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Abstract: On a daily basis, political decisions are made, often with their full extent of impact
being unclear. Not seldom, the decisions and policy measures implemented result in direct or
indirect unintended negative impacts, such as on the natural environment, which can vary in time,
space, nature, and severity. To achieve a more sustainable world with equitable societies requires
fundamental rethinking of our policymaking. It calls for informed decision making and a monitoring
of political impact for which evidence-based knowledge is necessary. The most powerful tool
to derive objective and systematic spatial information and, thus, add to transparent decisions is
remote sensing (RS). This review analyses how spaceborne RS is used by the scientific community to
provide evidence for the policymaking process. We reviewed 194 scientific publications from 2015
to 2020 and analysed them based on general insights (e.g., study area) and RS application-related
information (e.g., RS data and products). Further, we classified the studies according to their degree of
science–policy integration by determining their engagement with the political field and their potential
contribution towards four stages of the policy cycle: problem identification/knowledge building,
policy formulation, policy implementation, and policy monitoring and evaluation. Except for four
studies, we found that studies had not directly involved or informed the policy field or policymaking
process. Most studies contributed to the stage problem identification/knowledge building, followed
by ex post policy impact assessment. To strengthen the use of RS for policy-relevant studies, the
concept of the policy cycle is used to showcase opportunities of RS application for the policymaking
process. Topics gaining importance and future requirements of RS at the science–policy interface are
identified. If tackled, RS can be a powerful complement to provide policy-relevant evidence to shed
light on the impact of political decisions and thus help promote sustainable development from the
core.

Keywords: earth observation; evidence-based policy; policy cycle; decision-making; sustainable
development; science–policy interface

1. Introduction

Since roughly the 1980s, governments worldwide have increasingly been following
an evidence-based policy (EBP) approach to take action on policy coherence, shed light
onto policy impact and enhance the effectiveness and efficiency of policies [1–4]. The
prevailing COVID-19 pandemic and humanitarian crises along with the natural disas-
ters over the last decade, in light of climate change, are however powerfully display-
ing a continuing pattern of unsustainable natural resource depletion and policymaking
(https://press.un.org/en/2022/envdev2046.doc.htm accessed on 30 November 2022) [5].
With the 2030 Agenda for Sustainable Development and the Paris Agreement, recent
efforts have been made at the international level to discuss shared values and goals for sus-
tainable development and strategies to achieve these at both national and global levels [6,7].
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Both agreements demand an EBP approach to evaluate whether the set policy goals and
measures are leading to the required progress towards meeting the agreements [8]. Yet, con-
sidering the rather limited success, with few exceptions such as the Montreal Protocol, in
achieving global sustainable development and enforcing sustainable development into all
national policies, strengthening old and developing entirely new pathways within the EBP
approach will be pivotal to successfully translate evidence-based findings into sustainable,
effective decisions and make leadership sustainable beyond the legislature [9,10].

EBP assures along the so-called policy cycle that governments and their programmes,
laws and regulations can achieve their defined goals [11]. The policy cycle can be seen
as an analytical tool that divides the policymaking process into several simplified stages,
thereby allowing one to closely monitor the process. Different definitions of the policy cycle
exist; however, the most common stages are: agenda setting (i.e., identification of emerging
issues), formulation of policy objectives and policy adoption, implementation, and moni-
toring and evaluation [12,13]. Lessons learnt should then be fed back into the cycle, thereby
helping to make policies more efficient and effective. Further, this approach can assist
in ensuring that policy decisions and their trade-offs are made transparent, minimizing
institutional bias und overcoming the tendency to hold on to traditional, conservative
structures. Additionally, EBP can lessen the power of fake news by making governmental
decisions more credible and assessable through facts—both the coronavirus pandemic as
well as the Russia–Ukraine war underline how important credible policymaking can be, par-
ticularly in times of crisis (https://www.theguardian.com/world/2020/may/05/trust-in-
scientists-grows-as-fake-coronavirus-news-rises-uk-poll-finds, https://www.theguardian.
com/world/2020/apr/24/coronavirus-sparks-perfect-storm-of-state-led-disinformation
accessed on 30 November 2022) [14].

Certain key conditions must be met in order to apply an EBP approach, which—if not
met—can hinder the successful application of this approach [3,15]. EBP requires clearly
defined policy objectives and measurable indicators. Furthermore, to monitor and feedback
on both, relevant data must be available. This is a factor predominantly affecting the quality
and feasibility of EBP assessments. Additionally, methods for data collection vary within
as well as among countries, leading to problems in harmonising data for global progress
reporting. In addition, public officials should be able to analyse and evaluate the data, and
there must be a close understanding regarding the various roles among the different parties
(e.g., policymakers, scientists) involved in the assessment [11]. Finally, a key consideration
is also the assessment of policy interactions (e.g., existing and potential future policies)
while addressing the policy along the policy cycle [13].

Spaceborne remote sensing (RS) can provide sound, independent and area-wide in-
formation on the physical appearance of the world. Especially where data gaps exist, RS
can help to detect as well as understand environmental dynamics (e.g., climatic and atmo-
spheric dynamics, urban structures, extreme events) and deliver unique insights into life
on Earth, such as for ecology, agricultural systems and conservation, at different spatiotem-
poral scales [16]. Governments and private companies have long recognized the potential
of RS. Especially for meteorological application, such as weather forecasts, the assimilation
of RS data has been a standard procedure for decades [17,18]. More recently, the potential
of applications in the agricultural and forestry sector, disaster monitoring, infrastructure
management, defence and security, and for sustainable development has been recognised.
For instance, the Global Earth Observation System of Systems (GEOSS), a joint international
venture, was founded with the ulterior motivation of contributing to the development of
efficient technologies for sustainable development. It contributes to this goal by harnessing
and integrating existing infrastructures and Earth observation data, thereby fostering a
globally networked Earth observation system to underpin sound decision making for di-
verse users. This growing appreciation of RS has increased investments into this technology,
which have resulted in worldwide RS data coverage encompassing coarse to very high
spatial, temporal, and spectral resolutions over the past decades [19,20]. Particularly, the
availability of long-term continuous free and open satellite data together with new space
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developments create the basis for operational applications [21]. Further, high-resolution RS
is creating new possibilities for EBP, such as in the fields of agricultural (e.g., crop detec-
tion) and forest (e.g., plant traits, forest structure assessment) monitoring [22]. Through
these developments, RS can help to overcome the problem of data availability for EBP by
delivering evidence for different stages of the policy cycle and at different scales.

One of the first and most prominent examples of using RS successfully in policy is the
Montreal Protocol. It is one of the most successful global environmental treaties to date
and regulates as well as guides the phase-out of ozone-depleting substances (ODS), with
impacts on both the environment and economy. RS has been pivotal in monitoring the
development of the stratospheric ozone layer and in providing sound evidence for decision
making under the protocol’s umbrella. Moreso, the measures taken under the Montreal
Protocol have led to a steady recovery of the stratospheric ozone layer, as a recent study
from the World Meteorological Organization (WMO) shows [23].

Today, several governmental bodies, institutions, and organisations exist, which use
RS to deliver knowledge for the policymaking process and to investigate the efficiency and
effectiveness of policy measures within an EBP approach to some extent. As one of the first,
the United States Geological Survey (USGS), which is devoted to monitoring and analysing
Earth–system interactions to provide timely relevant information for decision makers, holds
with the Earth Resources Observation and Science (EROS) Center a prominent RS imagery
archive [24]. A prominent example within the European Union includes work by the
Joint Research Center of the European Commission focusing on the Common Agricultural
Policy while Geoscience Australia is the nation’s public sector geoscience organisation that
supports EBP through information gathered through Earth observation in Australia [25,26].

However, a sufficient overview is missing regarding new scientific work using RS for
studies at the science–policy interface. A review paper from 2010 found that researchers
use RS unevenly along the entire policy cycle and that “there is apparently little academic
interest in the societal contribution of environmental remote sensing” [27]. Wellmann
et al. (2020) recently reinforced this picture for urban planning, showing that few studies
are directly relevant for policy and that most studies focus on delivering knowledge or
monitoring policy impact [28]. How far the situation has changed for the whole RS-related
science–policy picture over the last years and how the scientific field is now contributing
evidence for the different stages of the policy cycle for EBP remain largely unclear.

Objective of the Review

The objective of this paper is to provide an overview of current scientific applications
of spaceborne RS for EBP by investigating peer-reviewed literature. We explore to which
degree scientists work at the science–policy interface by categorising them regarding their
degree of engagement with the political field and in targeting policies throughout their
studies. Further, we investigate the potential contribution they could make towards the
policy cycle against the background of policy sectors and processes they address. By doing
so, we aim at drawing a picture of the state of using RS at the science–policy interface and
to derive insights into existing gaps of the application of RS for EBP as well as potential
future directions of development and application.

The review is structured in the following way: In the results section, general insights
(e.g., on the study area and the sector of focus) and RS application-related information
(e.g., used RS data and existing products) of the studies are presented, followed by insights
into the science–policy integration (e.g., contribution of studies to the policy cycle). The
discussion aims at embedding in particular the results of the section on science–policy
integration into the larger context and provides an overview of how the application of RS
for policy can be promoted by drawing on the concept of the policy cycle, discussing topics
gaining importance at the science–policy interface, and, finally, by presenting necessary
improvements from the RS side to make better use of the capacity of applying RS at the
science–policy interface.
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2. Materials and Methods

The literature search (Figure 1) was conducted using Web of Science (WoS) Core
Collection from January 2010 to December 2020 (N = 416). This literature search showed
an increase in the number of published papers per year within the time range, with two
distinct leaps in the increase in publications in 2015 and 2019 (Figure 2) Therefore, and to
narrow down the number of relevant articles, we focused the review paper on publications
of the years 2015 to 2020. We restricted the literature to articles written in English. All other
types of literature (e.g., grey literature) are excluded from this review. Further, articles had
to meet certain criteria to be considered for the review, namely that they must (i) use data
from spaceborne RS for their analysis, meaning that articles solely using airborne RS were
not considered, and (ii) mention at least a policy relevance of their results or methodological
approach. With this defined selection process, we aimed at applications of RS for policy that
are feasible from a methodological perspective, i.e., with a reviewed methodical approach
and published in peer-reviewed literature, even though we are aware that applications
of RS regarding the science–policy interface which have been published outside of peer-
reviewed literature, in languages other than English, or use RS other than spaceborne RS
may have been missed. In the end, the literature list encompassed 194 articles Figure 1
provides an overview of the search string, eligibility criteria, and screening process applied.

All papers were analysed with respect to aspects relevant to the topic of the review.
Accordingly, information on general insights, such as study area, RS-related applications,
and to investigate the degree of science–policy integration was extracted. The data were
extracted manually and organised in a table (Microsoft Excel).

2.1. General Insights

Data were obtained on the study area and its geographic extent. Further, the main
sector of focus as well as processes considered (e.g., land use/land cover (LULC) change;
lakes and eutrophication; cities and urbanisation) were identified.

Sectors of focus were defined according to typical policy sectors encountered in the
political arena [29–31]. These were agriculture, forest, water resources, health, coastal
zone, settlement, energy, disaster and risk management, and biodiversity and conservation.
Further, we included a sector named “cross-sectoral” to describe those studies that cover
several sectors in their study. Sectors were classified based on information contained in the
article.

We defined the geographic extent of a study also from a policy perspective. Local
studies include, for example, city-wide studies in the sector settlement. An important
consideration is that cities can range in their size from, e.g., 219 km2 in the case of Ams-
terdam to 16.411 km2 regarding Beijing. However, common topics in the studies of cities
included, e.g., the assessment of urbanisation or environmental and ecological assets, and
the potential past and future impact of urban policies—all of which can be described from
a local perspective at the city level.

2.2. Spaceborne Remote Sensing Application

The use of RS was analysed according to the input data and products, the temporal
resolution of the study, and to which extent non-RS data were integrated.
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2.3. Science–Policy Integration

To evaluate the science–policy integration, the degree of engagement with the political
field, here termed as “policy focus”, was determined, and the potential contribution of the
study to the policy cycle was evaluated. In addition, the integration of RS data, products
and ancillary data along the policy cycle was analysed. To gain an overview of the policy
sectors and related policy measures covered by the studies of this review, we analysed
those studies with a focus on investigating policies (i.e., studies with a concrete ex ante
and post ante policy assessment or contributing to policy implementation). We categorised
these policies according to policy areas and their context of application, i.e., the process
involved. Policy areas were defined either through information provided by the article or
by classifying the policy field to the best of our knowledge (including consultation through
the internet).

2.3.1. Policy Focus

Based on their degree of engagement with the political field, studies were classified
according to three categories:

• “Policy-applied”: Studies that clearly made a link with policy, i.e., studies which
developed methodological approaches or provided research results that are evidently
used in policy, such as for the policymaking process, or who worked with policymakers
or representatives to develop and provide research and methods.

• “Pre-policy”: Studies that developed an approach or method to look at, e.g., LULC tra-
jectories to investigate and define drivers, including those from policy, in an analytical
or descriptive manner.

• “Scientific”: Studies that solely stated the relevance of the methodology or the infor-
mation or evidence provided by the analysis for policy.

Some few articles were difficult to classify regarding the policy focus, as the infor-
mation provided manoeuvred the study between two categories. Yurui et al. (2019), for
example, includes interviews with government representatives and mentions in their article
a future close collaboration with different actors, including governments, to further explore
the impacts of gully land consolidation projects and implications at various levels [32].
As we are not provided with more details regarding the governmental collaboration and
implications for policymaking, the article is classified as “pre-policy”.
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2.3.2. Policy Cycle

The policy cycle is an analytical tool often used in EBP to divide the policymaking
process into several stages. This allows one to closely monitor and consider evidence along
the policymaking process. To determine the potential contribution of each study towards
the policy cycle, the cycle was divided into the following stages: problem definition and
knowledge building, policy formulation, policy implementation, and policy monitoring
and evaluation [12,13]. The decision of classifying a study’s potential contribution to the
policy cycle was based on relevant information contained in the results and discussion
section of the articles. For instance, a study was classified as contributing to the cycle
“policy monitoring and evaluation” if it either conducted an impact analysis of a specific
policy or policies or discussed the impact of a specific policy or policies as a driver of
change.

3. Results
3.1. General Insights
3.1.1. Overview of the Countries in Focus

The research areas of the studies are distributed world-wide in 83 countries, thereby
covering different continents, climatic zones, and nations with various development sta-
tuses (Figure 3). Most studies concentrate on China as the study country (n = 66; [32–97]), fol-
lowed by India (n = 16; [98–113]), the USA (n = 12; [95,114–124]), Brazil, Italy, Pakistan, and
Spain (each occurring in seven studies) [125–151] and Australia (n = 5; [95,124,152–154]).
The other countries are represented by less than five studies, with one case study being the
most frequent count (n = 42; [66,95,96,118,155–222]). Some regions are underrepresented,
including Europe, Central and South America, and regions of the African continent (West,
Central and Southern Africa). In addition, Antarctica is not represented. A reason for
the underrepresentation or non-occurrence of countries in this review may be due to our
restriction such as to English language papers and peer-reviewed literature (see screening
process of literature, Section 2. Materials and Methods).
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3.1.2. Geographic Extent of the Studies

Most articles focus on either local (i.e., city level; small-scale analysis or multiple small-
scale analyses within a country or several countries; 45%; e.g., [34,115,152]) or regional
studies (focus on a larger, heterogenous area (e.g., rural–urban gradient)) within one
country or several countries (38%; e.g., [33,42,60]). Articles conducting nation-wide studies
account for 12% of all articles (e.g., [59,79,185]), whereas interregional and global studies
are represented by 6% and 1%, respectively (e.g., [96,170,202]) (Figure 4A).



Remote Sens. 2023, 15, 940 8 of 32Remote Sens. 2023, 15, 940 9 of 35 
 

 

 
Figure 4. (A) Occurrence (i.e., percentage of all articles, n = 194, used in this review) of geographical 
extents within the review. Local = city level and small, local studies; regional = studies covering a 
wider, heterogenous area (subnational); national = studies covering an entire country; interregional 
= studies covering regions, which cross nations; global = studies covering the entire globe. Articles 
covering multiple local or regional studies within one or several countries are included in “local” or 
“regional”, respectively. Similarly, articles covering multiple nations, which are geographically not 
connected, are termed as “national”. (B) Sectors of focus and the percentage of studies concentrating 
on the specific sector in this review. Cross-sectoral focus = studies investigating changes or drivers 
of change across different sectors (e.g., general LULC change assessment). 

 

3.1.4. Applications and Processes 
Across these sectors, various processes are analysed (Figure 5). The most frequently 

investigated processes are LULC change (44%), degradation (14%), changes in emissions, 
pollution, and impairment (9%), and hazards, disasters, and risks (5%). 

Within LULC change, processes related to the settlement sector were investigated 
most frequently (35%). Here, urban development (i.e., urban expansion, growth, and 
sprawl, e.g., [44,87,99]), the assessment and/or change in urban green infrastructure (e.g., 
[93,212]), and general change in LULC and urbanisation (e.g., [184,201]) were the most 
frequently addressed processes. Other articles concentrating on LULC change 
investigated processes related to the sectors forest (21%), such as forest cover change or 
fragmentation (e.g., [200,208]), agriculture (14%; such as agricultural expansion, land use 
change, and crop detection; e.g., [67,137]), cross-sectoral (13%; e.g., general LULC change 
[194]), and water resource (9%; e.g., change in wetland area [121] or LULC change in river 
basins and watersheds [179,217]). 

Important processes of degradation include erosion (30%; e.g., [124,129]), drought 
and desertification (19%; e.g., [81,108]), and grassland degradation and grazing (15%; e.g., 
[45]). They were predominantly discussed in the agriculture (59%) and cross-sectoral 
sector (19%). Processes related to emissions/pollution/impairments were investigated 
primarily in the water resources sector (47%) and include algae bloom and water quality 
assessments [139,165]. In addition, change in atmospheric pollution in the sectors 

Figure 4. (A) Occurrence (i.e., percentage of all articles, n = 194, used in this review) of geographical ex-
tents within the review. Local = city level and small, local studies; regional = studies covering a wider,
heterogenous area (subnational); national = studies covering an entire country; interregional = studies
covering regions, which cross nations; global = studies covering the entire globe. Articles covering
multiple local or regional studies within one or several countries are included in “local” or “regional”,
respectively. Similarly, articles covering multiple nations, which are geographically not connected,
are termed as “national”. (B) Sectors of focus and the percentage of studies concentrating on the
specific sector in this review. Cross-sectoral focus = studies investigating changes or drivers of change
across different sectors (e.g., general LULC change assessment).

3.1.3. Sectors of Focus

The most common sector is settlement (23%), followed closely by agriculture (22%).
Other important sectors are water resources (16%) and forest (14%) (Figure 4B). All four
sectors depict policy sectors of essential human needs. Remaining studies address the
sectors biodiversity and conservation (6%), health, (3%) disaster and risk management
(3%), coastal zones (2%), energy (1%) or have a cross-sectoral focus (11%).

3.1.4. Applications and Processes

Across these sectors, various processes are analysed (Figure 5). The most frequently
investigated processes are LULC change (44%), degradation (14%), changes in emissions,
pollution, and impairment (9%), and hazards, disasters, and risks (5%).
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Within LULC change, processes related to the settlement sector were investigated most
frequently (35%). Here, urban development (i.e., urban expansion, growth, and sprawl,
e.g., [44,87,99]), the assessment and/or change in urban green infrastructure (e.g., [93,212]),
and general change in LULC and urbanisation (e.g., [184,201]) were the most frequently
addressed processes. Other articles concentrating on LULC change investigated pro-
cesses related to the sectors forest (21%), such as forest cover change or fragmentation
(e.g., [200,208]), agriculture (14%; such as agricultural expansion, land use change, and
crop detection; e.g., [67,137]), cross-sectoral (13%; e.g., general LULC change [194]), and
water resource (9%; e.g., change in wetland area [121] or LULC change in river basins and
watersheds [179,217]).

Important processes of degradation include erosion (30%; e.g., [124,129]), drought
and desertification (19%; e.g., [81,108]), and grassland degradation and grazing (15%;
e.g., [45]). They were predominantly discussed in the agriculture (59%) and cross-sectoral
sector (19%). Processes related to emissions/pollution/impairments were investigated
primarily in the water resources sector (47%) and include algae bloom and water quality
assessments [139,165]. In addition, change in atmospheric pollution in the sectors settlement
(29%) and health (18%) were investigated. Examples include the analysis of the impact of
COVID-19 regulations on aerosols or the impact of air pollution control policies on PM2.5
emissions [37,59]. Processes related to hazards, disasters, and risks include flooding, fires,
ground deformation or landslides [122,195,196]. However, most of these processes were
covered solely by one study in this review.
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3.2. Spaceborne RS Application
3.2.1. Temporal Resolution of the RS Analysis

Most of the reviewed studies focused on time series (e.g., [122,123,158,165]) and multi-
temporal analysis over several years (e.g., [33,46,223]; Figure 6A). Bitemporal analyses (i.e.,
comparison of two timesteps) were the third most performed analyses (e.g., [32,130,156,172]),
followed by research focusing on unitemporal analyses (e.g., [137,185,212,220]). Only 5%
of all studies conducted forecasts (e.g., [76,94,164,174]). This result corresponds with the
nature of the most common processes investigated, which often call for an analysis over
several years (e.g., LULC change, such as urban or forest cover development). Studies with
an unitemporal analysis involved methodological developments, such as for forest map
comparison [171] or agricultural field detection [149], as well as for assessing natural capital
and ecosystem services [188]. Processes investigated in forecasts included the impact of
urban development policies on past and future urban development [91] or the impact of
forest policy scenarios on habitat suitability of the flying squirrel [174].
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Figure 6. (A) Displayed are the percentages of different temporal resolutions applied in the reviewed
studies. (B) Displayed is the frequency of temporal resolutions (here as the number of articles) used
by the studies in this review according to their year of publication. Unitemporal: one time step is
applied; bitemporal: comparison of two timesteps; multitemporal: time series analysis applying up
to 9 timesteps; time series: time series analysis using >9 timesteps; forecast: prediction into the future.

Regarding the different temporal resolutions over time (Figure 6B), we can see a
general increase in the application of multiple timestep analyses. Multitemporal RS analyses
show a distinct increase in applications in 2020 in comparison to the previous years.
However, comparing the increase in each temporal resolution in relation to the number of
published articles per year, none of the temporal resolutions show a significant and thus
unexpected high increase over the five years (a chi-squared test was applied).

3.2.2. Spaceborne Remote Sensing Platforms and Products

Most studies utilised free available higher resolution data from optical sensors, partic-
ularly Landsat (51%; e.g., [164,220]), followed by Sentinel-2 (7%; e.g., [130,150]). This is a
stable trend over the years (Figure 7) and is expected since Landsat provides the longest
time series with a higher resolution and is now complemented by Sentinel-2 since 2015.
MODIS data, with a medium resolution, but also available for more than 20 years, was
used by 6% (e.g., [122,123]). Sentinel-1 is the most frequently utilised SAR sensor (2%;
e.g., [167,222]). A notable role was additionally played by national optical higher reso-
lution satellite data such as the Indian IRS, the French SPOT, and Chinese GaoFen data
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(e.g., [53,64,103]; see Supplementary data, Figure S1, for an overview of all sensors used in
this review).
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Studies used RS data either solely (43%) or combined RS data with existing RS products
(35%). A smaller proportion of the studies exclusively made use of RS products (23%) for
their analysis.

The most frequently used RS products included DEMs (29%) and LULC products
(25%), followed by Vegetation Index (VI) (11%) and meteorological products (8%) (see
Supplementary data, Figure S2, for an overview). DEMs are used for various reasons, often
to derive topographic information, such as elevation and slope, as drivers of change. In a
few cases, DEMs are used to investigate compliance with policies restricted to regions with
particular slopes, for instance [64,91]. LULC products included standard LULC products,
such as MODIS, CORINE, or national land cover maps, as well as sector specific products,
for instance for forests, settlements, or general vegetation cover. These products were used
for different purposes, such as for LULC change assessment [114] or metrics (e.g., proximity
and accessibility variables [194]) and environmental indices calculations (e.g., to investigate
processes related to land productivity and degradation [219]). VI products (e.g., MODIS VI,
MODIS NDVI) were frequently used for VI change analysis to provide information such as
for crop identification or ecosystem degradation [54,125,173]

3.2.3. Non-Remote Sensing Data for Analysis at the Science–Policy Interface

Policymaking is a highly complex process that involves accounting for different fac-
tors, such as social as well as economic dimensions [3,224]. Thus, we were interested in
investigating which additional, non-RS data are used to facilitate studies at the science–
policy interface (see Supplementary data, Figure S3, for an overview of ancillary data used
across all reviewed articles). Meteorological (22%), socioeconomic (19%; e.g., [41,74,163]),
demographic (16%), administrative/cadastral data (16%), and agricultural land use data
(15%) were the most frequently applied data. Socioeconomic data included, for example,
information on GDP and economic information related to agriculture (e.g., livestock price
and production [54]). Cao et al. (2017), for instance, investigated the impact of different
socioeconomic data, such as GDP, on patterns and variations of ecology–production–living
land, derived using a LULC product provided by the Chinese Resources and Environmental
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Science Data Center (RESDC) [33]. Other studies combine data sets for interdisciplinary
studies. Nagabhatla and Brahmbhatt (2020), for example, used Landsat sensor data with
meteorological and demographic data to investigate water-migration interlinkages in three
case study regions [186]. Wenhui Kuang (2020) investigated socioeconomic and macropolit-
ical drivers of regional urban land use/cover change by combining Landsat, population
demographic and socioeconomic data with policy-relevant documents to provide insights
into policy implications [44]. Ground truthing data were also frequently used (22%). As
these data are a pivotal component of RS analyses and can impact the success of a study,
independent of the application and processes investigated, this data category is not nec-
essarily unique for studies at the science–policy interface and was therefore seen as an
essential part of the RS data.

3.3. Science–Policy Integration
3.3.1. Policy Focus

We found that most studies (64%; [32–34,37,39–44,46,49,50,52–54,56–65,67,68,70,71,73–84,86,
87,89,91–94,96,97,99,100,109,114,117–119,121,125,126,129,130,132–142,144,147,149,150,152,154,156,161,
163–168,170,172,174,177,178,181,183–188,191,193,194,197–202,205–208,211–214,217,220–223,225,226])
could be classified into pre-policy and 34% as scientific studies [35,36,38,45,47,48,51,55,66,69,
72,85,88,90,95,98,101–108,110–113,116,120,124,127,128,131,143,145,146,148,151,153,155,157,159,160,
162,169,171,173,175,176,179,180,182,189,190,192,195,196,203,204,209,210,215,216,218,219], meaning
that studies either went into a deeper level of policy analysis or merely mentioned the
relevance of their results, approach or methodology for policymaking. Solely 4 of the
194 articles [115,122,123,158] reviewed had developed approaches that contributed or pro-
vided evidence to policy (“policy-applied”). Thus, only a small number of studies was
conducted at the science–policy interface and contributed directly to EBP.

3.3.2. Policy Cycle

In accordance with the degree of policy focus of the studies, we found that most
of the studies (83%) could potentially contribute to the “knowledge building/problem
identification” stage of the policy cycle (Figure 8, here described as “problem identifica-
tion”). The second most important potential contribution towards the policy cycle was the
stage “monitoring and evaluation” (36%), while 13% and 4% of the studies could provide
information to the stages “policy formulation” and “policy implementation”, respectively.
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We observed a distinct difference regarding the degree of method development and
potential application of the studies approach to provide evidence for the policy cycle. For
instance, studies contributing to the stage knowledge building/problem identification
could be grouped into three classes. Most studies assessed historical changes to identify
problems or to generate knowledge about processes, such as the impact of urban growth on
green space [101]. Other studies developed and implemented specific indicators or indicator
frameworks to assess drivers of change [165]. The third class focused on methodological
issues related to RS application, e.g., important aspects such as accuracies and errors
associated with the RS data input [178]. Such differences in the proximity of studies to the
policy cycle were observed at all stages of the policy cycle.

In a next step, we analysed how far the three categories of policy focus (scientific, pre-
policy and policy-applied articles) differed regarding their potential contribution towards
the policy cycle. As expected, all scientific articles, which are most far from engaging at the
science–policy interface or from contributing evidence for policy, potentially contributed
exclusively towards knowledge building/problem identification (34%). Pre-policy studies
also contributed to the stage of knowledge building/problem identification (47%) as well
as to the stages monitoring and evaluation, policy formulation, and policy implementation
(35%, 13% and 4%, respectively). We found that policy-applied studies contributed either
to one or both stages of knowledge building/problem identification and monitoring and
evaluation.

3.3.3. Integration of RS Data, Products, and Non-RS Data along the Policy Cycle

Studies at the science–policy interface often require input data from different fields and
disciplines. We were therefore interested in investigating the integration of different RS data,
RS products, and ancillary data along the policy cycle, as we assumed that this may provide
insights into the complexity of analyses depending on the level of contribution. We found
that for some specific applications, even one single RS data set was useful for investigating
policy impact, such as using openly available LULC products to investigate policy impact
on forest conservation or grassland degradation, respectively [42,187]. However, most
studies combined one or more RS data and/or existing products with ancillary data to
conduct their analysis (85%; N = 165). When looking at the policy cycle, we found that
science-related studies most often used meteorological data. In the pre-policy studies, the
main application included socioeconomic and administrative/boundary/cadastral, and
population demographic data. Owing to the small number of policy-studies (N = 4), it
is not possible to derive a general picture of data applied for such studies. However, the
studies included administrative/boundary/cadastral, collateral, land use (agriculture),
meteorological, population demographic and socioeconomic data, each included once in a
study. A distinct difference in the inclusion of non-RS data based on the stages of the policy
cycle was not detected.

3.3.4. Potential Policy Areas and Processes of Application

RS was used as the main tool or jointly with other methodological approaches to
investigate concrete policies in 56 articles (i.e., either by monitoring and evaluating the
impact of the policy or policies prior to or after policy implementation or to provide
recommendations for policy implementation), thereby covering a wide range of policies
from diverse policy fields and applying them in different sectors (Figure 9). Mainly, national
policies were investigated at the local or regional scale [44,54,114,133]. Exceptions include
the EU Common Agricultural Policy, which was the focus in several studies [149,167,183].
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The distribution of investigated policies among sectors correlates with the general
frequency of the sectors of focus in the review (e.g., main application of policies in the
sectors settlement, agriculture, and forest). However, within the sectors, policies from
diverse policy fields were investigated. For example, within the sector settlement climate,
eco-environmental, economic, infrastructure, regional development, and urban planning
policies were analysed [44,56,114,118,172,206].

Taking the policy perspective, eco-environmental policies are the main policies in-
vestigated (n = 13; e.g., [34,41,54,83]), followed by agricultural (n = 8; e.g., [183,207]) and
conservation policies (n = 7; e.g., [134,205,211]). Eco-environmental policies cover the
largest number of sectors (i.e., biodiversity and conservation, agriculture, settlement, water
resources, and cross-sectoral). In contrast, agricultural policies are solely investigated
within the agricultural sector (e.g., [32,53,122,149,167,191].

Most studies which incorporated a policy analysis investigated the impact or effec-
tiveness of the policy on a particular aspect of the sector in focus, e.g., Soulis et al. (2020)
investigated the impact of the EU Rural Development Program on irrigation water sav-
ings, and Xu et al. (2017) investigated the effect of desertification policies in agricultural
areas, thereby both targeting the agricultural sector from a different application perspec-
tive [78,207]. Few articles predicted the future impact of policies in the sector of interest or
assessed a specific condition within, e.g., areas of policy implementation (e.g., [136,174]).
For example, two studies concentrating on conservation policies predicted the effect of
protected areas on land use decisions and deforestation [134,211].

These results give insights into the status quo of using RS as a tool to provide evidence
on the impact of policies from diverse policy fields and within various sectors from a
scientific perspective and offer a first indication of the wide applicability of RS for EBP.
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However, complementary input data, such as socioeconomic or interview data, may be
required for ex and post ante policy impact assessments [78].

4. Discussion

In 2010, the application of RS at the science–policy interface had not arrived yet to
its full potential in the scientific discourse [27]. Although more than 10 years have passed
since then, we must conclude that no significant changes have occurred to date. Rather,
exceptions confirm the rule. The number of studies mentioning the potential relevance
of their results or method for policy without providing any further recommendation for
policy is numerous. If at all a main goal of the study, a considerable gap exists between the
outlined options of RS applications at the science–policy interface and the actual discus-
sion of their implementation. Furthermore, studies, which are classified as “pre-policy”,
vary in their quality and level of depth regarding the information they provide for the
policymaking process. Although a fair number of studies aim to evaluate the impact of
policies using RS, only a small number of articles go the next step to provide concrete
recommendations for future policy development, policy (re)formulation, or improved pol-
icy implementation [39,94,109,193]. This is also reflected in the low number of conducted
predictions. To this end, there is a clear preferred contribution towards knowledge build-
ing/problem identification and the analysis of policy impact in peer-reviewed literature,
the latter often in a descriptive manner and from a land use perspective (e.g., [42]).

Correspondingly, a small number of studies in our review set their analysis against
the background of the topic of evidence-based policy (EBP), e.g., by directly contributing
concrete evidence or information to a stage of the policy cycle in the realm of EBP. To
give one example of a study that touches on EBP, Imran et al. (2019) investigated social
inequalities based on access to public service facilities [144]. They specifically mention the
usefulness of spatial aspects of policies for EBP and highlight the value of using RS in this
context. Other articles focus on developing and showing the advantage of using satellite
RS-based indicators for policy monitoring and evaluation and for larger data-scarce regions,
but without specifically addressing EBP or its relevance [223,226]. Hence, the final step of
making evidence relevant for policy, providing future advice regarding the use of RS for
policy or to collaborate with policymakers to inform on the results is still widely missing.

The main policy focus of those studies assessing policies in this review lay on national
and on eco-environmental, agricultural, forest, water, and conversation policies. Few
exemptions concentrated on or mentioned the relevance of their work for larger regions
such as the EU’s CAP or international agreements (e.g., the Paris Agreement or Sustainable
Development Goals). This said, the impacts of national policies were investigated within
the borders of the country in which the policy was implemented, often focusing on a local
to regional impact assessment. An important topic of today’s policymaking that seeks
to achieve sustainable development in a globally interconnected world, but one that is
missing in the reviewed papers, is the assessment of the (potentially negative) impacts of
political decisions and actions outside of our national borders [227].

Although only a low number of policy-applied studies (N = 4) has been published
over the last years, one indication for a successful implementation of RS for policy seems to
be the demand from the user. For instance, two of the policy-applied studies were initiated
or conducted at the government level. The European Union Satellite Center (SatCen),
for example, investigated the application of satellite imagery to explore and report on
cultural heritage damage in areas occupied by the Islamic State of Iraq and the Levant
(ISIL) [158], meaning that there seems to have been a direct demand from the political side
for policy-specific research. Such a political demand may be pivotal to promote research
contributions towards using RS at the science–policy interface and to foster RS application
directly for EBP.

Congruently, a close, continued, and agile collaboration of the science and policy side
to identify user needs and, in some cases, the involvement of other relevant stakeholders
seems key for such endeavours. Di et al. (2017), for example, developed a prototype of a
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decision support tool for flood crop insurance compliance assessment in close collaboration
with the relevant governmental agencies [122]. In Davis et al. (2019), a framework [228]
to determine waterbody-specific criteria for impairment designation was developed in a
joint effort of different stakeholders, including academia, a private non-profit company,
academic research centre as well as governmental administration (The Ohio Environmental
Protection Agency) [123]. A further investigation of the collaboration and the underlying
processes of using or institutionalising RS applications in the political field would therefore
be of interest.

Moving beyond peer-reviewed literature, we will see that applications of RS in the
political field and for EBP exist and cover a variety of policy sectors [19,20]. The aforemen-
tioned Montreal Protocol belongs to one of the early success stories. Other examples include
the EU’s Common Agricultural Policy (CAP), which holds an operational use of RS for the
implementation of EU subsidy policies, and the development of RS-based tools to assist na-
tional and local authorities in crisis situations and with hazard management [228,229]. This
points towards the hypothesis that RS applications contributing directly to the policymak-
ing field manifest rather outside of the scientific literature and field, such as in companies,
intermediary and political organisations, whereas the early RS-based methodological phase
of the work is visible in the peer-reviewed scientific literature.

4.1. Narrowing the Science–Policy Gap: The Policy Cycle from a RS Perspective

Our review shows that researchers attempt to carve out the contribution of their work
for policy, but these attempts are distant from the political application. This does not
mean that their results do not find their way into the political field [230]. Nevertheless,
narrowing the gap between the early phase of RS application development or knowledge
provisioning and the policymaking process may help to move faster towards implementing
RS applications in policy and to accelerate successful EBP.

Although the policy cycle is a simplification of the policy process, and the policy pro-
cess may not always be circular and straightforward, it provides a basis for understanding
how policymaking is organised and at which stage scientific evidence can be integrated into
the policymaking process [231]. By actively considering the policy cycle during the research
process, such as in the phase of research question determination, developing research meth-
ods, and identifying outcomes and goals, it may help to make research more applicable
for the political field. In the following, we briefly outline the possible contributions of RS
along the policy cycle as drawn from the reviewed articles.

4.1.1. Stage Problem Definition/Knowledge Building

The first step in the policy cycle is the identification of a problem and agenda setting.
This stage can be shaped by diverse factors, including the representative institutions them-
selves (e.g., political parties), media, civil-society actors, and through data and evidence
on an issue [232]. RS can provide objective insights into sector-specific and cross-sectoral
trends and processes. Further, it can deliver knowledge on the scale of change and relevant
spatiotemporal relationships of ecosystems and the environment and help to identify ex-
isting or arising problems. Entire monitoring frameworks and tools can be implemented
based on this powerful feature, such as by developing indicators that can measure and
evaluate the process in question (e.g., urban sprawl) [169].

4.1.2. Stage Policy Formulation

During the second stage of the policy cycle, policy options are formulated, and their
potential success in achieving the policy objectives is discussed [233]. Policy models are of-
ten used for policy design, to identify where a policy can best be implemented, to compare
the outcome of alternative policies, or to assess synergies or conflicts between different
policies [233]. The spatiotemporal insights from RS can be a powerful compliment to such
modelling approaches for (e.g., scenario-based) predictions of future policy impact re-
sponses and trajectories. Studies in this review have demonstrated this for different sectoral
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policies, including conservation, eco-environmental, urban planning and development,
water, and climate policies [134,164,168,174,198]. Further, sound modelling approaches
may be particularly interesting to save costs associated with in situ policy pilots, which
may be otherwise necessary. Finally, they can help to better communicate underlying
mechanisms and outcomes of policy options [234].

4.1.3. Stage Policy Implementation

This stage can be observed from different perspectives, as certain policies can also lead
to an indirect demand to use RS for policy implementation. Environmental legislation and
the requirement for liability by affected companies can create a demand for RS application
during this phase. Examples include the necessity of compliance with certain standards,
spatial planning (regulations), and environmental impact assessments (see Leeuw et al.
(2010) for further details). Further, similarly to stage two of the policy cycle, evidence
from RS can be valuable input to formulate advice for policy implementation, such as by
investigating spatiotemporal aspects of policy implementation. This is demonstrated by
a few studies, which used RS for policy monitoring and evaluation and which provided
recommendations for policy implementation based on the result. Recommendations in-
clude, for instance, implementation procedures for land use policies in identified regions of
concern or priority sites for the establishment of conservation areas [52,166].

4.1.4. Stage Monitoring and Evaluation

Important aspects of this stage of the cycle are policy control and evaluation, such as
through monitoring. RS can be useful in providing spatiotemporal patterns and trends
of ecosystems and the environment owing to implemented policy measures and can be a
powerful tool for policy control and compliance [59,122,123]. It can be used to evaluate
policy implementation by investigating environmental impacts, whether the policy measure
has been effective, and the policy goal reached. RS can also contribute to monitoring
compliance with governmental legislation and measures, such as demonstrated in the
context of the EU CAP or the US Federal Water Pollution Control Act of 1972 [115,123,167].
Further, RS data and products can be used for the development of policy-relevant indicators
and indicator frameworks that can help evaluate policy implementation and compliance
more effectively/directly, such as through monitoring green infrastructure for policy-
relevant frameworks [115,123,126,167].

4.2. Topics Gaining Importance for RS at the Science–Policy Interface

The following core areas of focus and improvement are discussed regarding the
application of RS for studies at the science–policy interface.

4.2.1. Ex Post and Ex Ante Policy Assessment

An important player and challenge in promoting sustainable development is the
forecasting, modelling, and scenario-building analysis of policies prior to their implemen-
tation [235,236]. RS can help develop policies that allow for managing our resources at
different spatiotemporal scales. Congruently, predicting policy impact to contribute to-
wards quantitative measurements of policy effectiveness is a pivotal topic mentioned in
some studies [40,42,164], but which showed to be largely missing in the reviewed studies.

Further, articles state the growing necessity for governmental monitoring tools for
ex post policy evaluation and compliance monitoring and demonstrate the application of
RS in this field [167]. For instance, in the agricultural sector, high-resolution data, such
as 1-m Terra Bella or RapidEye imagery, are suggested as inexpensive tools to monitor
crop cultivation for agricultural or environmental policies [137,162]. There is also the call
for increased governmental involvement to support the implementation of monitoring
instruments to observe and protect land and valuable areas [137], which could be used for
ex post policy assessment as well.
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4.2.2. Interdisciplinary Approaches

Studies at the science–policy interface must consider the complexity of sustainable
policies by making use of interdisciplinary assessments [237]. Creating a shared lens across
sectors requires the application of different input layers and methodological approaches.
Although a relatively high number of studies classified as pre-policy discussed their find-
ings, drawing upon answers from different disciplines, analyses often concentrated on
investigating one specific process within a sector, thereby providing concrete evidence in a
unidimensional perspective. Most articles included ancillary data in their studies, but only
a small number developed an interdisciplinary approach by encompassing ancillary data
outside of the purely natural science disciplines, such as by including socioeconomic data
(19%; e.g., [41,163]). A similar picture was found in a recent review paper concentrating on
RS and urban planning by Wellmann et al. (2020) [28]. It is not surprising that there remains
the call for future research to promote interdisciplinary approaches that take into account
the complexity of sustainable development, such as through data (e.g., multi-source data
approaches) and method integration [34,111,151,156].

4.2.3. Methodological Development and Integration

Today, technological advances, such as machine learning and statistical approaches, as
well as on-demand analysis and data storage platforms, provide research with powerful,
diverse prediction and assessment methods [138,182,238,239]. Some studies demonstrate
and state the value of these technological developments, such as the efficiency of cloud
computing platforms for analysis with big data or using high-resolution RS data with deep
learning methods for land use and ecosystem dynamics monitoring [43,169]. However,
only very little studies utilise these approaches for concrete policy assessment [168].

Studies and approaches from scientific fields and policy which already make good
use of these technological advances could serve as an example for scientists aiming to
contribute knowledge towards the policymaking process and evidence about specific
policies [233,238]. RS is already used as input for modelling and forecasting analyses in
several research fields, such as in climate, habitat, or crop prediction models, however,
often not from a political perspective [238,240–242]. Similarly, policy impact assessment is
by now an integral part of national and international politics [233,243,244]. Thus, a stronger
convergence of methods and approaches for specific purposes is crucial, in our case to
promote RS-integrated analyses at the science–policy interface, such as for ex ante policy
impact assessment.

4.2.4. RS Indicators and Proxies for EBP Studies

The development and implementation of RS indicators and proxies to assess environ-
mental conditions and provide corresponding evidence for policy development is still at the
forefront of research. Indicators or proxies for policy analysis are successfully developed,
such as to measure water quality and monitor and evaluate water policies, investigate
the impact of land consolidation projects on the ecological environmental quality or to
measure urban liveability [38,39,165,226]. However, often their final applicability for policy
remains a discussion. Finally, the necessity for indicator frameworks is discussed as a
means of a common language among stakeholders from different fields and to promote
interdisciplinary processes [212].

4.2.5. Emerging Sectoral Topics

Our results show that studies tended to focus on the “traditional” topics of RS analysis,
above all on LULC processes in the settlement, forest, agriculture, and water sectors. In
the future, we can expect a shift or expansion to new, more complex, interdisciplinary
topics, especially to social matters, disaster and risk management, and biodiversity in a
wider context, enabled by the emerging methodological possibilities due to growing RS
capacity and technological advances, as described in the previous section (Section 4.2.3).
For instance, Imran et al. (2019) mentioned the use of RS for research targeting public health,
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in particular in relation to future climate change impacts and health equality [144]. Further,
the possibility to use RS to develop policy frameworks with integrated location-based
vulnerability approaches in disaster and risk management is mentioned [142]. Christensen
and Arsanjani (2020) suggest taking advantage of LULC model simulations to evaluate
the effectiveness of protected areas and to identify challenges and conflicts for the sector
biodiversity and conservation [164].

Nevertheless, studies which investigated LULC processes often discussed important
sectoral topics that have been extensively addressed by the science community, but for
which the need to improve and implement interdisciplinary approaches is mentioned. To
provide one example, several studies focusing on the sector forest, highlight RS for REDD+
implementation and call for more accurate methods for REDD+ compensation, carbon
storage evaluation, and an analysis of drivers, such as from policy and socioeconomics, to
better understand deforestation trends [136,136,141].

4.3. RS Requirements at the Science–Policy Interface

Several requirements mentioned in the reviewed studies will need further considera-
tion to make use of the full capacity of applying RS at the science–policy interface.

4.3.1. Data Availability and Quality

Long term continuous data sets form the basis for the analysis of change trajecto-
ries. These are especially useful when impacts of policies need to be monitored or when
knowledge about change trajectories is required. Yet, despite the availability of open access
data, the problem of good quality data and data coverage remains an important discussion
regarding different regions and topics [151,169]. In several policy sectors, there exists a call
for spatially high-resolution data as input for, e.g., modelling approaches for environmental
assessment [99,177]. This requirement is mentioned for instance for crop identification in
the realm of agricultural policies, for modelling past and future forest dynamics to evaluate
policy measures, to provide fine-scale spatial maps of water quality for policy-related water
management questions, and to assess different urban sprawl indicators to investigate urban
agglomerations and their urban sprawl typologies in relation to different driving factors,
including economic policies [99,138,151]. Higher temporal resolutions are mentioned to
assess and monitor sectoral processes, such as to investigate total suspended solids (TSS)
from dredging activities in coastal regions to inform on water quality for environmental
policies [151]. The requirement for high-resolution data is also indicated by the frequency
of RS platforms used in the review, with a high number of studies using national optical
higher resolution satellite data for their approaches. Higher spatiotemporal resolution data
will become increasingly available as existing platforms such as Sentinel cover required
periods and the capacity of new sensors and geostationary sensors/satellites grows [151].
Nevertheless, RS application and monitoring length depend on the type of policy measure,
meaning on the dynamics of policy implementation and impacts [138], all of which must be
taken into account for effective policymaking [245]. Finally, in certain instances, the RS data
may exist, but the according ancillary data may not be available. This issue is mentioned,
for example, for forest inventory data to quantify carbon stocks and emissions, and for local
demographic data needed to implement the two SDG indicators 11.1.1 and 11.3.1 [130].

4.3.2. Product Requirements and Consensus on Definitions

For certain policy goals and measures, data may require new classifications. For
instance, LULC maps may require refinement to “better” represent specific topics and
sectors and to improve the analysis of certain processes. Cao et al. (2017), for example,
reclassified LULC maps to better represent the ecology–productive–living land in Chinese
urban agglomerations and to investigate driving factors of trajectories [33]. Such informa-
tion and reclassification, however, may be best implemented by consulting policymakers
to match their requirements, thereby making evidence and information provided by such
new classifications valuable for policy and the decision-making process [246].
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Further, consensus on definitions is mentioned as an issue related to some topics and
processes. For instance, the varying definitions of the term “forest” in different countries
is still not entirely tackled and the necessity to solve this issue remains highlighted by
Estoque et al. (2018) [171]. They further mention that, particularly, policymakers should
be aware of the different definitions and their limitations. Researchers should provide
according references, such as by including accuracies (classification errors), when providing
information on forest cover change [171]. In addition, the definition of thresholds used for
indices, such as NDVI, is dependent on the process investigated, the locality, and in situ
validation. Therefore, predictions based on these indices and specific threshold should be
evaluated before using them for policy [169].

4.3.3. Ground Truth and Field Data

Ground truth data are important components of RS approaches owing to their rele-
vance for RS data calibration and interpretation, and they remain a pivotal gap for diverse
applications [162,167]. Good ground truth and field data can help reduce current known
sources of error in predictions and provide more reliable and better means of evaluation
of policy programs [162]. Therefore, there is a call for long-term in situ programs and
validation data [123]. However, today, alternative modes of accessing ground truth data are
also available and increasing, including the potential of using crowdsourcing applications
(e.g., Google Street View) to gain access to necessary information for evaluation [167].

4.3.4. Accounting for Scale

Related to the problem of data quality and availability is the challenge to account
for spatiotemporal patterns while implementing interdisciplinary approaches [246]. The
necessity to account for scale touches upon several topics, such as the spatial scale of
analysis while using RS data, indices, and products at global, national, or regional levels,
and depending on the processes and disciplines observed. The question of the appropriate
scale is discussed frequently for forest policies. For example, Allen and Vásquez (2017)
argue that using forest cover as a proxy for investigating conservation efficiency may
be insufficient when investigating drivers at the parcel level [156]. Brovelli et al. (2020),
however, highlight the necessity to adapt the monitoring period to the policy in question,
thereby stating that shorter monitoring periods may be more useful for forest preservation
policies that rely on short-term results, whereas longer periods benefit policies that are slow
in implementation [138].

5. Conclusions

RS is one of the most powerful tools to provide objective and robust evidence for
various processes. It delivers valuable insights into spatiotemporal dynamics of ecosystems
and our environment at various scales, some of which are partially impossible to track
from the ground, and it can help us to understand relationships. Most importantly for
EBP, RS can support policymaking throughout all stages of the policy cycle and in diverse
policy sectors as found in this review. To this end, RS provides a comprehensive source for
multidisciplinary and diverse research fields and policy applications [247].

However, we found that there remains a gap between science-driven evidence, which
is (either mainly or partially) based on RS, and the political field. RS is particularly useful
(and mostly used) for stage one of the policy cycle—problem identification/knowledge
building—and only rudimentary for the other stages policy formulation and policy imple-
mentation, while some more examples exist for monitoring and evaluation. Congruently,
evidence or recommendations targeted for policy and joint ventures with the political field
are still widely missing. Indicators or proxies for policy analysis are successfully developed,
but often, their final applicability for policy remains a discussion. In addition, few studies
developed an interdisciplinary approach, such as to include a multidimensional perspec-
tive. Concerning investigated policies, studies focused mainly on national policies within a
nation’s border, whereas assessments of transnational policies and treaties as well as the
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(potentially negative) impacts of political decisions and actions outside of national borders
are scarce. Accordingly, studies should be promoted that aim at implementing forecasting,
modelling, and scenario-building analysis of policies prior to their implementation as well
as ex post policy assessments [164]. Here, policy could play a driving role to support and
implement monitoring tools [137]. Further, future research that considers the complexity of
sustainable development by means of interdisciplinary approaches is needed. To promote
the latter, indicator frameworks could serve as a common language among stakeholders
from different fields [212].

Our review also underlines the assumption that RS applications already contributing
directly to the policymaking field manifest rather outside of the peer-reviewed literature,
such as in intermediary and government-close organisations. Past scientific contributions
are the heritage of today’s more operationally geared satellite missions, and we can expect
to see some of the applications or explorative studies found in this review or peer-reviewed
literature, which we may not have captured, to become at least part of the applications of
tomorrow. In the future, we may see an accelerated integration of RS in policy owing to
the increasing recognition of the economic viability and contribution of RS to national and
global challenges [19,20]. In addition, efforts of intermediary organisation, such as ESA,
and relevant programmes, such as the European Union’s Earth Observation Programme
Copernicus in Europe, are increasingly driving applications at the science–policy interface
and are promoting downstream uptake of RS in diverse sectors and markets. Current
developments, such as the EU’s Destination Earth (DestinE) System with the Digital Twins,
which will leverage RS data and the potentials of AI, are promising new tools to unlock
the potentials of EBP, particularly for the stages policy formulation, implementation, and
monitoring of the policy cycle in the near future [247]. Together with the growing RS
capacity, e.g., an increasing availability of a variety of RS data and time series, and political
demand for robust and objective management tools, we can expect an expansion in the use
of RS to new, more interdisciplinary topics at both national and international levels, such
as in the health sector (e.g., epidemiology, air-quality), disaster and risk management, to
support new energy solutions, and for biodiversity monitoring in a wider context [248].
These developments will also strengthen the application of RS for global treaties, such as
the Paris Agreement and the Agenda 2030. The use of RS for meteorological services is
well established. However, considering the disputed political impact of global endeavours
concerning climate change and sustainable development, such as the Paris Agreement
and the UN SDGs, new pathways and tools are required to allow for their success. With
the technological advances and methodological integrations, RS can play a pivotal role in
boosting the success of these treaties, such as by supporting the implementation of climate
mitigation and adaptation policies at the national level and monitoring the overall success
at the international level. Similarly, studies have already highlighted the substantial and
potential contribution that RS could have to monitor a wide range of SDG indicators [249].
Today, initiatives, such as the Earth Observations for the Sustainable Development Goals
(EO4SDG) initiative from the Group on Earth Observations (GEO), aim to present and
realise the benefits of RS for the SDGs, such as by presenting national experiences and good
practices, including case studies, which will help to foster the integration of RS for the SDG
process.

Nevertheless, pivotal for the success of these endeavours and to integrate RS in policy
is the active support by the Earth observation and statistical community. Particularly, the
science field can be a motor of new developments, such as regarding new methodological
approaches, and to showcase applications. We would thus like to conclude with a few
suggestions on how to close the gap between scientific RS research and the use of its results
for policy, which may help to accelerate the use of RS at the science–policy interface. To
start with, more targeted evidence for the political field is needed by acknowledging the
complexity of political decision making and policy measures. More vigorously making
use of today’s technological advances and interdisciplinary approaches will be required.
Developing nexus approaches at the science–policy interface could be a way to foster the use



Remote Sens. 2023, 15, 940 22 of 32

of RS for policy and assist in elevating policy coherence and sustainable development across
sectors [250]. At the same time, communicating and promoting the limitations and strengths
of using RS in policy-related analysis is desirable. For evidence to find its way into the
political field, researchers must invest time in understanding the needs of the users of their
work. This includes developing their research goal and methodological approaches through
user-specific consultation, and understanding at which stage of the policy process their
evidence could be most valuable (as well as accepted) [10,237]. Accordingly, investigating
existing collaborations and the underlying processes of using or institutionalising RS
applications in the political field would be of interest.

On the other hand, the political field should also take a more active role in either
providing themselves or pushing towards an effective monitoring and evaluation of policy
interventions to overcome the policy-driven focus on monitoring and evaluation of states
and trends [251]. Likewise, it is important that the policy field understands the usability
and limitations of the RS-based evidence provided, for instance, that the spatiotemporal
availability of the RS data, products and model output must match with the scale of the
policy goal, measures, and resulting process in question [246]. Such knowledge develop-
ment on both sides of the science–policy interface would help both the science and policy
field to better identify criteria and necessary formats for evidence. Together, with better
communication and co-production along the science–policy interface, this could help foster
the integration of RS applications in the policy field.

These are some insights from the scientific perspective to pave the way for better
collaboration between science and policy and more targeted research questions to improve
the uptake of evidence at the science–policy interface.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15040940/s1, Figure S1: Remote sensing platforms utilised
across all reviewed articles; Figure S2: Existing remote sensing products used in all reviewed articles.
Products occurring below 2% were removed; Figure S3: Additional data utilised across all reviewed
articles. Occurrences below 5% were removed.

Author Contributions: Conceptualization, A.B. and D.K.; data curation, A.B. and J.R.; writing—
original draft preparation, A.B.; writing—review and editing, A.B., D.K., T.K. and M.T.; visualization,
A.B.; supervision, D.K. and S.D. All authors have read and agreed to the published version of the
manuscript.

Funding: The authors acknowledge the support from the German Federal Ministry for Education
and Research (BMBF) via the project carrier at the German Aerospace Center (DLR Projektträger)
through the research project: WASCAL-DE-Coop (FKZ: 01LG1808A). This publication was supported
by the Open Access Publication Fund of the University of Wuerzburg.

Data Availability Statement: All data can be accessed via the articles of this review. Articles can
be downloaded as described in our Materials and Methods section (literature search using Web of
Science (WoS) Core Collection).

Acknowledgments: We would like to thank four anonymous reviewers for their valuable comments.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper. The
funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in
the writing of the manuscript; or in the decision to publish the results.

References
1. Sutcliffe, S.; Court, J. Toolkit for Progressive Policymakers in Developing Countries; Overseas Development Institute: London, UK, 2006.
2. Davies, P. The State of Evidence-Based Policy Evaluation and its Role in Policy Formation. Natl. Inst. Econ. Rev. 2012, 219,

R41–R52. [CrossRef]
3. OECD (Ed.) Better Policies for Sustainable Development 2016: A New Framework for Policy Coherence; OECD Publishing: Paris,

France, 2016.
4. Baron, J. A Brief History of Evidence-Based Policy. Ann. Am. Acad. Politi- Soc. Sci. 2018, 678, 40–508. [CrossRef]
5. Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [CrossRef]

https://www.mdpi.com/article/10.3390/rs15040940/s1
https://www.mdpi.com/article/10.3390/rs15040940/s1
http://doi.org/10.1177/002795011221900105
http://doi.org/10.1177/0002716218763128
http://doi.org/10.1126/science.1248365


Remote Sens. 2023, 15, 940 23 of 32

6. UNFCCC. Paris Agreement; UNFCCC: Bonn, Germany, 2015.
7. Transforming our World: The 2030 Agenda for Sustainable Development A/RES/70/1; United Nations: New York, NY, USA, 2015.
8. Scientific Advisory Board. Science for Sustainable Development: Science for Sustainable Development: Policy Brief by Policy

Brief the Scientific Advisory Board of the UN Secretary-General. 2016. Available online: http://unesdoc.unesco.org/images/00
24/002461/246105E.pdf (accessed on 22 September 2022).

9. Listorti, G.; Basyte-Ferrari, E.; Acs, S.; Smits, P. Towards an Evidence-Based and Integrated Policy Cycle in the EU: A Review of
the Debate on the Better Regulation Agenda. JCMS: J. Common Mark. Stud. 2020, 58, 1558–1577. [CrossRef]

10. Oliver, K.; Lorenc, T.; Innvær, S. New directions in evidence-based policy research: A critical analysis of the literature. Health Res.
Policy Syst. 2014, 12, 34. [CrossRef] [PubMed]

11. EPA. EPA Resource Kit: Bridging the Gap between Science and Policy: BRIDGE: Good Practice Guide for Science-Policy Communication;
EPA 132: Wexford, Irland, 2014.

12. HM Treasury. The Green Book: Central Government Guidance on Appraisal and Evaluation; HM Treasury: London, UK, 2018. Available
online: www.gov.uk/government/publications (accessed on accessed on 3 May 2020).

13. Muller, P.; Conlon, G.; Devnani, S.; Bénard, C. (Eds.) Performance-based Full Policy Cycle for Digital Single Market; European
Parliament: Brussels, Belgium, 2013.

14. Hartley, K.; Vu, M.K. Fighting fake news in the COVID-19 era: Policy insights from an equilibrium model. Policy Sci. 2020, 53,
735–758. [CrossRef]

15. Head, B. Chapter 2 Evidence-Based Policy: Principles and Requirements—Volume 1: Proceedings—Strengthening Evidence-based Policy in
the Australian Federation—Roundtable Proceedings; Productivity Commission: Canberra, Australia, 2010.

16. Horning, N.; Robinson, J.A.; Sterling, E.J.; Turner, W.; Spector, S. Remote Sensing for Ecology and Conservation: A Handbook of
Techniques; Oxford University Press: Oxford, UK, 2010.

17. Lean, K.; Bormann, N.; Healy, S.; English, S. Final Report: Study to Assess Earth Observation with Small Satellites and Their
Prospects for Future Global Numerical Weather Prediction. Available online: https://www.ecmwf.int/node/20513 (accessed on
26 January 2023).

18. ECMWF. Annual Report 2021; ECMWF: Reading, UK, 2021.
19. European Commission. Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, “Copernicus Market Report—

February 2019”; Publications Office of the European Union: Luxembourg, 2019.
20. European Union Agency for the Space Programme. EUSPA EO and GNSS Market Report Issue 1; European Union Agency:

Luxembourg, 2022.
21. Szantoi, Z.; Geller, G.N.; Tsendbazar, N.-E.; See, L.; Griffiths, P.; Fritz, S.; Gong, P.; Herold, M.; Mora, B.; Obregón, A. Addressing

the need for improved land cover map products for policy support. Environ. Sci. Policy 2020, 112, 28–35. [CrossRef]
22. Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop

Mapping: A Case Study for Belgium. Remote Sens. 2018, 10, 1642. [CrossRef]
23. World Meteorological Organization (WMO). Executive Summary. Scientific Assessment of Ozone Depletion: 2022; WMO: Geneva,

Switzerland, 2022.
24. Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.;

Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [CrossRef]
25. López-Andreu, F.J.; López-Morales, J.A.; Erena, M.; Skarmeta, A.F.; Martínez, J.A. Monitoring System for the Management of the

Common Agricultural Policy Using Machine Learning and Remote Sensing. Electronics 2022, 11, 325. [CrossRef]
26. Regulation (EU) No 1306/2013 of the European Parliament and of the Council of 17 December 2013 on the financing, management

and monitoring of the common agricultural policy and repealing Council Regulations (EEC) No 352/78, (EC) No 165/94, (EC)
No 2799/98, (EC) No 814/2000, (EC) No 1290/2005 and (EC) No 485/2008. Off. J. Eur. Union 2013, 1306, 549–607.

27. De Leeuw, J.; Georgiadou, Y.; Kerle, N.; De Gier, A.; Inoue, Y.; Ferwerda, J.; Smies, M.; Narantuya, D. The Function of Remote
Sensing in Support of Environmental Policy. Remote Sens. 2010, 2, 1731–1750. [CrossRef]

28. Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Scheuer, S.; Kremer, P.; Mascarenhas, A.;
Kraemer, R.; et al. Remote sensing in urban planning: Contributions towards ecologically sound policies? Landsc. Urban
Plan. 2020, 204, 103921. [CrossRef]

29. United Nations Environment Programme. Emissions Gap Report 2020; United Nations Environment Programme: Nairobi, Kenya,
2020.

30. Direction Générale de l’Environnement et du Climat (Benin). Contribution Déterminées au Niveau National Actualisee du Benin
au Titre de L’accord de Paris: Document Final; Republic of Benin. 2021.

31. Republic of Togo. Intended Nationally Determined Contribution (INDC) within the Framework of the United Nations Framework
Convention on Climate Change (UNFCCC); Togo. 2015.

32. Yurui, L.; Yi, L.; Pengcan, F.; Hualou, L. Impacts of land consolidation on rural human–environment system in typical watershed
of the Loess Plateau and implications for rural development policy. Land Use Policy 2019, 86, 339–350. [CrossRef]

33. Cao, S.; Hu, D.; Zhao, W.; Mo, Y.; Chen, S. Monitoring Spatial Patterns and Changes of Ecology, Production, and Living Land
in Chinese Urban Agglomerations: 35 Years after Reform and Opening Up, Where, How and Why? Sustainability 2017, 9, 766.
[CrossRef]

http://unesdoc.unesco.org/images/0024/002461/246105E.pdf
http://unesdoc.unesco.org/images/0024/002461/246105E.pdf
http://doi.org/10.1111/jcms.13053
http://doi.org/10.1186/1478-4505-12-34
http://www.ncbi.nlm.nih.gov/pubmed/25023520
www.gov.uk/government/publications
http://doi.org/10.1007/s11077-020-09405-z
https://www.ecmwf.int/node/20513
http://doi.org/10.1016/j.envsci.2020.04.005
http://doi.org/10.3390/rs10101642
http://doi.org/10.1016/j.rse.2022.113195
http://doi.org/10.3390/electronics11030325
http://doi.org/10.3390/rs2071731
http://doi.org/10.1016/j.landurbplan.2020.103921
http://doi.org/10.1016/j.landusepol.2019.04.026.S
http://doi.org/10.3390/su9050766


Remote Sens. 2023, 15, 940 24 of 32

34. Dai, Y.; Feng, L.; Hou, X.; Choi, C.Y.; Liu, J.; Cai, X.; Shi, L.; Zhang, Y.; Gibson, L. Policy-driven changes in enclosure fisheries of
large lakes in the Yangtze Plain: Evidence from satellite imagery. Sci. Total. Environ. 2019, 688, 1286–1297. [CrossRef]

35. Duan, H.; Wang, T.; Xue, X.; Yan, C. Dynamic monitoring of aeolian desertification based on multiple indicators in Horqin Sandy
Land, China. Sci. Total. Environ. 2018, 650, 2374–2388. [CrossRef]

36. El-Tantawi, A.M.; Bao, A.; Chang, C.; Liu, Y. Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin,
Xinjiang-China (1990–2030). Environ. Monit. Assess. 2019, 191, 480. [CrossRef]

37. Filonchyk, M.; Hurynovich, V.; Yan, H.; Gusev, A.; Shpilevskaya, N. Impact Assessment of COVID-19 on Variations of SO2, NO2,
CO and AOD over East China. Aerosol Air Qual. Res. 2020, 20, 1530–1540. [CrossRef]

38. Fu, B.; Yu, D.; Zhang, Y. The livable urban landscape: GIS and remote sensing extracted land use assessment for urban livability
in Changchun Proper, China. Land Use Policy 2019, 87, 104048. [CrossRef]

39. Guo, B.; Fang, Y.; Jin, X.; Zhou, Y. Monitoring the effects of land consolidation on the ecological environmental quality based on
remote sensing: A case study of Chaohu Lake Basin, China. Land Use Policy 2020, 95, 104569. [CrossRef]

40. Hasan, S.; Shi, W.; Zhu, X.; Abbas, S. Monitoring of Land Use/Land Cover and Socioeconomic Changes in South China over the
Last Three Decades Using Landsat and Nighttime Light Data. Remote Sens. 2019, 11, 1658. [CrossRef]

41. Hou, K.; Li, X.; Wang, J.J.; Zhang, J. An analysis of the impact on land use and ecological vulnerability of the policy of returning
farmland to forest in Yan’an, China. Environ. Sci. Pollut. Res. 2015, 23, 4670–4680. [CrossRef]

42. Hu, Y.; Nacun, B. An Analysis of Land-Use Change and Grassland Degradation from a Policy Perspective in Inner Mongolia,
China, 1990–2015. Sustainability 2018, 10, 4048. [CrossRef]

43. Huang, X.; Han, X.; Ma, S.; Lin, T.; Gong, J. Monitoring ecosystem service change in the City of Shenzhen by the use of
high-resolution remotely sensed imagery and deep learning. Land Degrad. Dev. 2019, 30, 1490–1501. [CrossRef]

44. Kuang, W. National urban land-use/cover change since the beginning of the 21st century and its policy implications in China.
Land Use Policy 2020, 97, 104747. [CrossRef]

45. Lei, G.; Li, A.; Zhang, Z.; Bian, J.; Hu, G.; Wang, C.; Nan, X.; Wang, J.; Tan, J.; Liao, X. The Quantitative Estimation of Grazing
Intensity on the Zoige Plateau Based on the Space-Air-Ground Integrated Monitoring Technology. Remote Sens. 2020, 12, 1399.
[CrossRef]

46. Li, F.; Ding, D.; Chen, Z.; Chen, H.; Shen, T.; Wu, Q.; Zhang, C. Change of sea reclamation and the sea-use management policy
system in China. Mar. Policy 2020, 115, 103861. [CrossRef]

47. Li, H.; Wang, C.; Huang, X.; Hug, A. Spatial Assessment of Water Quality with Urbanization in 2007–2015, Shanghai, China.
Remote Sens. 2018, 10, 1024. [CrossRef]

48. Li, H.; Mao, D.; Li, X.; Wang, Z.; Wang, C. Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using
Landsat Time Series. Remote Sens. 2019, 11, 343. [CrossRef]

49. Li, N.; Yan, C.Z.; Xie, J.L. Remote sensing monitoring recent rapid increase of coal mining activity of an important energy base in
northern China, a case study of Mu Us Sandy Land. Resour. Conserv. Recycl. 2015, 94, 129–135. [CrossRef]

50. Li, S.; Wang, T.; Yan, C. Assessing the Role of Policies on Land-Use/Cover Change from 1965 to 2015 in the Mu Us Sandy Land,
Northern China. Sustainability 2017, 9, 1164. [CrossRef]

51. Li, S.; Zhang, Z.; Wang, T.; Yan, C.; Du, H. Oasis Functional Stability Evaluation Based on Multiple Indicators, Northwest China.
Acta Geol. Sin. 2020, 94, 624–636. [CrossRef]

52. Li, Y.; Li, Y.; Karácsonyi, D.; Liu, Z.; Wang, Y.; Wang, J. Spatio-temporal pattern and driving forces of construction land change in
a poverty-stricken county of China and implications for poverty-alleviation-oriented land use policies. Land Use Policy 2019, 91,
104267. [CrossRef]

53. Lin, L.; Jia, H.; Pan, Y.; Qiu, L.; Gan, M.; Lu, S.; Deng, J.; Yu, Z.; Wang, K. Exploring the Patterns and Mechanisms of Reclaimed
Arable Land Utilization under the Requisition-Compensation Balance Policy in Wenzhou, China. Sustainability 2017, 10, 75.
[CrossRef]

54. Liu, M.; Dries, L.; Huang, J.; Min, S.; Tang, J. The impacts of the eco-environmental policy on grassland degradation and livestock
production in Inner Mongolia, China: An empirical analysis based on the simultaneous equation model. Land Use Policy 2019, 88,
104167. [CrossRef]

55. Liu, M.; Li, H.; Li, L.; Man, W.; Jia, M.; Wang, Z.; Lu, C. Monitoring the Invasion of Spartina alterniflora Using Multi-source
High-resolution Imagery in the Zhangjiang Estuary, China. Remote Sens. 2017, 9, 539. [CrossRef]

56. Liu, W.; Liu, J.; Kuang, W.; Ning, J. Examining the influence of the implementation of Major Function-oriented Zones on built-up
area expansion in China. J. Geogr. Sci. 2017, 27, 643–660. [CrossRef]

57. Luo, K.; Li, G.; Fang, C.; Sun, S. PM2.5 mitigation in China: Socioeconomic determinants of concentrations and differential control
policies. J. Environ. Manag. 2018, 213, 47–55. [CrossRef]

58. Luo, K.; Li, B.; Moiwo, J.P. Monitoring Land-Use/Land-Cover Changes at a Provincial Large Scale Using an Object-Oriented
Technique and Medium-Resolution Remote-Sensing Images. Remote Sens. 2018, 10, 2012. [CrossRef]

59. Ma, Z.; Liu, R.; Liu, Y.; Bi, J. Effects of air pollution control policies on PM2.5 pollution improvement in China from 2005 to 2017:
A satellite-based perspective. Atmos. Chem. Phys. 2019, 19, 6861–6877. [CrossRef]

60. Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting
impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2019.06.179
http://doi.org/10.1016/j.scitotenv.2018.09.374
http://doi.org/10.1007/s10661-019-7478-0
http://doi.org/10.4209/aaqr.2020.05.0226
http://doi.org/10.1016/j.landusepol.2019.104048
http://doi.org/10.1016/j.landusepol.2020.104569
http://doi.org/10.3390/rs11141658
http://doi.org/10.1007/s11356-015-5679-9
http://doi.org/10.3390/su10114048
http://doi.org/10.1002/ldr.3337
http://doi.org/10.1016/j.landusepol.2020.104747
http://doi.org/10.3390/rs12091399
http://doi.org/10.1016/j.marpol.2020.103861
http://doi.org/10.3390/rs10071024
http://doi.org/10.3390/rs11030343
http://doi.org/10.1016/j.resconrec.2014.11.010
http://doi.org/10.3390/su9071164
http://doi.org/10.1111/1755-6724.14535
http://doi.org/10.1016/j.landusepol.2019.104267
http://doi.org/10.3390/su10010075
http://doi.org/10.1016/j.landusepol.2019.104167
http://doi.org/10.3390/rs9060539
http://doi.org/10.1007/s11442-017-1398-0
http://doi.org/10.1016/j.jenvman.2018.02.044
http://doi.org/10.3390/rs10122012
http://doi.org/10.5194/acp-19-6861-2019
http://doi.org/10.1016/j.jclepro.2019.117961


Remote Sens. 2023, 15, 940 25 of 32

61. Meng, L.; Dong, J. LUCC and Ecosystem Service Value Assessment for Wetlands: A Case Study in Nansi Lake, China. Water 2019,
11, 1597. [CrossRef]

62. Mu, B.; Mayer, A.L.; He, R.; Tian, G. Land use dynamics and policy implications in Central China: A case study of Zhengzhou.
Cities 2016, 58, 39–49. [CrossRef]

63. Qu, L.; Chen, Z.; Li, M. CART-RF Classification with Multifilter for Monitoring Land Use Changes Based on MODIS Time-Series
Data: A Case Study from Jiangsu Province, China. Sustainability 2019, 11, 5657. [CrossRef]

64. Shao, J.; Zhang, S.; Li, X. Farmland marginalization in the mountainous areas: Characteristics, influencing factors and policy
implications. J. Geogr. Sci. 2015, 25, 701–722. [CrossRef]

65. Shen, Y.; Shen, H.; Cheng, Q.; Huang, L.; Zhang, L. Monitoring Three-Decade Expansion of China’s Major Cities Based on Satellite
Remote Sensing Images. Remote Sens. 2020, 12, 491. [CrossRef]

66. Shrestha, B.; Ye, Q.; Khadka, N. Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the
Transboundary Karnali River Basin, Central Himalayas. Sustainability 2019, 11, 3183. [CrossRef]

67. Song, W.; Zhang, Y. Expansion of agricultural oasis in the Heihe River Basin of China: Patterns, reasons and policy implications.
Phys. Chem. Earth 2015, 89–90, 46–55. [CrossRef]

68. Sun, T.; Lin, W.; Chen, G.; Guo, P.; Zeng, Y. Wetland ecosystem health assessment through integrating remote sensing and
inventory data with an assessment model for the Hangzhou Bay, China. Sci. Total Environ. 2016, 566–567, 627–640. [CrossRef]

69. Wang, K.; Wang, W.; Wang, W.; Jiang, X.; Yu, T.; Ciren, P. Spatial Assessment of Health Economic Losses from Exposure to
Ambient Pollutants in China. Remote Sens. 2020, 12, 790. [CrossRef]

70. Wang, S.; Zhang, X.; Wu, T.; Yang, Y. The evolution of landscape ecological security in Beijing under the influence of different
policies in recent decades. Sci. Total Environ. 2018, 646, 49–57. [CrossRef]

71. Wang, S.; Zeng, J.; Huang, Y.; Shi, C.; Zhan, P. The effects of urbanization on CO2 emissions in the Pearl River Delta: A
comprehensive assessment and panel data analysis. Appl. Energy 2018, 228, 1693–1706. [CrossRef]

72. Wang, Y.; Peng, D.; Yu, L.; Zhang, Y.; Yin, J.; Zhou, L.; Zheng, S.; Wang, F.; Li, C. Monitoring Crop Growth During the Period of
the Rapid Spread of COVID-19 in China by Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6195–6205.
[CrossRef] [PubMed]

73. Wang, Z.; Yang, Z.; Shi, H.; Han, F.; Liu, Q.; Qi, J.; Lu, Y. Ecosystem Health Assessment of World Natural Heritage Sites Based on
Remote Sensing and Field Sampling Verification: Bayanbulak as Case Study. Sustainability 2020, 12, 2610. [CrossRef]

74. Wen, Y.; Zhang, Z.; Liang, D.; Xu, Z. Rural Residential Land Transition in the Beijing-Tianjin-Hebei Region: Spatial-Temporal
Patterns and Policy Implications. Land Use Policy 2020, 96, 104700. [CrossRef]

75. Wu, N.; Liu, A.; Wang, Y.; Li, L.; Chao, L.; Liu, G. An Assessment Framework for Grassland Ecosystem Health with Consideration
of Natural Succession: A Case Study in Bayinxile, China. Sustainability 2019, 11, 1096. [CrossRef]

76. Xiao, Y.; Xiong, Q.; Pan, K. What Is Left for Our Next Generation? Integrating Ecosystem Services into Regional Policy Planning
in the Three Gorges Reservoir Area of China. Sustainability 2018, 11, 3. [CrossRef]

77. Xin, Z.; Li, C.; Liu, H.; Shang, H.; Ye, L.; Li, Y.; Zhang, C. Evaluation of Temporal and Spatial Ecosystem Services in Dalian, China:
Implications for Urban Planning. Sustainability 2018, 10, 1247. [CrossRef]

78. Xu, D.; Song, A.; Song, X. Assessing the effect of desertification controlling projects and policies in northern Shaanxi Province,
China by integrating remote sensing and farmer investigation data. Front. Earth Sci. 2016, 11, 689–701. [CrossRef]

79. Xu, K.; Wang, J.; Wang, J.; Wang, X.; Chi, Y.; Zhang, X. Environmental function zoning for spatially differentiated environmental
policies in China. J. Environ. Manag. 2019, 255, 109485. [CrossRef]

80. Xue, X.; Liao, J.; Hsing, Y.; Huang, C.; Liu, F. Policies, Land Use, and Water Resource Management in an Arid Oasis Ecosystem.
Environ. Manag. 2015, 55, 1036–1051. [CrossRef] [PubMed]

81. You, H. Orienting rocky desertification towards sustainable land use: An advanced remote sensing tool to guide the conservation
policy. Land Use Policy 2017, 61, 171–184. [CrossRef]

82. Zhai, J.; Liu, Y.; Hou, P.; Xiao, T.; Cao, G. Water Conservation Service Assessment and Its Spatiotemporal Features in National Key
Ecological Function Zones. Adv. Meteorol. 2016, 2016, 1–11. [CrossRef]

83. Zhang, D.; Jia, Q.; Xu, X.; Yao, S.; Chen, H.; Hou, X. Contribution of ecological policies to vegetation restoration: A case study
from Wuqi County in Shaanxi Province, China. Land Use Policy 2018, 73, 400–411. [CrossRef]

84. Zhang, F.; Kung, H.-T.; Johnson, V.C. Assessment of Land-Cover/Land-Use Change and Landscape Patterns in the Two National
Nature Reserves of Ebinur Lake Watershed, Xinjiang, China. Sustainability 2017, 9, 724. [CrossRef]

85. Zhang, Y.; Li, Q.; Wang, H.; Du, X.; Huang, H. Community scale livability evaluation integrating remote sensing, surface
observation and geospatial big data. Int. J. Appl. Earth Obs. Geoinformation 2019, 80, 173–186. [CrossRef]

86. Zhang, Z.; Ke, C. Monitoring and analysis of changes in a wetland landscape in Xingzi county. Earth Sci. Informatics 2015, 9, 35–45.
[CrossRef]

87. Zhang, Z.; Wen, Q.; Liu, F.; Zhao, X.; Liu, B.; Xu, J.; Yi, L.; Hu, S.; Wang, X.; Zuo, L.; et al. Urban expansion in China and its effect
on cultivated land before and after initiating “Reform and Open Policy”. Sci. China Earth Sci. 2016, 59, 1930–1945. [CrossRef]

88. Zhao, J.; Ding, F.; Wang, Z.; Ren, J.; Zhao, J.; Wang, Y.; Tang, X.; Wang, Y.; Yao, J.; Li, Q. A Rapid Public Health Needs Assessment
Framework for after Major Earthquakes Using High-Resolution Satellite Imagery. Int. J. Environ. Res. Public Health 2018, 15, 1111.
[CrossRef] [PubMed]

http://doi.org/10.3390/w11081597
http://doi.org/10.1016/j.cities.2016.05.012
http://doi.org/10.3390/su11205657
http://doi.org/10.1007/s11442-015-1197-4
http://doi.org/10.3390/rs12030491
http://doi.org/10.3390/su11113183
http://doi.org/10.1016/j.pce.2015.08.006
http://doi.org/10.1016/j.scitotenv.2016.05.028
http://doi.org/10.3390/rs12050790
http://doi.org/10.1016/j.scitotenv.2018.07.146
http://doi.org/10.1016/j.apenergy.2018.06.155
http://doi.org/10.1109/jstars.2020.3029434
http://www.ncbi.nlm.nih.gov/pubmed/34812296
http://doi.org/10.3390/su12072610
http://doi.org/10.1016/j.landusepol.2020.104700
http://doi.org/10.3390/su11041096
http://doi.org/10.3390/su11010003
http://doi.org/10.3390/su10041247
http://doi.org/10.1007/s11707-016-0601-4
http://doi.org/10.1016/j.jenvman.2019.109485
http://doi.org/10.1007/s00267-015-0451-y
http://www.ncbi.nlm.nih.gov/pubmed/25740224
http://doi.org/10.1016/j.landusepol.2016.11.024
http://doi.org/10.1155/2016/5194091
http://doi.org/10.1016/j.landusepol.2018.02.020
http://doi.org/10.3390/su9050724
http://doi.org/10.1016/j.jag.2019.04.018
http://doi.org/10.1007/s12145-015-0232-4
http://doi.org/10.1007/s11430-015-0160-2
http://doi.org/10.3390/ijerph15061111
http://www.ncbi.nlm.nih.gov/pubmed/29848956


Remote Sens. 2023, 15, 940 26 of 32

89. Zhou, T.; Akiyama, T.; Horita, M.; Kharrazi, A.; Kraines, S.; Li, J.; Yoshikawa, K. The Impact of Ecological Restoration Projects in
Dry Lands: Data-based Assessment and Human Perceptions in the Lower Reaches of Heihe River Basin, China. Sustainability
2018, 10, 1471. [CrossRef]

90. Zhou, Y.; Dong, J.; Liu, J.; Metternicht, G.; Shen, W.; You, N.; Zhao, G.; Xiao, X. Are There Sufficient Landsat Observations for
Retrospective and Continuous Monitoring of Land Cover Changes in China? Remote Sens. 2019, 11, 1808. [CrossRef]

91. Zhuang, Z.; Li, K.; Liu, J.; Cheng, Q.; Gao, Y.; Shan, J.; Cai, L.; Huang, Q.; Chen, Y.; Chen, D. China’s New Urban Space Regulation
Policies: A Study of Urban Development Boundary Delineations. Sustainability 2016, 9, 45. [CrossRef]

92. Yang, C.; Zhang, C.; Li, Q.; Liu, H.; Gao, W.; Shi, T.; Liu, X.; Wu, G. Rapid urbanization and policy variation greatly drive
ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecol.
Indic. 2020, 115, 106373. [CrossRef]

93. Xiao, Q.; Tao, J.; Xiao, Y.; Qian, F. Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data.
Environ. Monit. Assess. 2017, 189, 493. [CrossRef] [PubMed]

94. Liu, G.; Jin, Q.; Li, J.; Li, L.; He, C.; Huang, Y.; Yao, Y. Policy factors impact analysis based on remote sensing data and the CLUE-S
model in the Lijiang River Basin, China. Catena 2017, 158, 286–297. [CrossRef]

95. Lu, Y.; Coops, N.C.; Hermosilla, T. Regional assessment of pan-Pacific urban environments over 25 years using annual gap free
Landsat data. Int. J. Appl. Earth Obs. Geoinformation 2016, 50, 198–210. [CrossRef]

96. Chen, Y.; Fei, X.; Groisman, P.; Sun, Z.; Zhang, J.; Qin, Z. Contrasting policy shifts influence the pattern of vegetation production
and C sequestration over pasture systems: A regional-scale comparison in Temperate Eurasian Steppe. Agric. Syst. 2019, 176,
102679. [CrossRef]

97. Xu, H.; Qi, S.; Gong, P.; Liu, C.; Wang, J. Long-term monitoring of citrus orchard dynamics using time-series Landsat data: A case
study in southern China. Int. J. Remote Sens. 2018, 39, 8271–8292. [CrossRef]

98. Azmi, S.; Agarwadkar, Y.; Bhattacharya, M.; Apte, M.; Inamdar, A.B. Monitoring and trend mapping of sea surface temperature
(SST) from MODIS data: A case study of Mumbai coast. Environ. Monit. Assess. 2015, 187, 165. [CrossRef]

99. Chettry, V.; Surawar, M. Urban sprawl assessment in Raipur and Bhubaneswar urban agglomerations from 1991 to 2018 using
geoinformatics. Arab. J. Geosci. 2020, 13, 667. [CrossRef]

100. Jadhav, A.; Anderson, S.; Dyer, M.J.B.; Sutton, P.C. Revisiting Ecosystem Services: Assessment and Valuation as Starting Points
for Environmental Politics. Sustainability 2017, 9, 1755. [CrossRef]

101. Jana, C.; Mandal, D.; Shrimali, S.S.; Alam, N.M.; Kumar, R.; Sena, D.R.; Kaushal, R. Assessment of urban growth effects on green
space and surface temperature in Doon Valley, Uttarakhand, India. Environ. Monit. Assess. 2020, 192, 257. [CrossRef] [PubMed]

102. Jayakumar, K.; Malarvannan, S. Assessment of shoreline changes over the Northern Tamil Nadu Coast, South India using WebGIS
techniques. J. Coast. Conserv. 2016, 20, 477–487. [CrossRef]

103. Machiwal, D.; Rangi, N.; Sharma, A. Integrated knowledge- and data-driven approaches for groundwater potential zoning using
GIS and multi-criteria decision making techniques on hard-rock terrain of Ahar catchment, Rajasthan, India. Environ. Earth Sci.
2014, 73, 1871–1892. [CrossRef]

104. Pasha, S.V.; Reddy, C.S.; Jha, C.S.; Rao, P.V.V.P.; Dadhwal, V.K. Assessment of Land Cover Change Hotspots in Gulf of Kachchh,
India Using Multi-Temporal Remote Sensing Data and GIS. J. Indian Soc. Remote Sens. 2016, 44, 905–913. [CrossRef]

105. Rahaman, S.; Kumar, P.; Chen, R.; Meadows, M.E.; Singh, R.B. Remote Sensing Assessment of the Impact of Land Use and Land
Cover Change on the Environment of Barddhaman District, West Bengal, India. Front. Environ. Sci. 2020, 8, 27. [CrossRef]

106. Ramachandran, R.M.; Reddy, C.S. Monitoring of deforestation and land use changes (1925–2012) in Idukki district, Kerala, India
using remote sensing and GIS. J. Indian Soc. Remote Sens. 2016, 45, 163–170. [CrossRef]

107. Rawat, K.S.; Mishra, A.K.; Bhattacharyya, R. Soil erosion risk assessment and spatial mapping using LANDSAT-7 ETM+, RUSLE,
and GIS—A case study. Arab. J. Geosci. 2016, 9, 288. [CrossRef]

108. Sahoo, R.N.; Dutta, D.; Khanna, M.; Kumar, N.; Bandyopadhyay, S.K. Drought assessment in the Dhar and Mewat Districts of
India using meteorological, hydrological and remote-sensing derived indices. Nat. Hazards 2015, 77, 733–751. [CrossRef]

109. Sembhi, H.; Wooster, M.; Zhang, T.; Sharma, S.; Singh, N.; Agarwal, S.; Boesch, H.; Gupta, S.; Misra, A.; Tripathi, S.N.; et al.
Post-monsoon air quality degradation across Northern India: Assessing the impact of policy-related shifts in timing and amount
of crop residue burnt. Environ. Res. Lett. 2020, 15, 104067. [CrossRef]

110. Sinha, M.K.; Verma, M.K.; Ahmad, I.; Baier, K.; Jha, R.; Azzam, R. Assessment of groundwater vulnerability using modified
DRASTIC model in Kharun Basin, Chhattisgarh, India. Arab. J. Geosci. 2016, 9, 98. [CrossRef]

111. Somvanshi, S.S.; Bhalla, O.; Kunwar, P.; Singh, M.; Singh, P. Monitoring spatial LULC changes and its growth prediction based on
statistical models and earth observation datasets of Gautam Budh Nagar, Uttar Pradesh, India. Environ. Dev. Sustain. 2020, 22,
1073–1091. [CrossRef]

112. Sushanth, K.; Bhardwaj, A. Assessment of landuse change impact on runoff and sediment yield of Patiala-Ki-Rao watershed in
Shivalik foot-hills of northwest India. Environ. Monit. Assess. 2019, 191, 757. [CrossRef]

113. AbdelRahman, M.A.; Natarajan, A.; Hegde, R.; Prakash, S. Assessment of land degradation using comprehensive geostatistical
approach and remote sensing data in GIS-model builder. Egypt. J. Remote Sens. Space Sci. 2018, 22, 323–334. [CrossRef]

114. Wilson, S.A.; Wilson, C.O. Land Use/Land Cover Planning Nexus: A Space-Time Multi-Scalar Assessment of Urban Growth in
the Tulsa Metropolitan Statistical Area. Hum. Ecol. 2016, 44, 731–750. [CrossRef]

http://doi.org/10.3390/su10051471
http://doi.org/10.3390/rs11151808
http://doi.org/10.3390/su9010045
http://doi.org/10.1016/j.ecolind.2020.106373
http://doi.org/10.1007/s10661-017-6210-1
http://www.ncbi.nlm.nih.gov/pubmed/28884302
http://doi.org/10.1016/j.catena.2017.07.003
http://doi.org/10.1016/j.jag.2016.03.013
http://doi.org/10.1016/j.agsy.2019.102679
http://doi.org/10.1080/01431161.2018.1483088
http://doi.org/10.1007/s10661-015-4386-9
http://doi.org/10.1007/s12517-020-05693-0
http://doi.org/10.3390/su9101755
http://doi.org/10.1007/s10661-020-8184-7
http://www.ncbi.nlm.nih.gov/pubmed/32236771
http://doi.org/10.1007/s11852-016-0461-9
http://doi.org/10.1007/s12665-014-3544-7
http://doi.org/10.1007/s12524-016-0562-9
http://doi.org/10.3389/fenvs.2020.00127
http://doi.org/10.1007/s12524-015-0521-x
http://doi.org/10.1007/s12517-015-2157-0
http://doi.org/10.1007/s11069-015-1623-z
http://doi.org/10.1088/1748-9326/aba714
http://doi.org/10.1007/s12517-015-2180-1
http://doi.org/10.1007/s10668-018-0234-8
http://doi.org/10.1007/s10661-019-7932-z
http://doi.org/10.1016/j.ejrs.2018.03.002
http://doi.org/10.1007/s10745-016-9857-2


Remote Sens. 2023, 15, 940 27 of 32

115. Weber, S.; Sadoff, N.; Zell, E.; de Sherbinin, A. Policy-relevant indicators for mapping the vulnerability of urban populations to
extreme heat events: A case study of Philadelphia. Appl. Geogr. 2015, 63, 231–243. [CrossRef]

116. Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional-scale soil salinity assessment using Landsat ETM + canopy reflectance. Remote
Sens. Environ. 2015, 169, 335–343. [CrossRef]

117. Jones, M.O.; Naugle, D.E.; Twidwell, D.; Uden, D.R.; Maestas, J.D.; Allred, B.W. Beyond Inventories: Emergence of a New Era in
Rangeland Monitoring. Rangel. Ecol. Manag. 2020, 73, 577–583. [CrossRef]

118. Hivin, L.F.; Pfaender, H.; Mavris, D.N. Regional climate impact of aerosols emitted by transportation modes and potential effects
of policies on demand and emissions. Transp. Res. Part D: Transp. Environ. 2015, 41, 24–39. [CrossRef]

119. Gillespie, T.W.; Willis, K.S.; Ostermann-Kelm, S.; Longcore, T.; Federico, F.; Lee, L.; Macdonald, G.M. Inventorying and Monitoring
Nighttime Light Distribution and Dynamics in the Mediterranean Coast Network of Southern California. Nat. Areas J. 2017, 37,
350–360. [CrossRef]

120. Foster, T.; Gonçalves, I.Z.; Campos, I.; Neale, C.M.; Brozovic, N. Assessing landscape scale heterogeneity in irrigation water use
with remote sensing and in situ monitoring. Environ. Res. Lett. 2018, 14, 024004. [CrossRef]

121. Fickas, K.C.; Cohen, W.B.; Yang, Z. Landsat-based monitoring of annual wetland change in the Willamette Valley of Oregon, USA
from 1972 to 2012. Wetl. Ecol. Manag. 2015, 24, 73–92. [CrossRef]

122. Di, L.; Yu, E.G.; Kang, L.; Shrestha, R.; Bai, Y.-Q. RF-CLASS: A remote-sensing-based flood crop loss assessment cyber-service
system for supporting crop statistics and insurance decision-making. J. Integr. Agric. 2017, 16, 408–423. [CrossRef]

123. Davis, T.W.; Stumpf, R.; Bullerjahn, G.S.; McKay, R.M.L.; Chaffin, J.D.; Bridgeman, T.B.; Winslow, C. Science meets policy: A
framework for determining impairment designation criteria for large waterbodies affected by cyanobacterial harmful algal
blooms. Harmful Algae 2018, 81, 59–64. [CrossRef]

124. Chappell, A.; Webb, N.P.; Guerschman, J.P.; Thomas, D.T.; Mata, G.; Handcock, R.N.; Leys, J.F.; Butler, H.J. Improving ground
cover monitoring for wind erosion assessment using MODIS BRDF parameters. Remote Sens. Environ. 2018, 204, 756–768.
[CrossRef]

125. Sciortino, M.; De Felice, M.; De Cecco, L.; Borfecchia, F. Remote sensing for monitoring and mapping Land Productivity in Italy:
A rapid assessment methodology. Catena 2019, 188, 104375. [CrossRef]

126. Piedelobo, L.; Taramelli, A.; Schiavon, E.; Valentini, E.; Molina, J.-L.; Xuan, A.N.; González-Aguilera, D. Assessment of Green
Infrastructure in Riparian Zones Using Copernicus Programme. Remote Sens. 2019, 11, 2967. [CrossRef]

127. Marcantonio, M.; Metz, M.; Baldacchino, F.; Arnoldi, D.; Montarsi, F.; Capelli, G.; Carlin, S.; Neteler, M.; Rizzoli, A. First
assessment of potential distribution and dispersal capacity of the emerging invasive mosquito Aedes koreicus in Northeast Italy.
Parasites Vectors 2016, 9, 63. [CrossRef]

128. Di Palma, F.; Amato, F.; Nolè, G.; Martellozzo, F.; Murgante, B. A SMAP Supervised Classification of Landsat Images for Urban
Sprawl Evaluation. ISPRS Int. J. Geo-Inf. 2016, 5, 109. [CrossRef]

129. Borrelli, P.; Panagos, P.; Märker, M.; Modugno, S.; Schütt, B. Assessment of the impacts of clear-cutting on soil loss by water
erosion in Italian forests: First comprehensive monitoring and modelling approach. Catena 2017, 149, 770–781. [CrossRef]

130. Aquilino, M.; Tarantino, C.; Adamo, M.; Barbanente, A.; Blonda, P. Earth Observation for the Implementation of Sustainable
Development Goal 11 Indicators at Local Scale: Monitoring of the Migrant Population Distribution. Remote Sens. 2020, 12, 950.
[CrossRef]

131. Petropoulos, G.P.; Ireland, G.; Cass, A.; Srivastava, P.K. Performance Assessment of the SEVIRI Evapotranspiration Operational
Product: Results Over Diverse Mediterranean Ecosystems. IEEE Sensors J. 2015, 15, 3412–3423. [CrossRef]

132. Rudke, A.P.; de Souza, V.A.S.; dos Santos, A.M.; Xavier, A.C.F.; Filho, O.C.R.; Martins, J.A. Impact of mining activities on areas of
environmental protection in the southwest of the Amazon: A GIS- and remote sensing-based assessment. J. Environ. Manag. 2020,
263, 110392. [CrossRef]

133. Parras, R.; De Mendonça, G.C.; Costa, R.C.A.; Pissarra, T.C.T.; Valera, C.A.; Fernandes, L.F.S.; Pacheco, F.A.L. The Configuration
of Forest Cover in Ribeirão Preto: A Diagnosis of Brazil’s Forest Code Implementation. Sustainability 2020, 12, 5686. [CrossRef]

134. Nascimento, N.; West, T.A.P.; Biber-Freudenberger, L.; de Sousa-Neto, E.R.; Ometto, J.; Börner, J. A Bayesian network approach to
modelling land-use decisions under environmental policy incentives in the Brazilian Amazon. J. Land Use Sci. 2019, 15, 127–141.
[CrossRef]

135. Ledru, M.-P.; Jeske-Pieruschka, V.; Bremond, L.; Develle, A.-L.; Sabatier, P.; Martins, E.S.P.R.; Filho, M.R.D.F.; Fontenele, D.P.;
Arnaud, F.; Favier, C.; et al. When archives are missing, deciphering the effects of public policies and climate variability on the
Brazilian semi-arid region using sediment core studies. Sci. Total. Environ. 2020, 723, 137989. [CrossRef]

136. Guadalupe, V.; Sotta, E.D.; Santos, V.F.; Aguiar, L.J.G.; Vieira, M.; de Oliveira, C.P.; Siqueira, J.V.N. REDD+ implementation
in a high forest low deforestation area: Constraints on monitoring forest carbon emissions. Land Use Policy 2018, 76, 414–421.
[CrossRef]

137. de Alencar, P.G.; de Espindola, G.M.; Carneiro, E.L.N.D.C. Dwarf cashew crop expansion in the Brazilian semiarid region:
Assessing policy alternatives in Pio IX, Piauí. Land Use Policy 2018, 79, 1–9. [CrossRef]

138. Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and
Machine Learning Classification on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2020, 9, 580. [CrossRef]

139. Akhtar, S.M.; Iqbal, J. Assessment of emerging hydrological, water quality issues and policy discussion on water sharing of
transboundary Kabul River. Water Policy 2017, 19, 650–672. [CrossRef]

http://doi.org/10.1016/j.apgeog.2015.07.006
http://doi.org/10.1016/j.rse.2015.08.026
http://doi.org/10.1016/j.rama.2020.06.009
http://doi.org/10.1016/j.trd.2015.09.015
http://doi.org/10.3375/043.037.0309
http://doi.org/10.1088/1748-9326/aaf2be
http://doi.org/10.1007/s11273-015-9452-0
http://doi.org/10.1016/s2095-3119(16)61499-5
http://doi.org/10.1016/j.hal.2018.11.016
http://doi.org/10.1016/j.rse.2017.09.026
http://doi.org/10.1016/j.catena.2019.104375
http://doi.org/10.3390/rs11242967
http://doi.org/10.1186/s13071-016-1340-9
http://doi.org/10.3390/ijgi5070109
http://doi.org/10.1016/j.catena.2016.02.017
http://doi.org/10.3390/rs12060950
http://doi.org/10.1109/jsen.2015.2390031
http://doi.org/10.1016/j.jenvman.2020.110392
http://doi.org/10.3390/su12145686
http://doi.org/10.1080/1747423x.2019.1709223
http://doi.org/10.1016/j.scitotenv.2020.137989
http://doi.org/10.1016/j.landusepol.2018.02.015
http://doi.org/10.1016/j.landusepol.2018.07.042
http://doi.org/10.3390/ijgi9100580
http://doi.org/10.2166/wp.2017.119


Remote Sens. 2023, 15, 940 28 of 32

140. Zeb, A. Spatial and temporal trends of forest cover as a response to policy interventions in the district Chitral, Pakistan. Appl.
Geogr. 2018, 102, 39–46. [CrossRef]

141. Khan, K.; Iqbal, J.; Ali, A.; Khan, S. Assessment of Sentinel-2-Derived Vegetation Indices for the Estimation of above-Ground
Biomass/Carbon Stock, Temporal Deforestation and Carbon Emissions Estimation in the Moist Temperate Forests of Pakistan.
Appl. Ecol. Environ. Res. 2020, 18, 783–815. [CrossRef]

142. Imran, M.; Sumra, K.; Mahmood, S.A.; Sajjad, S.F. Mapping flood vulnerability from socioeconomic classes and GI data: Linking
socially resilient policies to geographically sustainable neighborhoods using PLS-SEM. Int. J. Disaster Risk Reduct. 2019, 41, 101288.
[CrossRef]

143. Ullah, S.; Farooq, M.; Shafique, M.; Siyab, M.A.; Kareem, F.; Dees, M. Spatial assessment of forest cover and land-use changes in
the Hindu-Kush mountain ranges of northern Pakistan. J. Mt. Sci. 2016, 13, 1229–1237. [CrossRef]

144. Imran, M.; Sumra, K.; Abbas, N.; Majeed, I. Spatial distribution and opportunity mapping: Applicability of evidence-based policy
implications in Punjab using remote sensing and global products. Sustain. Cities Soc. 2019, 50, 101652. [CrossRef]

145. Awais, M.; Shahzad, M.I.; Nazeer, M.; Mahmood, I.; Mehmood, S.; Iqbal, M.F.; Yasmin, N.; Shahid, I. Assessment of aerosol
optical properties using remote sensing over highly urbanised twin cities of Pakistan. J. Atmospheric Solar-Terrestrial Phys. 2018,
173, 37–49. [CrossRef]

146. Tornos, L.; Huesca, M.; Dominguez, J.A.; Moyano, M.C.; Cicuendez, V.; Recuero, L.; Palacios-Orueta, A. Assessment of MODIS
spectral indices for determining rice paddy agricultural practices and hydroperiod. ISPRS J. Photogramm. Remote Sens. 2015, 101,
110–124. [CrossRef]

147. Regos, A.; Gómez-Rodríguez, P.; Arenas-Castro, S.; Tapia, L.; Vidal, M.; Domínguez, J. Model-Assisted Bird Monitoring Based on
Remotely Sensed Ecosystem Functioning and Atlas Data. Remote Sens. 2020, 12, 2549. [CrossRef]

148. Picos, J.; Alonso, L.; Bastos, G.; Armesto, J. Event-Based Integrated Assessment of Environmental Variables and Wildfire Severity
through Sentinel-2 Data. Forests 2019, 10, 1021. [CrossRef]

149. Gómez, V.P.; Gutiérrez, A.; Del Blanco, V.; Nafría, D.A. A Methodological Approach for Irrigation Detection in the Frame of
Common Agricultural Policy Checks by Monitoring. Agronomy 2020, 10, 867. [CrossRef]

150. Estrada, J.; Sánchez, H.; Hernanz, L.; Checa, M.J.; Roman, D. Enabling the Use of Sentinel-2 and LiDAR Data for Common
Agriculture Policy Funds Assignment. ISPRS Int. J. Geo-Inf. 2017, 6, 255. [CrossRef]

151. Caballero, I.; Navarro, G.; Ruiz, J. Multi-platform assessment of turbidity plumes during dredging operations in a major estuarine
system. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 31–41. [CrossRef]

152. Deilami, K. Kamruzzaman Modelling the urban heat island effect of smart growth policy scenarios in Brisbane. Land Use Policy
2017, 64, 38–55. [CrossRef]

153. Petus, C.; Waterhouse, J.; Lewis, S.; Vacher, M.; Tracey, D.; Devlin, M. A flood of information: Using Sentinel-3 water colour
products to assure continuity in the monitoring of water quality trends in the Great Barrier Reef (Australia). J. Environ. Manag.
2019, 248, 109255. [CrossRef]

154. Nery, T.; Sadler, R.; Aulestia, M.S.; White, B.; Polyakov, M. Discriminating native and plantation forests in a Landsat time-series
for land use policy design. Int. J. Remote Sens. 2019, 40, 4059–4082. [CrossRef]

155. Radwan, T.M. Monitoring Agricultural Expansion in a Newly Reclaimed Area in the Western Nile Delta of Egypt Using Landsat
Imageries. Agriculture 2019, 9, 137. [CrossRef]

156. Allen, K.E.; Vásquez, S.P. Forest cover, development, and sustainability in Costa Rica: Can one policy fit all? Land Use Policy 2017,
67, 212–221. [CrossRef]

157. AlQattan, N.; Acheampong, M.; Jaward, F.M.; Vijayakumar, N.; Enomah, L.E.D. Evaluation of the potential hydrological impacts
of land use/cover change dynamics in Ghana’s oil city. Environ. Dev. Sustain. 2019, 22, 7313–7330. [CrossRef]

158. Angiuli, E.; Pecharromán, E.; Ezquieta, P.V.; Gorzynska, M.; Ovejanu, I. Satellite Imagery-Based Damage Assessment on Nineveh
and Nebi Yunus Archaeological Site in Iraq. Remote Sens. 2020, 12, 1672. [CrossRef]

159. Ariti, A.T.; van Vliet, J.; Verburg, P.H. Land-use and land-cover changes in the Central Rift Valley of Ethiopia: Assessment of
perception and adaptation of stakeholders. Appl. Geogr. 2015, 65, 28–37. [CrossRef]

160. Arsanjani, J.J.; Fibæk, C.S.; Vaz, E. Development of a cellular automata model using open source technologies for monitoring
urbanisation in the global south: The case of Maputo, Mozambique. Habitat Int. 2018, 71, 38–48. [CrossRef]

161. Badamfirooz, J.; Mousazadeh, R. Quantitative assessment of land use/land cover changes on the value of ecosystem services in
the coastal landscape of Anzali International Wetland. Environ. Monit. Assess. 2019, 191, 694. [CrossRef]

162. Burke, M.; Lobell, D.B. Satellite-Based Assessment of Yield Variation and Its Determinants in Smallholder African Systems. Proc.
Natl. Acad. Sci. USA 2017, 114, 2189–2194. [CrossRef]
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