framework can be used both for system iden-
tification and for model order reduction. The method is in-
troduced in [8], and further explained in [30]. At the core of
the framework is the Loewner and shifted Loewner matrix,
which is where the name comes from.
The Loewner framework is supplied with frequency domain
data of the AIC gust column QG

g from equation 9 in the
form of {si,QG

g,i(si)}, i = 1 ... n, where si indicates one
frequency. A sufficiently large number of frequency data
pairs must be supplied, here n = 1000 was used. The
Loewner framework which is based on tangential interpo-
lation then identifies the underlying system dynamics and
returns a state-space system in descriptor form. A design
choice when using the Loewner framework are the tangen-
tial directions [30]. Selecting these allows to concentrate the
system identification on a certain frequency range. Gaus-
sian random numbers (with a fixed seed to ensure repro-
ducibility) delivered the best results, as suggested by [31].
During the identification, a singular value decomposition is
performed on the Loewner and shifted Loewner matrix. The
number of singular values to be taken into account deter-
mines the size of the resulting state-space system. Here
k = 25 singular values are used, yielding a state-space sys-
tem of order 25 which approximates the frequency domain
data sufficiently accurate.
The resulting state-space system in descriptor form can be
transferred to a regular system by inverting the left-side E-
matrix. This necessitates it being invertible (non-singular).
The system then has the gust column as output, while the
input is the one-dimensional gust interacting with the wing:

(10)
ẋG = E−1

gust ·Agust · xG +E−1
gust ·Bgust · wG(t),

PG
g (t) = q∞ ·Cgust · xG.

The input wG(t) of the system is the gust described by
equation 8. The matrices of the resulting state-space sys-
tem are real, this is guaranteed by a transformation within
the Loewner framework, see [30].

3.3. Stabilization of the Loewner Identified System

Depending on the number of singular values used for the
gust state-space system (equation 10), the system might
be unstable. For usability within simulations and controller
design all systems must be stable, meaning any poles in
the right complex half plane must be avoided. Koehler [32]
proposed a H2 or H∞ optimal approach for stabilizing the
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system. Following the procedure reveals that the optimal
stabilized system can be obtained by omitting the unstable
poles entirely. However, this alters the frequency response
significantly. Another approach is proposed by Ionita [31].
The sign of the real part of the unstable poles is inverted.
Thereby, only the real part is changed while the imaginary
part remains the same. This approach is used here. Real
matrices are ensured by the same transformation procedure
as in the Loewner framework itself, detailed in [30].
After the stabilization by mirroring the unstable poles on the
imaginary axis, the frequency response shall be corrected.
Since only the real part is altered, this can be achieved
by adding a feedthrough matrix. Equation 10 shows no
feedthrough matrix. By adding the steady-state difference
between unstable and stabilized system, a D-matrix is gen-
erated, and the steady-state solution of the stabilized sys-
tem is corrected. Restoring the correct steady-state fre-
quency response is important for the aerodynamic contri-
bution. Finally, this yields:

(11)
ẋG
stab = Agust,stab · xG

stab +Bgust,stab · wG(t),

PG
g (t) = q∞ ·Cgust · xG

stab + q∞ ·Dgust,stab · wG(t).

It shall be noted that an unstable system identified by the
Loewner framework can be avoided by selecting the order
high enough. A bisection can be performed to determine the
minimum order for stability. However, the aim in this paper
was to create a gust state-space system with low order to
keep the size of the overall aeroservoelastic model as low
as possible.

3.4. Approximation Results

Applying the Loewner framework to identify a gust loads
state-space system proves very successful. One can com-
pare the approximated loads with the original loads using
a time domain simulation. The former are computed us-
ing the state-space system of equation 11, the latter calcu-
lated by supplying equation 7 with equation 8. The compar-
ison is shown in figure 5. The gust loads are mapped into
the modal domain by pre-multiplying the eigenvector ma-
trix. In the figure only the first four generalized forces are
presented.
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FIG 5. Comparison of modal loads time response due to a gust

There is virtually no difference between original and ap-
proximated loads, confirming the excellent approximation
achieved with the Loewner framework. These kind of results
are achieved for all gust gradients relevant for the oLAF ex-
periment. Besides the time response, the approximation
can also be compared to the original loads in the frequency
domain, which is done in figure 6. The first entry of the
AIC gust column QG

g from equation 7 mapped to the modal
domain, i.e. QG

f,1, is shown. By plotting real over imagi-

nary part, the spiraling behavior of the gust dynamics be-
comes apparent, similar to the Sears function as presented
in [23]. The Loewner approximation is capable of recon-
structing this behavior very well.
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FIG 6. Comparison of the first entry of the AIC gust column

When comparing the results achieved with the Loewner
framework to those achieved with an RFA, the superior
approximation characteristics of the former become evi-
dent. The Loewner framework is a beneficial addition to the
aeroservoelastic modeling.

4. MODEL ASSEMBLY AND ORDER REDUCTION

Finally, all the model ingredients can be combined in the
overall aeroservoelastic model of the oLAF wind tunnel
wing. Two types of models are being created:
1) nonlinear simulation model for time domain simulations

and controller validation,
2) linear state-space model for controller synthesis.

4.1. Nonlinear Simulation Model

The simulation model is created in MATLAB-Simulink.
The simulation solves the linear elastic equation of motion
(equation 1) for acceleration, being supplied with the exter-
nal forces from aerodynamics (equation 7 with equation 5),
from gusts (equation 11), and from the imposed rigid body
motion. Integrating the acceleration leads to the rate and
displacement of the flexible modes. Actuator and sensor
transfer functions are added. Control surface and actuator
limits on deflection, rate and acceleration, as well as the
overall delay of 8 ms in the servo loop are included. The
option to introduce measurement noise is available.
For the evaluation as well as the design of the GLA con-
troller it is important to quantify the loads. The force sum-
mation method is used to recover the loads acting on the
wing, as presented in equation 2. Cut loads are calculated
between the nodes of the condensed structural model. The
wing root loads are the cut loads between the innermost
and the second structural grid point. Wing-root bending
(WRBM) and wing-root torsion moment (WRTM) are the
most important loads for the GLA controller.

4.2. Adaptation for the Linear State-Space Model

The linear state-space system is used for controller design.
The linearization is performed around a typical cruise angle
of attack of 3°, the freestream velocity is 50 m/s as pre-
viously mentioned. To construct the state space model, a
different RFA is needed as the one presented in equation 7.
This is necessary because the internal states of the system
are not composed of the downwash on the aerodynamic
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panels, but the modal deflection and rate. Using a trans-
formation detailed in [9] one can obtain the RFA matrices
mapping from modal to structural set (subscript gf ):

Paero,f
g = q∞ ·Q0

gf · uf + q∞ ·
(

cref/2

U∞

)
·Q1

gf · u̇f

+ q∞ ·
(

cref/2

U∞

)2

·Q2
gf · üf + q∞ ·Dgf · xL,f (u̇f ),

ẋL,f = Rf ·
(

U∞

cref/2

)
· xL,f +Ef · u̇f .

The aerodynamic lag states are also converted. The trans-
formation is equivalently carried out for the control surface
and rigid body motion. Integrating this alternative computa-
tion of the aerodynamic forces due to the flexible and con-
trol surface motion into the equation of motion results in the
overall state-space system. The inputs are the gust dis-
turbance wG, the rigid body motion ub, u̇b, üb as well as
the control surface command ux,cmd for all five control sur-
faces, which will later be supplied by the controller. The
outputs are the sensor measurements as described in sec-
tion 2.5, as well as the wing-root cut-loads (WRBM, WRTM).
The resulting state-space system therefore has 273 internal
states, 25 inputs and 12 outputs.

4.3. Model Order Reduction

For the H∞ control design method chosen here, the order
of the plant model plays an important role, because the con-
troller will have as many states as the plant. Thus, it is nec-
essary to reduce the order of the state-space system used
for controller synthesis. Applying balanced truncation [33],
[34] is a common choice. Here, the Loewner framework
is employed once again. This time, the frequency domain
pairs are supplied for the entire transfer function of the state-
space model. To improve the quality of the reduction, the
input-output-paths are reduced by eliminating the rigid body
motion. By selecting the number of singular values used
in the Loewner identified descriptor state-space system, the
order of the reduced system can be set. The application of
the Loewner framework is analogue to the one described in
section 3, this time with an order of 50, and with frequency
data pairs supplied between k = 0 and k = 1.0. Stabiliza-
tion and steady-state correction is also applied.
The reduced order model matches the full order model quite
well in the lower frequency domain. The approximation er-
ror increases with increasing frequency. Figure 7 compares
the relative magnitude of the difference in singular values
between full and reduced order model. Below 100 rad/s
the error is less than 40 dB, which is satisfactory. The high
frequency dynamics are less important for the GLA func-
tionality, due to the roll-off in actuator dynamics.
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FIG 7. Relative error between full and reduced order model

Figure 7 illustrates the capability of the Loewner framework
for model order reduction. Increasing the order of the re-
duced system would reduce the approximation error, but for
controller design a lower order of the plant is favorable.

5. CONTROLLER DESIGN

The aeroservoelastic model in form of the reduced linear
state-space model is now used as the plant for model-based
controller design. The GLA functionality will be designed
using H∞ optimal control, which is applicable to multiple
input multiple output (MIMO) systems [35]. This robust de-
sign method allows to incorporate not only performance but
also robustness requirements into the controller synthesis.
Ensuring stability margins and robustness is an important
aspect for the GLA controller, because the plant model con-
tains errors due to assumptions, neglected dynamics, ex-
ternal disturbances and changing operating conditions in
the wind tunnel. Robustness ensures that the controller still
works even if the modeled plant is not exactly matched by
the real experiment.
The standardized form of the H∞ control loop is shown in
figure 8. The generalized plant P - in which the aeroservoe-
lastic plant is contained together with weighting functions -
receives exogenous inputs w and produces exogenous out-
puts z. The feedback loop with the controller K is closed
using feedback variables v which are translated into control
commands u.

P

K

z

vu

w

FIG 8. Standard H∞ control framework, adapted from [35]

The generalized plant P as shown in figure 8 must be con-
structed to achieve the control targets, which is why these
need to be defined in a first step.

5.1. Control Targets for Gust Load Alleviation

The gust load alleviation shall fulfill the following targets:
1) reduce the integral loads at the wing root, focusing on

bending (WRBM) and torsion moment (WRTM),
2) ensure closed loop stability,
3) ensure robustness with respect to modeling errors, ne-

glected dynamics, and changing operating conditions,
4) work for the entire range of gust gradients defined,
5) minimize control activity and avoid steady-state deflec-

tions of the control surfaces.

Obviously, these control targets are conflicting and pose a
trade-off problem. The first target is a performance target.
It is chosen to focus on integral loads on the wing root. A
detailed loads analysis to define the critical cases within the
envelope of the reference aircraft - then transferred to the
wind tunnel experiment - is recommended for future work.
The second target demands closed loop stability, which is
mandatory for a usable load alleviation. Additionally, the
controller itself should also be stable, which is not auto-
matically guaranteed by H∞ synthesis [35]. Robustness is
a more stringent requirement than stability itself, enforcing
certain margins before instability occurs.
The fourth target demands that the GLA functionality is us-
able for the entire range of gust gradients to appear, as de-
termined in section 3.1 between 0.5 and 5.3 m. For the
wind tunnel wing, the most critical gust is the one with the
longest gradient and accordingly the highest amplitude Uds.
In a full aircraft this might be different, because the aircraft
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can respond with a rigid body motion if long gusts occur. In
the wind tunnel experiment, the wing is clamped, meaning
every gust - even a very slow one - leads to a flexible de-
formation of the wing. The fifth objective is necessary to
ensure the practicability of the controller.

5.2. Generalized Plant

The generalized plant is composed to fulfill the control tar-
gets defined previously. This means, the exogenous inputs
and outputs need to be selected and weighted such that the
H∞ synthesis delivers the desired results. The exogenous
input w will be the gust disturbance wG interfering with the
wing, the exogenous outputs z are selected as follows:
1) z1: performance output, from the gust to the wing-root

loads Pperf = [PWRBM , PWRTM ]T ,
2) z2: robustness output, uncertainty attenuation in the

high frequency regime,
3) z3: control output, minimization of control energy.

The aeroservoelastic plant composed in sections 2 to 4
features wing-root loads and acceleration sensor measure-
ments as outputs. The former are used for the performance
output z1, this will govern the controller design in the lower
frequency regime. The robustness output will be using the
sensor measurements, and will govern the higher frequency
domain. The sensor measurements are also used as feed-
back variables v. The third exogenous output will focus on
weighted control commands.
For the trade-off between performance and robustness, an-
other exogenous input is added: a disturbance d on the
sensor measurements. The higher the value d of the dis-
turbance input, the more focus on robustness. Figure 9
presents the generalized plant, with H indicating selection
matrices and wi indicating weighting functions. The refer-
ence command is zero, since no deflection around the lin-
earization state is desired when a gust acts.
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FIG 9. Generalized plant for gust load alleviation control

Selecting the weighting functions to fulfill the desired con-
trol targets is an iterative process. Figure 10 presents the
weights in their final iteration.
The performance weight wP is chosen such that gust loads
are reduced in the lower frequency domain. The focus is on
the wing-root bending moment, the torsion moment is not as
important, since it features a significantly lower magnitude.
Thus, the WRBM output is weighted fives times as much
as the WRTM. A roll-off to low frequencies avoids the con-
troller trying to reduce steady-state loads. Since the wing is
clamped, the low frequent and steady-state gusts still intro-
duce large loads at the root, hence introducing the roll-off is
rational.
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FIG 10. Weighting functions used in H∞ synthesis

The robustness weight wR together with the multiplicative
uncertainty [35] weight wM is used to take care of the un-
certainties occurring in the modeling. In frequency regions
with large uncertainty these weights should be high, lead-
ing to less aggressive control activity and thereby respect-
ing the limits of the model-based controller design. Here,
the uncertainty is defined as the error between full and re-
duced order model. Although many other uncertainties oc-
cur, these are not yet quantifiable. Ideally, the differences
between the model and the real wind tunnel wing should be
captured. However, real data is not available at this time.
The multiplicative uncertainty weight forms an envelope
around the relative error in singular values between full and
reduced order model, as presented in figure 7. More details
can be found in [35]. The robustness weight can be chosen
as an identity matrix. Here, it is chosen to include a roll-off
to very large frequencies, in which the controller will not be
active. The value of the scalar d added to all measurement
channels allows to balance performance and robustness.
The control activity weight wU is shaped like a bandstop fil-
ter. A certain range of frequencies in which the controller
shall be active is penalized less. Low frequencies are pe-
nalized more to avoid steady-state deflection of the control
surfaces, high frequencies are penalized more to avoid too
fast control commands that the actuators cannot provide.

5.3. H∞ synthesis

Using the generalized plant - which has to be normalized
in order to ensure inputs and outputs of similar order of
magnitude - the controller can be synthesized following the
H∞ algorithm as detailed in [36]. The aim is to shape the
closed loop H∞ norm such that the control requirements
are met, based on the open loop norm. The closed loop
norm is determined by a lower linear fractional transform
(LFT), ∥Fl(P,K)∥∞. Iteratively updating the weights and
thereby changing the open loop H∞ norm, finally the de-
sired closed loop norm is achieved, meeting the desired
control targets from section 5.1. The final result is shown
in figure 11, where open and closed loop H∞ norm are pre-
sented together with the minimum value γmin, indicating the
frequency range in which the closed loop norm could not be
minimized any further.
The H∞ norm of the closed loop is successfully reduced
below the one of the open loop in the frequency range from
0.01 to 70 rad/s. This is the frequency range important for
GLA, as gusts primarily excite this range. It shall be noted
that discrete 1-cos gusts do not excite a distinct frequency -
like a continuous sinusoidal gust would - but a large spec-
trum especially towards lower frequencies. Figure 11 also
shows that the first eigenmode occurring at about 55 rad/s
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FIG 11. Open and closed loop H∞ norm

is reduced in magnitude. The second and third peak are re-
duced as well, while in-between the peaks the closed loop
norm is higher. Below 0.01 and above 500 rad/s the roll-off
in the weights and the plant allows for the closed loop norm
to be above the open loop norm. This gives room for the re-
duction in the important frequency area. The norm cannot
be decreased everywhere, as explained by the waterbed
effect [35].
Figure 12 details how the open loop norm is composed. The
norm from the gust input to the first and second exogenous
output is shown, as well as the overall norm. In the lower
frequency regime the overall norm is driven by the perfor-
mance output, while the upper frequency regime is driven
by the robustness output. This demonstrates the frequency
separation between the different control targets.
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FIG 12. Open loop H∞ norm, separated by the outputs

6. RESULTS

The designed gust load alleviation is evaluated in the nonlin-
ear simulation with the full order model, in which saturation
of the actuators, delay and possibly noise is included. The
rigid body motion is set to a steady-state angle of attack
of 3°, representing a cruise like configuration. The over-
all delay in the servo loop is 8 ms [27], the saturation is
at 10°, 1129°/s and 75000°/s², for actuator deflection, rate
and acceleration, respectively [26]. The nonlinear model is
used for time domain simulations. The frequency response
is evaluated in the full order linear state-space model.

6.1. Performance Evaluation

The performance of the gust load alleviation can be quan-
tified by comparing the wing-root bending and torsion mo-
ment due to a gust with and without controller. Figure 13
presents the time response in WRBM when a gust with a
gradient of 3 m acts upon the wing. The steady-state bend-

ing moment that is present stems from the 3° angle of at-
tack. The maximum load is successfully reduced, the peak
with GLA is 12% lower compared to no GLA, when refer-
ring to the absolute level. When referring to the steady-state
load level, the relative reduction is 19%. It is worth noting
the WRBM is lower with GLA than without it for the entire
time, also during the oscillations following the largest peak.
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FIG 13. Wing-root bending moment time response for H = 3m

The time response in wing-root torsion moment is presented
in figure 14. The torsion moment is reduced as well, by
about 31% for the maximum occurring moment. The WRTM
is not causing too much concern, because the structural
properties of the swept wing have a positive impact on this
moment. As the control surfaces are deflected to reduce
the bending moment, this creates a torsion moment coun-
teracting the moment occurring in the open loop.
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FIG 14. Wing-root torsion moment time response for H = 3m

For both bending and torsion moment it is confirmed that not
only the integral loads at the wing root are minimized, but
also the local cut loads across the span. The local loads are
not exceeding the ones of the open loop.
The reduction in positive bending moment (first, largest
peak) is achieved by deflecting the control surfaces up-
wards. This reduces the lift generated by the wing by
adding negative camber, thereby reducing the bending
moment. Figure 15 shows the commanded deflection of the
five trailing edge control surfaces, output of the controller
due to the sensed acceleration. The control surfaces are
commanded to deflect quite similar. The difference is due
to the size and position of the surfaces. The maximum
deflection does not exceed 6°, meaning the saturation is
not reached. The same holds for rate and acceleration
of the actuators. The number of control surfaces on the
wing is the reason for the moderate deflection of the each
surface. In a setup with less surfaces, for example only
two ailerons on the outer part of the wing, the deflection of
each control surface would have to be larger to achieve the
same load reduction.
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FIG 15. Commanded control surfaces for H = 3m

The GLA should work not only for a certain gust length, like
3 m, but for the entire range of gust gradients required by
the certification specification. Analysis shows a very similar
relative reduction for various gust gradients H, as depicted
in table 1. The absolute reduction in maximum WRBM is
different since the WRBM itself is different. The relative re-
duction based on the overall load level is about 12%, based
on the steady-state load level it is about 19%.

TAB 1. Influence of the gust length on bending load reduction

H /m
max. WRBM /Nm

∆ /Nm δ
w/o GLA w/ GLA

2.0 380 340 -40 -11% (-19%)
3.0 453 400 -53 -12% (-19%)
4.0 480 420 -60 -13% (-19%)
5.0 486 427 -59 -12% (-18%)

The performance of the GLA functionality can also be
evaluated in the frequency domain, using the full order
linear state-space model. Figure 16 shows the frequency
response function from the gust input to the WRBM, again
comparing the case with and without GLA. This figure is
very similar to figure 11, but this time only one transfer path
is examined. As expected, the bending moment is reduced
in the relevant frequency range, especially at the peak of
55 rad/s. The wide frequency range of reduced magnitude
confirms that the GLA works for a range of gust gradients,
as previously discussed.
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FIG 16. Frequency response from gust wG to WRBM

The frequency domain also offers an analysis of the con-
troller transfer function, which is mapping between mea-
sured accelerations and commanded control surface de-
flections. When combined with the sensor dynamics, fig-
ure 17 results. This figure presents the transfer function
between gust excitation and control commands.
The peak in the transfer function occurs at the frequency
of the first bending, at approx. 55 rad/s. This means that

the controller aims to reduce this peak the most, in order
to alleviate the loads. Towards high frequencies a roll-off
can be observed, stemming from the actuator dynamics.
As noted before, the controller is active in a wide frequency
band, ranging down to 0.01 rad/s.
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FIG 17. Freq. response from gust wG to commands ux,cmd,i

What is not shown here is the isolated transfer function of
the controller, from accelerations to control commands. As
the acceleration sensors feature a higher magnitude out-
put towards high frequencies (high-pass characteristic), the
controller transfer function exhibits a high gain in the lower
frequency range, to restore the observability. This is not
ideal and should be investigated in future work.

6.2. Effect of Time Delay and Noise

Time delay in the closed loop system presents a major chal-
lenge for the GLA. Based on [26] and [27], it is assumed that
the combined delay of sensors, actuators and controller is
8 ms. Without any delay, the performance could be signifi-
cantly increased. This is shown in figure 18. The dotted line
shows the maximum achievable performance without any
delay, yielding a 33% reduction in maximum WRBM, based
on the steady-state level of loads. When the 8 ms delay is
introduced, the performance has to be reduced. Otherwise
the oscillations with GLA following the maximum WRBM are
larger than the one without GLA. The performance weight
has to be reduced by about 40% to regain the desired be-
havior following a gust excitation. When the delay exceeds
10 ms the closed loop system even becomes unstable. This
stresses the importance to keep the delay in the servo loop
as small as possible.
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FIG 18. Effect of time delay on the closed loop system

Besides delay, measurement noise is an important aspect
to consider. The controller shall work even if some noise
is present. Noise with zero mean and a standard deviation
of σ = 0.1 is introduced in the nonlinear simulation. The
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effect on the WRBM time response is shown in figure 19.
The controller still successfully reduces the wing-root loads.
Due to the introduced noise, the controller commands some
actuator deflections, leading to the slight deviations around
the equilibrium load level.
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FIG 19. WRBM time response with measurement noise

6.3. Robustness Evaluation Using Disk Margins

Lastly, the robustness of the designed controller is investi-
gated. Disk-based stability margins - both multiloop margins
(ML) and loop-at-a-time margins (DL) - [37] are used for this
task. The calculations are performed both for the input and
output open loop. The disk margins in gain and phase are
presented in table 2. The loop-at-a-time margins present
the worst case among all possible loops.

TAB 2. Disk-based margins of the open loop transfer function

Type
Cut

point
Disk-based
gain margin

Disk-based
phase margin Freq.

ML input 0.57 | 1.76 -30.9° | 30.9° 76 rad/s
ML output 0.91 | 1.1 -4.8° | 4.8° 55 rad/s

DL input 0.47 | 2.09 -38.9° | 38.9° 82 rad/s
DL output 0.76 | 1.32 -15.6° | 15.6° 55 rad/s

The multiloop margins (ML) are always lower than the loop-
at-a-time margins (DL). This is due to their more conserva-
tive nature, assuming variations in all input or output chan-
nels at the same time [37]. The worst case loop-at-a-time
margins occurs for the first actuator when considering the
input open loop, and for the second acceleration sensor
when considering the output open loop. The output mar-
gins are more constraining than the input margins.
The multiloop output margins are very small, leaving only
0.1 variation in gain and 5° in phase acceptable. However,
these very small margins only occur at the frequency of
55 rad/s, where the controller exhibits the highest action try-
ing to reduce the peak in the frequency response due to the
first bending (see figure 17). In other frequency regimes,
the margins are significantly bigger. This becomes evident
when taking a look at figure 20, in which the multiloop out-
put margin is plotted over frequency. The nominal controller
is shown with a solid line.
Figure 20 not only shows the multiloop output margins for
the nominal controller, but also for a controller that is per-
formance optimized (dash-dotted line), and one that is ro-
bustness optimized (dotted line). In the robustness opti-
mized case, gain and phase margins are increased in the
entire frequency range, with the lowest margin still at the fre-
quency of the first bending. In the performance optimized
case the stability margins are decreased. Especially the
range from 60 to 200 rad/s is concerning, since the con-

troller will still be active in this frequency range and the
modeling uncertainty is large, leading to a controller not as
effective as desired in the real wind tunnel experiment.
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FIG 20. Multiloop output disk margins for different cases

Figure 20 stresses the importance of a careful trade-off be-
tween performance and robustness. For a successful de-
ployment of the developed GLA controller in the wind tun-
nel experiment, the controller needs to be capable to deal
with disturbances, delays and unmodeled dynamics. Ro-
bustness is also a key requirement since the controller will
be discretized for implementation on hardware.

7. SUMMARY AND OUTLOOK

A gust load alleviation controller is designed for the wind
tunnel model of a flexible wing, representative for the wing
of a long-range transport aircraft. A model-based design
using H∞ robust optimal control is applied. The applica-
tion of the Loewner framework for gust modeling and model
order reduction produces very satisfactory results, allowing
to identify state-space models from frequency domain data
and reducing their order. Thus, the Loewner framework is a
beneficial addition to the aeroservoelastic modeling.
The developed controller is able to reduce the wing-root
bending moment due to a gust disturbance by up to 19%,
compared to the load level in steady-state flight. The five
control surfaces need to deflect by a maximum of 6° to
achieve this reduction, which is below their maximum pos-
sible deflection. Due to the setup of the generalized plant
it is easy to trade-off between performance and robustness
by adapting the parameter d.
The H∞ control strategy proves helpful to incorporate ro-
bustness requirements into the controller design, and al-
lows to shape the frequency response of the closed loop
system as desired. A downside for MIMO systems is that
everything is fused into the maximum singular value (the
H∞ norm), leaving litte insight into the different contribu-
tions of the system. The selection of the weighting functions
is quite tedious, and the resulting controller is very sensitive
to the weight selection. Another aspect noted during design
is that slow-moving control surfaces might appear, mean-
ing the surfaces only slowly return to their neutral position.
This is undesirable and could possibly be avoided by a time
domain based method like LQR, or by a different selection
of the weighting functions. This aspect will be addressed in
future work.
The upcoming steps will involve a discretization of the con-
troller for use on hardware. Robustness of the discretized
controller will be a focus. The oLAF wind tunnel experiment
is planned for spring 2024. The insights gained within this
project will help to develop gust load alleviation functionali-
ties for next generation transport aircraft.
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