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Abstract—We study the problem of remote source monitoring
in an Internet of Things (IoT) system where a set of devices share
a wireless channel to a common receiver. Each device observes
an independent two-state Markov chain, with one of the states
visited sporadically (modeling a critical event), and may transmit
the current source value following a slotted ALOHA contention.
We focus on protocols that set the transmission probability over
a slot based on the value of the monitored process over the
current and past slot. In turn, the receiver estimates the source
state leveraging the channel outputs leaning either on a simple
decode and hold approach, which requires no knowledge of
the source statistics, or a maximum a posteriori estimator. For
both approaches, we derive an analytical characterization of the
system behavior in terms of false alarm and detection probability,
deriving interesting insights and highlighting protocol design
hints that depart from those commonly employed for throughput
or age of information optimization.

I. INTRODUCTION

INTERNET of things (IoT) systems are often employed
to remotely monitor the evolution of a processes of in-

terest. An example is provided by wireless sensor networks,
deploying a large number of battery-powered, low-complexity
devices that report acquired measurements to a collecting
unit for tracking, control or actuation. Applications are broad,
including environmental and industrial monitoring, asset track-
ing, smart city and cyber-physical systems. In these settings,
maintaining an accurate perception at the monitoring end
is not trivial, as often devices transmit information relying
on uncoordinated (random) access protocols over a shared
channels. This is the case, for instance, of LoRa [1] or Sigfox
[2] networks, implementing simple variation of the ALOHA
scheme [3] that render communications prone to packet losses
due to collisions.

In order to properly capture the performance of remote
monitoring systems, a number of novel metrics have been
introduced in the past few years. In this respect, a pioneering
role has been played by the age of information (AoI) [4], [5],
which evaluates how old is the latest information available at
the receiver regarding a process of interest. AoI has proven
to be an excellent proxy to characterize some fundamental
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design trade-offs [6], jointly depending on both the frequency
at which sources generate updates and on the time it takes
for such messages to cross the network and reach the final
destination. On the other hand, the metric solely focuses on
timeliness, and is oblivious on the actual state of a process. To
overcome this gap, alternative indicators that capture the relia-
bility of the estimate at the monitor can be considered. Among
them, the age of incorrect information (AoII) [7] introduces a
penalty which grows over time only if the knowledge at the
receiver is not deemed accurate, and can be complemented
by tackling different flavors of reconstruction errors [8]–[10].
Along a similar line, information theory-inspired metrics have
also been considered [11]–[13], focusing on the uncertainty at
the receiver side through the notion of entropy. Notably, while
a good level of understanding has been reached leaning on
these concepts for point-to-point links and coordinated multi-
access networks, somewhat less attention has been devoted to
the practically relevant setup of uncoordinated access channel
contention. Early results have been obtained for AoI [14]–[23],
and have recently been extended to AoII [24], [25] and to the
notion of state-estimation entropy [13].

Taking the lead from this, we further explore in this paper
the design of random access protocols for remote source moni-
toring, considering a set of devices that sense independent pro-
cesses, modelled as two-state Markov chains, and report to a
common receiver via a slotted ALOHA channel. In particular,
we focus on the case in which one of the two states is a critical
one and is visited sporadically. In practice, knowing when the
system is in such state might be of paramount importance
and possibly require some action in response. Accordingly, we
consider as system performance the probability of false alarm
events, in which the monitor erroneously assumes a critical
condition for a source, and detection events, i.e., a visit to the
critical state is correctly identified. For this setup, we study
a family of access policies in which the probability that a
terminal transmits an update at a given slot depends on the
past and current state of the observed source. Moreover, at the
receiver side we consider two different approaches to estimate
the state of remote sources based on the channel output.
On the one hand, we consider a simple approach, dubbed
decode and hold, in which the current estimate is only updated
upon reception of a new status update from the source of
interest. On the other hand, a maximum a posteriori solution is
considered, which leverages the knowledge of source statistics,
channel access policy and network cardinality to perform an
estimation based on past and present channel outputs. In both
cases, we provide an analytical characterization of false alarm
and detection probabilities, and optimize the channel access
policies’ parameters. The study reveals interesting and non-
trivial insights, clarifying how tying the channel access policy
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Fig. 1. Two-state Markov chain describing the evolution of a source.

to source evolution can significantly enhance the performance
of remote monitoring systems, and thus providing design
criteria that depart from the ones well-known for throughput
and AoI optimization.

Notation:

We denote discrete random variables (r.v.s) and their real-
izations with capital and lowercase letters, respectively, e.g.,
X , x. The probability mass function of a r.v. is indicated as
P (x), and the probability of an event as P[X = x]. For a
discrete-time, finite state Markov chain, we denote the one-
step transition probability between state i and j as qij , and
the stationary probability of state i as πi. Moreover, for a
discrete-time stochastic process Yn, n ∈ N, the random vector
[Y1Y2 . . . Yn] is indicated as Y n, and its realization as yn.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a system in which M terminals (nodes) share
a wireless channel towards a common receiver. Each node
monitors a stochastic process (source), and may transmit
data packets containing the value of the current source state.
Time is divided in slots of equal duration, tuned to fit a
wireless message, and all terminals are assumed to be slot-
synchronized. The tracked processes are modeled as two-
state, i.i.d. discrete-time Markov chains, evolving at every slot
and taking values in X = {0,1}. As reported in Fig. 1, the
transition probabilities between different states are denoted by
q01 and q10 = βq01. Accordingly, the stationary distribution of
the process can be expressed as

π0 =
β

1 + β
, π1 =

1

1 + β
.

In the remainder we will focus on the case q01 ≪ 1, β ≫
1, corresponding to sporadic and short visits to state 1. This
choice is representative of systems which may at times deviate
from a normal condition (state 0) to enter a critical state, which
may require attention at the receiver side.

Packet transmissions are performed following an uncoordi-
nated medium access policy based on slotted ALOHA [3], so
that a terminal sends an update over each slot with a given
probability, irrespective of the behavior of other contenders.
Details on the considered strategiess will be presented in
Sec. II-A. Following the well established collision channel
model, we assume that the receiver cannot decode any message
from a slot in which two or more terminals transmitted
concurrently (collision), whereas a packet sent over a singleton
slot is always successfully received.

Without loss of generality we concentrate on a terminal of
interest, and denote the value of the corresponding source at
slot n as Xn. In turn, the receiver observes at time n the
output Yn, taking values in Y = {0,1,I,C}. Specifically, 0 and
1 denote the correct reception of a message from the reference
terminal, communicating the corresponding state of the source;
C indicates that a collision has taken place over the slot;
and I accounts for the case in which either no message was
transmitted (idle slot), or a message from a terminal different
from the reference one was successfully decoded.

Leveraging the observed channel outputs, the receiver up-
dates at each time slot an estimate of the state of the source
of interest. We refer to the corresponding process estimates as
X̂n, and focus on two different estimators, introduced in the
following.

Decode and hold (D&H) estimator: The receiver updates
X̂n only upon receiving a status update from the source of
interest, and retains the previous estimate otherwise:

X̂n =

⎧⎪⎪
⎨
⎪⎪⎩

Yn if Yn ∈ {0,1}

X̂n−1 otherwise .

The solution does not require any knowledge of the source
statistics, and can be particularly appealing in practical systems
in view of its simplicity.

Maximum a posteriori (MAP) estimator: If transition prob-
abilities, network cardinality, and channel access strategy are
known, the receiver can exploit the whole observed sequence
yn to refine its estimate. To this aim, we introduce the a
posteriori probability (APP) logarithmic ratio

λn ∶= ln
P[Xn = 0 ∣Y

n = yn]

P[Xn = 1 ∣Y n = yn]
(1)

and determine the estimate based on a threshold test:

X̂n =

⎧⎪⎪
⎨
⎪⎪⎩

0 if λn ≥ θ

1 if λn < θ
(2)

where ties are resolved in favor of the hypothesis Xn = 0.
In both cases, we are interested in evaluating the detection
probability Pdet, i.e., the probability of correctly identifying the
source being in state 1, as well as the false alarm probability
Pfa, capturing the case in which the receiver erroneously
estimates the source to be in the critical state. Specifically,
we will characterize

Pdet ∶= P[X̂n = 1 ∣Xn = 1] , Pfa ∶= P[X̂n = 1 ∣Xn = 0] .

Remark 1. By properly selecting the threshold θ, the test on
the APP ratio reported in (2) satisfies the Neyman-Pearson
criterion. Thus, the considered MAP estimator maximizes the
detection probability for a target false alarm probability [26].

A. Medium Access Strategies

We focus on channel access strategies by which each node
independently decides whether to send a status update based
on the state of the monitored process on the current and
previous slot. More formally, a terminal transmits the value of
the source over slot n with probability τxn−1xn , and the access
strategy is fully specified by the vector τ = [ τ00, τ01, τ10, τ11 ].
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This general definition embeds some special examples of
particular interest, which we highlight in the following:
● random transmission: in this case, the access policy is

agnostic of the source state, so that τij = τ , ∀i, j ∈ {0,1}.
The scheme offers a relevant benchmark, as it is repre-
sentative of common implementations of slotted ALOHA
in which the access probability does not depend on the
content of the message to be transmitted;

● state-based transmission: the terminal behavior is solely
determined by the current state of the source, regardless
of the past, i.e. τ00 = τ01 ∶= τ0, and τ10 = τ11 ∶= τ1;

● reactive transmission: a status update is sent each time,
and only when, the source transitions, i.e., τ00 = τ11 = 0,
τ01 = τ10 = 1. This approach binds the access policy to the
behavior of the monitored processes, and aims at reducing
channel congestion (and thus collision probability) by
only delivering messages in the presence of a source
change;

● balanced reactive transmission: as a variation of the
previous solution, transmissions can be performed only
when the source changes state, although with a cer-
tain probability. The policy is described by the vector
τ = [0, τ01, τ10,0 ], where in general τ01 ≠ τ10.

It shall be noted that, for the class of transmission poli-
cies under study, the number of terminals that access the
channel at a given slot depends in general on the state of
the corresponding stochastic processes.1 Due to this, an exact
characterization of the probability to successfully deliver a
message would require tracking the number of sources in a
given state in the current and previous slot, with an increase in
complexity as the network population grows. In this respect,
we resort instead to an approximation, whose tightness will
be verified and discussed in Sec. V. Namely, we assume that
all terminals other than the reference one access the channel
independently with probability α. This, in turn, is given by
the average probability for a node to transmit over a slot, i.e.

α = π0[ q00τ00 + q01τ01] + π1[ q10τ10 + q11τ11]. (3)

We refer to this assumption as the myopic approximation.
Following this model, the probability to deliver a message
sent by the reference source can be expressed as

ω = (1 − α)M−1.

III. DECODE AND HOLD ESTIMATOR

To gauge the performance of the D&H estimator, it is
convetient to jointly track the evolution of the reference source
and of its estimate at the receiver. The corresponding 4-state
Markov chain (Xn, X̂n) is reported in Fig. 2, for the general
transmission probability vector τ . The transition probabilities
of the process can be readily derived for the system model
under study. For instance, the chain transitions from (0,0) to
(1,1) if the source evolves from 0 to 1 (probability q01), and
the terminal transmits an update which is correctly decoded
at the receiver (overall probability τ01ω). For the same source

1The only exceptions are the random transmission case, and the reactive
transmission approach, under the assumption of symmetric sources (β = 1).

0, 0 0, 1

1, 0 1, 1

1− q01

q01 (1−τ01ω)

q01τ01ω

(1− q01)(1− τ00ω)

q01

(1− q01)τ00ω

βq01

(1− βq01)(1−τ11ω) (1− βq01)τ11ω

βq01τ10ω

1− βq01

βq01(1−τ10ω)

Fig. 2. Markov chain (Xn, X̂n) jointly tracking the evolution of the reference
source and of the receiver estimate, under a D&H estimator.

behavior, instead, the chain moves to (0,1) if no message
from the reference terminal is received (factor 1 − τ01ω).
Finally, the process remains in state (0,0) if the source does
not transition (probability 1 − τ01), regardless of the outcome
of a potential transmission, since the receiver already has
the correct estimate. Following a similar reasoning, all other
probabilities can be derived, and are shown for completeness
in Fig. 2.

The stationary distribution π(i,j), i, j ∈ {0,1} for the
irreducible, aperiodic chain can be computed directly from
the balance equations. Of particular interest are the values
obtained for π(0,1) and π(1,1), reported in (4) at the top
of next page. Leaning on these, indeed, Pdet and Pfa can
be immediately computed from the definition of conditional
probability as

Pfa =
π(0,1)

π0
, Pdet =

π(1,1)

π1
. (5)

The presented formulations allow to characterize the behavior
of the system in terms of false alarm and detection probability
for any choice of the channel access vector τ . From this
standpoint, we note that a specific configuration of the protocol
parameters leads to a unique pair (Pfa,Pdet) when the receiver
relies on a D&H estimator.

Furthermore, while a thorough discussion of these trends
will be provided in Sec. V, some useful initial insights are
provided by considering the simple random and reactive
transmission strategies. In the former case, the expressions in
(5) simplify to

Pfa =
q01(1 − τω)

τω + (1 + β)q01(1 − τω)
, Pdet = 1 − β Pfa (6)

prompting two remarks. On the one hand, recalling that for the
random approach the probability for a node to transmit over a
slot is independent of the current or past source state, we have
α = τ , and ω = (1 − τ)M−1. Plugging this into (6), one can
readily prove that the best performance (i.e., minimum false
alarm probability and maximum detection rate) is attained by
setting τ = 1/M . In other words, the protocol configuration
maximizing throughput and age of information [18] is also
optimal for a D&H estimator if terminals behave ignoring
the evolution of the monitored processes. On the other hand,
a linear relationship, with proportionality factor β emerges
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π(0,1) =
βq01(τ11 + βq01τ01 − βq01τ11)(1 − τ10ω)

z
, π(1,1) =

(τ11 + βq01(τ01 − τ11))(q01 + (1 − q01)τ00ω)

z
(4)

z = (1 + β){τ11 [q01 + τ00ω(1 − q01)] + βq01 [q01(τ01 + τ10 − τ11 − τ01τ10ω) + τ00(1 − q01)(1 − τ11ω)] }

0 1

P (Yn | 0, 0)
P (Yn | 0, 1)

P (Yn | 1, 0)

P (Yn | 1, 1)

Fig. 3. Hidden Markov model considered for tracking the evolution of the
APP logarithmic ratio. The hidden state is given by the reference source Xn,
whereas the observation Yn is driven by the source transition between times
n − 1 and n.

between false alarm and detection probability, regardless of
the value chosen for τ .

When considering a reactive transmission strategy, instead,
the performance indicators evaluate to

Pfa =
1 − ω

2 − ω
, Pdet = 1 − Pfa.

In this case, however, the channel access probability is purely
dictated by the evolution of the sources (α = q01(1+2β)/(1+
β)), so that worse performance will be attained when the
tracked processes transition more frequently.

IV. MAP ESTIMATOR

In order to capture the performance of the threshold test
introduced in (2), we characterize the joint distribution of
the reference source and of the r.v. Λn, describing the time
evolution of the APP logarithmic ratio. In this perspective, it is
convenient to consider a hidden Markov model (HMM), where
the underlying process Xn can be observed via the channel
outputs Yn. For the class of channel access policies under
study, and leaning on the myopic approximation introduced in
Sec. II, the probability of observing a specific slot outcome
at the receiver depends solely on the current and past state
of the reference source, leading to the HMM illustrated in
Fig. 3. The conditional distribution P (Yn ∣Xn−1,Xn), Yn ∈ Y ,
Xn ∈ X follows thus from simple calculations. Specifically, the
probability of observing an update from the source of interest
is given by

P (yn ∣xn−1, xn) = τxn−1xn (1 − α)
M−1 if yn = xn

whereas the HMM generates an observation I with probability

P (I ∣xn−1, xn) = (1 − τxn−1xn) [ (1 − α)
M−1
+

α(M − 1)(1 − α)M−2 ] .

In the expression, the first factor accounts for the reference
terminal not to access the channel, whereas the summation
captures either the absence of other transmissions (idle slot)

or the transmission of a single message from any of the other
M − 1 nodes. Finally, the probability of observing a collision
can be expressed as

P (C ∣xn−1, xn) = τxn−1xn[1 − (1 − α)
M−1
]+

(1 − τxn−1xn) [ (1 − α)
M−1
+α(M−1)(1−α)M−2 ] .

Also in this case, the first addend captures the case in which
the reference terminal transmits and at least one of the other
nodes accesses the channel as well, whereas the second addend
refers to a collision in which the node of interest remains
silent, while two ore more other nodes transmit.

Leaning on the presented HMM, the evolution of the ap-
proximated APP logarithmic ratio can be computed iteratively,
through the recursion

λn = ln

∑
xn−1∈X

P (yn ∣xn−1,0) qxn−10 ⋅ e
−λn−1xn−1

∑
xn−1∈X

P (yn ∣xn−1,1) qxn−11 ⋅ e
−λn−1xn−1

∶= f(λn−1, yn) (7)

To derive the result, we start by considering the well-known
forward equation of HMMs [27], which allows to express the
joint distribution of the current source state at time n and the
overall available observations up to that point as

P (xn, y
n
)=∑
xn−1∈X

P (yn∣xn−1, xn)P (xn∣xn−1)P (xn−1, y
n−1
).

(8)

Furthermore, applying the exponential function to both sides
of (1), and recalling that P[Xn = 0 ∣Y

n] = 1−P[Xn = 1 ∣Y
n]

we readily obtain the relations P[Xn = 0 ∣Y
n] = 1/(1 + e−λn)

as well as P[Xn = 1 ∣Y
n] = e−λn/(1 + e−λn). Combining the

two leads to the compact formulation

P (xn ∣ y
n
) =

e−λnxn

1 + e−λn
. (9)

If we now observe that the definition of λn can be equivalently
expressed in terms of the logarithmic ratio of the joint distri-
bution of Xn and Y n, the recursion (7) directly follows by
writing both numerator and denominator of the ratio leaning
on (8), and by plugging (9) into the obtained expressions.

The recursion in (7) can in turn be used to estimate the joint
distribution of Xn and Λn in a computationally efficient way.
To this aim, quantizing the APP logarithmic ratio so that it
assumes values in a finite set, by the law of total proability
we can write

P (λn, xn) = ∑
xn−1∈X

∑
yn∈Y,λn−1∶

f(yn,λn−1)=λn

P (λn−1, yn, xn, xn−1) (10)

where the inner summation considers all the possible
(yn, λn−1) pairs that can lead to λn via (7). On the other hand,
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Fig. 4. Detection probability vs false alarm probability for the random and
reactive transmission policies. Results for both D&H (markers) and MAP
(lines) detectors are reported, for two different values of q01.

the joint distribution within the summation can be rearranged
using simple conditioning arguments as

P (λn−1, yn, xn, xn−1) =

P (yn ∣xn, xn−1)P (xn ∣xn−1)P (λn−1, xn−1). (11)

We thus obtain once more a simple recursion, which al-
lows to compute P (λn, xn), with initial conditions set to
P[Λ−1 = 0,X−1 = 0] = P[Λ−1 = 0,X−1 = 1] = 0.5. We remark
that the presented approach implements a quantized density
evolution, akin to the one reported in [28], and inspired by
[29, Chapter 4].

Finally, the joint distribution of the APP logarithmic ratio
and of the current source state provides the false alarm and
detection probabilities attainable by the MAP estimator. Under
the myopic approximation of Sec. II for a threshold θ, we can
write

Pfa = lim
n→∞

1

π0
∑

λn<θ

P (λn,0)

Pdet = lim
n→∞

1

π1
∑

λn<θ

P (λn,1)

and obtain an evaluation of the quantities by running the
recursion in (10)-(11) over a sufficiently long time horizon.

V. RESULTS AND DISCUSSION

To gather insights on the performance of the different
channel access strategies under the two considered estimators,
in the following we focus on a setting with M = 250 nodes.
We considered asymmetric sources with β = 50, so that the
fraction of time spent by a monitored process in the critical
state is π1 = 0.02.

To begin our study, we tackle the two simplest approaches,
i.e., the random and reactive transmission strategies. In the
former case, the transmission probability is set to 1/M , fol-
lowing the discussion of Sec. IV. The corresponding behavior
in terms of detection probability against false alarm rate is
shown in Fig. 4. As discussed, performance is captured by
a single point (square and circle markers) when the receiver
relies on the D&H estimator, whereas a full curve can be
obtained when using a MAP estimate by varying the decision

threshold θ. The plot reports results for two different values of
q01, namely 2 ⋅10−3 (dashed lines for MAP, empty markers for
D&H) and 2 ⋅ 10−4 (solid lines, filled markers). Consider first
the D&H case. In this setting, the detection probability can be
improved implementing reactive transmissions, although at a
cost of a higher false alarm probability. Indeed, when updates
are sent at random intervals, regardless of the source evolution,
the average time between successive transmissions for a node
is M slots, which is larger than the permanence time of the
monitored process in state 1 (i.e., 1/(βq01)). Therefore, a
transition to the critical state may not be notified at all, leading
to a low detection probability. In addition, the random strategy
may lead nodes to access the channel attempting to deliver
redundant information (e.g., multiple packets containing a
source state the receiver is already aware of), increasing the
chance of collision for updates signaling critical transitions.2

The reactive solution circumvents this drawback by notifying
only state changes. On the other hand, however, if a packet
signaling that the source has gone back to state 0 is lost, a
long time may elapse before the reactive protocol triggers
another update (on average, 1/q01 slots), leaving the receiver
with an erroneous estimate that increases the false alarm rate.
From this standpoint, implementing random transmissions may
be beneficial in some case, as (possibly repeated) packets
notifying the source being in state 0 directly lead to a reduction
of Pfa.

The benefit of using a reactive solution becomes apparent
when the receiver implements a MAP estimator, as highlighted
again by Fig. 4. In this case, binding the behavior of the
channel access protocol to the evolution of the tracked source
allows to better estimate the current state from channel ob-
servations. Indeed, if updates are triggered irrespective of the
monitored processes, a slot outcome in {C,I} does not bring
any additional information to the receiver. This is reversed if
nodes follow a reactive policy, as the receiver can for instance
infer that the source of interest has not transitioned at the
current slot upon observing channel output I. We may observe
that MAP curves in Fig. 4 exhibit a first-order discontinuity.
We conjecture this effect to be the result of the choice of
quantization intervals used by the density evolution analysis.

Some further remarks can be extracted from Fig. 4. As
expected, all policies perform better under any estimator
for lower values of q01, as stochastic processes with fewer
and more sporadic transitions can be tracked more easily.
Moreover, the MAP criterion always improves over a D&H
tracking, exploiting additional knowledge on the source and
channel access statistics. The gap is larger for higher values of
q01, as the stronger channel contention induced by the reactive
scheme can beset the D&H performance. On the other hand,
the improvement in terms of detection probability is rather
limited for low q01, prompting the simple estimator as an
interesting solution for many practical settings. Nonetheless,

2Note that, with the random strategy, the channel is operated at load of G =
1 pkt/slot, with a probability of successfully delivering a packet approximated
by e−1 = 0.36. In turn, for the considered values of q01, the channel load
of the reactive policy can easily be estimated based on (3) as G ≃ αM =

2βq01M/(1 + β), leading to G ≃ 0.1 (success probability ∼ 0.9) and G ≃ 1
for q01 = 2 ⋅ 10−4 and q01 = 2 ⋅ 10

−3, respectively.
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Fig. 5. Maximum detection probability achievable for a target false alarm
probability for different channel access strategies when the receiver employs
a D&H estimator. Solid lines denote analytical results under the myopic
approximation, whereas markers ()) were obtained by means of Montecarlo
simulations. In all cases, q01 = 2 ⋅ 10−4.

as noted, relying on a MAP estimate offers the ability to pick
the desired operating point over a complete receiver operating
characteristic (ROC) curve, so that a small loss in terms of
detection probability can lead to a significant reduction of the
false alarm rate.

This observation triggers the natural question of how the
performance of the D&H estimator can be changed by tuning
the vector of channel access probabilities τ , going beyond the
basic random and reactive transmission schemes. Specifically,
for a target false alarm probability P∗fa, an interesting problem
is to determine the protocol configuration that maximizes the
detection probability in the D&H case. We thus tackle the
constrained optimization problem

max
τ

Pdet(τ )

s.t. Pfa(τ ) = P
∗
fa

(12)

where Pdet and Pfa are obtained via (4) and (5), and which
can easily be solved via standard methods. The outcome of
this study is reported in Fig. 5 for the case q01 = 2 ⋅ 10−4.
In the plot, solid lines refer to the solution of the problem in
(12), whose expressions rely on the myopic approximation.
Instead, the starred markers ()) show results obtained via
Montecarlo simulations that account for the proper behavior
of all terminals, i.e., the number of transmissions in a slot
is jointly driven by the state of all the sources in the system.
Different colors identify the state-based, balanced reactive, and
the complete strategy. Finally, the circle and square markers
show for reference the results obtained with the random and
reactive solutions (single point, same values shown already in
Fig. 4).

The plot highlights how different operating points in terms
of (Pfa,Pdet) can indeed be targeted with the use of a D&H
estimator by properly operating the underlying access protocol.
For completeness, the values of the transmission probability
vector τ leading to the maximum Pdet for a specific Pfa are
shown in Fig. 6 at the top of next page, for all considered
strategies. As a first remark, state-based policies can improve
over the pure random scheme, leading to higher detection
probabilities. This is obtained by sending updates more likely

when the monitored process lies in the critical state, and by
reducing the transmission frequency otherwise, so to avoid
channel congestion. The intuitive approach comes though at
the risk of leaving the receiver with a wrong estimate after
the process has reverted to 0. In this perspective, a simple
take-away emerges: transmission policies that do not tackle
directly state changes fail to deliver good performance. For
example, a reasonable detection rate (e.g., larger than 0.9) can
only be attained with the state-based strategy when tolerating
a very large false alarm rate (> 0.3 in the considered setting).
Further insights are offered by considering the balanced-
reactive strategy, as little improvement can be obtained over
the simple reactive solution. Indeed, higher values of Pdet
are achieved by significantly increasing Pfa, and, in turn, a
reduced false alarm rate leads to a rather steep decrese in
terms of detection capabilities. Notably, the optimal protocol
configuration in this case (Fig. 6b) foresees to notify with
probability 1 all source transitions in one direction, and setting
to a strictly positive, yet lower, value the probability of update
transmission for the complementary event.

On the other hand, noticeable gains can be reaped with the
complete policy (yellow line). For instance, an improvement
of a factor ∼ 20% and ∼ 85% in terms of Pdet with respect to
the balanced reactive and state-based policies is obtained for a
false alarm probability of 0.06 (not achievable in this setting
with the plain reactive policy). Furthermore, the complete
policy presents a performance curve with a smoother behavior
around values of Pdet ∼ 0.9, allowing some flexibility in
matching a target false alarm rate without compromising too
much the detection capabilities. Fig. 6c illustrates how the
benefits are achieved, pinpointing that the optimal channel
access strategy when a D&H estimator is implemented consists
in notifying with high probability state changes, and comple-
menting this by sporadically transmitting even in case of no
change, so as to reduce the probability for the receiver to
remain stuck with a wrong estimate. It is important to observe
that such protocol operation mode is profoundly different
from the one maximizing throughput or minimizing age of
information, which foresees transmitting independently of the
source state or evolution. In Fig. 5 we also plot the outcome
of a full blown simulation which does not rely on the myopic
approximation introduced in Section II for tracking the state
of the reference source. The plot shows that simulations are
in excellent agreement with the analytical results, supporting
the validity of the myopic approximation for the considered
setup.

To conclude our study, we explore whether protocol set-
tings that are optimal when the receiver implements a D&H
estimator offer good performance also when a MAP criterion
is employed. To this aim, we select two reference values of
Pfa, namely 0.05 and 0.1, and denote by τ 1 and τ 2 the
transmission probability vectors that solve problem (12) for the
complete strategy, i.e., they lead to the points of abscissa 0.05
and 0.1 for the yellow curve in Fig. 5. We then test the behav-
ior of the MAP estimator under such protocol configurations,
computing the (Pdet,Pfa) pairs that are obtained by varying
the decision threshold θ. The results are reported by the solid
curves in Fig. 7. Always for the MAP estimator, the dashed
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Fig. 6. Transmission probabilities for a state-based (a), balanced reactive (b) and complete (c) transmission strategy in order to maximize the detection
probability for a target false alarm rate (x-axis). The results are obtained by solving the optimization problem in (12) under the myopic approximation.

curve shows the performance attained when nodes implement
the simple reactive policy, i.e., τ10 = τ01 = 1, τ11 = τ00 = 0.
Finally, square and circle markers indicate the best operating
points already discussed for the D&H estimator when targeting
the two considered values of Pfa, whereas starred markers
()) show results obtained via Montecarlo simulations that
account for the proper behavior of all terminals. Some key
messages emerge from the plot. First, a significant degradation
is experienced when the protocol operates with probability
vector τ 1 if compared to the plain reactive approach. From this
standpoint, a configuration which allowed to improve detection
probability under the D&H estimator is detrimental when the
receiver implements the MAP-based one. As highlighted from
Fig. 6c, τ 1 differentiates from a reactive solution by setting
τ00 ≃ 7 ⋅ 10−3. This choice is beneficial in the D&H case,
as notifying the permanence in state 0 can reduce the false
alarm rate if a message signaling the transition 1 → 0 was
lost. On the other hand, when tracking the APP logarithmic
ratio, the receiver can update its estimate without the need for
such messages, leaning on the source evolution statistics which
predicts a rather quick return to the normal operating state. In
this perspective, the higher number of transmissions become
detrimental, increasing the overall collision probability. The
situation changes when the protocol is configured with the
probability vector τ 2 = [0,1,1,3.5 ⋅10

−3]. In this case, a small
improvement over the reactive case is experienced also for the
MAP estimator, benefiting from some additional transmissions
when in state 1. We further observe that an excellent agreement
is obtained between simulations and analytical results obtained
leaning on the myopic approximation also for the MAP case.

More importantly, the result paves the way for further
studies, aimed at deriving the optimal strategy to employ under
a MAP-based estimate criterion, and which we regard as part
of our future work. The reported results stress in any case the
positive impact that connecting the channel access policy to
the dynamic and transitions of monitored processes can have
on remote source monitoring, in contrast to what commonly
observed when targeting information freshness metrics.

VI. CONCLUSIONS

In this paper, we have studied an IoT system in which a
large number of devices share a wireless channel to a common
receiver in an uncoordinated manner. Each device monitors
an independent stochastic process, modeled as a two-state
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Fig. 7. (Pdet,Pfa) pairs obtained using a MAP estimator for three different
protocol configurations. τ1 and τ2 correspond to the probability vectors that
maximize the detection probability under the D&H estimator for a target
Pfa of 0.05 and 0.1, respectively. In addition, performance under a reactive
strategy using a MAP estimator is also reported (dashed line). In all cases,
q01 = 2 ⋅ 10−4. rategies when the receiver employs a D&H estimator. For
MAP, lines denote analytical results under the myopic approximation, whereas
markers ()) were obtained by means of Montecarlo simulations.

Markov chain where one of the states is visited sporadically
(capturing a critical or alarm event). Time is slotted, and
at every slot a device decides whether to transmit a packet
containing the value of the corresponding process, with a
probability that depends on the present and past state of the
source. The receiver estimates the state of each process across
time, leaning on the slot outputs it observes. Specifically,
we have considered two approaches: a simple decode and
hold estimator, which does not require any knowledge of
the source statistics, and a more efficient maximum a pos-
teriori solution. For both, we have presented an analytical
characterization of the system performance in terms of false
alarm and detection probability, resorting to tools based on
(hidden) Markov models. The behavior of different channel
access strategies has been discussed, ranging from approaches
in which transmission probabilities are oblivious of the source
evolution, to solutions that tie the access to source transitions.
Furthermore, an optimization of the protocol parameters when
a decode and hold estimator is employed has been presented,
also discussing the effectiveness of this configuration under
a MAP estimator. The study reveals several non-trivial take-
aways, clarifying how a tuning of the random access policy to
the evolution of tracked processes can have a profound impact
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in improving detection probability and reducing false alarm
rates. Notably, these remarks depart from well-known design
criteria that are used to optimize ALOA-based systems relying
on metrics such as throughput or age of information.
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